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Results for the gravitational Wilson loop, in particular, the area law for large loops in the strong

coupling region, and the argument for an effective positive cosmological constant, discussed in a previous

paper, are extended to other proposed theories of discrete Euclidean quantum gravity in the strong

coupling limit. We argue that the area law is a generic feature of almost all nonperturbative Euclidean

lattice formulations, for sufficiently strong gravitational coupling. The effects on gravitational Wilson

loops of the inclusion of various types of light matter coupled to lattice quantum gravity are discussed as

well. One finds that significant modifications to the area law can only arise from extremely light matter

particles. The paper ends with some general comments on possible, physically observable, consequences.
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I. INTRODUCTION

The identification of possible observables is an impor-
tant part of formulating a theory of quantum gravity. In
general it is expected that these quantum observables will
be represented by expectation values of operators which
have physical interpretations in the context of a manifestly
covariant formulation. In this paper, we focus on the gravi-
tational analog of the Wilson loop [1,2], which provides
physical information about the parallel transport of vec-
tors, and therefore on the effective curvature, around large,
near-planar loops. We will extend the analysis of earlier
work [3,4] to more general theories of discrete quantum
gravity. A recent complementary discussion of the signifi-
cance of physical observables in a quantum theory of
gravity can be found, for example, in [5].

In classical gravity the parallel transport of a coordinate
vector around a closed loop is described by a rotation,
which is a given function of the affine connection along
the space-time path. Then the total rotation matrix UðCÞ is
given by the path-ordered (P ) exponential of the integral of
the affine connection ��

�� via

U�
�ðCÞ ¼

�
P exp

�I
path C

��
��dx

�

��
�

�
: (1)

The gravitational Wilson loop then represents naturally a
quantum average of a suitable trace (or contraction) of the
above nonlocal operator, as described in detail in [3]. Its
large distance (i.e. for loops whose size is very large
compared to the lattice cutoff) behavior can be estimated,
provided one makes some suitable assumptions about the

short-distance fluctuations of the underlying geometry,
with the key assumption being the use of a Haar integration
measure for the local rotations at strong coupling.1 A
general result then emerges, at least for the Euclidean
theory, which is that the Wilson loop generically exhibits
an area law for sufficiently strong gravitational coupling
(large G) and near-planar loops [3,4]. It should be noted
here that in contrast to gauge theories, the Wilson loop in
quantum gravity [6] does not provide useful information on
the static potential, which is obtained instead from the
correlation between particle world-lines [7,8]. Instru-
mental in deriving the results of [3] was the first-order
Regge lattice [9] formulation of gravity, discussed origi-
nally in [10].
Furthermore, from a semiclassical point of view, a vec-

tor’s rotation around a large macroscopic loop is expected

1In the following we will be dealing almost exclusively, unless
stated otherwise, with the Euclidean theory. Thus, for example,
we will be considering Oð4Þ rotations and not Oð3; 1Þ rotations,
for which convergence issues can arise when employing the Haar
measure for the lattice theory at strong coupling. We note that in
the context of the field-theoretic 2þ � expansion for gravity in
the continuum, as well as in the renormalizable higher derivative
formulation in four dimensions, no differences appear in the
relevant beta functions for gravity between the Lorentzian and
Euclidean case, to all orders in the relevant expansion parame-
ters. In the continuum a physical difference between the two
cases would then have to originate from nonanalytic terms in the
beta functions, possibly due to nontrivial saddle points in the
Euclidean theory. Also, the nonperturbative treatment of the
lattice Lorentzian case by numerical methods generally involves
complex weights expðiSÞ, which are known to be very difficult to
deal with reliably by statistical means.

PHYSICAL REVIEW D 81, 084048 (2010)

1550-7998=2010=81(8)=084048(21) 084048-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.81.084048


to be directly related, by Stoke’s theorem, to some sort of
average curvature enclosed by the loop. In this semiclas-
sical picture one would write for the rotation matrix U

U�
�ðCÞ �

�
exp

�
1

2

Z
SðCÞ

R����A
��
C

��
�

�
; (2)

where A��
C is the usual area bivector associated with the

loop in question,

A
��
C ¼ 1

2

I
dx�x�: (3)

The use of semiclassical arguments in relating the above
rotation matrix UðCÞ to the surface integral of the Riemann
tensor assumes (as is usual in the classical context) that the
curvature is slowly varying on the scale of the very large
loop. Then, in such a semiclassical description of the
parallel transport process, one can reexpress the connection
in terms of a suitable coarse-grained, or semiclassical,
Riemann tensor, and thus relate the quantum Wilson loop
expectation value discussed previously to an observable
large-scale curvature. The latter is represented phenom-
enologically by the long distance, observed cosmological
constant �obs.

It is important in this context to note, as an underlying
theme, the close analogy between the Wilson loop in
gravity and the one in gauge theories, both theories involv-
ing a connection as a fundamental entity. Furthermore, a lot
is known about the behavior of the Wilson loop in non-
Abelian gauge theories at strong coupling, some of it from
analytical estimates and some from large-scale numerical
simulations. Let us recall that in non-Abelian gauge theo-
ries, the Wilson loop expectation value for a closed planar
loop C is defined by [1]

WðCÞ ¼
�
TrP exp

�
ig

I
C
A�ðxÞdx�

��
; (4)

with A� � taA
a
� and the ta’s the group generators of

SUðNÞ in the fundamental representation. In the pure
gauge theory at strong coupling [1,2], it is easy to show
that the leading contribution to the Wilson loop follows an
area law for sufficiently large loops

hWðCÞi �
A!1

expð�AC=�
2Þ (5)

where AC is the minimal area spanned by the planar loop C
and � the gauge field correlation length. Furthermore, it
can be shown that the area law is fairly universal at strong
coupling, in the sense that it is not too sensitive to specific
short-distance details of the SUðNÞ-invariant lattice action.
Indeed one expects the result of Eq. (5) to have universal
validity in the lattice continuum limit, the latter being taken
in the vicinity of the ultraviolet fixed point at gauge cou-
pling g ¼ 0.

The fundamental renormalization group invariant quan-
tity � appearing in the textbook result of Eq. (5)2 represents
the gauge field correlation length, defined, for example,
from the exponential decay of connected Euclidean corre-
lations of two infinitesimal loops separated by a distance
jxj,

GhðxÞ ¼
�
TrP exp

�
ig

I
C0
�

A�ðx0Þdx0�
�
ðxÞ

� TrP exp

�
ig

I
C00
�

A�ðx00Þdx00�
�
ð0Þ

�
c
: (6)

Here the C�’s are two infinitesimal loops centered around x
and 0 respectively, suitably defined on the lattice as ele-
mentary square loops, and for which one has at sufficiently
large separations

GhðxÞ �
jxj!1

expð�jxj=�Þ: (7)

Thus the inverse of the correlation length � is seen to
correspond, via the Lehmann representation, to the lowest
gauge invariant mass excitation in the gauge theory, the
scalar glueball.3

Through the renormalization group � is related to the �-
function of Yang-Mills theories, with � the renormalization
group invariant obtained from integrating the Callan-
Symanzik �-function,

��1ðgÞ ¼ const� exp

�
�
Z g dg0

�ðg0Þ
�
; (8)

with � the ultraviolet cutoff, so that � is then identified
with the invariant gauge correlation length appearing in
Eqs. (5) and (7).
In an earlier paper [3], we adapted the gauge definition

of the Wilson loop to the gravitational case, specifically to
the case of lattice gravity, and in the context of the discre-
tization scheme due to Regge [9]. On the lattice, with each
neighboring pair of simplices s, sþ 1 one can associate a
Lorentz transformation U�

�ðs; sþ 1Þ, which describes
how a given vector V� transforms between the local coor-
dinate systems in these two simplices. This transformation
is directly related to the continuum path-ordered (P) ex-
ponential of the integral of the local affine connection, with
the connection here having support only on the common
interface between two simplices. The lattice action itself
only contains contributions from infinitesimal loops, but
more generally one might want to consider near-planar, but
noninfinitesimal, closed loops C (see Fig. 1). Along this
closed loop the overall rotation matrix will be given by

2See, for example, Peskin and Schroeder, An Introduction to
Quantum Field Theory, p. 783, Eq. (22.3).

3We do not distinguish here, for the sake of simplicity,
between the square root of the string tension and the mass
gap. In SUðNÞ Yang-Mill theories, and QCD, in particular, these
represent nearly the same mass scale, up to a constant of order
one.
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U�
�ðCÞ ¼

�Y
s�C

Us;sþ1

�
�

�
: (9)

In analogy with the infinitesimal loop case, one would like
to state that for the overall rotation matrix one has

U�
�ðCÞ � ½e�ðCÞBðCÞÞ���; (10)

where B��ðCÞ is now an area bivector perpendicular to the

loop and �ðCÞ the corresponding deficit angle, which will
work only if the loop is close to planar so that B�� can be

taken to be approximately constant along the path C. By a
near-planar loop around the point P, we mean one that is
constructed by drawing outgoing geodesics on a plane
through P.

The matrix U�
�ðCÞ in Eq. (9) then describes the parallel

transport of a vector round the loop C. If that is true, then
one can define an appropriate coordinate scalar by con-
tracting the above rotation matrixUðCÞwith an appropriate
bivector, namely

WðCÞ ¼ !��ðCÞU��ðCÞ (11)

where the bivector, !��ðCÞ, is intended as being represen-
tative of the overall geometric features of the loop (for
example, it can be taken as an average of the hinge bivector
!��ðhÞ along the loop). Finally, in the quantum theory one

is interested in the quantum average or vacuum expectation
value of the above loop operator WðCÞ, as in the gauge
theory expression of Eq. (4).

The next step is to relate the so defined, and computed,
quantum average to physical observable properties of the
manifold. Indeed for any continuum manifold one can
define locally the parallel transport of a vector around a
near-planar loop C. Then parallel transporting a vector
around a closed loop represents a suitable operational
way of detecting curvature locally. Thus a direct calcula-
tion of the vacuum expectation of the quantumWilson loop
provides a way of determining an effective curvature at
large distance scales, even in the case where short distance
fluctuations in the metric may be significant.

