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We present a discrete form of the Wheeler-DeWitt equation for quantum gravitation, based on the

lattice formulation due to Regge. In this setup, the infinite-dimensional manifold of 3-geometries is

replaced by a space of three-dimensional piecewise linear spaces, with the solutions to the lattice

equations providing a suitable approximation to the continuum wave functional. The equations incorpo-

rate a set of constraints on the quantum wave functional, arising from the triangle inequalities and their

higher-dimensional analogs. The character of the solutions is discussed in the strong-coupling (large-G)

limit, where it is shown that the wave functional only depends on geometric quantities, such as areas and

volumes. An explicit form, determined from the discrete wave equation supplemented by suitable

regularity conditions, shows peaks corresponding to integer multiples of a fundamental unit of volume.

An application of the variational method using correlated product wave functions suggests a relationship

between quantum gravity in nþ 1 dimensions, and averages computed in the Euclidean path integral

formulation in n dimensions. The proposed discrete equations could provide a useful, and complementary,

computational alternative to the Euclidean lattice path integral approach to quantum gravity.
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I. INTRODUCTION

In this paper, we will present a lattice version of the
Wheeler-DeWitt equation of quantum gravity. The ap-
proach used here will be rooted in the canonical formula-
tion of quantum gravity, and can therefore be regarded as
complementary to the Euclidean lattice version of the same
theory discussed elsewhere. In the following, we will
derive a discrete form of the Wheeler-DeWitt equation
for pure gravity, based on the simplicial lattice formulation
of gravity developed by Regge and Wheeler. It is expected
that the resulting lattice equation will reproduce the origi-
nal continuum equation in some suitable small lattice-
spacing limit. In this formulation, the infinite-dimensional
manifold of 3-geometries is replaced by the space of three-
dimensional piecewise linear spaces, with solutions to the
lattice equations then providing a suitable approximation
to the continuum gravitational wave functional. The lattice
equations will provide a new set of constraints on the
quantum wave functional, which arise because of the
imposition of the triangle inequalities and their higher-
dimensional analogs. The equations are explicit enough
to allow a number of potentially useful practical calcula-
tions in the quantum theory of gravity, such as the strong-
coupling expansion, the weak-field expansion, mean-field
theory, and the variational method. In this work, we will
provide a number of sample calculations to illustrate the

workings of the lattice theory, and what in our opinion is
the likely physical interpretation of the results.
In the strong-coupling (large-G) limit, we will show that

the wave functional depends on geometric quantities only,
such as areas, volumes, and curvatures, and that in this
limit the correlation length is finite in units of the lattice
spacing. An explicit form of the wave functional, deter-
mined from the discrete equation supplemented by suitable
regularity conditions, shows peaks corresponding to inte-
ger multiples of a fundamental unit of volume. Later, the
variational method will be introduced, based here on cor-
related product (Jastrow-Slater-type) wave functions. This
approach brings out a relationship between ground-state
properties of quantum gravity in nþ 1 dimensions, and
certain averages computed in the Euclidean path integral
formulation in n dimensions, i.e. in one dimension less.
Because of its reliance on a different set of approximation
methods, the 3þ 1 lattice formulation presented here
could provide a useful, and complementary, computational
alternative to the Euclidean lattice path integral approach
to quantum gravity in four dimensions. The equations are
explicit enough that numerical solutions should be achiev-
able in a number of simple cases, such as a toroidal regular
lattice with N vertices in 3þ 1 dimensions.
An outline of the paper is as follows. In Section II, as a

background to the rest of the paper, we describe the formal-
ism of classical gravity, as set up by Arnowitt, Deser, and
Misner. In Section III, we introduce the continuum form of
the Wheeler-DeWitt equation and, in Section IV, describe
how it can be solved in the minisuperspace approximation.
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Section V is the central core of the paper, where we tran-
scribe the Wheeler-DeWitt equation to the lattice. Practical
details of the lattice version are given in Section VI and the
equation solved in the strong-coupling limit in both 2þ 1
and 3þ 1 dimensions. A general solution at the full range
of couplings requires the inclusion of the curvature term,
which was neglected in the strong-coupling expansion, and
Sections VII and VIII outline methods of including this
term, by perturbation theory and by the variational method.
Section IX gives a short outline of the lattice weak-field
expansion as it applies to the Wheeler-DeWitt equation.
Section X concludes with a discussion.

II. ARNOWITT-DESER-MISNER (ADM)
FORMALISM AND HAMILTONIAN

Since this paper involves the canonical quantization of
gravity [1], we begin with a discussion of the classical
canonical formalism derived by Arnowitt, Deser, and
Misner [2]. While many of the results presented in this
section are rather well known, it will be useful, in view of
later applications, to recall the main results and formulas
and provide suitable references for expressions used later
in the paper.

The first step in developing a canonical formulation for
gravity is to introduce a time slicing of spacetime, by
introducing a sequence of spacelike hypersurfaces labeled
by a continuous time coordinate t. The invariant distance is
then written as

ds2 � �d�2 ¼ g��dx
�dx�

¼ gijdx
idxj þ 2gijN

idxjdt� ðN2 � gijN
iNjÞdt2;

(1)

where xi (i ¼ 1, 2, 3) are coordinates on a three-
dimensional manifold and � is the proper time, in units
with c ¼ 1. The relationship between the quantities d�, dt,
dxi, N, and Ni basically expresses the Lorentzian version
of Pythagoras’s theorem.

Indices are raised and lowered with gijðxÞ (i, j ¼ 1, 2, 3),

which denotes the three-metric on the given spacelike hy-
persurface, and NðxÞ and NiðxÞ are the lapse and shift
functions, respectively. These last two quantities describe
the lapse of proper time (N) between two infinitesimally
close hypersurfaces, and the corresponding shift in spatial
coordinate (Ni). It is customary to mark four-dimensional
quantities by the prefix4, so that all unmarked quantities
will refer to three dimensions (and are occasionally marked
explicitly by a3). In terms of the original four-dimensional
metric 4g��, one has

4g00
4g0j

4gi0
4gij

 !
¼ NkN

k � N2 Nj

Ni gij

 !
; (2)

and for its inverse

4g00 4g0j
4gi0 4gij

� �
¼ �1=N2 Nj=N2

Ni=N
2 gij � NiNj=N2

� �
; (3)

which then gives for the spatial metric and the lapse and
shift functions

gij ¼ 4gij; N ¼ ð�4g00Þ�1=2; Ni ¼ 4g0i: (4)

For the volume element, one hasffiffiffiffiffi
4g

q
¼ N

ffiffiffi
g

p
; (5)

where the latter involves the determinant of the three-
metric, g � detgij. As usual, g

ij denotes the inverse of the

matrix gij. In terms of these quantities, the Einstein-Hilbert

Lagrangian of general relativity can then bewritten, up to an
overallmultiplicative constant, in the following (first-order)
form:

L ¼
ffiffiffiffiffi
4g

q
4R ¼ �gij@t�

ij � NR0 � NiR
i; (6)

up to boundary terms. Here, one has defined the following
quantities:

�ij �
ffiffiffiffiffi
4g

q
ð4�0

kl � gkl
4�0

mng
mnÞgikglj;

R0 � � ffiffiffi
g

p ½3Rþ g�1ð12�2 � �ij�ijÞ�;
Ri � �2rj�

ij:

(7)

The symbol ri denotes covariant differentiation with re-
spect to the index i using the spatial three-metric gij, and

3R

is the scalar curvature computed from this metric. Also note
that the affine connection coefficients �k

ij have been elim-

inated in favor of the spatial derivatives of the metric @kgij,

and one has defined � ¼ �i
i. Since the quantities N and Ni

do not appear in the �ij@tgij part, they are interpreted as

Lagrange multipliers, and the ‘‘Hamiltonian’’ density

H � NR0 þ NiR
i (8)

vanishes as a result of the constraints. Varying the first-order
Lagrangian of Eq. (6) with respect to gij,Ni,N, and�ij, one

obtains a set of equations which are equivalent to Einstein’s
field equations. First, varyingwith respect to�ij one obtains

an equation which can be viewed as defining �ij,

@tgij ¼ 2Ng�1=2ð�ij � 1
2gij�Þ þ rjNi þriNj: (9)

Varying with respect to the spatial metric gij gives the time

evolution for �ij,

@t�
ij¼�N

ffiffiffi
g

p ð3Rij� 1
2g

ij3RÞþ 1
2Ng�1=2gijð�kl�kl� 1

2�
2Þ

�2Ng�1=2ð�ik�j
k� 1

2��
ijÞ

þ ffiffiffi
g

p ðrirjN�gijrkrkNÞþrkð�ijNkÞ
�rkN

i�kj�rkN
j�ki: (10)
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Finally, varying with respect to the lapse (N) and shift (Ni)
functions gives

R0ðgij; �ijÞ ¼ 0; Riðgij; �ijÞ ¼ 0; (11)

which can beviewed as the four constraint equations 4G0
� ¼

4R0
� � 1

2�
0
�
4R ¼ 0, expressed for this choice of metric

decomposition [1]. The above constraints can therefore be
considered as analogous to Gauss’s law @iF

i0 ¼ r � E ¼ 0
in electromagnetism.

Some of the quantities introduced above (such as 3R)
describe intrinsic properties of the spacelike hypersurface,
while some others can be related to the extrinsic properties
of such a hypersurface when embedded in four-
dimensional space. If spacetime is sliced up (foliated) by
a one-parameter family of spacelike hypersurfaces x� ¼
x�ðxi; tÞ, then one has for the intrinsic metric within the
spacelike hypersurface

gij ¼ g��X
�
i X

�
j with X�

i � @ix
�; (12)

while the extrinsic curvature is given in terms of the unit
normals to the spacelike surface, U�,

Kijðxk; tÞ ¼ �ðr�U�ÞX�
i X

�
j : (13)

In this language, the lapse and shift functions appear in the
expression

@tx
� ¼ NU� þ NiX�

i : (14)

In the following, K ¼ gijKij ¼ Ki
i is the trace of the

matrix K.
Now, in the canonical formalism, the momentum can be

expressed in terms of the extrinsic curvature

�ij ¼ � ffiffiffi
g

p ðKij � KgijÞ: (15)

It is then convenient to define the quantities H and Hi as
(here � ¼ 8�G)

H � 2�g�1=2

�
�ij�

ij � 1

2
�2

�
� 1

2�

ffiffiffi
g

p 3R;

Hi � �2rj�
j
i :

(16)

The last two statements are essentially equivalent to the
definitions in Eq. (7).

In this notation, the Einstein field equations in the ab-
sence of sources are equivalent to the initial value
constraint

HðxÞ ¼ HiðxÞ ¼ 0; (17)

supplemented by the canonical evolution equations for �ij

and gij. The quantity

H ¼
Z

d3x½NðxÞHðxÞ þ NiðxÞHiðxÞ� (18)

should then be regarded as the Hamiltonian for classical
general relativity.

