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The infrared structure of quantum gravity is explored by solving a lattice version of the Wheeler-DeWitt

equations. In the present paper only the case of 2þ 1 dimensions is considered. The nature of the wave

function solutions is such that a finite correlation length emerges and naturally cuts off any infrared

divergences. Properties of the lattice vacuum are consistent with the existence of an ultraviolet fixed point

inG located at the origin, thus precluding the existence of aweak coupling perturbative phase. The correlation

length exponent is determined exactly and found to be � ¼ 6=11. The results obtained so far lend support to

the claim that theLorentzian andEuclidean formulations belong to the same field-theoretic universality class.
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I. INTRODUCTION

It is possible that the well-known ultraviolet divergences
affecting the perturbative treatment of quantum gravity in
four dimensions point to a fundamental vacuum instability
of the full theory. If this is the case, then the correct
identification of the true ground state for gravitation neces-
sarily requires the introduction of a consistent nonperturba-
tive cutoff. To this day the only known way to do this
reliably in quantum field theory is via the lattice formula-
tion. Nevertheless, previous work on lattice quantum
gravity has dealt almost exclusively with the Euclidean
formulation in d dimensions, treated via the manifestly
covariant Feynman path integral method. Indeed, the latter
is very well suited for numerical integration, and many
analytical and numerical results have been obtained over
the years within this framework. However, the issue of their
relationship to the Lorentzian theory has remained largely
open, at least from the point of view of a rigorous treatment.
The main supporting arguments for the Euclidean approach
come from the fact that the above equivalence holds true for
other field theories (no exceptions are known) and from the
fact that in gravity itself it is rigorously true to all orders in
the weak field expansion.

In this paper we will focus on the Hamiltonian approach
to gravity, which assumes from the beginning a metric with
Lorentzian signature. In order to obtain useful insights
regarding the nonperturbative ground state, a Hamiltonian
lattice formulation was introduced based on the Wheeler-
DeWitt equation, where the quantum gravity Hamiltonian is
written down in the position-space representation. In a
previous paper [1] a general discrete Wheeler-DeWitt
equation was given for pure gravity, based on the simplicial

lattice formulation originally developed by Regge and
Wheeler. On the lattice the infinite-dimensional manifold
of continuum geometries is replaced by a finite manifold of
piecewise linear spaces, with solutions to the lattice equa-
tions then providing a suitable approximation to the contin-
uum gravitational wave functional. The lattice equations
were found to be explicit enough to allow the development
of potentially useful practical solutions. As a result, a num-
ber of sample quantum gravity calculations were carried out
in 2þ 1 and 3þ 1 dimensions. Thesewere based mainly on
the strong coupling expansion and on the Rayleigh-Ritz
variational method, the latter implemented using a set of
correlated product (Slater-Jastrow) wave functions.
Here, we extend the work initiated in Ref. [1] and show

how exact solutions to the latticeWheeler-DeWitt equations
can be obtained in 2þ 1 dimensions for arbitrary values of
Newton’s constant G. The procedure we follow is to solve
the lattice equations exactly for several finite regular trian-
gulations of the sphere and then extend the result to an
arbitrarily large number of triangles. One finds that for large
enough areas the exact lattice wave functional depends on
geometric quantities only, such as the total area and the total
integrated curvature (which in 2þ 1 dimensions is just
proportional to the Euler characteristic). The regularity con-
dition on the solutions of the wave equation at small areas is
shown to play an essential role in constraining the form of
the wave functional, which we eventually find to be expres-
sible in closed form as a confluent hypergeometric function
of the first kind.Later it will be shown that the resultingwave
function allows an exact evaluation of a number of useful
(and manifestly diffeomorphism-invariant) averages, such
as the average area of the manifold and its fluctuation.
From these results a number of suggestive physical

results can be obtained, the first one of which is that the
correlation length in units of the lattice spacing is found to
be finite for all G> 0 and diverges at G ¼ 0. Such a result
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can be viewed as consistent with the existence of an
ultraviolet fixed point (or a phase transition in statistical
field theory language) in G located at the origin, thus
entirely precluding the existence of a weak coupling phase
for gravity in 2þ 1 dimensions. Simple renormalization
group arguments would then suggest that gravitational
screening is not physically possible in 2þ 1 dimensions
and that gravitational antiscreening is the only physically
realized option in this model. A second result that follows
from our analysis is an exact determination of the critical
correlation length exponent for gravity in 2þ 1 dimen-
sions, which is found to be � ¼ 6=11. It is known that the
latter determines, through standard renormalization group
arguments, the scale dependence of the gravitational cou-
pling in the vicinity of the ultraviolet fixed point.