For calculational convenience, the actual computation of
the quantum gravitational Wilson loop in [3] was achieved
by using a slight variant of Regge calculus, where the
contribution to the action from the hinge h is given not
by the original Regge expression

Sh ¼ �kAh�h; (12)

with k ¼ 1=8	G, but instead by the modified form

Sh ¼ k

4
Ah tr½ðBh þ �I4ÞðUh � U�1

h Þ�; (13)

where Ah is the area of the triangular hinge where the
curvature is located, Bh (called Uh in [3,4]) is a bivector
orthogonal to the hinge, � is an arbitrary multiple of the

unit matrix andUh the product of rotation matrices relating
the coordinate frames in the 4-simplices around the hinge.
The motivation for this second choice was that analytical
calculations could then be performed more easily in the
strong coupling regime, using methods analogous to the
ones used successfully for gauge theories [1,2]. Indeed it
can be shown [3] that this second action contribution is
equal to

Sh ¼ �kAh sinð�hÞ; (14)

independently of the parameter �, where �h is the deficit
angle at the hinge. For small deficit angles one expects this
to be a good approximation to the standard Regge action,
and general universality arguments would suggest that the
lattice continuum be the same in the two theories. The
expectation values of gravitational Wilson loops were then
defined by either

hWðCÞi ¼ htrðU1U2 . . .UnÞi; (15)

or

hWðCÞi ¼ htr½ðBC þ �I4ÞU1U2 . . . . . .Un�i; (16)

where theUis are the rotation matrices along the path, and,
in the second expression, BC is a suitable average direction
bivector for the loopC, which is assumed to be near-planar.
The values of hWi in the strong coupling regime (i.e. for
small k) can then be calculated for a number of loops,
including some containing internal plaquettes. It was found
that for large near-planar loops around n hinges, to lowest
nontrivial order (i.e. corresponding to a tiling of the interior
of the loop by a minimal surface),

hWi �
�
k �A

16

�
n
��½pþ q�2��; (17)

where �þ � ¼ n, and �A is the average area of the pla-
quettes. Then using n ¼ AC= �A, where AC is the area of the
loop, the area-dependent first factor can be written as

exp½ðAC= �AÞ logðk �A=16Þ� ¼ expð�AC=�
2Þ (18)

where we have set � ¼ ½ �A=j logðk �A=16Þj�1=2. Recall that
for strong coupling, k ! 0, so � is real, and that the
quantity � is in principle defined independently of the
expectation value of the Wilson loop, through the correla-
tion of suitable local invariant operators at a fixed geodesic
distance.
In the following we shall assume, in analogy to what is

known to happen in non-Abelian gauge theories, that even
though the above form for the Wilson loop was derived in
the extreme strong coupling limit, it will remain valid
throughout the whole strong coupling phase and all the
way up to the nontrivial ultraviolet fixed point, with the
correlation length � ! 1 the only relevant and universal
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length scale in the vicinity of the fixed point. The evidence
for the existence of such a fixed point comes from three
different sources, which have recently been reviewed, for
example, in Ref. [4], and references therein. The first
source is the 2þ � expansion for gravity, which exhibits
such a fixed point in G to one and two loops, shows that
only one relevant direction exists to all orders in this
expansion, and provides a quantitative estimate for the
critical exponent � at the nontrivial ultraviolet fixed point.
The second source is the lattice gravity theory in d ¼ 4
based on Regge’s simplicial formulation, which also ex-
hibits a phase transition, with a single calculable nontrivial
relevant exponent �. The third source is the Einstein-
Hilbert truncation renormalization method in the contin-
uum, which, although approximate in nature, provides a
third rough independent estimate for the exponent � at the
nontrivial ultraviolet fixed point.

The next step was to interpret the result in semiclassical
terms. By the use of Stokes’s theorem, the parallel trans-
port of a vector round a large loop depends on the expo-
nential of a suitably-coarse-grained Riemann tensor over
the loop. So by comparing linear terms in the expansion of
this expression with the corresponding term in the expres-
sion of the area law, one can show [3] that the average
curvature is of order 1=�2, at least in the strong coupling
limit. Since the scaled cosmological constant is a measure
of the intrinsic curvature of the vacuum, this also suggests
that the cosmological constant is positive, and that the
manifold is de Sitter at large distances.

The question now arises as to whether these results are
peculiar to the particular formulation of discrete gravity
used. This led to a study of other proposed formulations,
most of which were written down more than 20 years ago.
In this work we will show that where it seems possible to
define and calculate gravitational Wilson loops, the same
area law emerges, and automatically implies a positive
cosmological constant.

Another key question we will address is whether these
results are affected in any way by the presence of matter.
After all the Universe is not devoid of matter, and the pure
gravity results should only be considered as a first-order
approximation to the full quantum theory (in a spirit simi-
lar to the quenched approximation in non-Abelian gauge
theories). This will be discussed here again in the context
of the Regge formulation of discrete gravity used in [3],
using the methods of coupling matter to gravity reviewed,
for example, in [4].

An outline of the paper is as follows. In Sec. II, we
describe formulations of Einstein gravity as a gauge theory
on a flat background lattice, and in Sec. III, the
MacDowell-Mansouri description of de Sitter gravity, as
transcribed onto a flat background lattice by Smolin. More
recent developments of discrete gravity, spin foam models,
are discussed briefly in Sec. IV, and Sec. V contains
mention of other relevant theories. We then turn to the

effect of matter couplings on the gravitational Wilson loop
results, and Secs. VI, VII, VIII, and IX contain systematic
discussions of scalar matter, fermions, gauge fields and the
lattice gravitino. Regarding these matter fields, the main
conclusion is that the previous results are not affected,
unless there are near massless spin 1=2 and spin 3=2
particles (i.e. whose mass is comparable to the exceedingly
small gravitational scale ��1). Section XI consists of some
conclusions.

II. GAUGE-THEORETICAL TREATMENT OF
EINSTEIN GRAVITY ON A FLAT BACKGROUND

LATTICE

Wewill first look at formulations of Einstein gravity as a
gauge theory on a flat hypercubical background lattice,
and, in particular, expand on the work of Mannion and
Taylor [11] and of Kondo [12]. In these cases, the standard
machinery for calculating Wilson loops in lattice gauge
theories [2] can be taken over without too many modifica-
tions. Although such formulations were not the first chro-
nologically of those we consider in this paper, we treat
them first because they are, in many respects, the simplest.
The idea is to write Einstein gravity in four dimensions,
without cosmological constant, on a flat background lat-
tice, treating it as a gauge theory with gauge group
SLð2; CÞ, and relating it to the Einstein-Cartan formalism.
In fact, for simplicity, we shall consider an Euclidean
version, replacing SLð2; CÞ by SOð4Þ. The Minkowskian
formulation presents new problems due to the noncom-
pactness of the group, which will not be addressed here;
basically the group-theoretic methods used below cannot
be applied in the same fashion, and new convergence issues
arise due to the different nature of the Haar measure.
In the following nearest neighbor sites are labeled by n

and nþ�, and their frames are related by

U�ðnÞ ¼ expðiA�ðnÞÞ ¼ U��ðnþ�Þ�1; (19)

where

A�ðnÞ ¼ 1

2
aAab

� ðnÞSab; (20)

with a the lattice spacing and Sab the Oð4Þ generators,
represented by the 4� 4 matrices

Sab ¼ i

4
½
a; 
b�; (21)

with the Euclidean gamma matrices, 
a, satisfying

f
a; 
bg ¼ 2�ab; 
y
a ¼ 
a; a ¼ 1; . . . ; 4: (22)

The curvature round an elementary plaquette spanned by
the � and � directions is given as usual by
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U��ðnÞ ¼ U�ðnÞU�ðnþ�ÞU��ðnþ�þ �ÞU��ðnþ �Þ
¼ U�ðnÞU�ðnþ�ÞU�ðnþ �Þ�1U�ðnÞ�1; (23)

and it can be shown that in the limit of small lattice
spacing,

U��ðnÞ � expðia2R��Þ; (24)

where

R�� ¼ @�A� � @�A� þ i½A�; A��: (25)

One notices that the usual lattice gauge theory type action,
consisting of sums of U�� terms, would give an R��R

��

term in the limit of small a, so terms involving the vierbein
ea�ðnÞ and the matrix 
5 ¼ 
1
2
3
4 have to be intro-

duced. One defines

S ¼ 1

16�2

X
n;�;�;�;�

���� tr½
5E�ðnÞU��ðnÞEðnÞ� (26)

where E�ðnÞ ¼ aea�
a and � is the Planck length in suit-

able units. It can then be shown that

S ¼ a4

4�2

X
n;�;�;�;�

�����abcdR
ab
��ðnÞec�ðnÞedðnÞ þOða6Þ;

(27)

which is the Einstein action in first-order form [13].
Furthermore by construction the action is invariant under
local Oð4Þ rotations. For reasons which will become ap-
parent, we shall consider a symmetrized form of the action:
for each plaquette, rather than having the E
5E� term
inserted only at the base point, we shall consider the
average of its insertion at all vertices of the plaquette.

In the following the partition function is defined by the
usual path integral expression

Z ¼
Z
½dA�½dE� expð�SÞ; (28)

where ½dA� ¼ Q
n;�dHU�ðnÞ, ½dE� ¼ Q

n;�dE�ðnÞ, and

dHU is the Haar measure on SOð4Þ.
Our interest here is in the definition and evaluation of

Wilson loops in the strong coupling expansion. The authors
of Ref. [11] define the loop around one plaquette, spanned
by the 
 and � directions (see Fig. 2), by

W ¼ Y
�;�

��
�� Tr½E�ðnÞU�
ðnÞE�ðnÞ�; (29)

and so

hWi ¼ 1

Z

Z
½dA�½dE�Y

�;�

��
�� Tr½E�ðnÞU�
ðnÞE�ðnÞ�

� expð�SÞ: (30)

They go on to show that in the strong coupling expansion,
the dominant term is proportional to

hWi ¼
Z
½dE���
���
���abstes�et�ea�eb; (31)

where there is no sum over 
 and �. Now suppose that 
 ¼
1, � ¼ 2. Then the sum over � and  leads to

�abste
s
3e

t
4e

a
3e

b
4 ; (32)

which is zero on symmetry grounds. Therefore their defi-
nition needs some modification, or one has to go to higher
orders in the strong coupling expansion. In the latter case,
it is possible to get a nonzero contribution by going to order
1=k6, but here we concentrate on the first possibility.
Omitting the Es from W also gives zero for hWi, so the
modification we make is to insert a 
5 into W. The lowest
order contribution is then

δ

γ

n

FIG. 2 (color online). A parallel transport loop, spanned by the

 and � directions, with four oriented links on the boundary. The
parallel transport matrices U along the links, represented here by
arrows, appear in pairs and are sequentially integrated over using
the uniform measure.

FIG. 1 (color online). Illustration of the gravitational analog of
the Wilson loop. A vector is parallel-transported along the larger
outer loop. The enclosed minimal surface is tiled with parallel
transport polygons, here chosen to be triangles for illustrative
purposes. For each link of the dual lattice, the elementary
parallel transport matrices Uðs; s0Þ are represented by arrows.
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� 1

16�2

Z
½dA�½dE�X

�;�

��
�� Tr½
5E�ðnÞU�
ðnÞE�ðnÞ�
X

n0;�;�;�;�

���� Tr½
5E�ðn0ÞU��ðn0ÞEðn0Þ�

¼ a4

16�2

Z
½dA�½dE�X

�;�

��
�� Tr½
5
sU�ðnÞU
ðnþ �ÞU�ðnþ 
Þ�1U
ðnÞ�1
t�

� X
n;�;�;�;�

���� Tr½
5
aU�ðn0ÞU�ðn0 þ�ÞU�ðn0 þ �Þ�1U�ðn0Þ�1
b�es�ðnÞet�ðnÞea�ðn0Þebðn0Þ: (33)

The integration over the As is equivalent to the integration
over U’s in SOð4Þ with the Haar measure:

Z
dHUUijU

�1
kl ¼ 1

4
�il�jk; (34)

and we obtain

a4

64�2

Z
½dE� X

���

��
����
� Tr½
d
5
c
b
5
a�

� ea�ðnÞebðnÞec�ðnÞed�ðnÞ: (35)

Now we compute

Tr ½
d
5
c
b
5
a� ¼ 4ð�ab�cd � �ac�bd � �ad�bcÞ;
(36)

and, using

g� ¼ 1

4
a2 Trð
a
bÞea�eb ¼ a2�abe

a
�e

b
; (37)

we obtain

1

16�2

Z
½dE� X

���

��
����
�ðg�g�� � g��g� � g��g�Þ:

(38)

Suppose that 
 ¼ 1, � ¼ 2, then the sum over the indices
in the �’s and g’s gives

4ðg234 � g33g44Þ: (39)

We expand the metrics in terms of the vierbeins and define
the measure of integration to include a damping factor
ð�a2=	Þ8 exp½��a2�b;�ðeb�Þ2� at each point, with Re� >
0 [14], obtaining

� 3

4�2�2
: (40)

(Note that we are ignoring a possible factor of the deter-
minant of the vierbein in the measure.)