When matter is added to the Einstein-Hilbert
Lagrangian,

I½g;�� ¼ 1

16�G

Z
d4x

ffiffiffi
g

p 4Rðg��ðxÞÞ þ I�½g��;��;
(19)

where �ðxÞ are some matter fields, the action within the
ADM parametrization of the metric coordinates needs to
be modified to

I½g;�;�;��;N� ¼
Z

dtd3x

�
1

16�G
�ij@tgij

þ ��@t�� NT � NiTi

�
: (20)

One still has the same definitions as before for the
(Lagrange multiplier) lapse and shift function, namely

N ¼ ð�4g00Þ�1=2 and Ni ¼ gij4g0j. The gravitational con-

straints are modified as well, since now one defines

T � 1

16�G
Hðgij; �ijÞ þH�ðgij; �ij; �; ��Þ;

Ti � 1

16�G
Hiðgij; �ijÞ þH�

i ðgij; �ij; �; ��Þ;
(21)

with the first part describing the gravitational part given
earlier in Eq. (16),

Hðgij; �ijÞ ¼ Gij;kl�
ij�kl � ffiffiffi

g
p 3Rþ 2�

ffiffiffi
g

p
;

Hiðgij; �ijÞ ¼ �2gijrk�
jk;

(22)

here conveniently rewritten using the (inverse of the)
DeWitt supermetric

Gij;kl ¼ 1
2g

�1=2ðgikgjl þ gilgjk þ 	gijgklÞ; (23)

with parameter 	 ¼ �1. Note that in the previous expres-
sion a cosmological term (proportional to �) has been
added as well, for future reference. For the matter part,
one has

H�ðgij; �ij; �;��Þ ¼ ffiffiffi
g

p
T00ðgij; �ij; �; ��Þ;

H�
i ðgij; �ij; �; ��Þ ¼ � ffiffiffi

g
p

T0iðgij; �ij; �;��Þ:
(24)

We note here that the (inverse of the) DeWitt supermetric
in Eq. (23) is also customarily used to define a distance in
the space of three-metrics gijðxÞ. Consider an infinitesimal

displacement of such a metric gij ! gij þ �gij, and define

the natural metricG on such deformations by considering a
distance in function space

k�gk2 ¼
Z

d3xNðxÞGij;klðxÞ�gijðxÞ�gklðxÞ: (25)

Here, the lapse NðxÞ is an essentially arbitrary but positive
function, to be taken equal to one in the following. The
quantity Gij;klðxÞ is the three-dimensional version of the
DeWitt supermetric,
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Gij;kl ¼ 1
2

ffiffiffi
g

p ðgikgjl þ gilgjk þ �	gijgklÞ; (26)

with the parameter 	 of Eq. (23) related to �	 in Eq. (26) by
�	 ¼ �2	=ð2þ 3	Þ, so that 	 ¼ �1 gives �	 ¼ �2 (note
that this is dimension dependent).

III. WHEELER-DEWITT EQUATION

Within the framework of the previous construction, a
transition from a classical to a quantum description of
gravity is obtained by promoting gij, �

ij, H, and Hi to

quantum operators, with ĝij and �̂ij satisfying canonical

commutation relations. In particular, the classical con-
straints now select a physical vacuum state j�i, such that
in the source-free case

Ĥj�i ¼ 0; Ĥij�i ¼ 0; (27)

and in the presence of sources more generally

T̂j�i ¼ 0; T̂ij�i ¼ 0: (28)

As in ordinary nonrelativistic quantum mechanics, one can
choose different representations for the canonically con-
jugate operators ĝij and �̂ij. In the functional position

representation, one sets

ĝ ijðxÞ ! gijðxÞ; �̂ijðxÞ ! �iℏ � 16�G � �

�gijðxÞ :
(29)

In this picture, the quantum states become wave function-
als of the three-metric gijðxÞ,

j�i ! �½gijðxÞ�: (30)

The two quantum constraint equations in Eq. (28) then
become the Wheeler-DeWitt equation [3–5]�
�16�G �Gij;kl

�2

�gij�gkl
� 1

16�G

ffiffiffi
g

p ð3R� 2�Þ

þ Ĥ�

�
�½gijðxÞ� ¼ 0; (31)

with the inverse supermetric given in 3þ 1 dimensions by

Gij;kl ¼ 1
2g

�1=2ðgikgjl þ gilgjk � gijgklÞ; (32)

and the diffeomorphism (or momentum) constraint�
2igijrk

�

�gjk
þ Ĥ�

i

�
�½gijðxÞ� ¼ 0: (33)

This last constraint implies that the gradient of � on the
superspace of gij ’s and �’s is zero along those directions

that correspond to gauge transformations, i.e. diffeomor-
phisms on the three-dimensional manifold, whose points
are labeled by the coordinates x. The lack of covariance of
the ADM approach has not gone away, and is therefore still
part of the present formalism. Also note that the DeWitt
supermetric is not positive definite, which implies that

some derivatives with respect to the metric have the
‘‘wrong’’ sign. It is understood that these directions corre-
spond to the conformal mode.
A number of basic issues need to be addressed before

one can gain a full and consistent understanding of the
dynamical content of the theory [6–10]. These include
possible problems of operator ordering, and the specifica-
tion of a suitable Hilbert space, which entails at some point
a choice for the inner product of wave functionals, for
example, in the Schrödinger form

h�j�i ¼
Z

d�½g���½gij��½gij�; (34)

where d�½g� is some appropriate measure over the three-
metric g. Note also that the continuum Wheeler-DeWitt
equation contains, in the kinetic term, products of func-
tional differential operators, which are evaluated at the
same spatial point x. One would expect that such terms

could produce �ð3Þð0Þ-type singularities when acting on the
wave functional, which would then have to be regularized
in some way. The lattice cutoff discussed below is one way
to provide such an explicit regularization.
A peculiar property of the Wheeler-DeWitt equation,

which distinguishes it from the usual Schrödinger equation
H� ¼ iℏ@t�, is the absence of an explicit time coordi-
nate. As a result, the right-hand side term of the
Schrödinger equation is here entirely absent. The reason
is of course diffeomorphism invariance of the underlying
theory, which expresses now the fundamental quantum
equations in terms of fields gij, and not coordinates.

Consequently, the Wheeler-DeWitt equation contains no
explicit time evolution parameter. Nevertheless, in some
cases it seems possible to assign the interpretation of
‘‘time coordinate’’ to some specific variable entering the
Wheeler-DeWitt equation, such as the overall spatial vol-
ume or the magnitude of some scalar field [9].
We shall not discuss here the connection between the

Wheeler-DeWitt equation and the Feynman path integral
for gravity. In principle, any solution of the Wheeler-
DeWitt equation corresponds to a possible quantum state
of the Universe. A similar situation already arises, of
course in much simpler form, in nonrelativistic quantum
mechanics [11]. The effects of the boundary conditions on
the wave function will then act to restrict the class of
possible solutions; in ordinary quantum mechanics, these
are determined by the physical context of the problem and
some set of external conditions. In the case of the Universe,
the situation is far less clear, and in many approaches some
suitable set of boundary conditions needs to be postulated,
based on general arguments involving simplicity or econ-
omy. One proposal [12] is to restrict the quantum state of
the Universe by requiring that the wave function � be
determined by a path integral over compact Euclidean
metrics. The wave function would then be given by
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�½gij; �� ¼
Z
½dg���½d�� expð�Î½g��;��Þ; (35)

where Î is the Euclidean action for gravity plus matter

Î ¼ � 1

16�G

Z
d4x

ffiffiffi
g

p ðR� 2�Þ � 1

8�G

Z
d3x

ffiffiffiffiffiffi
gij

p
K

�
Z

d4x
ffiffiffi
g

p
Lm: (36)

The semiclassical functional integral would then be re-
stricted to those four-metrics which have the induced
metric gij and the matter field � as given on the boundary

surface S. One would then expect (as in the case in non-
relativistic quantum mechanics, where the path integral
with a boundary surface satisfies the Schrödinger equa-
tion), that the wave function constructed in this way would
also automatically satisfy the Wheeler-DeWitt equation,
and this is indeed the case.

IV. MINISUPERSPACE

Minisuperspace models can in part provide an additional
motivation for our later work. The quantum state of a
gravitational system is described, in the Wheeler-DeWitt
framework just introduced, by a wave function� which is
a functional of the three-metric gij and the matter fields �.

In general, the latter could contain fields of arbitrary spins,
but here we will consider for simplicity just one single
component scalar field �ðxÞ. The wave function � will
then obey the zero energy Schrödinger-like equation of
Eqs. (31) and (33). The quantum state described by � is
then a functional on the infinite-dimensional manifold W
consisting of all positive-definite metrics gijðxÞ and matter

fields �ðxÞ on a spacelike three-surface S. We note here
that on this space there is a natural metric

ds2½�g; ��� ¼
Z d3xd3x0

NðxÞ ½Gij;klðx; x0Þ�gij�gklðx0Þ

þ ffiffiffi
g

p
�3ðx� x0Þ��ðxÞ��ðx0Þ�; (37)

where

Gij;klðx; x0Þ ¼ Gij;klðxÞ�3ðx� x0Þ (38)

and

Gij;klðxÞ ¼ 1
2

ffiffiffi
g

p ½gikðxÞgjlðxÞ þ gilðxÞgjkðxÞ
� 2gijðxÞgklðxÞ� (39)

is the DeWitt supermetric.
In general, the wave function for all the dynamical

variables of the gravitational field in the Universe is diffi-
cult to calculate, since an infinite number of degrees of
freedom is involved: the infinitely many values of the
metric at all spacetime points, and the infinitely many
values of the matter field � at the same points. One option
is to restrict the choice of variable to a finite number of

suitable degrees of freedom [13–17]. As a result, the over-
all quantum fluctuations are severely restricted, since these
are now only allowed to be nonzero along the surviving
dynamical directions. If the truncation is severe enough,
the transverse-traceless nature of the graviton fluctuation is
lost as well. Also, since one is not expanding the quantum
solution in a small parameter, it can be difficult to estimate
corrections.
In a cosmological context, it seems natural to consider

initially a homogeneous and isotropic model, and restrict
the function space to two variables, the scale factor aðtÞ
and a minimally coupled homogeneous scalar field �ðtÞ
[16]. The spacetime metric is given by

d�2 ¼ N2ðtÞdt2 � gijdx
idxj: (40)

The three-metric gij is then determined entirely by the

scale factor aðtÞ,
gij ¼ a2ðtÞ~gij; (41)

with ~gij a time-independent reference three-metric with

constant curvature,

3 ~Rijkl ¼ kð~gij~gkl � ~gil~gjkÞ; (42)

and k ¼ 0, �1 corresponding to the flat, closed, and open
Universe case, respectively. In this case, the minisuper-
spaceW is two dimensional, with coordinates a and�, and
supermetric

ds2½a;�� ¼ N�1ð�ada2 þ a3d�2Þ: (43)

From the above expression for ds2½a;��, one obtains the
Laplacian in the above metric, required for the kinetic term
in the Wheeler-DeWitt equation,1

� 1

2
r2ða;�Þ ¼ N

2a2

�
@

@a
a
@

@a
� 1

a

@2

@�2

�
: (44)

Since the space is homogeneous, the diffeomorphism con-
straint is trivially satisfied. Also, N is independent of gij so

in the homogeneous case it can be taken to be a constant,
conveniently chosen as N ¼ 1.
It should be clear that in general the quantum behavior

of the solutions is expected to be quite different from the
classical one. In the latter case, one imposes some initial
conditions on the scale factor at some time t0, which then
determines aðtÞ at all later times. In the minisuperspace
view of quantum cosmology, one has to instead impose a
condition on the wave packet� at a ¼ 0. Because of their
simplicity, in general it is possible to analyze the solutions

1The ambiguity regarding the operator ordering of p2=a ¼
a�ðqþ1Þpaqp in the Wheeler-DeWitt equation can in principle be
retained by writing for the above operator r2 the expression
�ðN=aqþ1Þfð@=@aÞaqð@=@aÞ � ð@2=@�2Þg, but this does not
seem to affect the qualitative nature of the solutions. The case
discussed in the text corresponds to q ¼ 1, but q ¼ 0 seems even
simpler.
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to the minisuperspace Wheeler-DeWitt equation in a rather
complete way, given some sensible assumptions on how
�ða;�Þ should behave, for example, when the scale factor
a approaches zero.

