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We present a real-space renormalization-group analysis for the U(1) spin model in two and three dimensions and
for compact electrodynamics in three and four dimensions. The Hamiltonian formulation of the theory defined on a
hypercubic spatial lattice is used. The nonperturbative renormalization-group transformations we derive give
continuous phase transitions for the spin models, in two and three dimensions. In three dimensions the gap exponent
agrees remarkably well with series-expansion results. For the gauge theory we find, in agreement with Polyakov,
that compact electrodynamics in three dimensions confines for all values of the coupling constant. A calculation for
the string tension shows that it vanishes with an essential singularity at zero coupling. In four dimensions for weak
enough coupling confinement is lost and the theory shows a phase transition between a charge-confining and a free-

photon phase.

1. INTRODUCTION

Considerable attention has recently been devoted
to spin systems and gauge theories on a lattice
invariant under a compact continuous-symmetry
group.’*? A conjecture by Migdal in fact suggests
that the critical properties of four-dimensional
gauge theories are closely related to those of two-
dimensional spin systems.® In the lattice gauge
theory the fields are defined on compact mani-
folds, and one can argue that this situation would
arise naturally for electrodynamics if the gauge
group were an unbroken remnant of a larger uni-
fying compact group.

In this paper we derive some simple real-space
renormalization-group transformations that allow
us to investigate correlations in Abelian [U(1)]
spin and gauge systems for all values of the coup-
ling constant. The renormalization method we
adopt is essentially of the block-spin type and is
therefore nonperturbative in nature.* It has been
previously used in several contexts.®™° For the
gauge theory the method we employ ensures that
gauge invariance is preserved for the renorma-
lized theory defined on the rescaled lattice. Al-
though the block Hamiltonian is not fully gauge
invariant, the new renormalized Hamiltonian de-
scribing the physics at twice the original length
scale possesses the original gauge symmetry with
respect to the new lattice sites. The only other
approach we know of that preserves gauge invari-
ance is the one employed by Migdal and Kadanoff.
We regard this work also as a step towards the
goal of understanding confinement and related
problems in non-Abelian gauge theories using
nonperturbative techniques. The methods we use
can in fact be applied to non-Abelian spin and
gauge theories with limited additional complica-
tions.

In Sec. II we study the planar model in the Ham-
iltonian (transfer matrix) formulation in 1+1 and
2+1 dimensions. The truncation procedure we
adopt is such that at every site we keep an arbi-
trarily large number of eigenstates of the strong-
coupling limit of the Hamiltonian. The truncation
to a finite number of states is expected not to
change the critical properties of the model. But
because of our choice of approximating theory,

‘we also do not in general expect to be able to give

a satisfactory description of the weak-coupling
region beyond the critical point in the untruncated
model. In1+1 dimensions we find a phase transi-
tion between a. massless phase and a massive one
in the finite-spin theory. At the critical point the
mass gap goes to zero algebraically. In 2+1 di-
mensions we find a critical point at some finite
coupling and we compute the critical exponents.
Because of the variational character of our re-
normalization method, the exponents for “time-
like” quantities, like the mass gap, are in much
better agreement (less than one tenth of a percent)
with known series-expansion results than the ex-
ponents for “spacelike” quantities, like the cor-
relation length and the order parameter.

Section III is devoted to the study of the U(1)
gauge theory in the Hamiltonian formulation in
two and three spatial dimensions. In 2+1 dimen-
sions we are able to confirm the results by Polya-
kov about the absence of a free-photon phase in
the compact version of the theory.? Our method
seems capable of reproducing the qualitative fea-
tures that arise in the Euclidean action formula-
tion from evaluating the path integral around top-
ologically nontrivial solutions. Our method can
be regarded as complementary to the one em-
ployed in related work'? (where the weak-coupling
region was studied in detail), in the sense that
some of our approximations become exact in the
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limit of strong coupling. In particular, our cal-
culations suggest that the string tension vanishes
with an essential singularity at zero coupling. In

" 3+1 dimensions our renormalization-group analy-
sis gives a phase transition at finite couplings.
When the coupling is sufficiently strong we find
that static charges are confined as a consequence
of the compactness of the fields. On the other
hand, for weak enough coupling confinement is
lost and at large distances Maxwell’s electrody-
namics is recovered. At present we do not know
of any other renormalization-group calculation
that gives these results, although they are not
unexpected. The picture we have described is
in agreement with a conjecture by Migdal that the
four-dimensional U(1) gauge theory should undergo
a phase transition.?