Before considering larger loops, let us obtain an algo-
rithm which simplifies the calculations considerably.
Consider a vertex with the matrices A, B, C, D attached
to it, and U-matrices attached to the lines entering and
leaving the vertex, as shown in Fig. 3. Integration over the

Us of the expression

ðU1ÞabAbcðU2ÞcdðU�1
2 ÞefBfgðU3ÞghðU�1

3 ÞijCjkðU4Þkl
�ðU�1

4 ÞmnDnoðU�1
1 Þop (41)

gives

1

44
TrðABCDÞ�de�hi�lm�pa: (42)

We see that the effect of the integration is to give a factor of
1
4 for each U, and to give the trace of the product of factors

at each vertex. For a vertex with no insertion, we obtain the
trace of the identity matrix, 4, and for one insertion of
E
5E, the value is zero since it is traceless. For two
insertions of E
5E, we obtain 12=�

2, where the integration
over the Es has been done. Recall that there is also a factor
of �1=16�2 for each plaquette, corresponding to the rele-
vant terms in the expansion of the exponential of minus the
action. This means that within our loop, if it is to have a
nonzero value, every vertex must have either no E
5E
factors or two of them. This is why we took the average
of insertions at all vertices of the plaquettes in the action; it
would be impossible to get nonzero contribution from the
internal plaquettes otherwise.
Before proceeding with the calculations, let us mention

an alternative to the procedure of averaging the contribu-
tion of the action from a plaquette over its vertices, a
possibility, similar to the procedure in [3]. If we replace

1U
A

D C
1

1
−U

2U

3U

4U

1
2

−U

1
3

−U

1
4

−U

B

FIG. 3 (color online). A vertex where various parallel transport
matrices enter and leave, and where there are insertions on their
paths.
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5 by 
5 þ �I4 for some arbitrary parameter �, the con-
tinuum limit of the action acquires a term proportional to
����R���, which is zero because of the symmetries of

the Riemann tensor, so the action is unaltered. However,
the value of the Wilson loop is still zero, not because of the
traces but because of factors of the Kronecker delta, which
give zero on symmetry grounds.

For a loop around two plaquettes, we find that we obtain
a nonzero value only if the E
5E is inserted at the place
where the loop meets the second plaquette (see Fig. 4). The
value of hWi is then

1

4

�
3

4�2�2

�
2
: (43)

For a loop around many plaquettes, we choose to insert
the factors of E
5E in the loop wherever the loop meets a
new plaquette. For a loop with internal plaquettes, there
has to be an even number of internal plaquettes as the
insertions need to be paired between them. (For example,
see the loop around nine plaquettes in Fig. 5; there is no
way the insertions on the one internal plaquette can give a
nonzero value.) This means that we obtain nonzero values
only for Wilson loops surrounding an even number of
plaquettes; the simplest case, with 12 plaquettes, is shown
in Fig. 6. There are two ways of getting nonzero values
from the internal plaquettes, corresponding to pairings of
the insertions at the two vertices they have in common,
which gives a factor of 2 in the answer, which, when
integrated over the vierbeins, is

�2

4116

�
3

4�2�2

�
12
: (44)

Larger loops can then be treated in a similar way. From the
results obtained so far, we deduce that, as the authors of
[11] claimed, there is indeed an area law for large Wilson
loops. The physical interpretation is of course very differ-
ent, as discussed in the IIntroduction, and later in the
Conclusion.

We now consider briefly the work of Kondo [12]. His
basic formalism is very similar to that of [11], except that
rather than introducing the vierbeins into the action di-
rectly, he introduces exponentials of them, with the action

S ¼ � 1

4�2

X
n;�;�;�;�

���� Tr½
5U��ðnÞH�ðnÞHðnÞ�;

(45)

where

H�ðnÞ ¼ exp½iaea�ðnÞ
a�: (46)

This has the consequence that the action is bounded. (The
minus sign, which appears different from the sign in the
formalism of [11], is because of the different relative

δ

γ

n

FIG. 4 (color online). A parallel transport loop around two
plaquettes, with insertions of E
5E on the loop shown by large
dots.

FIG. 5 (color online). A larger parallel transport loop with 12
oriented links on the boundary. As before, the parallel transport
matrices along the links appear in pairs and are sequentially
integrated over using the uniform measure. The new ingredient
in this configuration is an elementary loop at the center not
touching the boundary. As in Fig. 4, the insertions of E
5E on
the loop are shown by large dots.

FIG. 6 (color online). A Wilson loop around 12 plaquettes, of
which two are internal, with the insertions of E
5E on the loop
shown by large dots as before.
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position of the 
5 factor.) In practice, in calculations, it is
impossible to work out traces without expanding the ex-
ponentials and retaining the lowest order terms in the
lattice spacing, so the formalism reduces to that of [11]
in this respect, and the same values are obtained for the
Wilson loops. (We have checked that the lowest order
contribution comes from the product of the linear terms
in the expansions of the exponentials.) However, Kondo
also aims to set up a formalism which has reflection
positivity, so his action contains sums over reflections,
and if this full action is used, it is very complicated to
evaluate Wilson loops.

Note that this method of averaging the action contribu-
tion of each plaquette over the vertices of the plaquette
needs to be used here, and could also be used in [3],
eliminating the necessity for introducing the parameter �.

III. LATTICE FORMULATION OF MACDOWELL-
MANSOURI GRAVITY

An earlier version of lattice gravity was given by Smolin
[15], who transcribed the MacDowell and Mansouri [16]
formulation of general relativity onto a flat background
lattice. MacDowell and Mansouri built a gauge theory by
defining ten (antisymmetric) gauge potentials by

Aab
� ¼ !ab

� ; A5a
� ¼ 1

l
ea�; (47)

where !ab
� and ea� are the usual gravitational connection

and vierbein, and l is a lattice spacing. The curvature and
torsion are defined in terms of the gauge potentials, and the
action is of the form

S ¼
Z

d4x�����abcdR
ab
��R

cd
�; (48)

where Rab
�� is the Riemann tensor for Oð3; 2Þ or Oð4; 1Þ.

This can be shown to be equivalent, after multiplication by
	1=32l2=�2, with � the bare Planck length, to

S ¼
Z

d4x

�
	 l2

32�2
�����abcdR

0ab
�� R

0cd
� þ 1

2�2
eR0

	 2

�2l2
e

�
; (49)

where R0ab
�� is the usual Riemann curvature tensor. The first

term is a topological invariant, the Gauss-Bonnet term,
while the second and third are obviously the Einstein
term and the cosmological constant term, respectively,
with a scaled cosmological constant � ¼ 
2=�2l2. Note
that in this formulation the relative coefficients of various
action contributions are fixed in terms of the bare parame-
ter � and l.

Then the starting point in [15] is the continuum action

S ¼ 	 1

g2

Z
d4x����RAB

��R
CD
��ABCD5; (50)

where RAB
�� is the curvature associated with an Oð4; 1Þ

(minus sign) or Oð3; 2Þ (plus sign) gauge connection,

�ABCD5 is the totally antisymmetric 5-tensor and g ¼ffiffiffiffiffiffi
32

p
�=l a dimensionless coupling constant. The parallel

transport operators along the links of the lattice are defined
by

U�ðnÞ ¼ P exp

�
1

2
g
Z nþ�

n
dx�AAB

� ðxÞTAB

�
; (51)

where the TAB are matrix representations of the relevant
Lie algebra. Then the curvature around a plaquette on a
hypercubic lattice, U��ðnÞ, is identical to the definition of

Mannion and Taylor [11] [Eq. (23)], and this is related to
the curvature by

1

2
½U��ðnÞ�ij ¼ a2gRAB

��ðTABÞij þOða3Þ: (52)

The continuum action is then transcribed onto the lattice as

S ¼ 	 1

g2
X
n

�����ijkl5½U��ðnÞ�ij½U�ðnÞ�kl�ABCD5:

(53)

It involves a sum over contributions from perpendicular
plaquettes at each lattice vertex, in analogy to the construc-
tion of the F ~F term in non-Abelian gauge theories. In order
to maintain the discrete symmetries of the lattice (reflec-
tions and rotations through multiples of	), this is extended
to a sum over all orientations of the dual plaquettes

S ¼ 	 1

16g2
X
n

X
O;O0

�����ijkl5½UO
��ðnÞ�ij

�½UO0
�ðnÞ�kl�ABCD5: (54)

The partition function is then given by

Z ¼
Z
½dU� expðiSÞ; (55)

where we take [dU] to be the normalized Haar measure.
We restrict the integration to Oð5Þ, rather than considering
also Oð3; 2Þ and Oð4; 1Þ as in [15], since for the noncom-
pact groups one has to define the measure by dividing
through by the (infinite) volume of the gauge group. For
the five-dimensional representations used, the relevant in-
tegrals are

Z
½dHU� ¼ 1; (56)

Z
½dHU�½U�ðnÞ�ij ¼ 0; (57)

Z
½dHU�½U�ðnÞ�ij½U�ðn0Þ�kl ¼ 1

5
�il�jk�nn0���: (58)

The structure of the action, based on pairs of dual pla-
quettes, means that the calculations are somewhat different
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from the case in [11]. In particular, since we want even-
tually to evaluate Wilson loops for planar surfaces, we can
take as our basic building block a combination of two pairs
of dual plaquettes, put together so that one plaquette from

each pair lies adjacent to the other in the plane or they meet
at one point, and the other two are joined back-to-back (see
Figs. 7 and 8). We then calculate the contribution from this
configuration in both cases, when integration over the Us
on the back-to-back faces is performed.
The quantity to evaluate in the first case is

S ¼ 1

16g2

Z
½dHU�ð����Þ2�ijkl5�i0j0k0l05½U�ðnÞU�ðnþ�ÞU�1

� ðnþ �ÞU�1
� ðnÞ�ij½U�ðnÞUðnþ �ÞU�1

� ðnþ ÞU�1
 ðnÞ�kl

� ½U�ðnÞU�1
� ðnþ ���ÞU�1

� ðn��ÞU�ðn��Þ�i0j0 ½U�ðnÞUðnþ �ÞU�1
� ðnþ ÞU�1

 ðnÞ�k0l0 ; (59)

(with no summation over �, �). Integration over the U�s and Us gives�
1

16g2

�
2ð����Þ2�ijkl5�jj0kl5½U�ðnÞU�ðnþ�ÞU�1

� ðnþ �ÞU�1
� ðnþ ���ÞU�1

� ðn��ÞU�ðn��Þ�ij0 : (60)

Now

�ijkl5�jj
0kl5 ¼ 2ð�6 ij0�6 jj � �6 ij�6 jj0 Þ (61)

where

�6 ik ¼ �ik � �i5�k5; (62)

so the final contribution, including a factor of 4 from the
summation over � and , is�

1

16g2

�
2 24

25
�ijkl5�jj

0kl5½U�ðnÞU�ðnþ�ÞU�1
� ðnþ �Þ

�U�1
� ðnþ ���ÞU�1

� ðn��ÞU�ðn��Þ�ij0�6 ij0 : (63)

In the second case, the calculation proceeds in a similar
way, to give�

1

16g2

�
2 8

5
ð�6 ii0�6 jj0 � �6 ij0�6 ji0 Þ½U�ðnÞU�ðnþ�Þ

�U�1
� ðnþ �ÞU�1

� ðnÞ�ij½U�1
� ðn��ÞU�1

� ðn��� �Þ
�U�ðn��� �ÞU�ðn� �Þ�i0j0 : (64)

We now define a Wilson loop as the product of the U
factors around the given path, with no extra factors in
this case, and we calculate its expectation value as usual:

hwi ¼ 1

Z

Z Y
i

½dHUi�W expðiSÞ: (65)

As explained in [15], calculations are done in this formal-
ism on the assumption that one can ignore the zero-torsion
constraint; the basis for this is that the torsion is suppressed
by a factor of 1l , where l is large. As a result, one only needs
to integrate over the U’s, and there is no need to integrate
over the vierbeins in this formalism. Note that because of
the structure of the basic building blocks, we can define
Wilson loops only around paths which contain an even
number of plaquettes. The simplest of these is shown in
Fig. 4, and the area can be tiled by only one of the two
possible building blocks, giving the value ð1=ð16g2Þ2Þ�
ð192=125Þ.
The next most simple cases are shown in Fig. 9. The first

of these can be tiled in four possible ways with the first of
the building blocks, giving ð1=ð16g2Þ4Þð21232=57Þ, while in
the second, which can be tiled in eight ways with the first
building block and in one way with the second, the final
contribution is ð1=ð16g2Þ4Þð28321=57Þ. For the simplest
configuration with internal plaquettes, a loop surrounding
12 plaquettes (see Fig. 6), there are many (1072) different
ways of tiling it, so we need to add the contributions from

),( νµn

),( σρ

FIG. 8 (color online). Two pairs of dual plaquettes joined
together, with the ones in the ð�; �Þ-plane sharing only the
vertex n, and the ones in the ð�;Þ-plane back to back.