In concluding the discussion on minisuperspace models
as a tool for studying the physical content of the Wheeler-
DeWitt equation, it seems legitimate though to ask the
following question: to what extent can results for these
very simple models, which involve such a drastic trunca-
tion of physical degrees of freedom, be ultimately repre-
sentative of, and physically relevant to, what might, or
might not, happen in the full quantum theory?

V. LATTICE HAMILTONIAN FOR QUANTUM
GRAVITY

In constructing a discrete Hamiltonian for gravity, one
has to decide first what degrees of freedom one should
retain on the lattice. There are a number of possibilities,
depending on which continuum theory one chooses to
discretize, and at what stage. So, for example, one could
start with a discretized version of Cartan’s formulation, and
define vierbeins and spin connections on a flat hypercubic
lattice. Later, one could define the transfer matrix for such
a theory, and construct a suitable Hamiltonian.

Another possibility, which is the one we choose to
pursue here, is to use the more economical (and geometric)
Regge-Wheeler lattice discretization for gravity [18,19],
with edge lengths suitably defined on a random lattice as
the primary dynamical variables. Even in this specific case,
several avenues for discretization are possible. One could
discretize the theory from the very beginning, while it is
still formulated in terms of an action, and introduce for it a
lapse and a shift function, extrinsic and intrinsic discrete
curvatures, etc. Alternatively, one could try to discretize
the continuum Wheeler-DeWitt equation directly, a proce-
dure that makes sense in the lattice formulation, as these
equations are still given in terms of geometric objects, for
which the Regge theory is very well suited. It is the latter
approach which we will proceed to outline here.

The starting point for the following discussion is there-
fore the Wheeler-DeWitt equation for pure gravity in the
absence of matter, Eq. (31),�

�ð16�GÞ2Gij;klðxÞ �2

�gijðxÞ�gklðxÞ
�

ffiffiffiffiffiffiffiffiffiffi
gðxÞ

q
ð3RðxÞ � 2�Þ

�
�½gijðxÞ� ¼ 0 (45)

and the diffeomorphism constraint of Eq. (33),�
2igijðxÞrkðxÞ �

�gjkðxÞ
�
�½gijðxÞ� ¼ 0: (46)

Note that these equations express a constraint on the state

j�i at every x, each of the form ĤðxÞj�i ¼ 0 and

ĤiðxÞj�i ¼ 0.

On a simplicial lattice [20–24] (see for example [25],
and references therein, for a more complete discussion of
the lattice formulation for gravity), one knows that defor-
mations of the squared edge lengths are linearly related to
deformations of the induced metric. In a given simplex 
,
take coordinates based at a vertex 0, with axes along the
edges from 0. The other vertices are each at unit coordinate
distance from 0 (see Figs. 1–3 for this labeling of a triangle
and of a tetrahedron). In terms of these coordinates, the
metric within the simplex is given by

gijð
Þ ¼ 1
2ðl20i þ l20j � l2ijÞ: (47)

Note also that in the following discussion only edges and
volumes along the spatial direction are involved. It follows
that one can introduce in a natural way a lattice analog of
the DeWitt supermetric of Eq. (26), by adhering to the
following procedure. First, one writes for the supermetric
in edge length space

k�l2k2 ¼ X
ij

Gijðl2Þ�l2i �l2j ; (48)

with the quantity Gijðl2Þ suitably defined on the space of
squared edge lengths [26,27]. Through a straightforward
exercise of varying the squared volume of a given simplex

 in d dimensions

0

1

2

l02

l01

l12

FIG. 1. A triangle with labels.

0

1

2

c

a

b

s1

s5
s4

s3

s2

s6

A2

A0

A3

A1

FIG. 2. Neighbors of a given triangle. The above picture is
supposed to illustrate the fact that the Laplacian �l2 appearing in
the kinetic term of the lattice Wheeler-DeWitt equation (here in
2þ 1 dimensions) contains edges a, b, c that belong both to the
triangle in question, as well as to several neighboring triangles
(here three of them) with squared edges denoted sequentially by
s1 ¼ l21 . . . s6 ¼ l26
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V2ð
Þ ¼
�
1

d!

�
2
detgijðl2ð
ÞÞ (49)

to quadratic order in the metric (on the right-hand side), or
in the squared edge lengths belonging to that simplex (on
the left-hand side), one finds the identity

1

Vðl2Þ
X
ij

@2V2ðl2Þ
@l2i @l

2
j

�l2i �l
2
j ¼

1

d!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

q
½gijgkl�gij�gkl

� gijgkl�gjk�gli�: (50)

The right-hand side of this equation contains precisely the
expression appearing in the continuum supermetric of
Eq. (26) (for a specific choice of the parameter �	 ¼ �2),
while the left-hand side contains the sought-for lattice
supermetric. One is therefore led to the identification

Gijðl2Þ ¼ �d!
X



1

Vð
Þ
@2V2ð
Þ
@l2i @l

2
j

: (51)

It should be noted that in spite of the appearance of a sum
over simplices 
, Gijðl2Þ is quite local (in correspondence
with the continuum, where it is ultralocal), since the de-
rivatives on the right-hand side vanish when the squared
edge lengths in question are not part of the same simplex.
The sum over 
 therefore only extends over those few
tetrahedra which contain either the i or the j edge.

At this point, one is finally ready to write a lattice analog
of the Wheeler-DeWitt equation for pure gravity, which
reads�
�ð16�GÞ2Gijðl2Þ @2

@l2i @l
2
j

�
ffiffiffiffiffiffiffiffiffiffi
gðl2Þ

q
½3Rðl2Þ � 2��

�

��½l2� ¼ 0; (52)

with Gijðl2Þ the inverse of the matrix Gijðl2Þ given above.

The range of the summation over i and j and the appro-
priate expression for the scalar curvature, in this equation,
are discussed below and made explicit in Eq. (53).

It should be emphasized that, just like there is one local
equation for each spatial point x in the continuum, here too
there is only one local (or semilocal, since strictly speaking
more than one lattice vertex is involved) equation that
needs to be specified at each simplex, or simplices, with
Gij defined in accordance with the definition in Eq. (51).

On the other hand, and again in close analogy with the

continuum expression, the wave function�½l2� depends of
course collectively on all the edge lengths in the lattice.
The latter should therefore be regarded as a function of the
whole simplicial geometry, whatever its nature might be,
just like the continuum wave function �½gij� will be a

function(al) of all metric variables, or more specifically of
the overall geometry of the manifold, due to the built-in
diffeomorphism invariance. On the side, we note here that
the lattice supermetric is dimensionful, Gij � l4�d and

Gij � ld�4 in d spacetime dimensions, so it might be useful
and convenient from now on to explicitly introduce a
lattice spacing a (or a momentum cutoff � ¼ 1=a) and
express all dimensionful quantities (G, �, li) in terms of
this fundamental lattice spacing.
As noted, Eqs. (31) or (52) both express a constraint

equation at each ‘‘point’’ in space. Here, we will elaborate
a bit more on this point. On the lattice, points in space are
replaced by a set of edge labels i, with a few edges
clustered around each vertex, in a way that depends on
the dimensionality and the local lattice coordination num-
ber. To be more specific, the first term in Eq. (52) contains
derivatives with respect to edges i and j connected by a
matrix element Gij which is nonzero only if i and j are

close to each other, essentially nearest neighbor. One
would therefore expect that the first term could be repre-
sented by just a sum of edge contributions, all from within
one (d� 1)-simplex
 (a tetrahedron in three dimensions).
The second term containing 3Rðl2Þ in Eq. (52) is also local
in the edge lengths: it only involves a handful of edge
lengths which enter into the definition of areas, volumes,
and angles around the point x, and follows from the fact
that the local curvature at the original point x is completely
determined by the values of the edge lengths clustered
around i and j. Apart from some geometric factors, it
describes, through a deficit angle �h, the parallel transport
of a vector around an elementary dual lattice loop. It should
therefore be adequate to represent this second term by a
sum over contributions over all (d� 3)-dimensional
hinges (edges in 3þ 1 dimensions) h attached to the
simplex 
, giving therefore in three dimensions

�
�ð16�GÞ2 X

i;j	


Gijð
Þ @2

@l2i @l
2
j

� 2n
h
X
h	


lh�h þ 2�V


�
�½l2� ¼ 0: (53)

Here, �h is the deficit angle at the hinge h, lh the corre-

sponding edge length, V
 ¼ ffiffiffiffiffiffiffiffiffiffi
gð
Þp

the volume of the
simplex (tetrahedron in three spatial dimensions) labeled
by 
. Gijð
Þ is obtained either from Eq. (51), or from the

lattice transcription of Eq. (23),

Gij;klð
Þ ¼ 1
2g

�1=2ð
Þ½gikð
Þgjlð
Þ þ gilð
Þgjkð
Þ
� gijð
Þgklð
Þ�; (54)

0
1

2

l02

l01

l12

3

l03

l23

l13

FIG. 3. A tetrahedron with labels.
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with the induced metric gijð
Þ within a simplex 
 given in

Eq. (47). The combinatorial factor n
h ensures the correct
normalization for the curvature term, since the latter has to
give the lattice version of

R ffiffiffi
g

p 3R ¼ 2
P

h�hlh (in three

spatial dimensions) when summed over all simplices 
.
The inverse of n
h counts therefore the number of times
the same hinge appears in various neighboring simplices,
and consequently depends on the specific choice of under-
lying lattice structure; for a flat lattice of equilateral tri-
angles in two dimensions n
h ¼ 1=6.2 The lattice
Wheeler-DeWitt equation given in Eq. (53) is the main
result of this paper.