A short outline of the paper is as follows. In Sec. II, as a
general background to the rest of the paper, we briefly
describe the formalism of classical canonical gravity, as
originally formulated by Arnowitt, Deser and Misner. The
continuum Wheeler-DeWitt equation and its invariance
properties are introduced as well at this stage. In Sec. III
we introduce the latticeWheeler-DeWitt equation derived in
a previous paper [1], and later Sec. IV makes more explicit
various quantities appearing in it. This last section also
discusses briefly the role of continuous lattice diffeomor-
phism invariance in the Regge framework as it applies to the
present case of 2þ 1—dimensional gravity. Section V fo-
cuses on the scaling properties of the lattice equations and
various sensible choices for the lattice coupling constants,
with the aim of giving eventually a more transparent form to
the wave function results. Section VI gives a detailed outline
of the general method of solution for the lattice equations
and then gives the explicit solution for a number of regular
triangulations of the sphere. Later, a general form of the
wave function is given that covers all the previous discrete
cases and allows a subsequent study of the infinite volume
limit. Section VII focuses on one of the simplest
diffeomorphism-invariant averages that can be computed
from the wave function, namely the average total area. A
brief discussion follows on how the latter quantity relates to
the corresponding averages computed in the Euclidean the-
ory. Section VIII extends the calculation to the area fluctua-
tion and shows how the critical exponents (anomalous
dimensions) of the 2þ 1—gravity theory can be obtained
from the exact wave function solution, using some rather
straightforward scaling arguments. Section IX discusses
some simple physical implications that can be inferred
from the values of the exact exponents and the fact that
quantum gravity in 2þ 1 dimensions does not seemingly
possess, in either the Euclidean or Lorentzian formulation, a
weak coupling phase. Section X contains a summary of the
results obtained so far.

II. CONTINUUM WHEELER-DEWITT EQUATION

Since this paper involves the canonical quantization of
gravity, we begin here with a very brief summary of the

classical canonical formalism [2] as derived by Arnowitt
et al. [3]. While many of the results presented in this
section are rather well known, it will be useful, in view
of later applications, to recall the main results and formulas
and provide suitable references for expressions used later
in the paper.
The first step in developing a canonical formulation for

gravity is to introduce a time-slicing of space-time, by
introducing a sequence of spacelike hypersurfaces labeled
by a continuous time coordinate t. The invariant distance is
then written as

ds2��d�2¼g��dx
�dx�

¼gijdx
idxjþ2gijN

idxjdt�ðN2�gijN
iNjÞdt2; (1)

where xi (i ¼ 1, 2, 3) are coordinates on a three-
dimensional manifold and � is the proper time, in units
with c ¼ 1.
Indices are raised and lowered with gijðxÞ (i, j ¼ 1, 2,

3), which denotes the three-metric on the given spacelike
hypersurface, and NðxÞ and NiðxÞ are the lapse and shift
functions, respectively. It is customary to mark four-
dimensional quantities by the prefix4, so that all unmarked
quantities will refer to three dimensions (and are occasion-
ally marked explicitly by a3 ). In terms of the original four-
dimensional metric 4g��, one has

4g00
4g0j

4gi0
4gij

0
@

1
A ¼ NkN

k � N2 Nj

Ni gij

 !
; (2)

which then gives for the spatial metric and the lapse and
shift functions,

gij ¼ 4gij N ¼ ð�4g00Þ�1=2 Ni ¼ 4g0i: (3)

For the volume element one hasffiffiffiffiffiffiffiffiffiffi
�4g

q
¼ N

ffiffiffi
g

p
; (4)

where the latter involves the determinant of the three-
metric, g � detgij. As usual gij denotes the inverse of

the matrix gij.