II. U(1)-SYMMETRIC SPIN SYSTEMS

We start from the statistical-mechanics Hamil-
tonian

5= —J 2o B(E) A(F+ ), (2.1)
i
where the Ti’s are unit vectors defined on the sites
of a square lattice of spacing @ and [i labels the
directions on the lattice. A useful parametriza-
tion for 1 is

fi=(cos@, sing). (2.2)

In the continuum limit we can write (up to a con-
stant)

Jc=%g2 [ atxme (2.3)

with J =1/g? The relativistic field theory corre-
sponding to (2.3) is obtained by performing a Wick
rotation x,— ¢ and replacing the statistical-mech-
anics Hamiltonian by a classical action

1 - -
S= ng f dtd® 1x(f)“n)z. (2.4)
The integrand is the Lagrangian density and the

momentum conjugate to the field § is therefore

0L 1.
——=—0. 2.5
56 " g 6 (2.5)
For a theory with a continuous time axis and a
discrete spatial axis, the Hamiltonian becomes

H= g’g Z [Jzz(?) - %ﬁ(f) (T p)] . (2.6)

' We have also set y=g® The canonical commuta-
tion relations between the J’s and the #i’s can be
stated as

17, (F), e44060] = 4 g0 57 2.7

It is useful to introduce

— i0 - . .
= =pt+i
p=e 11 o, (2.8)
ot =et0=p, —in,

and rewrite H in the slightly more general form
2a - A
?H =; [e,2(F) ~a(p(FloT (T+D)+H.c.)] (2.9)
: r,u

with €/A =y. The ¢’s are now simply ladder oper-
ators on eigenstates of J,.

To perform a real-space renormalization-group
analysis, we group the lattice sites into blocks.
In 1+1 dimensions the blocks consist of two sites
(see Fig. 1). At each site we set up a basis
spanned by the eigenstates |wg) of J,,

I |m) = m|m,
et lmy=Im+1), (2.10)
(le>'_'|7n—1);

and limit ourselves to |m| <s, with s some fixed
large number. This approximation is justified-
for large y [this can be seen from the form of H
(2.6) for large y] and is consistent with our block-
spin method since the coupling between blocks

is of order l/y. Because of our choice of finite-s
Hamiltonian, the operators y' and y have become
nilpotent and do not possess nonzero eigenvalues,
which forces the order parameter (y) to be zero
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FIG. 1. Blocks of spins for the planar model: (a) in
1+ 1 dimensions, (), (c) in 2+ 1 dimensions.
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for all couplings (although we get nontrivial A re-
normalizations). On the other hand, the infinite
spin and the truncated Hamiltonian give exactly
the same answers to nth order in perturbation
theory in 1/y, as long as n<s. We expect there-
fore to get reliable answers for quantities that
have an expansion around 1/y=0, as long as we
keep s large. Furthermore, the universality hy-
potheses would suggest that critical properties
(like exponents) should actually be independent of
s. The states of the block can be labeled by the
total angular momentum (since A does not mix

_ these different sectors) and the block Hamiltonian
can be diagonalized in each of these sectors inde-
pendently. We choose the renormalized parameter
€ to be

€RT A1 = Aoy : (211)

where ), is the lowest eigenvalue in the J, ,, =0
sector and ), is the lowest eigenvalue in the J, ,,
=+1 sectors. With this prescription the block
Hamiltonian in fact renormalizes into one of ex-
actly the same form for weak coupling (y<«1).
The renormalized intersite coupling is defined as

Ap=K?A,

(2.12)
K=(+1]| ¢"|0)
and the renormalized coupling is therefore
Yr=€r/Ag. ' (2.13)
It is useful to define the function
R(y)=yz-y, (2.14)

which has the property that it vanishes at a fixed
point. The graph of this function for the (1+1)-
dimensional planar model is shown in Fig. 2. The
critical point is (for large s) at

v.=2.202953. ... (2.15)