It is in fact quite encouraging that the discrete equation
in Eqs. (52) and (53) is very similar to what one would
derive in Regge lattice gravity by doing the 3þ 1 split of
the lattice metric carefully from the very beginning
[28–30]. These authors also derived a lattice Hamiltonian
in three dimensions, written in terms of lattice momenta
conjugate to the edge length variables. In this formulation,
the Hamiltonian constraint equations have the form

Hn ¼ 1

4

X
	2n

Gð	Þ
ij �i�j � X

�2n

ffiffiffiffiffiffi
g�

p
��

¼ 1

4

X
	2n

1

V	

�
ðtr�2Þ	 � 1

2
ðtr�Þ2	

�
� X

�2n

ffiffiffiffiffiffi
g�

p
�� ¼ 0;

(55)

with Hn defined on the lattice site n. The sum
P

	2n

extends over neighboring tetrahedra labeled by 	, whereas
the sum

P
�2n extends over neighboring edges, here

labeled by �. Gð	Þ
ij is the inverse of the DeWitt supermetric

at the site 	, and �� the deficit angle around the edge �.ffiffiffiffiffiffi
g�

p
is the dual (Voronoi) volume associated with the

edge �.
The lattice Wheeler-DeWitt equation of Eq. (52) has an

interesting structure, which is in part reminiscent of the
Hamiltonian for lattice gauge theories. The first, local
kinetic term is the gravitational analog of the electric field
term E2

a. It contains momenta which can be considered as
conjugate to the squared edge length variables. The second
local term involving 3Rðl2Þ is the analog of the magnetic
ðr � AaÞ2. In the absence of a cosmological constant term,
the first and second term have opposite sign, and need to
cancel out exactly on physical states in order to give
HðxÞ� ¼ 0. On the other hand, the last term proportional
to � has no gauge theory analogy, and is, as expected,
genuinely gravitational.

It seems important to note here that the squared edge
lengths take on only positive values l2i > 0, a fact that

would seem to imply that the wave function has to vanish
when the edge lengths do, �ðl2 ¼ 0Þ ’ 0. This constraint
will tend to select the regular solution close to the origin in
edge length space, as will be discussed further below. In
addition, one has some rather complicated further con-
straints on the squared edge lengths, due to the triangle
inequalities. These ensure that the areas of triangles and the
volumes of tetrahedra are always positive. As a result, one
would expect an average soft local upper bound on the
squared edge lengths of the type l2i & l20 where l0 is an

average edge length, hl2i i ¼ l20. The term ‘‘soft’’ refers to

the fact that while large values for the edge lengths are
possible, these should nevertheless enter with a relatively
small probability, due to the small phase space available in
this region. In any case, the nature of the discrete Wheeler-
DeWitt equation presented here is explicit enough so that
these, and other related, issues can presumably be an-
swered both satisfactorily and unambiguously.
The above considerations have some consequences al-

ready in the strong-coupling limit of the theory. For suffi-
ciently strong coupling (large Newton constantG), the first
term in Eq. (52) is dominant, which shows again some
similarity with what one finds for non-Abelian gauge
theories for large coupling g2. One would then expect,
both from the constraint li > 0 and the triangle inequal-
ities, that the spectrum of this operator is discrete, and that
the energy gap, the spacing between the lowest eigenvalue
and the first excited state, is of the same order as the
ultraviolet cutoff. Nevertheless, one important difference
here is that one is not interested in the whole spectrum, but
instead just in the zero mode.
Irrespective of its specific form, it is in general possible

to simplify the lattice Hamiltonian constraint in Eqs. (52)
and (53) by using scaling arguments, as one does often in
ordinary nonrelativistic quantum mechanics (for a list of
relevant dimensions see Table I and II). After setting for the
scaled cosmological constant � ¼ 8�G�0 and dividing
the equation out by common factors, it can be recast in
the slightly simpler form�
�	a6 � 1ffiffiffiffiffiffiffiffiffiffi

gðl2Þp Gijðl2Þ @2

@l2i @l
2
j

� �a2 �3 Rðl2Þ þ 1

�

��½l2� ¼ 0; (56)

where one finds it useful to define a dimensionless
Newton’s constant, as measured in units of the cutoff �G �
16�G=a2, and a dimensionless cosmological constant

TABLE I. Dimension of the Laplacian term in d dimensions.

dimension dimension of Laplacian �g

d dimensions l4�d=l4 � l�d � 1=Vd

2þ 1 dimensions A=l4 � 1=A
3þ 1 dimensions l=l4 � 1=l3 � 1=V

2Instead of the combinatorial factor n
h, one could insert a
ratio of volumes V
h=Vh (where Vh is the volume per hinge [23]
and V
h is the amount of that volume in the simplex 
), but the
above form is simpler.
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��0 � �0a
4, so that in the above equation one has 	 ¼

�G= ��0 and � ¼ 1= �G ��0. Furthermore, the edge lengths
have been rescaled so as to be able to set �0 ¼ 1 in lattice
units (it is clear from the original gravitational action that
the cosmological constant �0 simply multiplies the total
spacetime volume, thereby just shifting around the overall
scale for the problem). Schematically, Eq. (56) is therefore
of the form �

� �G�s � 1
�G
3RðsÞ þ 1

�
�½s� ¼ 0; (57)

with �s a discretized form of the covariant super-
Laplacian, acting locally on the function space of the
s ¼ l2 variables.

We shall not discuss the lattice implementation of the
diffeomorphism (or momentum) constraint in Eq. (46). It
can be argued that this will be satisfied automatically for a
regular or random homogeneous lattice. This will indeed
be the case for the examples we will be discussing below.

VI. EXPLICIT SETUP FOR THE LATTICE
WHEELER-DEWITT EQUATION

In this section, we shall establish our notation and derive
the relevant terms in the discrete Wheeler-DeWitt equation
for a simplex.

A. 2þ 1 dimensions

The basic simplex in this case is of course a triangle,
with vertices and squared edge lengths labeled as in Fig. 1.
We set l201 ¼ a, l212 ¼ b, l202 ¼ c.

The components of the metric for coordinates based at
vertex 0, with axes along the 01 and 02 edges, are

g11 ¼ a; g12 ¼ 1
2ðaþ c� bÞ; g22 ¼ c: (58)

The area A of the triangle is given by

A2 ¼ 1

16
½2ðabþ bcþ caÞ � a2 � b2 � c2�; (59)

so the supermetric Gij, according to Eq. (51), is

Gij ¼ 1

4A

1 �1 �1
�1 1 �1
�1 �1 1

0
@

1
A; (60)

with inverse

Gij ¼ �2A
0 1 1
1 0 1
1 1 0

0
@

1
A: (61)

Thus, for the triangle we have

Gij

@2

@si@sj
¼ �4A

�
@2

@a@b
þ @2

@b@c
þ @2

@c@a

�
; (62)

and the Wheeler-DeWitt equation is�
ð16�GÞ24A

�
@2

@a@b
þ @2

@b@c
þ @2

@c@a

�

� 2n
h
X
h

�h þ 2�A

�
�½s� ¼ 0; (63)

where the sum is over the three vertices h of the triangle.
The combinatorial factor n
h ensures the correct normal-
ization for the curvature term, since the latter has to give
the lattice version of

R ffiffiffi
g

p 2R ¼ 2
P

h�h when summed

over all simplices (triangles in this case) 
. The inverse
of n
h counts therefore the number of times the same
vertex appears in various neighboring triangles, and con-
sequently depends on the specific choice of underlying
lattice structure.

Alternatively, we can evaluate Gij;kl
@2

@gij@gkl
directly,

using

Gij;kl ¼ 1

2
ffiffiffi
g

p ðgikgjl þ gilgjk � 2gijgklÞ (64)

(note the different coefficient of the last term in two
dimensions), with the metric gij as found above. The

derivatives with respect to the metric are expressed in
terms of derivatives with respect to squared edge
lengths by

@

@gijðsÞ ¼ X
m

@sm
@gij

@

@sm
: (65)

This leads to

@

@g11
¼ @

@a
þ @

@b
; (66)

@

@g12
¼ @

@g21
¼ � @

@b
; (67)

and

TABLE II. Dimensions of couplings in d dimensions.

dimension G dimension � dimension dimensional dimensionless

d dimensions ld�2 1=l2 G=
ffiffiffiffi
�

p � ld�1 G2=ðd�2Þ�
2þ 1 dimensions l 1=l2 G=

ffiffiffiffi
�

p � A� G2�
3þ 1 dimensions l2 1=l2 G=

ffiffiffiffi
�

p � VT G�
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@

@g22
¼ @

@b
þ @

@c
: (68)

This procedure gives exactly the same expression for the
kinetic term.

B. 3þ 1 dimensions

In this case, both methods described for 2þ 1 dimen-
sions can be followed, but one is much easier than the
other.

For ease of notation, we define l201 ¼ a, l212 ¼ b, l202 ¼ c,
l203 ¼ d, l213 ¼ e, l223 ¼ f. For the tetrahedron labeled as in

Fig. 3, we have

g11 ¼ a; g22 ¼ c; g33 ¼ d; (69)

g12 ¼ 1
2ðaþ c� bÞ; g13 ¼ 1

2ðaþ d� eÞ;
g23 ¼ 1

2ðcþ d� fÞ;
(70)

and its volume V is given by

V2 ¼ 1

144
½afð�a� fþ bþ cþ dþ eÞ

þ bdð�b� dþ aþ cþ eþ fÞ
þ ceð�c� eþ aþ bþ dþ fÞ
� abc� ade� bef� cdf�: (71)

The matrix Gij is then given by

Gij ¼ � 1

24V

�2f eþ f� b bþ f� e dþ f� c cþ f� d p
eþ f� b �2e bþ e� f dþ e� a q aþ e� d
bþ f� e bþ e� f �2b r bþ c� a aþ b� c
dþ f� c dþ e� a r �2d cþ d� f aþ d� e
cþ f� d q bþ c� a cþ d� f �2c aþ c� b

p aþ e� d aþ b� c aþ d� e aþ c� b �2a

0
BBBBBBBB@

1
CCCCCCCCA
; (72)

where

p ¼ �2a� 2fþ bþ cþ dþ e;

q ¼ �2c� 2eþ aþ bþ dþ f;

r ¼ �2b� 2dþ aþ cþ eþ f:

(73)

It is nontrivial to invert this (although it can be done), so
instead of using Gij

@2

@si@sj
, we evaluate

Gij;kl ¼ 1

2
ffiffiffi
g

p ðgikgjl þ gilgjk � gijgklÞ; (74)

with

@

@g11
¼ @

@a
þ @

@b
þ @

@e
;

@

@g22
¼ @

@b þ @
@c þ @

@f ;

@

@g33
¼ @

@d
þ @

@e
þ @

@f
;

@

@g12
¼ � @

@b
;

@

@g13
¼ � @

@e
;

@

@g23
¼ � @

@f
:

(75)

The matrix representing the coefficients of the derivatives
with respect to the squared edge lengths is given in the
Appendix, and is the inverse of Gij found earlier. This
is a nontrivial result as it acts as confirmation of the

Lund-Regge expression which was derived in a completely
different way.
Then, in 3þ 1 dimensions, the discrete Wheeler-DeWitt

equation is

�
�ð16�GÞ2Gij

@2

@si@sj
�2n
h

X
h

ffiffiffiffiffi
sh

p
�hþ2�V

�
�½s�¼0;

(76)

where the sum is over hinges (edges) h in the tetrahedron.
Note the mild nonlocality of the equation in that the
curvature term, through the deficit angles, involves edge
lengths from neighboring tetrahedra. In the continuum, the
derivatives also give some mild nonlocality.
The discrete Wheeler-DeWitt equation is hard to solve

analytically, even in 2þ 1 dimensions, because of the
complicated dependence on edge lengths in the curvature
term, which involves arcsin or arccos of convoluted ex-
pressions. When the curvature term is negligible, the dif-
ferential operators may be transformed into derivatives
with respect to the area (in 2þ 1 dimensions) or the
volume (in 3þ 1 dimensions) and solutions found for the
wave function, �. Figs. 4 and 5 give a pictorial represen-
tation of lattices that can be used for numerical studies of
quantum gravity in 2þ 1 and 3þ 1 dimensions,
respectively.
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C. Solution of the triangle problem in 2þ 1 dimensions

In this section, we will consider the solution of the
Wheeler-DeWitt equation for a single triangle. The present
calculation is a necessary starting point and should provide
a basic stepping stone for the strong-coupling expansion in
1=G. In addition, it will show the physical nature of the
wave-function solution deep in the strong-coupling re-
gime. Note that for 1=G ! 0 the coupling term between
different simplices, which is due to the curvature term,
disappears and one ends up with a completely decoupled
problem, where the edge lengths in each simplex fluctuate
independently. This is of course quite analogous to what
happens in gauge theories on the lattice at strong coupling,
the chromoelectric field fluctuates independently on each
link, giving rise to short-range correlations, a mass gap,
and confinement. Here, it is this single-simplex probability
amplitude that we will set out to compute.