A transition from the classical to the quantum descrip-
tion of gravity is obtained by promoting the metric gij, the

conjugate momenta�ij, the Hamiltonian densityH and the
momentum density Hi to quantum operators, with ĝij and

�̂ij satisfying canonical commutation relations. In particu-
lar, the classical constraints now select a physical vacuum
state j�i, such that in the source-free case

Ĥj�i ¼ 0 Ĥij�i ¼ 0 (5)

and in the presence of sources more generally

T̂j�i ¼ 0 T̂ij�i ¼ 0; (6)

where T̂ and T̂i now include matter contributions that

should be added to Ĥ and Ĥi. The momentum constraint
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involving Ĥi, or more generally T̂i, ensures that the state
functional does not change under a transformation of co-
ordinates xi, so that � depends only on the intrinsic
geometry of the 3-space. The Hamiltonian constraint is
then the only remaining condition that the state functional
must satisfy.

As in ordinary nonrelativistic quantum mechanics, one
can choose different representations for the canonically
conjugate operators ĝij and �̂ij. In the functional position

representation, one sets

ĝijðxÞ!gijðxÞ �̂ijðxÞ!�iℏ �16�G � �

�gijðxÞ : (7)

In this picture, quantum states become wave functionals of
the three-metric gijðxÞ,

j�i ! �½gijðxÞ�: (8)

The two quantum-constraint equations in Eq. (6) then
become the Wheeler-DeWitt equation [4–6]�

�16�G �Gij;kl

�2

�gij�gkl

� 1

16�G

ffiffiffi
g

p ð3R� 2�Þ þ Ĥ�

�
�½gijðxÞ� ¼ 0 (9)

and the momentum constraint listed below. Here, Gij;kl is

the inverse of the DeWitt supermetric, given by

Gij;kl ¼ 1

2
g�1=2ðgikgjl þ gilgjk þ �gijgklÞ; (10)

with parameter � ¼ �1. The three-dimensional version of
the DeWitt supermetric itself, Gij;klðxÞ, is given by

Gij;kl ¼ 1

2

ffiffiffi
g

p ðgikgjl þ gilgjk þ ��gijgklÞ; (11)

with parameter � in Eq. (10) related to �� in Eq. (11) by
�� ¼ �2�=ð2þ 3�Þ, so that � ¼ �1 gives �� ¼ �2 (note
that this is dimension dependent). In the position represen-
tation, the diffeomorphism (or momentum) constraint
reads �

2igijrk

�

�gjk
þ Ĥ�

i

�
�½gijðxÞ� ¼ 0; (12)

where Ĥ� and Ĥ�
i are possible matter contributions. In the

following, we shall set both of these to zero, as we will
focus here almost exclusively on the pure gravitational
case.

A number of basic issues need to be addressed before
one can gain a full and consistent understanding of the
dynamical content of the theory (see, for example,
Refs. [7–11] as a small set of representative references).
These include possible problems of operator ordering and
the specification of a suitable Hilbert space, which entails
at some point a choice for the inner product of wave
functionals, for example, in the Schrödinger form

h�j�i ¼
Z

d�½g���½gij��½gij�; (13)

where d�½g� is some appropriate measure over the three-
metric g. Note also that the continuum Wheeler-DeWitt
equation contains, in the kinetic term, products of func-
tional differential operators which are evaluated at the
same spatial point x. One would expect that such terms

could produce �ð3Þð0Þ-type singularities when acting on the
wave functional, which would then have to be regularized
in some way. The lattice cutoff discussed below is one way
to provide such an explicit ultraviolet regularization.
A peculiar property of the Wheeler-DeWitt equation,

which distinguishes it from the usual Schrödinger equation
H� ¼ iℏ@t�, is the absence of an explicit time coordi-
nate. As a result, the rhs term of the Schrödinger equation
is here entirely absent. The reason is of course diffeomor-
phism invariance of the underlying theory, which expresses
now the fundamental quantum equations in terms of fields
gij and not coordinates.