Series expansions suggest y,~1.2.** In the large-
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FIG. 2. The function R (y) for the planar model in
1+ 1 dimensions, using 21 states at every site.

s limit one can show that for large y

exme(t-243 L)
R y 4y2 H

A 111
Afi(“rﬁ y_) (2.16)

6
R(y):y_4+;—+-.-,

and for small y
R(y)==3y+5(y/2)%2 +0(y?). 2.17)

It is easy in this scheme to compute the mass
gap u and the order-parameter renormalization
constant 7. In the high-temperature phase we
have

i ™
pelme™ sy (2.18)
Mo lim (a®)*2,
whereas in the low-temperature phase
o lim A®
A LI (y<9,) v (2.19)
M oc,P,m (A(n))l/z .

Here €™ and A™ are the nth iterates of € and A
under the renormalization-group transformation.
A numerical study of the recursion relations shows
that A® iterates to zero both above and below y,,
whereas €™ iterates to a finite value above y, and
to zero below y,. We can therefore conclude that
a massive phase exists for y>y_. Below y, the
Hamiltonian iterates to a constant, which has no
gap. The behavior of the mass gap in the finite-
spin model for all couplings is shown in Fig. 3.
We should mention the fact that it appears that
our block-spin renormalization procedure is un-
able to reproduce an essential singularity in the
mass gap at y,. We do not know at present how
to circumvent this problem without substantially
altering the simple structure of our renormaliza-

3

FIG. 3. The mass gap for the finite-spin planar model
in 1+ 1 dimensions. The dashed line is the lowest-
order perturbative expansion (L —2/y).
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R(y)

8 10

FIG. 4. The functions R (y) for the planar model in
2+ 1 dimensions. The continuous line is for four sites
in a block, keeping three states at every site. The
dashed line is for blocks of two sites and 21 states at
every site.

tion transformation.

The planar model in 2+ 1 dimensions is studied
in analogous fashion. We now group the lattice
sites into blocks of four (see Fig. 1) and again
diagonalize the Hamiltonian in each sector charac-
terized by different J, ,,,. When we keep three
states at each site and use the same renormaliza-
tion prescription as for the (1+1)-dimensional
case, we obtain the function R(y) shown in Fig. 4.
The critical point is at

y,=6.024318. .. , (2.20)

corresponding to a second-order phase transition.

In general, we can introduce two functions .
and 1, that describe how € and A change under
the renormalization group:

ex= (e, (2.21)
Ap=2a(y)A.

We find that in the large-y phase, ¢™ iterates to
a constant and A® to zero. In the other phase
(y<y,) both €™ and A™ iterate to larger and larg-
er values. Since we know that the three-dimen-
sional (w-spin) xy model has a Goldstone phase
with no mass gap and a nonvanishing order para-
meter, we interpret these results as a breakdown
of the finite-spin (finite-s) Hamiltonian in the
y<y, phase. This is not surprising since the
order parameter, for example, does not possess
an expansion around 1/y =0. At the fixed point y,,
the two functions )., 1, take the same value

1 =0.702 20 and using the value for R’(y_)=0.69383
we obtain, as described in the Appendix, the ex-
ponent for the mass gap

v =0.67084, (2.22)

which should be compared with the series-expan-
sion result y=0.670+0.006.'* For the correlation

length exponent (obtained by linearizing the re-
cursion relations at the critical point) we get

1 .
ve=— =1.3153 (2.23)
Ir
and we can define an “order-parameter” exponent
(see the Appendix):

B=0.9931. (2.24)

The fact that our variational renormalization-
group method tends to give much better exponents
for energylike quantities had previously been noted
in other contexts.”™® Under the renormalization
group lengths get doubled whereas energies are
rescaled by A and therefore time by 1/A. Ow-
ing to this asymmetric scaling of space and
time under the renormalization group, we find

U << Vg, whereas for an exact transformation they
should turn out to be equal.