As in the Euclidean lattice theory of gravity, it will be
convenient to factor out an overall scale from the problem,
and set the (unscaled) cosmological constant equal to one

[23] (see Table II). Recall that the Euclidean path integral
weight contains a factor PðVÞ / expð��0VÞ where
V ¼ R ffiffiffi

g
p

is the total volume on the lattice. The choice

�0 ¼ 1 then fixes this overall scale once and for all. Since
�0 ¼ 2�=16�G, one then has � ¼ 8�G in this system of
units. In the following, we will also find it rather conve-

nient to introduce the scaled coupling ~�,

~� � �

2

�
1

16�G

�
2
; (77)

so that for �0 ¼ 1 (in units of the UV cutoff, or of the

fundamental lattice spacing) one has ~� ¼ 1=64�G.
Moreover, it will often turn out to be desirable to avoid

large numbers of factors of 16�’s by the replacement,
which we will follow from now on in this section, of

16�G ! G. Then, ~� ¼ 1=4G is the natural expansion

parameter. Note that the coupling ~� has dimensions of
length to the minus four, or inverse area squared, in
2þ 1 dimension, and length to the minus six, or inverse
volume squared, in 3þ 1 dimensions.
Now, from Eq. (63), the Wheeler-DeWitt equation for a

single triangle and constant curvature density R reads

�
ð16�GÞ24A�

�
@2

@a@b
þ @2

@b@c
þ @2

@c@a

�

þ ð2�� RÞA�

�
�½s� ¼ 0; (78)

where a, b, c are the three squared edge lengths for the
given triangle, and A� is the area of the same triangle.
In the following, we will take for simplicity R ¼ 0.
Equivalently, one needs to solve

�
@2

@a@b
þ @2

@b@c
þ @2

@c@a
þ ~�

�
�½a; b; c� ¼ 0: (79)

If one sets

�½s� ¼ �½A��; (80)

then one can show that

@2

@a@b
� ¼ 1

ð16A�Þ2
ðbþ c� aÞðaþ c� bÞ

�
�
d2�

dA2
�

� 1

A�

d�

dA�

�
þ 1

16A�

d�

dA�

: (81)

Summing the partial derivatives leads to the equation

A�

d2�

dA2
�

þ 2
d�

dA�

þ 16~�A�� ¼ 0: (82)

Solutions to the above equation are given by

FIG. 5. A small section of a suitable spatial lattice for quantum
gravity in 3þ 1 dimensions.

FIG. 4. A small section of a suitable spatial lattice for quantum
gravity in 2þ 1 dimensions.
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�½a; b; c� ¼ const:
1

A�

exp

�
�i � 4A�

ffiffiffiffi
~�

p �
; (83)

or alternatively by

�½a; b; c� ¼ 1

A�

�
c1 cos

�
4A�

ffiffiffiffi
~�

p �
þ c2 sin

�
4A�

ffiffiffiffi
~�

p ��
:

(84)

Note the remarkable, but not entirely unexpected, result
that the wave function only depends on the area of the
triangle A�ða; b; cÞ. In other words, it depends on
the geometry only. Regularity of the wave function as the
area of the triangle approaches zero, A� ! 0, requires for
the constant c1 ¼ 0. Therefore, the correct quantum-
mechanical solution is unambiguously determined,

�½a; b; c� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffiffi
~�

pp 1

A�

sin

�
4A�

ffiffiffiffi
~�

p �
: (85)

The overall normalization constant has been fixed by the
standard rule of quantum mechanics,

Z 1

0
dA�j�ðA�Þj2 ¼ 1: (86)

Moreover, we note that a bare � < 0 is not possible, and
that the oscillatory nature of the wave function is seen here
to give rise to well-defined peaks in the probability distri-
bution for the triangle area, located at

ðA�Þn ¼ n�

4
ffiffiffiffi
~�

p (87)

with n integer.

D. Solution of the tetrahedron problem in
3þ 1 dimensions

In this section, we will consider the nature of quantum-
mechanical solutions for a single tetrahedron. Now, from
Eq. (76), the Wheeler-DeWitt equation for a single tetra-
hedron with a constant curvature density term R reads

�
�ð16�GÞ2Gij

@2

@si@sj
þ ð2�� RÞV

�
�½s� ¼ 0; (88)

where now the squared edge lengths s1 . . . s6 are all part of
the same tetrahedron, and Gij is given by a rather compli-

cated, but explicit, 6� 6 matrix given earlier.
As in the 2þ 1 case discussed in the previous section,

here too it is found that, when acting on functions of the
tetrahedron volume, the Laplacian term still returns some
other function of the volume only, which makes it possible
to readily obtain a full solution for the wave function.

In terms of the volume of the tetrahedron VT , one has the
equivalent equation for �½s� ¼ fðVTÞ (we again replace
16�G ! G from now on),

7

16
Gf0ðVTÞ þ 1

16
GVTf

00ðVTÞ þ 1

G
ð2�� RÞVTfðVTÞ ¼ 0

(89)

with primes indicating derivatives with respect to VT . From
now on, we will set the constant curvature density R ¼ 0;
then, the solutions are Bessel functions Jm or Ym with
m ¼ 3,

c RðVTÞ ¼ const:J3

�
4

ffiffiffi
2

p ffiffiffiffi
�

p
G

VT

�
=V3

T; (90)

or

c SðVTÞ ¼ const:Y3

�
4

ffiffiffi
2

p ffiffiffiffi
�

p
G

VT

�
=V3

T: (91)

Only JmðxÞ is regular as x ! 0, JmðxÞ � �ðmþ 1Þ�1 �
ðx=2Þm. So, the only physically acceptable wave function is

�ða; b; . . . fÞ ¼ �ðVTÞ ¼ N
J3

�
4

ffiffiffi
2

p ffiffiffi
�

p
G VT

�
V3
T

; (92)

with the normalization constant N given by

N ¼ 45
ffiffiffiffiffiffiffiffiffi
77�

p

102423=4

�
Gffiffiffiffi
�

p
�
5=2

: (93)

The latter is obtained from the wave-function normaliza-
tion requirement

Z 1

0
dVTj�ðVTÞj2 ¼ 1: (94)

Consequently, the average volume of a tetrahedron is
given by

hVTi �
Z 1

0
dVT � VT � j�ðVTÞj2 ¼ 31185�G

262144
ffiffiffi
2

p ffiffiffiffi
�

p

¼ 0:2643
Gffiffiffiffi
�

p : (95)

This last result allows us to define an average lattice
spacing, by comparing it to the value for an equilateral

tetrahedron which is VT ¼ ð1=6 ffiffiffi
2

p Þl30. One then obtains for
the average lattice spacing at strong coupling

l0 ¼ 1:3089

�
Gffiffiffiffi
�

p
�
1=3

: (96)

Note that in terms of the parameter ~� defined in Eq. (77),

one has in all the above expressions
ffiffiffiffi
�

p
=G ¼

ffiffiffiffiffiffi
2~�

p
.
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The above results further show that for strong gravita-
tional coupling, 1=G ! 0, lattice quantum gravity has a
finite correlation length, of the order of 1 lattice spacing,

�� l0: (97)

This last result is simply a reflection of the fact that for
largeG the edge lengths, and therefore the metric, fluctuate
more or less independently in different spatial regions due
to the absence of the curvature term. The same is true in the
Euclidean lattice theory as well, in the same limit [23]. It is
the inclusion of the curvature term that later leads to a
coupling of fluctuations between different spatial regions.
Only at the critical point in G, if one can be found, is the
correlation length, measured in units of the fundamental
lattice spacing, expected to diverge [25]. This last circum-
stance should then allow the construction of a proper lattice
continuum limit, as is done in the Euclidean lattice theory
of gravity [31] (and in many other lattice field theories
as well).

VII. PERTURBATION THEORY IN THE
CURVATURE TERM

As shown in the previous section, in a number of in-
stances it is not difficult to find the solution � of
the Wheeler-DeWitt equation in the strong-coupling
(large-G) limit, where the curvature term is neglected,
and only the kinetic and � terms are retained. Then, the
dynamics at different points decouples, and the wave func-
tion can be written as a product of relatively simple wave
functions. It is then possible, at least in principle, to include
the curvature term as a perturbation to the zeroth order
solution. Accordingly, the unperturturbed Wheeler-DeWitt
Hamiltonian is denoted by H0,

H0 � �16�G �Gijðl2Þ @2

@l2i @l
2
j

þ 1

16�G

ffiffiffiffiffiffiffiffiffiffi
gðl2Þ

q
� 2� (98)

and the perturbation by H1,

H1 � � 1

16�G

ffiffiffiffiffiffiffiffiffiffi
gðl2Þ

q
3Rðl2Þ: (99)

The corresponding unperturbed wave function is denoted
by �0, and satisfies

H0�0 ¼ 0: (100)

To the next order in Raleigh- Schrödinger perturbation
theory, one needs to solve

ðH0 þ H1Þ� ¼ 0; (101)

where for � one sets as well

� ¼ �0 expf�1g: (102)

The sought-after first-order correction �1 is then given by
the solution of

H0ð�0�1Þ þH1�0 ¼ 0: (103)

Higher-order corrections can then be obtained in analogous
fashion. It would seem natural to search for a solution (here
specifically in 3þ 1 dimensions) of the form

�� exp

�
�	ð�;GÞX




V
 þ �ð�;GÞX
h

�hlh þ . . .