),( νµ

n

),( σρ

FIG. 7 (color online). Two pairs of dual plaquettes joined
together, with the ones in the ð�; �Þ-plane lying side-by-side,
and the ones in the ð�;Þ-plane back to back.
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all the different ways. The tiling shown in Fig. 6
gives ð1=ð16g2Þ12Þð22634=521Þ, and then combining this
with the other contributions, we obtain ð1=ð16g2Þ12Þ�
ð230349481=523Þ. Notice the dependence on 1=g2 in the
various cases evaluated. Again, larger loops can then be
treated in a similar way although the calculations become
increasingly tedious. This indicates the usual area law for
the gravitational Wilson loop.We note here that the authors
of Ref. [17] have performed numerical simulations using
the action from [15], with an SOð4Þ invariant action and a
Haar measure over the group SOð5Þ, considering then both
the weak and the strong coupling regimes.

We should state at this point that in this paper we have
chosen to focus almost exclusively on the strong coupling
limit of various models of lattice gravity, and, in particular,
on the emergence of the area law for the Wilson loop. New
problems can arise when approaching the lattice contin-
uum limit in the vicinity of the critical point, if one exists.
As an example, in some lattice models the transition ap-
pears to be first order [17], which would mean that either
the lattice action has to be modified by adding second
neighbor terms, or that the critical exponents have to be
obtained by analytic continuation from the strong coupling
phase, approaching in this way the fixed point located in
the metastable phase. Within the limited framework of this
work we shall not address these additional technical issues,
and assume instead that a number of lattice theories exam-
ined here describe to some extent correctly at least the
physics of the strong coupling phase of gravity.

A formalism related to that of Smolin is described
by Das, Kaku and Townsend [18]. They transcribe West’s
de Sitter invariant formulation of Einstein gravity onto the
lattice, obtaining an action with plaquette contribution
proportional to the square root of the trace of a square
involving Smolin’s action. They showed that their theory
agrees with the one in [15] in the lattice continuum limit.

The square root in the action makes it almost impossible to
do any general analytical calculations.
To put the results of Wilson loop calculations in this and

the previous section, together with the results of [3], into
context, it is interesting to make comparisons by relating
the coupling constants to that of the continuum action. The
� of Mannion and Taylor [11] and Kondo [12], and the g of
Smolin [15] are related to the k ¼ 1=8	G of [4] by

1

�2
¼ k

2a4
;

1

g2
¼ l2k

32
: (66)

Making a further normalization of the constants involved
by equating the results for the smallest loop results, the
answers of [11,12] agree with those of [13] until the loops
contain internal plaquettes, and then, for example, the 12-
plaquette results differ by a factor of �2=6. The results of
[15] are of the same order of magnitude as those of [3].

IV. SPIN FOAM MODELS

Spin foam models grew out of a combination of ideas
from the Ponzano-Regge model of three-dimensional dis-
crete Lorentzian quantum gravity, and from loop quantum
gravity. In loop quantization, the fundamental excitations
are loops created by Wilson loop operators analogous to
the ones used in gauge theories [19], and one assumes that
states can be written as power series in spatial Wilson loops
of the connection [20]. What does this intimate connection
between Wilson loops and spin foam models mean in the
context of this paper?
In the three-dimensional formulation of Turaev and Viro

[21], which is a regularized version of the Ponzano-Regge
model, it has been shown [22] that the graph invariant
defined by Turaev [23] coincides, in the semiclassical
limit, with the expectation value of a Wilson loop. This is
a consequence of the asymptotic behavior of 6j-symbols,
with certain arguments fixed, involving rotation matrices
which combine to give parallel transport operators along
the graph. The extension of this result to graph invariants in
discrete four-manifolds has not been made (as far as we
know) and it is not clear anyway whether an area law could
be obtained for large loops since the concept of a planar
loop is not well-defined.
One way of obtaining a spin foam model is from BF

theory [24]. In four dimensions, representation labels are
assigned to triangles and group elements to sections of the
dual loop around each triangular hinge. The integral of the
group elements around the dual loop gives the holonomy,
which is a measure of the curvature, F. Thus an evaluation
of Wilson loops is a basic ingredient in calculating the
action, which is then conventionally expressed in terms of
sums over amplitudes for the vertices, edges and faces of
the spin foams. Alternatively, in group field theories, the
action involves the integral over products of functions of
the group variables, corresponding to a kinetic term and an
interaction term. Here the evaluation of Wilson loops is

FIG. 9 (color online). Two arrangements for Wilson loops
around four plaquettes.
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somewhat similar to the way matter is inserted; certain
edges are picked out (to form the loop) and are then treated
differently in the summation process [25].

The authors of Ref. [26] have shown that there is an
exact duality transformation mapping the strong coupling
regime of a non-Abelian gauge theory to the weak coupling
regime of a system of spin foams defined on the lattice.
They obtain an expression for the expectation value of a
non-Abelian Wilson loop (or spin network) in terms of
integrals of expressions involving finite-dimensional uni-
tary representations, intertwiners and characters of the
gauge group, together with a gauge constraint factor for
each lattice point. The integrals are done explicitly, leaving
complicated products and sums over intertwiners, projec-
tors and the character decomposition of the exponential of
the action. Their calculation is very general, and to evalu-
ate a Wilson loop in the usual sense, considerable simpli-
fication can be made. The links which form the Wilson
loop can all be labeled with the same representation, and,
as the loop has no multivalent vertices, the intertwiners all
become trivial. Even so, the calculation is very compli-
cated for a general gauge group,

To illustrate the ideas behind the work of these authors,
we will describe the corresponding calculations in lower
dimensions and with gauge group SUð2Þ [27,28]. We shall
summarize the description in [28]. The partition function
for gauge theory on a cubic lattice is written as usual as an
integral over link variables Ul, with the action being a sum
over plaquettes contributions

Z ¼ 1

�

Z Y
links

dUl exp

�
�
P

plðTrUpl þ c:c:Þ
2Tr1

�
; (67)

with � being the dimensionless inverse coupling. The
matrix Upl is the standard product of four link matrices

Ul around the plaquette. The idea of the duality trans-
formation is to make a Fourier transform in the plaquette
variables, by first inserting unity for each plaquette into the
partition function, in the form

1 ¼ Y
pl

Z
dUpl�ðUpl; U1U2U3U4Þ; (68)

where U1...4 are the link variables around the plaquette.
The �-function can be realized by products of Wigner
D-functions

�ðU;VÞ ¼ X
J¼0;1=2;1;...

ð2J þ 1ÞDJ
m1m2

ðUyÞDJ
m2m1

ðVÞ: (69)

The unity is then inserted into the partition function in the
form

1 ¼ Y
pl

Z
dUpl

X
J

ð2J þ 1ÞDJ
m1m2

ðUyÞDJ
m2m3

ðU1Þ

�DJ
m3m4

ðU2ÞDJ
m4m5

ðU3ÞDJ
m5m1

ðU4Þ: (70)

The integration over the plaquette matrices is performed

using

Z
dUpl exp

�
�
P

plðTrUpl þ c:c:Þ
2Tr1

�
DJ

m1m2
ðUyÞ

¼ 2

�
�m1;m2

I1ð�ÞTJð�Þ; (71)

where TJð�Þ � I2Jþ1ð�Þ=I1ð�Þ [2,29] is the ‘‘Fourier
transform’’ of the Wilson action and the In are modified
Bessel functions. The partition function is then

Z ¼
�
2

�
I1ð�Þ

�
no: of plaquettesX

JP

Y
pl

ð2JP þ 1ÞTJPð�Þ

� Y
links l

Z
dUlD

JP
m1m2

ðU1ÞDJP
m2m3

ðU2ÞDJP
m3m4

ðU3Þ

�DJP
m4m1

ðU4Þ: (72)

In two dimensions, each link is shared by two plaquettes
and the integration over Ds gives Kronecker deltas,
whereas in three dimensions, each link is shared by four
plaquettes and the integration over Ds gives 6j-symbols as
in the Ponzano-Regge model. To compute the expectation
value of a Wilson loop in representation js, a factor of
DjsðUÞ must be inserted for each link on the loop. In two
dimensions, use of the asymptotics of TJð�Þ leads to the
area law at large � (strong coupling) [28]. In three dimen-
sions, the extra Ds along the link give rise to 9j-symbols,
and the asymptotic behavior of the Wilson loop has not
been calculated explicitly.
The formulation of spin foam models which seems the

most tractable for the calculation ofWilson loops is the one
of Ref. [30]. (Their expressions are essentially identical to
those written down earlier by Caselle, D’Adda andMagnea
[3,10] (see also [31]). In the absence of a boundary, their
action can be written as (see Eq. (13))

S ¼ X
f

Tr½BfðtÞUfðtÞ�; (73)

where the sum is over triangular hinges, f, UfðtÞ is the

product of rotation matrices linking the coordinate frames
of the tetrahedra and four-simplices around the hinge and
BfðtÞ is a bivector for the hinge, defined as the dual of

�fðtÞ. This in turn is the integral over the triangle f of the

two-form �ðtÞ ¼ eðtÞ ^ eðtÞ, formed from the vierbein in
tetrahedron t. The action is independent of which tetrahe-
dron is regarded as the initial one in the path around the
hinge. There is a slight subtlety in the definition ofUfðtÞ, as
the basic rotation variables are taken to be Vtv, which
relates the frame in tetrahedron t to that in 4-simplex v,
of which t is a face, which is crossed in the path around
hinge f. Then

UfðtÞ ¼ Vtv1
Vv1t1 . . .Vvnt: (74)

The action is sufficiently similar to that used by us in an

GRAVITATIONAL WILSON LOOP IN DISCRETE QUANTUM . . . PHYSICAL REVIEW D 81, 084048 (2010)

084048-11



earlier paper [3] that we may take over the formalism for
calculating Wilson loops from there. The integration over
the Vs, which are elements of SOð4Þ in the Euclidean case,
proceeds exactly as in [3], and the same problem arises
with the unmodified action of [30], as the bivector B is
traceless. Therefore the definition of the action and of the
gravitational Wilson loop has to be modified by an addition
of �I4, as in [3], which again does not affect the value of the
action. The results obtained are equivalent to those in our
earlier paper, which indicates that the area law also holds
for this formulation of spin foam models.

V. OTHER DISCRETE MODELS OF QUANTUM
GRAVITY

We now consider very briefly various other approaches
to discrete quantum gravity and the possibility of evaluat-
ing the expectation values of gravitational Wilson loops in
them. Kaku [32] has proposed a lattice version of confor-
mal gravity, with action

S ¼ X
n

����� Tr½
5P��ðnÞP��ðnÞ�; (75)

where P��ðnÞ gives the curvature round a plaquette and is

related to the Us in our previous equations, with U�ðnÞ
given in terms of the Oð4; 2Þ generators. The strong cou-
pling expansion of the partition function is given by

Z ¼
Z
½dU�½d��X

m

1

m!