In order to investigate how our results change
when we modify the renormalization scheme, we
can also group lattice points into blocks of two
and use the one-dimensional recursion relation
twice, as shown in Fig. 1. It would appear that
in this way we might generate anisotropic coup-
lings, but this is not the case. Again, using a
large (~21) number of states at every site, we
get a critical point at

v, =4.548198 (2.25)

with x=0.699 41 and R'(y,)=0.70568, from which
we compute

v =0.66955, (2.26)

which agrees to 0.2% with the previous value. In
this approximation the exponent y; seems to be
independent of s, the number of states retained
at every site. For large y one can show that

- B1....
R(y)=y =T+ SR (2.27)

This function is also shown in Fig. 4.

III. U(1) GAUGE THEORY

The compact Abelian gauge theory we will con-
sider is defined by the Euclidean lattice action®

1
I:—Z? ;(l—coseu,,). (3.1)

The sum extends over all plaquettes on the hyper-
cubic lattice of spacing a. 8,, is the field-strength
tensor on the lattice

Oup=8,6,-48,0,, (3.2)
0,=agA,

and A, is the lattice derivative in the direction T



The fields 6, are defined now on the links of the

lattice. Again we can define a quantum-mechanical

Hamiltonian for the theory, in a way that is analo-
gous to the derivation in the case of the planar
model.!*'% The result is

2 1,
g—ZH= EJEZ(L) -5 Y (ppetet+He). (3.3)
T 7

Here L is an index that labels the links on the
lattice and the operators J, and ¢ have the same
meaning as in the spin system. The product of
¢’s is taken around the border of a plaquette and
y=g*. The electric-field operator is

E(L)=£7,L) (3.4)

and because of the compactness of the fields it
can take only integer values, in units of g/a2

The commutation relations between A(L) and E(L)
are

L@, @)= 5oy (3.5)

For small g the cosine in (3.3) can be expanded
and the Hamiltonian becomes (in 3+ 1 dimensions)

H=a3zL: %EZ(L)+a3Z%( ZA) i

» 3
+0(g%?). (3.6)

In the continuum limit we replace the sums by
integrals and the lattice curl by the corresponding
differential operator and obtain

H=3% f @ [E2+ TxR)F+0(g%Y), (3.7

which is the Hamiltonian for Maxwell’s electro-
dynamics. The Hamiltonian (3.3) commutes with
the unitary operator that rotates the phase angles
of the two-dimensional variables that live on the
links emanating from the site ; by x(;), for every
site z:

Gly) = exp[Z‘:J,(L;)x(i)] . (3.8)

Local gauge invariance means that y(;) can be
different from site to site. Under G(x) the field
transforms as

G()6,(L)GH(x)=6,(L)+ &, x- (3.9)

We require the ground state to be gauge invari-
ant for all y,

G(x)[0)=]0), (3.10)

and this implies that gauge-noninvariant quantities
like the order parameter and ¢ -¢ correlation
functions vanish identically. A gauge-invariant
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correlation function is the Wilson loop

H (L)
LE

where the product is around a closed loop on the
lattice. The different behavior of this function
for large loops can be used to characterize the
phases of the theory. Alternatively, we can in-
troduce two widely separated static charges and
compute the energy of this configuration with re-
spect to the vacuum. This quantity divided by the
distance between the two charges defines the string
tension.

1t is known that for strong coupling (y> 1) the
theory exhibits linear confinement in any dimen-
sion. To lowest order in perturbation theory the
electric string tension is given by

w(r)= (o

0>, , (3.11)

2
TE=—2<%—2<1-1—3—l 3%+) (3.12)
with d the dimensionality of space. This is just

a consequence of the nonlinearities in the dynam-
ics that are generated by the compactness of the
fields. In this phase the gauge-invariant excita-
tions are closed loops of electric flux and the
lowest-lying excitations are just simple boxes

(see Fig. 5). k

As the coupling strength decreases, the vacuum
becomes populated with loops of arbitrary size.
For y~1 the size of these loops is comparable to
the distance between them. We want to answer
the question of whether the string tension vanishes
at some finite coupling. It would be rather discon-
certing if the Abelian lattice gauge theory in four
dimensions were to lead to confinement for all
couplings.