�
;

(104)

with 	 and � given by power series

	ð�;GÞ ¼
ffiffiffiffi
�

p
G

X1
n¼0

	nðG�Þn;

�ð�;GÞ ¼
� ffiffiffiffi

�
p
G

�
1=3 X1

n¼0

�nðG�Þn:
(105)

The dots in Eq. (104) indicate possible higher-derivative
terms in the exponent of the wave function.

VIII. VARIATIONAL METHOD FOR THE WAVE
FUNCTION �

In this section, we will describe some simple applica-
tions of the variational method for quantum gravity, based
on the lattice Wheeler-DeWitt equation proposed earlier.
The power of the variational method is well known and
appreciated in nonrelativistic quantum mechanics, atomic
physics, and many other physically relevant applications.
Its success generally rests on the ability of finding a
suitable, often physically motivated, wave function with
the lowest possible energy, thereby providing an approxi-
mation to both the ground-state energy and the ground-
state wave function. In practice, the wave function is often
written as some sort of product of orbitals, dependent on a
number of suitable parameters, which are later determined
by minimization.
Here, we will write therefore an ansatz for the varia-

tional wave function, dependent on a number of free varia-
tional parameters

�½l2� ¼ �½l2;	;�; � . . .�; (106)

and later require that the resulting wave function either
satisfy the Wheeler-DeWitt equation, or that its energy
functional

Eð	;�;� . . .Þ¼
h�½l2�jf�16�G �Gijðl2Þ @2

@l2i @l
2
j

� 1
16�G

ffiffiffiffiffiffiffiffiffiffi
gðl2Þp ½3Rðl2Þ�2��gj�½l2�i

h�½l2�j�½l2�i (107)
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be as close to zero as possible, jEj2 ¼ min. This procedure
should then provide a useful algebraic relation between
the variational parameters, and thus allow their
determination.3

Here, we will consider the following correlated product
variational wave function (in general dimension):

�½l2� ¼ Z�1=2e
�	
P



V
þ�
P
h

�hVhþ...

¼ Z�1=2
Y



ðe�	V
ÞY
h

ðe��hVhÞ � . . . ; (109)

with variational parameters	;�; . . . real or complex. Here,
the

P

V
 is the usual volume term in d dimensions, andP

h�hVh the usual Regge curvature term, in the same
number of dimensions. The dots indicate possible addi-
tional contributions, perhaps in the form of invariant cur-
vature squared terms. In the atomic physics literature, these
types of product wave functions are sometimes known as
Jastrow-Slater wave functions [33,34]. Note that the above
wave function is very different from the ones used in
minisuperspace models, as it still depends on infinitely
many lattice degrees of freedom in the thermodynamic
limit (the limit in which the number of lattice sites is taken
to infinity).

The wave-function normalization constant Zð	;�; � . . .Þ
is given by

Z ¼
Z
½dl2�j�½l2;	;�; . . .�j2

¼
Z
½dl2� exp

�
�2Re	

X



V
 þ 2Re�
X
h

�hVh þ . . .

�
(110)

and represents the partition function for Euclidean lattice
quantum gravity, but in one dimension less. One would
expect at least Re	> 0 to ensure convergence of the path
integral; the trick we shall employ below is to obtain the
relevant averages by analytic continuation in 	 and � of
the corresponding averages in the Euclidean theory (for
which 	 and � are real). Here, the expression ½dl2� is the
usual integration measure over the edge lengths [35], a

lattice version of the DeWitt invariant functional measure
over continuum metrics ½dg���. The definition of Z re-

quires that the functional integral in Eq. (110) actually
exists, which might or might not require some suitable
regularization, for example, by the addition of curvature
squared terms whose amplitude is sent to zero at the end of
the calculation.
Next, one needs to compute the expectation value

h�½l2�jHj�½l2�i; (111)

with

H��16�G �Gijðl2Þ @2

@l2i @l
2
j

� 1

16�G

ffiffiffiffiffiffiffiffiffiffi
gðl2Þ

q
½3Rðl2Þ�2��;

(112)

which in turn is made up of three contributions, each of
which can be evaluated separately. In terms of explicit
lattice averages, one needs the three averages, or expecta-
tion values,

h�½	;�; . . .�
��������
�
�X




�l2ð
Þ
����������½	;�; . . .�i; (113)

h�½	;�; . . .�
��������
�X




V


����������½	;�; . . .�i; (114)

h�½	;�; . . .�
��������
�
2
X
h

�hlh

����������½	;�; . . .�i; (115)

with

�l2ð
Þ � Gijðl2Þ @2

@l2i @l
2
j

: (116)

Note that we have summed over all lattice points by virtue
of the assumed homogeneity of the lattice: the local
average is expected to be the same as the average of the
corresponding sum, divided by the overall number
of simplices. Thus, for example, h�jP
V
j�i ¼
N
h�jV
j�i, etc. At the same time, one has, by virtue
of our choice of wave function,X




V
j�½	;�; �; . . .�i ¼ � @

@	
j�½	;�; . . .�i; (117)

X
h

�hlhj�½	;�; �; . . .�i ¼ @

@�
j�½	;�; . . .�i (118)

and also for a given simplex labeled by 
,

��l2ð
Þe�	V
 ¼ fðV
Þ; (119)

where f is some known function. More specifically, in
2þ 1 dimensions one finds (here A� is the area of the
relevant triangle)

��l2ð
ÞAn
� ¼ 1

4nðnþ 1ÞAn�1
� ; (120)

3The continuum analog of the above expression would have
the following general structure:

E ¼
R
d3x

R½dg���½g� � ½�G�g � 1
G

ffiffiffi
g

p ðR� 2�Þ� ��½g�R½dg���½g� ��½g� :

(108)

Similar energy functionals were considered some time ago by
Feynman in his variational study of Yang-Mills theory in 2þ 1
dimensions [32]. The main difference with gauge theories is that
here the Hamiltonian contains two terms (kinetic and curvature
terms) that enter with opposite signs, whereas in the gauge
theory case both terms (the E2 term and the ðr �AÞ2 term)
just add to each other. Feynman then argues that in the gauge
theory the state of lowest energy corresponds necessarily to a
minimum for both contributions.
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��l2ð
ÞFðA�Þ ¼ 1

2

dF

dA�

þ A�

4

d2F

dA2
�

(121)

and therefore

� �l2ð
Þe�	A� ¼ 1
4	ð	A� � 2Þe�	A� ; (122)

whereas in 3þ 1 dimensions one has (here VT is the
volume of the relevant tetrahedron)

��l2ð
ÞVn
T ¼ 1

16
nðnþ 6ÞVn�1

T ; (123)

��l2ð
ÞFðVTÞ ¼ 7

16

dF

dVT

þ VT

16

d2F

dV2
T

(124)

and therefore

� �l2ð
Þe�	VT ¼ 1

16
	ð	VT � 7Þe�	VT : (125)

In addition, in 3þ 1 dimensions one needs to evaluate

��l2ð
Þe
�
P
h

lh�h

; (126)

which is considerably more complicated. Nevertheless, in
2þ 1 dimensions the corresponding result is zero, by the
Gauss-Bonnet theorem. One identity can be put to use to
relate one set of averages to another; it follows from the
scaling properties of the lattice measure ½dl2� in d dimen-
sions with curvature coupling k ¼ 1=8�G and unscaled
cosmological constant �0 � �=8�G [31]. In three dimen-
sions, it reads

2�0

	X
T

VT



� k

	X
h

�hlh



� 7N0 ¼ 0; (127)

where in the first term the sum is over all tetrahedra, and in
the second term the sum is over all hinges (edges). The
quantity N0 is the number of sites on the lattice, the
coefficient in front of it in general depends on the lattice
coordination number, but for a cubic lattice subdivided into
simplices it is equal to 7, since there are seven edges within
each cube (three body principals, three face diagonals, and
one body diagonal). The above sum rule can then be used
by making the substitution �0 ! 2Re	 and k ! 2Re�. In
two dimensions, the analogous result reads

2�0

	X
�

A�



� k

	X
h

�h



� 3N0 ¼ 0; (128)

with 2
P

h�h ¼
R ffiffiffi

g
p

R ¼ 4�� ¼ const: by the Gauss-

Bonnet theorem.
From now on, we will focus on the 2þ 1 case exclu-

sively. In this case, the curvature average of Eq. (115) is
very simple 	Z ffiffiffi

g
p

R



! 4��; (129)

where � is the Euler characteristic for the two-dimensional
manifold. It will also be convenient to avoid a large number
of factors of 16�’s and make the replacement 16�G ! G
for the rest of this section. Putting everything together, one
then finds

Eð	Þ
GNT

¼ 1

4
	ð	 �A� � 2Þ þ 2�

G2
�A� � 1

G2

4��

NT

: (130)

One is not done yet, since what is needed next is an
estimate for the average area of a triangle, �A�. This quan-
tity is given, for a general measure over edges in two
dimensions of the form

Q
dl2 �QTðA�Þ
, by

hA�i ¼
1þ 2

3


2	
; (131)

again with the requirement Re	> 0 for the average to
exist. It will be convenient to just set in the following �A� ¼
hA�i ¼ 
0=	 with 
0 � ð1þ 2

3
Þ=2. One then obtains,

finally, the relatively simple result

Eð	Þ
GNT

¼ 
0 � 2

4
� 	þ 2�
0

G2
� 1
	
� 4��

G2NT

: (132)

It would seem that, in order to avoid a potential instability, it
might be safer to choose 
0 > 2. The roots of this equation
(corresponding to the requirement h�jHj�i ¼ 0) are
given by

	0 ¼ 1

G2NTð
0 � 2Þ f8���
ffiffiffiffi
�

p
g; (133)

with

� � 64�2�2 � 8G2N2
T�
0ð
0 � 2Þ; (134)

so that � is zero for

G ¼ Gc ¼ � 2
ffiffiffi
2

p
��

NT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
0ð
0 � 2Þp : (135)

Here, we select, on physical grounds, the positive root.
When � ¼ 0 (or G ¼ Gc), the two complex roots become
real, or vice versa, with

	0ðGcÞ ¼ NT�
0

��
> 0 if �> 0: (136)

Thus, for strong coupling (largeG>Gc)	 is almost purely
imaginary

	0 ¼ � i2
ffiffiffiffiffiffi
2�

p

G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2=
0

p þ 8��

G2NTð
0 � 2Þ þOð1=G3Þ;

(137)

whereas for weak coupling (small G<Gc) the two roots
become
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	0 ! NT�
0

2��
þOðG2Þ;

	0 ! 16��

G2NTð
0 � 2Þ �
NT�
0

2��
þOðG2Þ:

(138)

Note that an identical set of results would have been ob-
tained if one had computed jEð	Þj2 for complex alpha, and
looked for minima. This is the quantity displayed in Figs. 6
and 7.