�
�
1

�

X
n

����� Tr½
5P��ðnÞP��ðnÞ�
�
m

� expfi�a�� Tr½
að1þ 
5ÞP��ðnÞ�g; (76)

where the last term is included to impose the zero-torsion
constraint. The analytic calculation of Wilson loops is
complicated considerably by the presence of this con-
straint. If it is ignored, and Wilson loops defined as a
product of Us round the loop as usual, then comparison
with other calculations suggests that an area law will be
obtained. (The calculations are very similar to those of
Ref. [15] if one assumes a form for the Oð4; 2Þ integrals
as in his paper. The 
5s disappear in the process of eval-
uating the basic building blocks.) Again the caveats men-
tioned at the beginning of the paper in comparing the
Lorentzian to the compact (Euclidean) case, and the ensu-
ing differences in the group theoretic structures as they
relate to the Haar measure, apply here as well.

Rather than considering conformal gravity, Tomboulis
[33] has formulated a lattice version of the general higher
derivative gravitational action in order to prove unitarity.
He uses the gauge group Oð4Þ and considers vierbeins
coupled as ‘‘additional matter fields,’’ as in Mannion and
Taylor [11] and Kondo [12], together with further auxiliary

fields. After including reflections in order to preserve dis-
crete rotation and reflection symmetry on the lattice, he
squares and then takes a square root, to ensure scalar, rather
than pseudoscalar, properties in the continuum limit, as in
[18]. A torsion constraint is also necessary here. As in
formulations discussed earlier, these features make calcu-
lations very complicated.
Finally the authors of Ref. [14] have presented a unified

treatment of Poincaré, de Sitter and conformal gravity on
the lattice. This shares many features with the formulations
already described, so we will not discuss it further here.
The main difference is that the lattice vierbein field is
defined on the lattice links rather than at the vertices. The
formulation is reflection positive, but the mode doubling
problem seems to persist, as seen form the expansion about
a flat background.
Causal dynamical triangulations [34] are based on the

action of Regge Calculus, but the approach differs in that
all simplices have identical spacelike edges and identical
timelike edges, and the discrete path integral involves
summing over triangulations. In this case it is not clear
how to use the methods discussed here and in [3], which
are based on the invariant Haar measure for continuous
rotation matrices, since this formulation does not contain
explicitly continuous degrees of freedom which could be
used for such purpose.
The proposed formulation of Weingarten [35], based on

squares, cubes and hypercubes, rather than simplices, in-
volves six-index complex variables corresponding to
cubes, so although it is possible to define a large planar
loop, it is not clear how to evaluate aWilson loop, except in
the special case when the parameter � (the coefficient of
the term in the action which gives the contribution from the
boundaries of the 4-cells) is set equal to zero, which seems
to correspond to the unphysical case of infinite cosmologi-
cal constant.
A more radical approach to discrete quantum gravity, in

which the ingredients are a set of points and the causal
ordering between them, is known as causal sets. Recent
progress includes a calculation of particle propagators
from discrete path integrals [36]. In this formulation, it is
not clear how to define a (closed) Wilson loop connecting
points which are not causally related, and defining a near
planar loop is also a problem here.

VI. EFFECTS OF SCALAR MATTER FIELDS

In the next four sections, we consider whether the pres-
ence of matter affects the area law behavior of gravitational
Wilson loops in the strong coupling limit. For each type of
matter, we first describe briefly its transcription to the
lattice [4].
A scalar field can be introduced as the simplest type of

dynamical matter that can be coupled invariantly to grav-
ity. In the continuum the scalar action for a single compo-
nent field �ðxÞ is usually written as
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I½g;�� ¼ 1

2

Z
dx

ffiffiffi
g

p ½g��@��@��þ ðm2 þ �RÞ�2� þ . . .

(77)

where the dots denote scalar self-interaction terms. Thus,
for example, a scalar field potential Uð�Þ could be added
containing quartic field terms, whose effects could then be
of interest in the context of cosmological models where
spontaneously broken symmetries play an important role.
The dimensionless coupling � is arbitrary; two special
cases are the minimal (� ¼ 0) and the conformal (� ¼ 1

6 )

coupling case. In the following we shall mostly consider
the case � ¼ 0. It is straightforward to extend the treatment
to the case of an Ns-component scalar field �a with a ¼
1; . . . ; Ns.

One way to proceed is to introduce a lattice scalar �i

defined at the vertices of the simplices. The corresponding
lattice action can then be obtained through a procedure by
which the original continuum metric is replaced by the
induced lattice metric. Within each n-simplex one defines a
metric

gijðsÞ ¼ ei � ej; (78)

with 1 � i, j � n, and which in the Euclidean case is
positive definite. In components one has gij ¼ �abe

a
i e

b
j .

In terms of the edge lengths lij ¼ jei � ejj, the metric is

given by

gijðsÞ ¼ 1

2
ðl20i þ l20j � l2ijÞ: (79)

The volume of a general n-simplex is then given by

VnðsÞ ¼ 1

n!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detgijðsÞ

q
: (80)

To construct the lattice action for the scalar field, one then
performs the replacement

g��ðxÞ ! gijðsÞ @��@�� ! �i��j� (81)

with the scalar field derivatives replaced by finite differ-
ences

@�� ! ð���Þi ¼ �iþ� ��i; (82)

where the index � labels the possible directions in which
one can move away from a vertex within a given simplex.
After some rearrangements one finds a lattice expression
for the action of a massless scalar field [37,38]

Iðl2; �Þ ¼ 1

2

X
hiji

VðdÞ
ij

�
�i ��j

lij

�
2
: (83)

Here VðdÞ
ij is the dual (Voronoi) volume [39] associated with

the edge ij, and the sum is over all links on the lattice.
Other choices for the lattice subdivision will lead to a
similar formula for the lattice action, with the Voronoi
dual volumes replaced by their appropriate counterparts

for the new lattice. Mass and curvature terms such as the
ones appearing in Eq. (77) can be added to the action, so
that a more general lattice action is of the form

I ¼ 1

2

X
hiji

VðdÞ
ij

�
�i ��j

lij

�
2 þ 1

2

X
i

VðdÞ
i ðm2 þ �RiÞ�2

i (84)

where the term containing the discrete analog of the scalar
curvature involves

VðdÞ
i Ri �

X
h�i

�hV
ðd�2Þ
h � ffiffiffi

g
p

R: (85)

In the expression for the scalar action, VðdÞ
i is the (dual)

volume associated with the site i, and �h the deficit angle
on the hinge h. The lattice scalar action contains a mass
parameter m, which has to be tuned to zero in lattice units
to achieve the lattice continuum limit for scalar
correlations.
When considering whether the gravitational Wilson loop

area law holds for large loops in the strong coupling limit,
the matter considered must be almost massless, otherwise
its effects will not propagate over large distances and so
cannot change the large Wilson loop result found in the
pure gravity case. In fact, since the lattice Lagrangian for
the scalar matter involves only factors related to the lattice
metric (functions of the edge lengths) and not the connec-
tion (provided the parameter � ¼ 0), the integration over
the connections, which is what gives the area law, is
unaffected.

VII. EFFECTS OF LATTICE FERMIONS

On a simplicial manifold spinor fields c s and �c s are
most naturally placed at the center of each d-simplex s. In
the following we will restrict our discussion for simplicity
to the four-dimensional case, and largely follow the origi-
nal discussion given in [40,41]. As in the continuum, the
construction of a suitable lattice action requires the intro-
duction of the Lorentz group and its associated tetrad fields
ea�ðsÞ within each simplex labeled by s. Within each sim-

plex one can choose a representation of the Dirac gamma
matrices, denoted here by 
�ðsÞ, such that in the local
coordinate basis

f
�ðsÞ; 
�ðsÞg ¼ 2g��ðsÞ: (86)

These in turn are related to the ordinary Dirac gamma
matrices 
a, which obey

f
a; 
bg ¼ 2�ab; (87)

with �ab the flat metric, by


�ðsÞ ¼ e�a ðsÞ
a; (88)

so that within each simplex the tetrads ea�ðsÞ satisfy the

usual relation

e
�
a ðsÞe�bðsÞ�ab ¼ g��ðsÞ: (89)
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In general the tetrads are not fixed uniquely within a
simplex, being invariant under local Lorentz transforma-
tions. In the following it will be preferable to discuss the
Euclidean case, for which �ab ¼ �ab.

In the continuum the action for a massless spinor field is
given by

I ¼
Z

dx
ffiffiffi
g

p �c ðxÞ
�D�c ðxÞ (90)

where D� ¼ @� þ 1
2!�ab

ab is the spinorial covariant

derivative containing the spin connection !�ab. In the

absence of torsion, one can use a matrixUðs0; sÞ to describe
the parallel transport of any vector �� from simplex s to a
neighboring simplex s0,

��ðs0Þ ¼ U�
�ðs0; sÞ��ðsÞ: (91)

U therefore describes a lattice version of the connection.
Indeed in the continuum such a rotation would be de-
scribed by the matrix

U�
� ¼ ðe��dxÞ�� (92)

with ��
�� the affine connection. The coordinate increment

dx is interpreted as joining the center of s to the center of
s0, thereby intersecting the face fðs; s0Þ. On the other hand,
in terms of the Lorentz frames �ðsÞ and �ðs0Þ defined
within the two adjacent simplices, the rotation matrix is
given instead by

Ua
bðs0; sÞ ¼ ea�ðs0Þe�bðsÞU�

�ðs0; sÞ (93)

(this last matrix reduces to the identity if the two ortho-
normal bases �ðsÞ and �ðs0Þ are chosen to be the same, in
which case the connection is simply given by Uðs0; sÞ�� ¼
e�

ae�a). Note that it is possible to choose coordinates so

that Uðs; s0Þ is the unit matrix for one pair of simplices, but
it will not then be unity for all other pairs in the presence of
curvature.

One important new ingredient is the need to introduce
lattice spin rotations. Given, in d dimensions, the above
rotation matrix Uðs0; sÞ, the spin connection Sðs; s0Þ be-
tween two neighboring simplices s and s0 is defined as
follows. Consider S to be an element of the 2�-dimensional
representation of the covering group of SOðdÞ, SpinðdÞ,
with d ¼ 2� or d ¼ 2�þ 1, and for which S is a matrix of
dimension 2� � 2�. Then U can be written in general as

U ¼ exp

�
1

2
�����

�
(94)

where ��� is an antisymmetric matrix. The ’s are 1
2dðd�

1Þ d� d matrices, generators of the Lorentz group (SOðdÞ
in the Euclidean case, and SOðd� 1; 1Þ in the Lorentzian
case), whose explicit form is

½���
� ¼ �

���� � �


���� (95)

so that, for example,

13 ¼
0 0 1 0
0 0 0 0
�1 0 0 0
0 0 0 0

0
BBB@

1
CCCA: (96)

For fermions the corresponding spin rotation matrix is then
obtained from

S ¼ exp

�
i

4

�����

�
(97)

with generators 
�� ¼ 1
2i ½
�; 
��. Taking appropriate

traces, one can obtain a direct relationship between the
original rotation matrix Uðs; s0Þ and the corresponding spin
rotation matrix Sðs; s0Þ

U�� ¼ TrðSy
�S
�Þ=Tr1 (98)

which determines the spin rotation matrix up to a sign.
Now, if one assigns two spinors in two different contiguous
simplices s1 and s2, one cannot in general assume that the
tetrads e�a ðs1Þ and e�a ðs2Þ in the two simplices coincide.
They will in fact be related by a matrix Uðs2; s1Þ such that

e
�
a ðs2Þ ¼ U�

�ðs2; s1Þe�aðs1Þ (99)

and whose spinorial representation S is given in Eq. (98).
Such a matrix Sðs2; s1Þ is now needed to additionally
parallel transport the spinor c from a simplex s1 to the
neighboring simplex s2. The invariant lattice action for a
massless spinor takes therefore the form