III. LATTICE HAMILTONIAN
FOR QUANTUM GRAVITY

In constructing a discrete Hamiltonian for gravity, one
has to decide first what degrees of freedom one should
retain on the lattice. One possibility, which is the one we
choose to pursue here, is to use the more economical (and
geometric) Regge-Wheeler lattice discretization for grav-
ity [12,13], with edge lengths suitably defined on a random
lattice as the primary dynamical variables. Even in this
specific case, several avenues for discretization are pos-
sible. One could discretize the theory from the very begin-
ning, while it is still formulated in terms of an action, and
introduce for it a lapse and a shift function, extrinsic and
intrinsic discrete curvatures, etc. Alternatively, one could
try to discretize the continuum Wheeler-DeWitt equation
directly, a procedure that makes sense in the lattice for-
mulation, as these equations are still given in terms of
geometric objects, for which the Regge theory is very
well suited. It is the latter approach which we will proceed
to outline here.
The starting point for the following discussion is there-

fore the Wheeler-DeWitt equation for pure gravity in the
absence of matter, Eq. (9),�

�ð16�GÞ2Gij;klðxÞ �2

�gijðxÞ�gklðxÞ
�

ffiffiffiffiffiffiffiffiffiffi
gðxÞ

q
ð3RðxÞ � 2�Þ

�
�½gijðxÞ� ¼ 0 (14)

and the diffeomorphism constraint of Eq. (12),�
2igijðxÞrkðxÞ �

�gjkðxÞ
�
�½gijðxÞ� ¼ 0: (15)

Note that these equations express a constraint on the state

j�i at every x, each of the form ĤðxÞj�i ¼ 0 and

ĤiðxÞj�i ¼ 0.

WHEELER-DEWITT EQUATION IN 2þ 1 DIMENSIONS PHYSICAL REVIEW D 86, 084010 (2012)

084010-3



On a simplicial lattice [14–18] (see for example
Ref. [19], and references therein, for a more complete
discussion of the lattice formulation for gravity), one
knows that deformations of the squared edge lengths are
linearly related to deformations of the induced metric. In a
given simplex 	, take coordinates based at a vertex 0, with
axes along the edges from 0. The other vertices are each at
unit coordinate distance from 0 (see Figs. 1–3 as an ex-
ample of this labeling for a triangle). In terms of these
coordinates, the metric within the simplex is given by

gijð	Þ ¼ 1

2
ðl20i þ l20j � l2ijÞ: (16)

Note that in the following discussion only edges and
volumes along the spatial direction are involved. It follows
that one can introduce in a natural way a lattice analog of
the DeWitt supermetric of Eq. (11) by adhering to the
following procedure [20,21]. First, one writes for the
supermetric in edge length space

k�l2k2 ¼X
ij

Gijðl2Þ�l2i �l2j ; (17)

with the quantity Gijðl2Þ suitably defined on the space of
squared edge lengths. By a straightforward exercise of

varying the squared volume of a given simplex 	 in d
dimensions

V2ð	Þ ¼
�
1

d!

�
2
detgijðl2ð	ÞÞ (18)

to quadratic order in the metric (on the rhs), or in the
squared edge lengths belonging to that simplex (on the
lhs), one is led to the identification

Gijðl2Þ ¼ �d!
X
	

1

Vð	Þ
@2V2ð	Þ
@l2i @l

2
j

: (19)

It should be noted that in spite of the appearance of a sum
over simplices	,Gijðl2Þ is local, since the sum over	 only
extends over those simplices which contain either the i or
the j edge.
At this point one is finally ready to write a lattice analog

of the Wheeler-DeWitt equation for pure gravity, which
reads�
�ð16�GÞ2Gijðl2Þ @2

@l2i @l
2
j

�
ffiffiffiffiffiffiffiffiffiffi
gðl2Þ

q
½3Rðl2Þ � 2��

�
�½l2�

¼ 0; (20)

with Gijðl2Þ the inverse of the matrix Gijðl2Þ given above.