We will first consider the case of 2+ 1 dimen-
sions. The renormalization-group transformation
we will construct will have the property of pre-
serving gauge invariance.”™® In order to perform
a real-space renormalization-group analysis, we
group links and plaquettes into disjoint blocks.

We write

2
S H=Y H,, (3.13)
g 3 )

where H, is a block Hamiltonian containing eight
links and four plaquettes,

Hy=a iJf(L) -B 2
=1

PP PP,

(ppoT @t +H.c.).
(3.14)

We have allowed again for o« #1 and define now
the coupling to be y =@ /8. A new theory is now
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(a)

(b)
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FIG. 5. (a) A single plaquette on the lattice. (b) A
closed string of electric flux. On the single lines E2=1
and on the double lines E=4 in units of g%/a%. (c) A
string connecting two static charges.

(c)

defined through the Hamiltonian
) .
Lu=2 m (3.15)
g b v
with (see Fig. 6)
4
Hy=20 ; 72(L) = lo()e(2)+ (3)pT(4) + H.c.]
=1

-Blowoto'(P)+H.c.]. (3.16)

Hj contains only four links and one plaquette.
Furthermore, the first two terms of H; do not
contain operators associated with links of neigh-
boring plaquettes. The factor 2 that multiplies
the first term is chosen in order that excitations
caused by the second term have the same energy
as box excitations in H,. y is a parameter that

is determined by the requirement that the ground-
state energy of H, and H, are the same. Since,
however, we are unable to obtain them in closed
form, we resort to perturbation theory in 1/y and
find

y 3 1f 379 1 _1_]
=3 y2[1+ 5766 57 +0(57)]- (3.17)

The second step now consists in reducing further
the degrees of freedom by replacing the variables
associated with the links 1 and 2 (and 3 and 4)

P, Ps
Pl F’2
(a)
3-4
) I

(b)

(c)

FIG. 6. Blocks for the gauge theory in 2 + 1 dimen-
sions: (a) the original four plaquettes and eight links,
(b) the plaquette and the two pairs of coupled links that
survive after the first decimation, (c) the new block
on the rescaled lattice.

by a single set of operators. Given the links 1
and 2, for example, we proceed to truncate to
the lowest-lying states of the Hamiltonian

H"=20[7,21) +J,%2) =(¢(1)eT(2)+ H.c.)].  (3.18)

But this is just the problem we solved in the pre-
ceding section with

€=2a, (3.19)
A=y,

Here again we truncate to the lowest-lying states
in each angular momentum sector. After this
step the renormalized Hamiltonian is defined on
a length scale that is twice the original one and
can be expressed in the original form as

2
(‘%H> =g 2 0,2 =Br 2 (9pe ot + Hoe)
g R L P
+ const. (3.20)

The renormalized parameters are, in terms of
the quantities computed with the planar block Ham-
iltonian,
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QR=€ERTAL = Aoy

4
BR K Br (3.21)

_ o
Yr™ .
R BR

We now wish to briefly comment on the question
of gauge invariance. If we consider the gauge-
transformation operators acting on the sites at
the corners of the lower-right square in the block
of Fig. 5(a), we see that H, is invariant under
each of these generators separately, while H; is
only invariant under their product. But if we de-
fine the gauge generator for the block to be the
sum of the four gauge generators on the corners,
then we see that H; is invariant. A state with
zero charge on the coarse lattice corresponds to
those sectors on the finer lattice for which the
sum of the four generators gives zero.

Again we can define the function

R(y)=yg -y (3.22)
and find, for large v,

aR:2a<1— \/Wi‘ +) ’

BR:%B<1+M%+”')y (3.23)

75 1
R(y)=7y—\/§f6_+j4é R

For small y, using a large number of states and
the lowest-order result for y, and exploiting known
results from the theory of Mathieu functions, we
get

- - 1/2
ag=a(l+c,y 3/4 p=cyfy o), (3.24)
Br=BL—csy!/?+-+)
and, therefore,
R(y)=csy*/2+0(y?) (3.25)

with
01=(23333)1/s/ﬁ, Cz=4(%)1/4’ c3=%(§)1/4.