I ¼ 1

2

X
faces fðss0Þ

Vðfðs; s0ÞÞ �c sSðUðs; s0ÞÞ
�ðs0Þn�ðs; s0Þc s0

(100)

where the sum extends over all interfaces fðs; s0Þ connect-
ing one simplex s to a neighboring simplex s0, n�ðs; s0Þ is
the unit normal to fðs; s0Þ and Vðfðs; s0ÞÞ its volume. The
above spinorial action can be considered closely analogous
to the lattice fermion action proposed originally by Wilson
[1] for non-Abelian gauge theories. It is possible that it still
suffers from the fermion doubling problem, although the
situation is less clear for a dynamical lattice [42].
It is clear that the situation with gravitational Wilson

loops is a bit more complicated than in the scalar field case,
since the action now contains the spin connection matrix,
which is a function of the matricesU which play the role of
the connection. What is more, the generators of the spin
rotation matrices are in a different representation from the
generators of the rotation matrices, and it seems impossible
to obtain, to lowest order, a spin zero object out of the
combination of two objects of spin one-half (S) and spin
one (U), unless one applies the fermion contribution twice
to each link, in which case a nonzero contribution can
arise. We note here that if the Wilson loop were to contain
a perimeter contribution, it would be of the form

WðCÞ � constðkmÞLðCÞ � exp½�mpLðCÞ� (101)
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where LðCÞ is the length of the perimeter of the near-planar
loop C, mp the particle’s mass, equal here to mp ¼ j lnkmj
for small km, with km the weight of the single link con-
tribution from the matter particle (sometimes referred to as
the hopping parameter). Area and perimeter contributions
to the near-planar Wilson loop would then become com-
parable only for exceedingly small particle masses, mP �
LðCÞ=�2, i.e. for Compton wavelengths comparable to a
macroscopic loop size (taking AðCÞ � LðCÞ2=4	).

To demonstrate the perimeter behavior (see Fig. 10), one
would need to show that the matrix S on the face between
simplices s and s0 would have a term proportional to the
corresponding Uðs; s0Þ, with a coefficient composed of

-matrices, thereby possibly giving a nonzero contribution
to the U-integration. (This does not seem to be true in the
infinitesimal case to lowest order, where, for example,
Sð�34Þ ¼ I4 þ 1

2
4½U13ð�34Þ �U24ð�34Þ�.)

VIII. EFFECTS OF GAUGE FIELDS

In the continuum a locally gauge invariant action cou-
pling an SUðNÞ gauge field to gravity is

Igauge ¼ � 1

4g2

Z
d4x

ffiffiffi
g

p
g��g�Fa

��F
a
� (102)

with Fa
�� ¼ r�A

a
� �r�A

a
� þ gfabcAb

�A
c
� and a; b; c ¼

1; . . . ; N2 � 1. On the lattice one can follow a procedure
analogous to Wilson’s construction on a hypercubic lattice,
with the main difference that the lattice is now possibly
simplicial. Given a link ij on the lattice one assigns group
elements Uij, with each U an N � N unitary matrix with

determinant equal to one, and such that Uji ¼ U�1
ij . Then

with each triangle (plaquette) �, labeled by the three
vertices ijk, one associates a product of three U matrices,

U� � Uijk ¼ UijUjkUki: (103)

The discrete action is then given by [37]

Igauge ¼ � 1

g2
X
�

V�

c

A2
�

Re½Trð1�U�Þ� (104)

with 1 the unit matrix, V� the 4-volume associated with the
plaquette�, A� the area of the triangle (plaquette)�, and c
a numerical constant of order one. If one denotes by �� ¼
cV�=A� the d� 2-volume of the dual to the plaquette �,
then the quantity

��
A�

¼ c
V�

A2
�

(105)

is simply the ratio of this dual volume to the plaquettes
area. The edge lengths lij and therefore the metric enter the

lattice gauge field action through these volumes and areas.
One important property of the gauge lattice action of
Eq. (104) is its local invariance under gauge rotations gi
defined at the lattice vertices., One can further show that
the discrete action of Eq. (104) goes over in the lattice
continuum limit to the correct Yang-Mills action for mani-
folds that are smooth and close to flat.
Regarding the effects of gauge fields on the gravitational

Wilson loop one can make the following observation.
Since the gauge action contains no factors related to the
lattice connection, the Wilson loop area law for large
gravitational loops will remain unaffected. In particular
this will be true for the photon (which in principle could
have led to important long-distance effects, since it is
massless).

IX. EFFECTS FROM A LATTICE GRAVITINO

Supergravity in four dimensions naturally contains a
spin-3=2 gravitino, the supersymmetric partner of the
graviton. In the case of N ¼ 1 supergravity these are
the only 2 degrees of freedom present. The action contains,
besides the Einstein-Hilbert action for the gravitational
degrees of freedom, the Rarita-Schwinger action for the
gravitino, as well as a number of additional terms (and
fields) required to make the action manifestly supersym-
metric off-shell.
A spin-3=2 Majorana fermion in four dimensions corre-

sponds to self-conjugate Dirac spinors c �, where the

Lorentz index � ¼ 1 . . . 4. In flat space the action for
such a field is given by the Rarita-Schwinger term

L RS ¼ � 1

2
���
�c T

�C
5
�@
c � (106)

where C is the charge conjugation matrix. Locally the
action is invariant under the gauge transformation

c �ðxÞ ! c �ðxÞ þ @��ðxÞ (107)

where �ðxÞ is an arbitrary local Majorana spinor.
The construction of a suitable lattice action for the

spin-3=2 particle proceeds in a way that is rather similar
to what one does in the spin-1=2 case. On a simplicial
manifold the Rarita-Schwinger spinor fields c �ðsÞ and
�c �ðsÞ are most naturally placed at the center of each

d-simplex s. Like the spin-1=2 case, the construction of a

FIG. 10 (color online). Illustration on how a perimeter contri-
bution to the gravitational Wilson loop arises from matter field
contributions. Note that now the arrows representing rotation
matrices reside in principle in different representations.
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suitable lattice action requires the introduction of the
Lorentz group and its associated vierbein fields ea�ðsÞ
within each simplex labeled by s, together with represen-
tations of the Dirac gamma matrices (see the previous
discussion of Dirac fields).

Now in the presence of gravity the continuum action for
a massless spin-3=2 field is given by

I3=2 ¼ � 1

2

Z
dx

ffiffiffi
g

p
���� �c �ðxÞ
5
�D�c ðxÞ (108)

with the Rarita-Schwinger field subject to the Majorana
constraint c � ¼ C �c �ðxÞT . Here the covariant derivative is
defined as

D�c � ¼ @�c � � �
��c  þ 1

2
!�ab

abc � (109)

and involves both the standard affine connection �
��, as

well as the vierbein connection

!� ab ¼ 1

2
½ea�ð@�eb� � @�eb�Þ þ ea

�eb
ð@ec�Þec��

� ða $ bÞ (110)

with Dirac spin matrices ab ¼ 1
2i ½
a; 
b�, and ���� the

usual Levi-Civita tensor, such that ���� ¼ �g����.

It is easiest to just consider two neighboring simplices s1
and s2, covered by a common coordinate system x�. When
the two vierbeins in s1 and s2 are made to coincide, one can
then use a common set of gamma matrices 
� within both
simplices. Then (in the absence of torsion) the covariant
derivative D� in Eq. (108) reduces to just an ordinary

derivative. The fermion field c �ðxÞ within the two sim-

plices can then be suitably interpolated, and one obtains a
lattice action expression very similar to the spinor case.
One can then relax the condition that the vierbeins e�a ðs1Þ
and e�a ðs2Þ in the two simplices coincide. If they do not,
then they will be related by a matrix Uðs2; s1Þ such that

e
�
a ðs2Þ ¼ U�

�ðs2; s1Þe�aðs1Þ (111)

and whose spinorial representation S was given previously
in Eq. (98). But the new ingredient in the spin-3=2 case is
that, besides requiring a spin rotation matrix Sðs2; s1Þ, now
one also needs the matrix U�

�ðs; s0Þ describing the corre-

sponding parallel transport of the Lorentz vector c �ðsÞ
from a simplex s1 to the neighboring simplex s2. The
invariant lattice action for a massless spin-3=2 particle
takes therefore the form

I ¼ � 1

2

X
faces fðss0Þ

Vðfðs; s0ÞÞ���� �c �ðsÞSðUðs; s0ÞÞ
�ðs0Þ

� n�ðs; s0ÞU�
ðs; s0Þc �ðs0Þ (112)

with

�c �ðsÞSðUðs; s0ÞÞ
�ðs0Þc �ðs0Þ
� �c ��ðsÞS��ðUðs; s0ÞÞ
�

�

ðs0Þc 


�ðs0Þ (113)

and the sum
P

faces fðss0Þ extends over all interfaces fðs; s0Þ
connecting one simplex s to a neighboring simplex s0.
When compared to the spin-1=2 case, the most important
modification is the second rotation matrix U�

�ðs; s0Þ,
which describes the parallel transport of the fermionic
vector c � from the site s to the site s0, which is required

in order to obtain locally a Lorentz scalar contribution to
the action.
In this case again one expects the Wilson loop to follow

a perimeter law, as in the spin one-half case of Eq. (101),
because the matter action explicitly contains factors of U
which will contribute when the Us and Ss around the loop
are integrated over, which of course requires that one also
take into account the spin connection matrices. These add
complexity but are not expected, due to the nature of the
interaction, to change the answer. The same general con-
siderations then apply as in the spin-1=2 case: the perime-
ter contribution to the gravitational Wilson loop can
significantly modify the area law result only if the corre-
sponding particle mass is exceedingly small.

X. POSSIBLE PHYSICAL CONSEQUENCES

In the previous sections we presented evidence for an
area law behavior for a variety of different lattice discre-
tizations of gravity, all studied in the strong coupling limit.
We have not pursued yet the computation of higher order
terms in the strong coupling expansion, which could be
done. But we believe that the basic result, which we expect
to be geometric in character, could be further tested by
numerical means throughout the whole strong coupling
phase. If the analogy with non-Abelian gauge theories
and the concept of universal critical behavior continues
to hold in Euclidean gravity, then one would expect that the
area law result would hold not just at strong coupling but
instead throughout the whole strong coupling region, up
the nontrivial ultraviolet fixed point, if one can be found in
the relevant lattice regularized theory, of which we have
given here a few examples. Furthermore the SOð4Þ lattice
model of Sec. II is one example where the analogy with
Wilson’s non-Abelian gauge theory on the lattice is clearly
seen as more than just superficial resemblance. The evi-
dence for an ultraviolet fixed point for gravity has recently
been reviewed in [4] and will not be repeated here. Our
results and similar related lattice results could then be
tested further in the case of gravity, for example, by nu-
merical means, regarding their universal character and
scaling behavior in the vicinity of the nontrivial fixed point.
In this section we wish to briefly discuss instead a

possible physical interpretation of the Euclidean gravita-
tional Wilson loop result, along the lines of the proposal in
Refs. [3,4], and thus in terms of its relationship to a large-
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scale average curvature. Note that contrary to some earlier
statements in the literature, the Wilson loop in gravity does
not provide any useful information about the static gravi-
tational potential [6–8]. The arguments presented below
should therefore be taken with some clear caveats, namely,
that (i) the results have been derived from the Euclidean
theory, whose relationship to the Lorentzian case remains
to be explored, that (ii) they assume concepts of universal-
ity of critical behavior which nevertheless are known to
apply to just about any other quantum field theory except
possibly gravity, and finally (iii) that it is assumed that the
phase structure of Euclidean lattice gravity is such that a
nontrivial fixed point can be found (which is not obvious at
this point for some of the lattice models discussed previ-
ously in this paper).