The range of the summation over i and j and the appro-
priate expression for the scalar curvature, in this equation,
are discussed below and made explicit in Eq. (21).
Equations (9) or (20) express a constraint equation at

each point in space. Here, we will elaborate a bit more on
this point. On the lattice, points in space are replaced by a
set of edge labels i, with a few edges clustered around each
vertex in a way that depends on the dimensionality and the
local lattice coordination number. To be more specific, the
first term in Eq. (20) contains derivatives with respect to
edges i and j connected by a matrix element Gij which is

nonzero only if i and j are close to each other, essentially

0

1

2

l02

l01

l12

FIG. 1. A triangle with labels.

0

1

2

c

a

b

s1

s5
s4

s3

s2

s6

A2

A0

A3

A1

FIG. 2. Neighbors of a given triangle. The picture illustrates
the fact that the Laplacian �ðl2Þ appearing in the kinetic term of
the lattice Wheeler-DeWitt equation (here in 2þ 1 dimensions)
contains edges a, b, c that belong both to the triangle in question
as well as to several neighboring triangles (here, three of them)
with squared edges denoted sequentially by s1 ¼ l21 . . . s6 ¼ l26.

FIG. 3. A small section of a suitable dynamical spatial lattice
for quantum gravity in 2þ 1 dimensions.
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nearest neighbor. One would therefore expect that the first
term could be represented by just a sum of edge contribu-
tions, all from within one (d� 1)-simplex 	 (a tetrahedron
in three dimensions). The second term containing 3Rðl2Þ in
Eq. (20) is also local in the edge lengths: it only involves a
handful of edge lengths, which enter into the definition of
areas, volumes and angles around the point x, and follows
from the fact that the local curvature at the original point x
is completely determined by the values of the edge lengths
clustered around i and j. Apart from some geometric
factors, it describes, through a deficit angle �h, the parallel
transport of a vector around an elementary dual lattice
loop. It should, therefore, be adequate to represent this
second term by a sum over contributions over all
(d� 3)-dimensional hinges (edges in 3þ 1 dimensions)
h attached to the simplex 	, giving, therefore, in three
dimensions�

�ð16�GÞ2 X
i;j�	

Gijð	Þ @2

@l2i @l
2
j

� 2n	h
X
h�	

lh�h þ 2�V	

�
�½l2� ¼ 0: (21)

Here �h is the deficit angle at the hinge h, lh the corre-

sponding edge length, and V	 ¼ ffiffiffiffiffiffiffiffiffiffi
gð	Þp

the volume of the
simplex (tetrahedron in three spatial dimensions) labeled
by 	. Gijð	Þ is obtained either from Eq. (19) or from the

lattice transcription of Eq. (10)

Gij;klð	Þ ¼ 1

2
g�1=2ð	Þ½gikð	Þgjlð	Þ þ gilð	Þgjkð	Þ

� gijð	Þgklð	Þ�; (22)

with the induced metric gijð	Þ within a simplex 	 given in

Eq. (16). The combinatorial factor n	h ensures the correct
normalization for the curvature term, since the latter has to
give the lattice version of

R ffiffiffi
g

p 3R ¼ 2
P

h�hlh3 (in three

spatial dimensions) when summed over all simplices
	. The inverse of n	h counts, therefore, the number of
times the same hinge appears in various neighboring sim-
plices and consequently depends on the specific choice of
underlying lattice structure; for a flat lattice of equilateral
triangles in two dimensions, n	h ¼ 1=6.1 The lattice
Wheeler-DeWitt equation given in Eq. (21) was the main
result of a previous paper [1].

IV. EXPLICIT SETUP FOR THE LATTICE
WHEELER-DEWITT EQUATION

In this section, we shall establish our notation and derive
the relevant terms in the discrete Wheeler-DeWitt equation

for a simplex. From now on we shall focus almost exclu-
sively on the case of 2þ 1 dimensions. The basic simplex
in this case is, of course, a triangle, with vertices and
squared edge lengths labeled as in Fig. 1. We set l201 ¼ a,
l212 ¼ b, l202 ¼ c. The components of the metric for coor-

dinates based at vertex 0, with axes along the 01 and 02
edges, are

g11 ¼ a; g12 ¼ 1

2
ðaþ c� bÞ; g22 ¼ c: (23)