Next, we come to a brief discussion of the results. One
interpretation is that the variational method, using the
proposed correlated product wave function in 2þ 1 di-
mensions, suggests the presence of a phase transition for
pure gravity inG, located at the critical pointG ¼ Gc. This
picture found here would then be in accordance with the
result found in the Euclidean lattice theory in Ref. [36],
which also gave a phase transition in three-dimensional
gravity between a smooth phase (for G>Gc) and a
branched polymer phase (for G<Gc). A similar transition
was found on the lattice in four dimensions as well [23].
Finally, the presence of a phase transition is also inferred
from continuum calculations for pure gravity in  �
d� 2> 2, although the latter does not give a clear indi-
cation on which phase is physical; nevertheless, simple
renormalization group arguments suggest that the weak-
coupling phase describes gravitational screening, while the
strong-coupling phase implies gravitational antiscreening.
This last expansion then gives a critical point for pure
gravity in 2þ 1 dimensions at Gc ¼ 3

25 ðd� 2Þ þ 45
1250 �

ðd� 2Þ2 þ . . . , or Gc 
 0:024 in units of the cutoff
[37–39]. The Euclidean lattice calculation quoted earlier

gives, in the same dimensions, Gc 
 0:355. Note that the
numerical magnitude of the critical point G in lattice units,
contrary to the critical exponents, is not expected to be
universal, and thus cannot be compared directly between
formulations utilizing different ultraviolet regulators. We
shall not enter here into some of the known peculiarities of
three-dimensional gravity, including the absence of pertur-
bative transverse-traceless radiation modes, and the ab-
sence of a sensible Newtonian limit; a recent discussion
of these and related issues can be found, for example, in
[25], and further references cited therein.
In 3þ 1 dimensions, the variational calculation is quite

a bit more complex, since the integrated curvature term is
no longer a constant. In the small curvature limit and for
small variational parameter �, we have obtained the fol-
lowing expansion for the variational parameter 	:

	0 ¼ �i4
ffiffiffi
2

p ffiffiffiffi
�

p
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0


0 � 7

s
� 8c0�


0 � 7
þOð�2Þ: (139)

Here, c0 is a real constant whose value we have not been
able to determine yet. The two roots are found to become
degenerate and real for

G ¼ Gc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
0ð
0 � 7Þp ffiffiffi

2
p

c0�
; (140)

which is again suggestive of a phase transition at Gc in
3þ 1 dimensions, as found previously in the Euclidean
theory in four dimensions [23,31]. More detailed calcula-
tions in the 3þ 1 case are in progress, and will be pre-
sented elsewhere [40].
We conclude this section by observing that our results

suggest a rather intriguing relationship between the
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FIG. 6 (color online). Energy surface jEð	Þj2 in 2þ 1 dimen-
sions at strong coupling, G � Gc in the (Re	, Im	) plane. Note
the presence of two almost purely imaginary, complex conjugate
roots. The specific values used here are � ¼ 2, NT ¼ 10, 
0 ¼ 3
and � ¼ 1.
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FIG. 7 (color online). Energy surface jEð	Þj2 in 2þ 1 dimen-
sions for weak coupling, G � Gc. In this case both roots are
along the real 	 axis.
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ground-state wave functional of quantum gravity in
nþ 1 dimensions, and averages computed within the
Euclidean Feynman path integral formulation in n dimen-
sions, i.e. in one dimension less. Moreover, since the varia-
tional calculations presented here rely on what could be
regarded as an improved mean-field calculation, they are
expected to become more accurate in higher dimensions,
where the number of neighbors to each lattice point (or
simplex) increases rapidly.

IX. WEAK-FIELD EXPANSION

In this section, we will discuss briefly the weak-field
expansion for the proposed lattice Wheeler-DeWitt equa-
tion. The purpose here is to show how the weak-field
expansion is performed, and how results analogous to the
continuum ones are obtained for sufficiently smooth mani-
folds. Such results would be of relevance to the weak-
coupling (small-G) expansion, and to an application of
the WKB method on the lattice, for example. More gen-
erally, a clear connection to the continuum theory, and thus
between lattice and continuum operators, is desirable, if
not essential, in order to understand the meaning of physi-
cal gravitational averages, such as average curvature, etc.
First, we note here that the lattice kinetic term (the one
involving Gij) has the correct continuum limit, essentially

by construction. On the other hand, the curvature term
appearing in the discrete Wheeler-DeWitt equation in
3þ 1 dimensions is nothing but the integrand in the
Regge expression for the Einstein-Hilbert action in three
dimensions,

IE ¼ �k
X

edges h

lh�h: (141)

The expansion of this action around flat space was already
considered in some detail in Ref. [36], and shown to agree
with the weak-field expansion in the continuum. Here, we
provide a very short summary of the methods and results of
this work. Following Ref. [20], one takes as background
space a network of unit cubes divided into tetrahedra by
drawing in parallel sets of face and body diagonals, as
shown in Fig. 8. With this choice, there are 2d � 1 ¼ 7
edges per lattice point emanating in the positive lattice

directions: three body principals, three face diagonals,
and one body diagonal, giving a total of seven components
per lattice point.
It is convenient to use a binary notation for edges, so that

the edge index corresponds to the lattice direction of the
edge, expressed as a binary number

ð0; 0; 1Þ ! 1; ð0; 1; 1Þ ! 3; ð1; 1; 1Þ ! 7;

ð0; 1; 0Þ ! 2; ð1; 0; 1Þ ! 5; ð1; 0; 0Þ ! 4;

ð1; 1; 0Þ ! 6:

(142)

The edge lengths are then allowed to fluctuate around their
flat space values li ¼ l0i ð1þ iÞ, and the second variation
of the action is expressed as a quadratic form in ,

�2I ¼ X
mn

ðmÞTMðm;nÞðnÞ; (143)

where n, m label the sites on the lattice, and Mmn is some
Hermitian matrix. The general aim is then to show that the
above quadratic form is equivalent to the expansion of
the continuum Einstein-Hilbert action to quadratic order
in the metric fluctuations. The infinite-dimensional matrix

Mðm;nÞ is best studied by going to momentum space; one
assumes that the fluctuation i at the point j steps from the
origin in one coordinate direction, k steps in another coor-
dinate direction, and l steps in the third coordinate direc-
tion, is related to the corresponding fluctuation i at the
origin by

ðjþkþlÞ
i ¼ !j

1!
k
2!

l
4

ð0Þ
i ; (144)

with!i ¼ eiki . In the smooth limit,!i ¼ 1þ iki þOðk2i Þ,
the lattice action and the continuum action are then ex-
pected to agree. Note also that it is convenient here to set
the lattice spacing in the three principal directions equal to
one; it can always be restored at the end by using dimen-
sional arguments.
It is desirable to express the lattice action in terms of

variables which are closer to the continuum ones, such as
h�� or �h�� ¼ h�� � 2

3���h��. Up to terms that involve

derivatives of the metric (and which reflect the ambiguity
of where precisely on the lattice the continuum metric
should be defined), this relationship can be obtained by
considering one tetrahedron, and using the expression for
the invariant line element ds2 ¼ g��dx

�dx� with g�� ¼
��� þ h��, where��� is the diagonal flat metric. Inserting

li ¼ l0i ð1þ iÞ, with l0i ¼ 1,
ffiffiffi
2

p
,
ffiffiffi
3

p
for the body principal

(i ¼ 1, 2, 4), face diagonal (i ¼ 3, 5, 6), and body diagonal
(i ¼ 7), respectively, one obtainsFIG. 8. A cube divided into simplices.
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ð1þ 1Þ2 ¼ 1þ h11;

ð1þ 2Þ2 ¼ 1þ h22;

ð1þ 4Þ2 ¼ 1þ h33;

ð1þ 3Þ2 ¼ 1þ 1
2ðh11 þ h22Þ þ h12;

ð1þ 5Þ2 ¼ 1þ 1
2ðh11 þ h33Þ þ h13;

ð1þ 6Þ2 ¼ 1þ 1
2ðh22 þ h33Þ þ h23;

ð1þ 7Þ2 ¼ 1þ 1
3ðh11 þ h22 þ h33Þ þ 2

3ðh12 þ h23 þ h13Þ
(145)

(note that we use the binary notation for edges, but main-
tain the usual index notation for the field h��). The above

relationship can then be inverted to give the ’s in terms of
the h’s. Note that there are seven i variables, but only six
h��’s [in general in d dimensions we have 2d � 1 i
variables and dðdþ 1Þ=2 h��’s, which leads to a number

of redundant lattice variables for d > 2].
Thus, to lowest order in h��, one can perform a field

rotation on the lattice in order to go from the i variables to
the h��’s (or �h��’s),

TM! ¼ ðTVy�1ÞVyM!VðV�1Þ; (146)

with

 ¼ U1h; h ¼ U2
�h; (147)

and so

 ¼ V �h; V ¼ U1U2: (148)

Here, V and U1 are 7� 6 matrices, while U2 is a 6� 6
matrix,

U1 ¼

1
2 0 0 0 0 0

0 1
2 0 0 0 0

0 0 1
2 0 0 0

1
4

1
4 0 1

2 0 0

1
4 0 1

4 0 1
2 0

0 1
4

1
4 0 0 1

2

1
6

1
6

1
6

1
3

1
3

1
3

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA
; (149)

U2 ¼

1
3 �2

3 �2
3 0 0 0

�2
3

1
3 �2

3 0 0 0

�2
3 �2

3
1
3 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: (150)

The above rotation is an essential step in transforming the
lattice action into a form that looks like the continuum
action, to quadratic order in the weak fields. For the Regge-
Einstein term, the matrix M! describing the small fluctua-
tions around flat space is given by

ðM!Þ1;1¼�2; ðM!Þ1;2¼�!1!4� �!2 �!4;

ðM!Þ1;4¼2þ2 �!2; ðM!Þ1;6¼2!1þ2 �!2 �!4;

ðM!Þ1;7¼�3 �!2�3 �!4; ðM!Þ4;4¼�8;

ðM!Þ4;5¼�4!2�4 �!4; ðM!Þ4;7¼6þ6 �!4;

ðM!Þ7;7¼�18;

(151)

with the remaining matrix elements obtained by permuting
the appropriate indices. Because of its structure, which is
of the form

M! ¼ A6 b
by �18

� �
; (152)

where A6 is a 6� 6 matrix, a rotation can be done which
completely decouples the fluctuations in 7,

M0
! ¼ Sy!M!S! ¼ A6 þ 1

18 bb
y 0

0 �18

� �
; (153)

with

S! ¼ I6 0
1
18 b

y 1

� �
: (154)

One then finds the first important result, namely, that the
small fluctuation matrix M0

! has three zero eigenvalues,
corresponding to the translational zero modes for M!,

1
2
4
3
5
6
7

0
BBBBBBBBBB@

1
CCCCCCCCCCA
¼

1�!1 0 0
0 1�!2 0
0 0 1�!4

1
2ð1�!1!2Þ 1

2ð1�!1!2Þ 0
1
2ð1�!1!4Þ 0 1

2ð1�!1!4Þ
0 1

2ð1�!2!4Þ 1
2ð1�!2!4Þ

1
3ð1�!1!2!4Þ 1

3ð1�!1!2!4Þ 1
3ð1�!1!2!4Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
�

x1
x2
x3

0
@

1
A; (155)

where x1, x2, x3 are three arbitrary parameters. The re-
maining eigenvalues are �18 (once) and Oðk2Þ (3 times).
Notice that one mode, corresponding to the fluctuations

in the body diagonal 7, completely decouples. The next
step is to transform the lattice weak-field action into a
form similar (in fact identical) to the continuum
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form. One further rotation by the (6� 6) matrix T!, de-
fined by