Having then ascertained with some degree of confidence
that in a number of different, and quite unrelated,
Euclidean lattice discretizations of gravity the gravitational
loop follows an area law at least for sufficiently strong
coupling G, which we choose to write here as

hWðCÞi �
A!1

expð�AC=�
2Þ (114)

with � determined by scaling and dimensional arguments
to be the unique nonperturbative gravitational correlation
length, let us now turn to a possible physical interpretation
of the result. Here the formula of Eq. (114), inspired by the
analogy to gauge theories which gives Eq. (5) and by the
well-established universality of critical behavior, is ex-
pected to summarize, at least for the purpose of our argu-
ment, the behavior of the gravitational Wilson loop
throughout the whole strong coupling domain. In the
same way that the analogous textbook result, Eq. (5), in a
sense summarizes the long-distance behavior of theWilson
loop for non-Abelian gauge theories in terms of the only
admissible renormalization group invariant scale. Here we
will therefore explore some possible ramifications of the
above Ansatz in the context of the nontrivial fixed point in
G, or asymptotic safety, scenario for quantum gravity,
recently reviewed, for example, in Ref. [4]. This is perhaps
not the only possible scenario, but it is the one we are most
familiar with, and in our view also the most credible one at
this point, supported by the 2þ � expansion for gravity, by
the nonperturbative Regge lattice calculations, and by the
analogy with the much simpler but very well understood
perturbatively nonrenormalizable nonlinear sigma model.

In particular, we intend to explore here briefly, following
closely the arguments of Ref. [3], the connection of the
lattice result of Eq. (114) to a semiclassical picture, de-
scribing the properties of curvature on very large, macro-
scopic distance scales. The procedure followed here and in
[3] is simple and quite analogous to the original procedure
proposed by Wilson for gauge theories [1]: the quantum
Wilson loop average is computed in the full theory, and the
answer is then compared to the result obtained when the
path integral is dominated by a single classical configura-

tion. In above quoted expression, � is therefore intended to
be the renormalization group invariant quantity obtained
by integrating the �-function for the Newtonian coupling
G,

��1ðGÞ ¼ const� exp

�
�
Z G dG0

�ðG0Þ
�

(115)

with� the ultraviolet cutoff (and thus analogous to Eq. (8)
for gauge theories). In the vicinity of the ultraviolet fixed
point at Gc

�ðGÞ � �
@

@�
Gð�Þ �

G!Gc

�0ðGcÞðG�GcÞ þ . . . ; (116)

which gives

��1ðGÞ / �jðG�GcÞ=Gcj�; (117)

with a correlation length exponent � ¼ �1=�0ðGcÞ. In
particular the correlation length �ðGÞ is related to the
bare Newtonian coupling G, and diverges, in units of the
cutoff �, as one approaches the fixed point at Gc. Thus for
a bare G very close to Gc the two scales, � and ��1 can be
vastly different. Furthermore the result of Eq. (114) was
derived from the lattice theory of gravity in the strong
coupling limit G ! 1. But one would expect, based on
general scaling arguments and the analogy with non-
Abelian gauge theories, see Eq. (5), that such a behavior
would persist throughout the whole strong coupling phase
G>Gc, all the way up to the nontrivial ultraviolet fixed
point at Gc. This is indeed what happens in non-Abelian
gauge theories and spin systems such as the nonlinear
sigma model: the only scale determining the nontrivial
scaling properties in the vicinity of the fixed point is �;
the corresponding behavior is known as universal renor-
malization group scaling.
As discussed at the beginning of this paper and in

Refs. [3,4], the rotation matrix appearing in the gravita-
tional Wilson loop can be related classically to a well-
defined classical physical process, one in which a vector is
parallel transported around a large loop, and at the end is
compared to its original orientation. Then the vector’s
rotation is directly related to some sort of average curva-
ture enclosed by the loop; the total rotation matrix UðCÞ is
given by a path-ordered (P ) exponential of the integral of
the affine connection ��

��, as in Eq. (1). In a semiclassical

description of the parallel transport process of a vector
around a very large loop, one can reexpresses the connec-
tion in terms of a suitable coarse-grained, semiclassical
slowly varying Riemann tensor, as in Eq. (2). Since the
rotation is small for weak curvatures, one has for a macro-
scopic observer

U�
�ðCÞ �

�
1þ 1

2

Z
SðCÞ

R����A
��
C þ . . .

�
�

�
: (118)

At this stage one can compare the above semiclassical
expression to the quantum result of Eqs. (44), (66), and
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(114), and, in particular, one would like to relate the
coefficients of the area terms. Since one expression
[Eq. (118)] is a matrix and the other [Eq. (114)] is a scalar,
one needs to take the trace after first contracting the
rotation matrix with (BC þ �I4), as in our second definition
of the Wilson loop of Eq. (16), giving

WðCÞ � Tr

�
ðBC þ �I4Þ exp

�
1

2

Z
SðCÞ

R����A
��
C

��
: (119)

Next, following Ref. [3], it is advantageous to consider the
lattice analog of a background classical manifold with
constant or near-constant large-scale curvature,

R��� ¼ 1

3
�ðg��g� � g��g�Þ (120)

so that here one can set for the curvature tensor

R�
��� ¼ �RB�

�B��; (121)

where �R is some average curvature over the loop, and the
area bivectors B here will be taken to coincide with BC.
The trace of the product of (BC þ �I4) with this expression
then gives Trð �RB2

CACÞ ¼ �2 �RAC. This is to be compared

with the linear term from the other exponential expression,
�AC=�

2. Thus the average curvature is computed to be of
the order

�R�þ1=�2 (122)

at least in the small k ¼ 1=8	G limit. An equivalent way
of phrasing the last result makes use of the classical field
equations in the absence of matter R ¼ 4�. Then the rather
surprising result emerges that 1=�2 should be identified, up
to a constant of proportionality of order one, with the
observed scaled cosmological constant �obs,

�obs ’ þ 1

�2
: (123)

The latter can then be regarded either as a measure of the
vacuum energy, or of the intrinsic curvature of the vacuum.
It would seem therefore that a direct calculation of the
gravitational Wilson loop, within the boundaries of our
limited strong coupling results, could provide a direct in-
sight into whether the manifold is de Sitter or anti-de Sitter
at large distances. Moreover, in the case of lattice gravity
at strong coupling, as has been shown in this work, it seems
virtually impossible to obtain a negative sign in Eqs. (122)
or (123), which would then suggest that Euclidean quan-
tum gravity can only give a positive cosmological constant
at large distances. (Again, the analogy with non-Abelian
gauge theories comes to mind, where one has for the non-
perturbative gluon condensate hF2

��i � 1=�4, where � is

the nonperturbative QCD correlation length, ��1
QCD ��MS;

the analog of the vacuum condensate in non-Abelian field
gauge theories is then naturally seen here as the vacuum
expectation value of the curvature).

Let us explore this last point further. At first it would
seem, from the nontrivial ultraviolet fixed point, or asymp-
totic safety, scenario point of view,4 that in principle the
scale � could take any value, including very small ones,
based on the naive estimate �� lP, where lP is the Planck
length whose magnitude is comparable to the (inverse of
the) ultraviolet cutoff �. The last choice would of course
preclude any observable quantum effects in the foreseeable
future. But the relationship between � and large-scale
curvature, or more precisely between � and �obs, arising
out of the specific properties of the gravitational Wilson
loop as proposed in Eqs. (122) and (123), opens up a new
possibility. Namely a very large, cosmological value for
�� 1028 cm, given the present observational bounds on
�obs. Closely related possibilities exist, such as an identi-
fication of � with the Hubble constant as measured today,
� ’ 1=H0; since this quantity is presumably time-
dependent, a possible scenario is one in which ��1 ¼
H1 ¼ limt!1HðtÞ, with H21 ¼ 1

3�obs. This in turn would

suggest a number of other related observations, such as the
fact that for distances r  � one still resides in the short-
distance regime, where correlations are still expected to
behave as power laws; significant deviations from classical
gravity would then arise only for distance comparable or
greater than �.
Finally we note that another physical consequence arises

from the tentative identification of � with 1=
ffiffiffiffiffiffiffiffiffi
�obs

p
: as in

gauge theories, one expects � to determine the scale de-
pendence of the effective Newton’s constant Gð�Þ appear-
ing in the field equations, where the latter is obtained, for
example, from solving the renormalization group equa-
tions for G, Eqs. (115) and (116). As discussed in [43], a
running of the gravitational constant of the type discussed
in [7] is best expressed in a fully covariant formulation,
such as an effective classical, but nonlocal, set of field
equations of the type

R�� � 1

2
g��Rþ �g�� ¼ 8	GðhÞT�� (124)

with � ’ 1=�2, and GðhÞ the running Newton’s constant

G ! GðhÞ (125)

with the running given by

GðhÞ ¼ Gc

�
1þ a0

�
1

�2h

�
1=2� þ . . .

�
; (126)

and a0 ’ 42> 0 and � ’ 1=3 [44]. Gc in the above ex-
pression should be identified to a first approximation with

4The existence of a nontrivial ultraviolet fixed point in fact
implies the existence of such a new nonperturbative scale, which
arises as an integration constant from the Callan-Symanzik
renormalization group equations close to the UV fixed point
[4], in the same way that a similar scale arises out of the
renormalization group equations for asymptotically free Yang-
Mills theories.
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the laboratory scale value
ffiffiffiffiffiffi
Gc

p � 1:6� 10�33 cm [4,43].
The running of G can then be worked out in detail for
specific coordinate choices, and in the static isotropic case
one finds a gradual slow increase in G with distance, in
accordance with the formula

G ! GðrÞ ¼ G

�
1þ a0

3	
m3r3 ln

1

m2r2
þ . . .

�
(127)

in the regime r � 2MG, where 2MG is the horizon radius,
and m � 1=�. The results of Eqs. (122) and (123) then
open up a new possibility, and would suggest that the scale
entering the quantum scale dependence ofGðrÞ is not of the
order of the Planck length, but instead a very large scale,
comparable to the observed cosmological constant, � ¼
1=

ffiffiffiffiffiffiffiffiffi
�obs

p
.

XI. CONCLUSIONS

From our study of Wilson loops, where defined and
calculable, in all theories of Euclidean discrete gravity
that we have found, it seems that the area law holds for
large loops in the strong coupling domain. This would
suggest that one can infer, as in [3], that a universal
prediction of strongly coupled Euclidean gravity without
matter is that the scaled cosmological constant is positive.
We have argued that the basic result, which appears to be
geometric in character as in the better understood case of
non-Abelian gauge theories, could be further tested by
numerical means throughout the whole strong coupling
phase. If the analogy with non-Abelian gauge theories
and the concept of universal critical behavior continues
to hold in Euclidean gravity, then one would expect that the
area law result would hold not just at strong coupling but
instead throughout the whole strong coupling region, up
the nontrivial ultraviolet fixed point, if one can be found.
But we wish to emphasize here again that the arguments
connecting the area law result in the Euclidean theory to
the physical scaled cosmological constant should be taken
with some clear caveats, namely, that they have been
derived from the Euclidean theory, that they assume con-
cepts of universality of critical behavior, and finally that
they assume that the phase structure of various Euclidean
lattice gravity models is such that a nontrivial fixed point
can be found in all of them. Nevertheless we believe the
value of our results might lie in the fact that they open the
possibility of (a) providing a set of explicit, unambiguous
and presumably universal predictions which could be
tested by numerical means, and (b) suggesting a new
physical connection between two at first seemingly unre-
lated quantities, namely, the scale for the running of the
coupling G in the asymptotic safety scenario and the
cosmological constant �, leading possibly to a number of
testable cosmological and astrophysical predictions.