The area A of the triangle is given by

A2 ¼ 1

16
½2ðabþ bcþ caÞ � a2 � b2 � c2�; (24)

so the supermetric Gij, according to Eq. (19), is

Gij ¼ 1

4A

1 �1 �1

�1 1 �1

�1 �1 1

0
BB@

1
CCA: (25)

Thus, for the triangle we have

Gij

@2

@si@sj
¼ �4A

�
@2

@a@b
þ @2

@b@c
þ @2

@c@a

�
; (26)

and the Wheeler-DeWitt equation is�
ð16�GÞ24A

�
@2

@a@b
þ @2

@b@c
þ @2

@c@a

�

� 2n	h
X
h

�h þ 2�A

�
�½s� ¼ 0; (27)

where the sum is over the three vertices h of the triangle.
In the following sections we will be concerned at some

point with various discrete, but generally regular, triangu-
lations of the two-sphere, such as the tetrahedron, the
octahedron and the icosahedron. These were already
studied in some detail in Refs. [22,23]. A key aspect of
the Regge theory is the presence of a continuous, local
lattice diffeomorphism invariance, whose main aspects in
regard to their relevance for the 3þ 1 formulation of
gravity were already addressed in some detail in Ref. [1]
in the context of the lattice weak field expansion. Here we
will add some remarks about how this local invariance
manifests itself in the 2þ 1 formulation and, in particular,
for the discrete triangulations of the sphere studied later on
in this paper. Of some relevance is the presence of exact
zero modes of the gravitational lattice action, reflecting a
local lattice diffeomorphism invariance, present already on
a finite lattice. Since the Einstein action is a topological
invariant in two dimensions, the relevant action in this case
has to be a curvature-squared action supplemented by a
cosmological constant term. Specifically, part of the results
in Refs. [22,24] can be summarized as follows. For a given
lattice, one finds for the counting of zero modes

1Instead of the combinatorial factor n	h, one could insert a
ratio of volumes V	h=Vh (where Vh is the volume per hinge [17]
and V	h is the amount of that volume in the simplex 	), but the
above form is simpler.
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Tetrahedron ðN0 ¼ 4Þ: 2 zero modes

Octahedron ðN0 ¼ 6Þ: 6 zero modes

Icosahedron ðN0 ¼ 12Þ: 18 zero modes:

(28)

Thus, if the number of zero modes for each regular trian-
gulation of the sphere is denoted by Nz:m:, then the results
can be reexpressed as

Nz:m: ¼ 2N0 � 6; (29)

which agrees with the expectation that, in the continuum
limit, N0 ! 1, Nz:m:=N0 should approach the constant
value d in d space-time dimensions, the expected number
of local parameters for a diffeomorphism. Similar esti-
mates were obtained when looking at deformations of a
flat lattice in various dimensions [22]. The case of near-flat
space is obviously the simplest: by moving the location of
the vertices around in flat space, one can find a different
assignment of edge lengths that represents the same flat
geometry. This then leads to the d � N0-parameter family of
transformations for the edge lengths in flat space.

In general, lattice diffeomorphisms correspond to local
deformations of the edge lengths about a vertex, which
leave the local geometry physically unchanged, the latter
being described by the values of local lattice operators
corresponding to local volumes, curvatures, etc. The lesson
is that the correct count of continuum zero modes will, in
general, only be recovered asymptotically for large trian-
gulations, where N0 is significantly larger than the number
of neighbors to a point in d dimensions. With these obser-
vations in mind, we can now turn to a discussion of the
solution method for the lattice Wheeler-DeWitt equation in
2þ 1 dimensions.