The function R(y) is shown in Fig. 7. Using the
first- or the second-order result for x does not
significantly affect the shape of R(y). (Aty=%
to lowest order we get 0.0056 and at the next or-
der 0.0023.) We find no indication of a phase tran-
sition for finite values of the coupling constant.

In terms of g=y!/%, the 8 function 8(g)
=R(y)/(4g%) is given by

FIG. 7. The function R (y) for the gauge theory in
2+ 1 dimensions.

1 9
@_;g_) g S = G gL cygeoai 4 )

and it has an essential singularity at g=0.

We can define electric and magnetic string ten-
sions, which are the energies per unit length of
an electric (magnetic) flux tube connecting two
static sources. In our renormalization scheme
the string tensions are given by

2 )
_ &8 . a
TE_ 2a2 ’]"1..!:2 on

(3.26)
2 ()
Ty = 72% lim ’32,, )

n >

In this way we do not need to actually introduce
static sources to compute the tension. I we start
out with a coupling of order 1, we iterate as many
times as necessary to make the coupling either
weak (y<« 1) or strong (y> 1), after which we

can apply perturbation theory to compute the quan-
tities of interest. Depending on the dimension

of these quantities, we have then to divide by the
appropriate power of the lattice-spacing rescaling
factor.

In 2+ 1 dimensions we find that the magnetic
tension is always zero, whereas the electric ten-
sion vanishes with an essential singularity at the
origin. To lowest order this is a direct conse-
quence of the structure of the recursion relation
(3.24), as shown in the Appendix. We find that
our results are consistent with a behavior of the
electric string tension of the type

2
_2_%_ T ;\:o Ae-b/yo

g

(3.27)

1

with 5=1.53419 and 0 =3. A graph of the string
tension is shown in Fig. 8.
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FIG. 8. The electric string tension for the gauge
theory in 2+ 1 dimensions.

It seems therefore that our method is capable
of reproducing correctly also some of the quali-
tative features of the weak-coupling region, using
techniques that are significantly different from
previous works.?'? In particular, our analysis
suggests a behavior for the static confining poten-
tial that closely resembles the results obtained
by Polyakov. His method is rather different and
consists in evaluating the Euclidean path integral
for compact QED around nontrivial topological
configurations. In fact, the situation we encounter
is not dissimilar from what one expects in four-
dimensional non-Abelian gauge theories.

The analysis for the U(1) gauge theory in 3+1
dimensions follows along the same lines. Again
we write

and H, now contains 24 plaquettes and 24 links.
These are shown in Fig. 9. The 12 links and 6
plaquettes that survive after the first decimation
are also shown. The links in H; are now coupled
four at a time through a nearest-neighbor spin
coupling of strength y with

. (3.28)

2
XY
P

1 1 )

— +0(—3)- (3.29)
yZ (y4

Now we are led to the solution of the problem of

a four-site block of planar spins. Using the re-
sults of the preceding section we can write

3
2

Qp=€R= A1 = Ao,

Br=2K"8, (3.30)
)
YR Br .

The factor of 2 in the definition of 8 stems from
the fact that now two plaquettes couple the blocks

HAMBER 24
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FIG. 9. The block for the gauge theory in 3+ 1 dim-
ensions.

in each spatial direction (see Fig. 6).
For large y we find

aR=2a<1—m§ 1 +-°°>,
y

3R=§3(1+ ﬂ'77§§+> ‘ (3.31)

87
R(y)=15y—~/_2—4'60_+3—4— £-+ .

The function R(y) is shown in Fig. 10. The fixed
point is at

y,=0.8497498. .. (3.32)

and there the theory undergoes a phase transition
between an electric confining and a nonconfining
phase. Our result compares favorably with an
estimate based on an energy-entropy balancing
for large monopole current loops in the Euclidean
lattice formulation, which gives y,=0.93.1® Monte
Carlo simulations give y,=1.02+ 0.05.7

Qur renormalization-group transformation
(which because of the approximations should be

‘OL T
8+ 4
6r .
- " .
T 4r -
r T
2r B
0]
-2 1 1 1 1 1
(o] | 2 3

FIG. 10. The function R (y) for the gauge theory in
3+ 1 dimensions.