T! ¼

!1

6 � !1

3 � !1

3 0 0 0

� !2

3
!2

6 � !2

3 0 0 0

� !4

3 � !4

3
!4

6 0 0 0

� !1!2

12 � !1!2

12 � !1!2

3
1
2 0 0

� !1!4

12 � !1!4

3 � !1!4

12 0 1
2 0

� !2!4

3 � !2!4

12 � !2!4

12 0 0 1
2

0 0 0 0 0 0

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

(156)

gives the new small fluctuation matrix

L! ¼ Ty
!M0

!T!: (157)

This last transformation is equivalent to a change to trace-
reversed metric variables. Finally, one defines the gauge-
fixed matrix

~L! ¼ L! � 1
2C

y
!C!; (158)

whereC! is introduced in order to give the lattice analog of
the harmonic gauge-fixing term, with

C! ¼ 1

6

5ð�1þ!1Þ 1�!1 1�!1 6

�
1� 1

!2

�
6

�
1� 1

!4

�
0

1�!2 5ð�1þ!2Þ 1�!2 6

�
1� 1

!1

�
0 6

�
1� 1

!4

�
1�!4 1�!4 5ð�1þ!4Þ 0 6

�
1� 1

!1

�
6

�
1� 1

!2

�

0
BBBBBBB@

1
CCCCCCCA: (159)

Then, the form of ~L! is precisely equivalent to the corre-
sponding continuum expression, in trace-reversed varia-
bles and in the harmonic gauge [36]. The seemingly
complex combined S! and T! rotations just correspond
to a rotation, from the original lattice edge fluctuation
variables () to the trace-reversed metric variables ( �h).

Perhaps the most important aspect of the above proof of
convergence of the lattice curvature term, and more gen-
erally of the whole lattice Wheeler-DeWitt equation, to-
wards the corresponding continuum expression is in its
relevance to the weak-field limit, to a perturbative expan-
sion in G, and to a WKB expansion of the wave function.
The latter are all issues that have already earned some
consideration in the continuum formulation [4,6,7,10].
The present work suggests that most of those continuum
results will remain valid, as long as they are derived in the
context of the stated approximations. In particular, there is
no reason to expect the lattice semiclassical wave function
to have a different form (apart from the use of different
variables, whose correspondence has been detailed in this
section) compared to the continuum one [7].

X. CONCLUSIONS

In this paper, we have presented a lattice version of the
Wheeler-DeWitt equation of quantum gravity. The present
3þ 1 approach is based on the canonical, and therefore
Lorentzian, formulation of quantum gravity, and should
therefore be regarded as complementary to the four-
dimensional Euclidean lattice version of the same theory
discussed earlier in other papers. The equations are explicit
enough to allow a number of potentially useful practical
calculations, such as the strong-coupling expansion,

mean-field theory, and the variational method. In the pre-
ceding sections, we have outlined a number of specific
calculations to illustrate the mechanics of the lattice theory,
and the likely physical interpretation of the results.
Because of its reliance on a different set of nonperturbative
approximation methods, the formulation presented here
should be useful in viewing the older Euclidean lattice
results from a very different perspective; in a number of
instances, we have been able to show the physical similar-
ities between the two types of results.
Nevertheless, the phenomenal complexity of the origi-

nal continuum theory, and of the Euclidean lattice ap-
proach, with all its issues of, for example, perturbative
nonrenormalizability in four dimensions, has not gone
away; it just got reformulated in a rather different lan-
guage involving a Schrödinger-like equation, wave func-
tionals, operators, and states. The hope is that the present
approach will allow the use of a different set of approxi-
mation methods, and numerical algorithms, to explore
what in some instances are largely known issues, but
now from an entirely different perspective. Among the
problems one might want to consider, we list: the descrip-
tion of invariant correlation functions [41,42], the behav-
ior of the fundamental gravitational correlation length � as
a function of the coupling G, the approach to the lattice
continuum limit at Gc, estimates for the critical exponents
in the vicinity of the fixed point, and the large-scale
behavior of the gravitational Wilson loop [43]. Note that
what is sometimes referred to as the problem of time does
not necessarily affect the above issues, which in our
opinion can be settled by looking exclusively at certain
types of invariant correlations along the spatial directions
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only. These Green’s functions should then provide ade-
quate information about the nature of correlations in the
full theory, without ever having to make reference to a
time variable.
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APPENDIX A: THE MATRIX M IN 3þ 1
DIMENSIONS

The matrix of coefficients of the second partial deriva-
tive operators in 3þ 1 dimensions is given by M

24V , where

M is a symmetric 6� 6 matrix with entries as follows:

M11 ¼ 2a2;

M12 ¼ a2 þ b2 þ c2 � 2ab� 2b;

M13 ¼ a2 þ d2 þ e2 � 2ae� 2de;

M14 ¼ a2 þ b2 þ c2 � 2ac� 2bc;

M15 ¼ a2 þ d2 þ e2 � 2ad� 2de;

M16 ¼ b2 þ c2 þ d2 þ e2 � 2afþ 2bdþ 2ce

� 2bc� 2be� 2cd� 2de;

M22 ¼ 2c2;

M23 ¼ c2 þ d2 þ f2 � 2cf� 2df;

M24 ¼ a2 þ b2 þ c2 � 2ab� 2ac;

M25 ¼ a2 þ b2 þ d2 þ f2 þ 2afþ 2bd� 2ce

� 2ab� 2ad� 2bf� 2df;

M26 ¼ c2 þ d2 þ f2 � 2cd� 2df;

M33 ¼ 2d2;

M34 ¼ a2 þ c2 þ eþf2 þ 2af� 2bdþ 2ce

� 2ac� 2ae� 2cf� 2ef;

M35 ¼ a2 þ d2 þ e2 � 2ad� 2ae;

M36 ¼ c2 þ d2 þ f2 � 2cd� 2cf;

M44 ¼ 2b2;

M45 ¼ b2 þ e2 þ f2 � 2bf� 2ef;

M46 ¼ b2 þ e2 þ f2 � 2be� 2ef;

M55 ¼ 2e2;

M56 ¼ b2 þ e2 þ f2 ��2be� 2bf;

M66 ¼ 2f2:

(A1)

APPENDIX B: LATTICE HAMILTONIAN FOR
GAUGE THEORIES

It is of interest to see how the Hamiltonian approach has
fared for ordinary SUðNÞ gauge theories, whose nontrivial
infrared properties (confinement, chiral symmetry break-
ing) cannot be seen to any order in perturbation theory, and
require therefore some sort of nonperturbative approach,
based, for example, on the strong-coupling expansion. In
the continuum, one starts from the Yang-Mills action

I ¼ � 1

4g2

Z
d4xFa

��F
��a; (B1)

with field strength

Fa
�� ¼ @�A

a
� � @�A

a
� þ gfabcA

b
�A

c
� (B2)

and gauge fields Aa
� with (a ¼ 1 . . .N2 � 1), where the

quantities fabc are the structure constants of the Lie group,
such that the generators satisfy ½Ta; Tb� ¼ ifabcTc.
A lattice-regularized form of the gauge action in

Eq. (B1) was given in Ref. [44], see also [45]. The theory
is defined on a d-dimensional hypercubic lattice with
lattice spacing a, vertices labeled by an index n,
and directions by �. The group elements Un� ¼
expðiagAa

�TaÞ are defined in the fundamental representa-

tion, and reside on the links of the lattice. The pure gauge
Euclidean action involves a sum of traces of path-ordered
products [with U��ðnþ �Þ ¼ Uy

�ðnÞ] of unitary U�ðnÞ
matrices around an elementary square loop (‘‘plaquettes,’’
here denoted by h),

I½U� ¼ �a4�d

4g2
X
h

tr½UUUyUy þ H:c:�: (B3)

The action is locally gauge invariant with respect to the
change

U�ðnÞ ! VyðnÞU�ðnÞVðnþ �Þ; (B4)

where V is an arbitrary SUðNÞmatrix defined on the lattice
sites.
The next step is to define the path integral as

Zðg2Þ ¼
Z
½dUH� expð�I½U�Þ; (B5)

where ½dUH� is the Haar measure over the group SUðNÞ,
one copy for each lattice link variable U. A lattice-
regularized Hamiltonian can then be defined on a purely
spatial lattice, by taking the zero-lattice-spacing limit in
the time direction [46,47]. Local gauge invariance further
allows one to set all the link variables in the time direction
to unity, Un0 ¼ 1, or Aa

n0 ¼ 0 in this lattice version of the

temporal gauge. The _U variables can now be eliminated by
introducing generators of local rotations Ea

i ðnÞ, defined on
the links (with spatial directions labeled by i, j ¼ 1, 2, 3)
and satisfying the commutation relations
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½Ea
i ðnÞ; UjðmÞ� ¼ TaUiðnÞ�ij�nm; (B6)

along with the SUðNÞ generator algebra commutation
relation

½Ea
i ðnÞ; Eb

j ðmÞ� ¼ ifabcEc
i ðnÞ�ij�nm: (B7)

This finally gives for the Hamiltonian of Wilson’s lattice
gauge theory [46]

H ¼ g2

2a

X
links

EaEa �X 1

4ag2
tr½UUUyUy þ H:c:�: (B8)

The first term in Eq. (B8) is the lattice analog of the electric
field term E2, while the second term is a lattice discretized
version, involving lattice finite differences, of the magnetic
field ðr �AÞ2 term. In this picture, the analog of Gauss’s
law is a constraint which needs to be enforced on physical
states at each spatial site n,

X6
i¼1

Ea
i ðnÞj�i ¼ 0: (B9)

In general, and irrespective of the symmetry group chosen,
the ground state in the strong-coupling g2 ! 1 limit has
all the SUðNÞ rotators in their ground state. In this limit, the
Hamiltonian has the simple form

H0 ¼ g2

2a

X
links

Ea
i E

a
i : (B10)

Then, the vacuum is a state for which each link is in a color
singlet state

Ea
i j0i ¼ 0: (B11)

The lowest-order excitation of the vacuum is a state with
one unit of chromoelectric field on each link of an elemen-
tary lattice square, and energy

Eh ¼ 4 � g
2

2a

N2 � 1

2N
: (B12)

Raleigh-Schrödinger perturbation theory can then be used
to compute corrections to arbitrarily high order in 1=g2.
But, ultimately one is interested in the limit g2 ! 0, cor-
responding to the ultraviolet asymptotic freedom fixed
point of the non-Abelian gauge theory, and thus to the
lattice continuum limit a ! 0. Thus, in order to recover
the original theory’s continuum limit, one needs to exam-
ine a limit where the mass gap in units of the lattice spacing
goes to zero, amðgÞ ! 0. This limit then corresponds to
an infinite correlation length in lattice units; the zero-
lattice-spacing limit so described is a crucial step in fully
recovering desirable properties (rotational or Lorentz in-
variance, asymptotic freedom, massless perturbative gluon
excitations, etc.) of the original continuum theory.
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