We wish to make here a number of additional comments
relating to the interpretation of the Euclidean lattice re-
sults. The effect on the Wilson loop of adding matter

coupled to gravity is less clear-cut, although it is only
massless or almost massless matter which propagates to
sufficiently large distances to affect large gravitational
Wilson loops. In that case, scalar matter and gauge fields
(in particular the photon) do not affect the area law. For
very low mass fermions (e.g. neutrinos), it is possible that
the coupling gives rise to a perimeter contribution, which
could replace the area law for suitable ratios of coupling
constants, but this seems unlikely. Similarly, the lattice
gravitino could produce a perimeter law. These possibil-
ities will be investigated in future work. Numerical simu-
lations of simplicial lattice gravity could provide vital clues
here [44]. Numerical simulations in general require a
general definition of the Wilson loop applicable to any
geometry, a subject which has been discussed previously
in a number of places, and which we will repeat here for
completeness.
The argument relating the quantum vacuum expectation

values of a gravitational Wilson loop to the corresponding
classical quantity, namely, the amount of rotation a vector
experiences when parallel transported around a closed loop
in a given classical background geometry, requires, as in
ordinary gauge theories, that a connection be made be-
tween the full quantum domain dominated by large short-
distance field fluctuations on the one hand, and the semi-
classical domain of smooth fields at large distances on the
other. Originally it was thought that the gravitational
Wilson loop, as computed in most of the original papers
on hypercubic lattice gravity referred to in this work,
would give information about the static potential, but this
was shown later by Modanese to be incorrect [6]. Instead,
the gravitational Wilson loop is now understood to provide
physical information about the large-scale curvature of the
fluctuating geometry in question [7,8].
Initially the discussion of the gravitational Wilson loop

in the quoted papers focused on the weak field case, where
the expectation of the loop is clearly well-defined. The
calculation is then technically quite similar to the pertur-
bative calculation of a square Wilson loop in non-Abelian
gauge theories. A flat or near-flat background geometry is
allowed to fluctuate locally, and a vector is parallel trans-
ported around a circular loop. An integration over the
fluctuating part of the metric then yields an explicit and
well-defined expression for the gravitational Wilson loop,
suitably defined as a trace of the holonomy of the Levi-
Civita connection. The limiting factor for such a calcula-
tion, already recognized at the time by the quoted author, is
of course the fact that higher order radiative corrections are
just as important as the leading contribution, due to the
perturbative nonrenormalizability in four dimensions.
Nevertheless the gravitational Wilson loop for a regu-

lated closed circular loop in flat space, or in a given near-
flat background geometry (such as one that would arise
from having to satisfy the classical field equations with a
nonvanishing small classical cosmological constant term)
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is a completely well-defined object, to all orders in the
weak field expansion, and in any dimension d > 2.

Similarly, one can argue based on semiclassical argu-
ments, such as the ones advocated, for example, by Hartle
[45,46] in conjunction with the emergence of a classical
domain out of an underlying fluctuating geometry, that all
which is required to define a gravitational Wilson loop is
the existence of a smooth near-classical (and four-
dimensional) geometry at very large distances, for which
the parallel transport of a vector around a circular loop is
well-defined according to classical general relativity (one
could of course define loops of arbitrary sizes and shapes,
but for the present argument a large circular loop of length
L will suffice). Clearly such a definition breaks down if the
notion of a circular loop cannot be stated, in which case
though the geometry is not near flat at large distances, and
no physically acceptable theory of gravity is recovered in
this regime, making the whole exercise rather pointless. It
would seem therefore that the computation of a Wilson
loop in the lattice theory of gravity only makes sense if a
semiclassical space-time is recovered at large distances,
making a definition of a circular loop meaningful.

Nevertheless, irrespective of whether semiclassical
space-time is recovered at large distances, such a gravita-
tional Wilson loop can still be defined in rather general
terms. One way to proceed is to focus on a set point P
located on a given fluctuating manifold, and consider a
one-parameter family of geodesics emanating from that
point, all lying in a given 2d plane sited at the point in
question. Following the geodesics out to a distance R one
obtains a suitable path over which to evaluate the trace of
the holonomies; repeating the same procedure for many
points and many field configurations one then would obtain
a quantum average for the same quantity. The extent to
which the corresponding loops are flat can then be deter-
mined by comparing the radius R with the length of the
loop perimeter L; in a near-flat geometry at very large
distances one would expect for large R and L the relation-
ship R � L=ð2	Þ.

A slightly more general way of defining a planar Wilson
loop can be given as follows. Consider a point P on a
d-dimensional manifold, and construct the d� 1 dimen-
sional surface around the point P defined as the locus of all
points situated at a fixed geodesic R distance from P. Next
consider the equator on this submanifold, defined as the set
of all points equidistant from the point in question and its

antipode (the point most distant, within the submanifold,
from the chosen point). Its dimension will be d� 2, mak-
ing it suitable in three dimensions as a parallel transport
path, with a given calculable length L, thus giving a useful
and unambiguous definition of the gravitational Wilson
loop in three dimensions. In dimensions higher than three
the above geometric procedure needs to be iterated a
sufficient number of times until the desired maximal
near-planar one-dimensional path is obtained. Thus in
four dimensions a point and its antipode need to be picked
again within the compact submanifold of dimensions d�
2, resulting in a one-dimensional Wilson loop path span-
ning the resulting equator (again defined as the locus of the
points equidistant from the point picked and its antipode).
It is clear from the construction that many equivalent

loops can be defined locally in this way. Of course in two
dimensions only one such loop, centered at P and of size R,
exists for a given fluctuating manifold. In three dimen-
sions, given an origin P, there is on the other hand a two-
parameter family of near-planar loops of size R associated
with the center point in question, and in accordance with
the loop’s possible orientation. This would be the set of all
great circles on a 2-sphere, parametrized by two angles.
Then in four dimensions the corresponding statement is
that given a point P, a three-parameter family of near-
planar loops of size R centered at P can be constructed
in the way described above.
Finally we should point out that if a timelike coordinate

can somehow be defined, then the consideration of the
gravitational Wilson could in principle be restricted, for
example, to spacelike loops only, thus effectively reducing
the dimension of the geometrical problem by one.

ACKNOWLEDGMENTS

The authors wish to thank Hermann Nicolai and the Max
Planck Institut für Gravitationsphysik (Albert-Einstein-
Institut) in Potsdam for very warm hospitality. The work
described in this paper was done while both authors were
visitors at the AEI. One of the authors (H.W.H.) also
wishes to thank Sergio Caracciolo for pointing out addi-
tional references on the gravitational Wilson loop, and for
helpful correspondence. The work of H.W.H. was sup-
ported in part by the Max Planck Gesellschaft zur
Förderung der Wissenschaften, and by the University of
California. The work of R.M.W. was supported in part by
the UK Science and Technology Facilities Council.

[1] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[2] R. Balian, J.M. Drouffe, and C. Itzykson, Phys. Rev. D 11,

2104 (1975); 19, 2514 (1979).
[3] H.W. Hamber and R.M. Williams, Phys. Rev. D 76,

084008 (2007).
[4] H.W. Hamber, Quantum Gravitation, Springer Tracts in

Modern Physics (Springer Verlag, Berlin and New York,

2009), ISBN 978-3-540-85292-6; see also H. Nicolai Gen.

H.W. HAMBER AND R.M. WILLIAMS PHYSICAL REVIEW D 81, 084048 (2010)

084048-20

http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1103/PhysRevD.11.2104
http://dx.doi.org/10.1103/PhysRevD.11.2104
http://dx.doi.org/10.1103/PhysRevD.19.2514
http://dx.doi.org/10.1103/PhysRevD.76.084008
http://dx.doi.org/10.1103/PhysRevD.76.084008
http://dx.doi.org/10.1103/PhysRevD.76.084008
http://dx.doi.org/10.1103/PhysRevD.76.084008
http://dx.doi.org/10.1103/PhysRevD.76.084008
http://dx.doi.org/10.1007/s10714-009-0769-y


Relativ. Gravit. 41, 817 (2009); MG12 Meeting on
General Relativity, UNESCO Paris, 2009, edited by T.
Damour et al. (World Scientific, Singapore, 2010), and
references therein.

[5] S. B. Giddings, D. Marolf, and J. B. Hartle, Phys. Rev. D
74, 064018 (2006).

[6] G. Modanese, J. Math. Phys. (N.Y.) 33, 4217 (1992); Phys.
Rev. D 47, 502 (1993); 49, 6534 (1994); L. Shao, H. Noda,
D. Shao, and C.G. Shao, Gen. Relativ. Gravit. 35, 527
(2003); A. Brandhuber, P. Heslop, A. Nasti, B. Spence,
and G. Travaglini, Nucl. Phys. B807, 290 (2009).

[7] H.W. Hamber and R.M. Williams, Nucl. Phys. B435, 361
(1995).

[8] G. Modanese, Nucl. Phys. B434, 697 (1995).
[9] T. Regge, Nuovo Cimento 19, 558 (1961).
[10] M. Caselle, A. D’Adda, and L. Magnea, Phys. Lett. B 232,

457 (1989).
[11] C. Mannion and J. G. Taylor, Phys. Lett. B 100, 261

(1981).
[12] K. Kondo, Prog. Theor. Phys. 72, 841 (1984).
[13] Y. Ne’eman and T. Regge, Phys. Lett. B 74, 54 (1978).
[14] P. Menotti and A. Pelissetto, Phys. Rev. D 35, 1194

(1987).
[15] L. Smolin, Nucl. Phys. B148, 333 (1979).
[16] S.W. MacDowell and F. Mansouri, Phys. Rev. Lett. 38,

739 (1977); 38, 1376(E) (1977).
[17] S. Caracciolo and A. Pelissetto, Phys. Lett. B 193, 237

(1987); Nucl. Phys. B299, 693 (1988); Phys. Lett. B 207,
468 (1988).

[18] A. Das, M. Kaku, and P. K. Townsend, Phys. Lett. B 81, 11
(1979).

[19] G. G. Batrouni, Nucl. Phys. B208, 467 (1982).
[20] M. P. Reisenberger, Classical Quantum Gravity 14, 1753

(1997).
[21] V. G. Turaev and O.Y. Viro, Topology 31, 865 (1992).
[22] F. Archer and R.M. Williams, Phys. Lett. B 273, 438

(1991).
[23] V. G. Turaev, Quantum invariants of links and 3-valent

graphs in 3-manifolds, preprint (1990).
[24] D. Oriti and R.M. Williams, Phys. Rev. D 63, 024022

(2000).

[25] D. Oriti and J. P. Ryan, Classical Quantum Gravity 23,
6543 (2006).

[26] R. Oeckl and H. Pfeiffer, Nucl. Phys. B598, 400 (2001).
[27] R. Anishetty, S. Cheluvaraja, H. S. Sharatchandra, and M.

Mathur, Phys. Lett. B 314, 387 (1993).
[28] D. Diakonov and V. Petrov, J. Exp. Theor. Phys. 91, 873

(2000).
[29] J. -M. Drouffe and J. -B. Zuber, Phys. Rep. 102, 1 (1983).
[30] J. Engle, R. Pereira, and C. Rovelli, Nucl. Phys. B798, 251

(2008).
[31] N. Kawamoto and H. B. Nielsen, Phys. Rev. D 43, 1150

(1991).
[32] M. Kaku, Phys. Rev. D 27, 2819 (1983).
[33] E. T. Tomboulis, Phys. Rev. Lett. 52, 1173 (1984).
[34] F. David, Proceedings of the Les Houches Summer

School, Session LVII, 1992; J. Ambjorn, J. Jurkiewicz,
and R. Loll, arXiv:hep-th/0604212.

[35] D. Weingarten, Nucl. Phys. B210, 229 (1982).
[36] S. Johnston, Classical Quantum Gravity 25, 202001

(2008).
[37] N. H. Christ, R. Friedberg, and T. D. Lee, Nucl. Phys.

B202, 89 (1982).
[38] C. Itzykson, in Progress in Gauge Field Theory, Cargése,
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