FIG. 11. The electric string tension for the gauge
theory in 3+ 1 dimensions. The dashed line is the result
from lowest-order perturbation theory.

fully trusted only for y>y_) indicates that the mag-
netic string tension vanishes for all couplings,
whereas the electric string tension convergestoa
finite value fory >y, (see Fig. 11). Aty_itgoesto
zero continuously, with v,,=1.1805. The mass-gap
exponent is v, =0.4007. Whenthe bare coupling is
small enough (y<y,) then at large distances the
theory is equivalent to free electrodynamics. On
the other hand, for large bare couplings (y>4y,)
static charges are confined as a consequence of
the self-interactions of the photon field, inherent
in the compact formulation of the theory. Our
results agree nicely with a conjecture by Migdal
that four-dimensional compact QED should undergo
a phase transition at finite couplings, whereas
non-Abelian gauge theories should not. In the
continuum limit this would prevent electric charges
from being confined (for y<y,_, but the same
would not happen for colored charges. It remains
still an open question of how the string tension
vanishes at the critical point. Our analysis at
the present time does not seem sophisticated
enough to reproduce an essential singularity in
the strong tension at finite coupling.

IV. CONCLUSIONS

We have shown how simple renormalization-
group methods can be effective in describing the
large-distance properties of spin systems and
gauge theories in the Hamiltonian formulation.
The “block-spin” renormalization prescription
we adopt seems to be capable of reproducing well
many of the qualitative and quantitative features
of the phase transitions we encounter. Because
of the variational truncation procedure we adopt,
space and time scale in an asymmetric way under
the renormalization group and we see that our
results for timelike quantities appear to be more
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reliable. Our simple variational truncation meth-
od on the other hand does not seem well suited
for searching for essential singularities at finite
couplings. We regard our results in the case of
the U(1) gauge theories encouraging and see as

a next application of our methods non-Abelian
gauge theories in four dimensions.
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APPENDIX: SCALING RELATIONS AND EXPONENTS

We have defined the function R(y) to be
R(y)=yg—y. (A1)

Close to y, we can expand R(y) in a Taylor series,

R()=RLy=9.)+3RI(y —y,)%+-+, (A2)
and therefore close to y, we have

Yr=9:= 1+ Ry =y,.)

CHERI(y =y )i e (A3)

For definiteness we shall consider the mass gap
for a spin system, given by

poe lim € (y>9,), (Ad)

poo lim A® (y<y,),

where €™ and A™ are the nth iterates of € and A
under the renormalization-group transformation.
Close to y, the mass gap behaves like

By, (9=3.)C. (A5)

If we choose y, and y, close to y, and related by

V2=, +R(y1), (A8)

then we have

Bz _ (u)yc = (1+R.YV. (AT)
231 2

But we also know how u gets rescaled under re-
normalization, namely

By
ne M) (A8)
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sufficiently close to y,, and therefore
In(1/2)

¥e” (1 +R)) (49
For the string tension we would have gétten
_ In(2/A) '
Vp= i+ R) vR])’ (A10)
Now it can happen that R,=0. I we assume
nyYy, Ae=b/ 9=3)° (A11)
then we obtain for R? #0, o=1 and
In(1/2)
b=
zR" (A12)
In general if we have, close toy,,
R(y), =, Cly=y)™°, (A13)
then
By, Al (A14)
with b given by
1. 1
b= B lnA . (A15)

For the string tension the corresponding relation
is

1. 2
b=—In—.
B In x (A16)
The correlation length exponent y, on the other
hand is given by the inverse of the thermal expo-
nent y .,
1 v
Vp=— Al7)
oy (
and y , is obtained by linearizing the recursion
relations at the critical point:

Yr=Ye=2"7(y =y,) (A18)
and therefore
In2

ve= mi+R) (A19)

I 1/x=2 were true, then we would have v, =i,
The magnetization is defined by

M= lim KO (A20)
and by the analogous scaling argument we can

show that
In(1/K.)

= (A21)

“In(1 +R.)’

where K is defined by how the operator ¢ re-
normalizes at y,,

[wlz=K.0. (A22)
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