One item that needs to be discussed at this point is the
proper normalization of various terms (kinetic, cosmologi-
cal and curvature) appearing in the lattice equation of
Eq. (21). For the lattice gravity action in d dimensions,
one has generally the following correspondenceZ

ddx
ffiffiffi
g

p $ X
	

V	; (30)

where V	 is the volume of a simplex; in two dimensions it
is simply the area of a triangle. The curvature term involves
deficit angles in the discrete case,

1

2

Z
ddx

ffiffiffi
g

p
R $ X

h

Vh�h; (31)

where �h is the deficit angle at the hinge h, and Vh the
associated ‘‘volume of the hinge’’ [12]. In four dimensions,
the latter is the area of a triangle (usually denoted by Ah),
whereas in three dimensions it is simply given by the
length lh of the edge labeled by h. In two dimensions,
Vh¼1. In this work wewill focus almost exclusively on the
case of 2þ 1 dimensions; consequently, the relevant for-
mulas will be Eqs. (30) and (31) for dimension d ¼ 2.

The continuumWheeler-DeWitt equation is local, as can
be seen from Eq. (14). One can integrate the Wheeler-
DeWitt operator over all space and obtain�

�ð16�GÞ2
Z

d2x�ðgÞ þ 2�
Z

d2x
ffiffiffi
g

p

�
Z

d2x
ffiffiffi
g

p
R

�
� ¼ 0 (32)

with the super-Laplacian on metrics defined as

�ðgÞ � Gij;klðxÞ �2

�gijðxÞ�gklðxÞ : (33)

In the discrete case, one has one local Wheeler-DeWitt
equation for each triangle [see Eqs. (20) and (21)], which
therefore takes the form�

�ð16�GÞ2�ðl2Þ � 

X
i��

�i þ 2�A�

�
� ¼ 0; (34)

where �ðl2Þ is the lattice version of the super-Laplacian,
and we have set for convenience 
 ¼ 2n	h. As we shall see
below, for a lattice of fixed coordination number, 
 is a
constant and does not depend on the location on the lattice.
In the above expression, �ðl2Þ is a discretized form of the
covariant super-Laplacian, acting locally on the space of
s ¼ l2 variables. From Eqs. (26) and (34), one has explicitly

�ðl2Þ ¼ �4A�

�
@2

@a@b
þ @2

@b@c
þ @2

@c@a

�
: (35)

Note that the curvature term involves three deficit angles �i,
associated with the three vertices of a triangle. Now,
Eq. (34) applies to a single given triangle, with one equation
to be satisfied at each triangle on the lattice. One can also
construct the total Hamiltonian by simply summing over all
triangles, which leads to�
�ð16�GÞ2X

�

�ðl2Þ þ 2�
X
�

A� � 

X
�

X
i��

�i

�
� ¼ 0:

(36)

Summing over all triangles (�) is different from summing
over all lattice sites (i), and the above equation is equivalent
to�
�ð16�GÞ2X

�

�ðl2Þ þ 2�
X
�

A� � 
q
X
i

�i

�
� ¼ 0; (37)

where q is the lattice coordination number and is deter-
mined by how the lattice is put together (which vertices are
neighbors to each other or, equivalently, by the so-called
incidence matrix). Here, q is the number of neighboring
simplexes that share a given hinge (vertex). For a flat
triangular lattice q ¼ 6, whereas for a tetrahedron, octahe-
dron, and icosahedron, one has q ¼ 3, 4, 5, respectively.
For proper normalization in Eq. (36), one requires
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Z
d2x

ffiffiffi
g

p $ X
�

A� (38)

as well as

1

2

Z
d2x

ffiffiffi
g

p
R $ X

i

�i: (39)

This last correspondence allows one to fix the overall
normalization of the curvature term


 � 2n	h ¼ 2

q
; (40)

which then determines the relative weight of the local
volume and curvature terms.

V. CHOICE OF COUPLING CONSTANTS

As in the Euclidean lattice theory of gravity, we will find
it convenient here to factor out an overall irrelevant length
scale from the problem and set the (unscaled) cosmological
constant equal to one as was done in Ref. [17]. Indeed,
recall that the Euclidean path integral weight always con-
tains a factor PðVÞ / expð��0VÞ, where V ¼ R ffiffiffi

g
p

is the

total volume on the lattice, and �0 is the unscaled cosmo-
logical constant. The choice �0 ¼ 1 then fixes this overall
scale once and for all. Since �0 ¼ 2�=16�G, one then has
� ¼ 8�G in this system of units. In the following we will

also find it convenient to introduce a scaled coupling ~�
defined as

~� � �

2

�
1

16�G

�
2

(41)

so that for �0 ¼ 1 (in units of the UV cutoff or, equiva-
lently, in units of the fundamental lattice spacing), one has
~� ¼ 1=64�G. One can now rewrite the Wheeler-DeWitt
equation so that the kinetic term (the term involving the
Laplacian) has a unit coefficient and write Eq. (14) as�

��þ 2�

ð16�GÞ2
ffiffiffi
g

p � 1

ð16�GÞ2
ffiffiffi
g

p
R

�
� ¼ 0: (42)

Note that in the extreme strong coupling limit (G ! 1),
the kinetic term is the dominant one, followed by the
volume (cosmological constant) term (using the facts about
~� given above) and, finally, by the curvature term.
Consequently, at least in a first approximation, the curva-
ture R term can be neglected compared to the other two
terms in this limit.

Two further notational simplifications will be done in the
following. The first one is introduced in order to avoid lots
of factors of 16� in many of the subsequent formulas.
Consequently, from now on we shall writeG as a shorthand
for 16�G,

16�G ! G: (43)

In this notation one then has � ¼ G=2 and ~� ¼ 1=4G. The
above notational choices then lead to a much more stream-
lined representation of the Wheeler-DeWitt equation,�

��þ 1

G

ffiffiffi
g

p � 1

G2

ffiffiffi
g

p
R

�
� ¼ 0: (44)

A second notational choice will be dictated later on by the
structure of the wave function solutions, which will com-

monly involve factors of
ffiffiffiffi
G

p
. For this reason we will now

define the new coupling g as

g � ffiffiffiffi
G

p
; (45)

so that ~� ¼ 4=g2 (the latter g should not be confused with
the square root of the determinant of the metric).
Later on it will be convenient to define a parameter� for

the triangulations of the sphere, defined as

� � 2�ffiffiffiffi
~�

p
G2

: (46)

Factors of 2� arise here because we are looking at various
triangulations of the two-sphere. More generally, for a two-
dimensional closed manifold with arbitrary topology, one
has by the Gauss-Bonnet theoremZ

d2x
ffiffiffi
g

p
R ¼ 4�� (47)

with � as the Euler characteristic of the manifold. The
latter is related to the genus g (the number of handles) via
� ¼ 2� 2g (note that for a discrete manifold in two
dimensions, one has the equivalent form due to Euler
� ¼ N0 � N1 þ N2, where Ni denotes the number of sim-
plices of dimension i). Thus for a general two-dimensional
manifold, we will define

� ¼ ��ffiffiffiffi
~�

p
G2

: (48)

Equivalently, usingffiffiffiffi
~�

p
G2 ¼ 1

2
ffiffiffiffi
G

p �G2 ¼ 1

2
G3=2 (49)

and then making use of the coupling g, one has simply

� ¼ 4�

g3
(50)

for the sphere, and in the more general case

� ¼ 2��

g3
: (51)

VI. OUTLINE OF THE GENERAL
METHOD OF SOLUTION

It should be clear from the previous discussion that in the
strong coupling limit (large G), one can, at least at first,
neglect the curvature term, which can then be included at a
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later stage. This simplifies the problem quite a bit, as it is
the curvature term that introduces complicated interactions
between neighboring simplices (this is evident from the
lattice Wheeler-DeWitt equation of Eq. (21), where the
deficit angles enter the curvature term only).

The general procedure for finding a solution will be as
follows. First, a solution will be found for equilateral edge
lengths s. Later, this solution will be extended to determine
whether it is consistent to higher order in the weak field
expansion. Consequently, we shall write for the squared
edge lengths

l2ij ¼ sð1þ hijÞ; (52)

with  a small expansion parameter. Therefore, for ex-
ample, in Eq. (35) one has a¼sð1þhaÞ, b¼sð1þhbÞ
and c ¼ sð1þ hcÞ. The resulting solution for the wave
function will then be given by a suitable power series in the
h variables. Nevertheless, in some rare cases (such as the
single-triangle case described below or the single tetrahe-
dron in 3þ 1 dimensions [1]), one is lucky enough to find
immediately an exact solution, without having to rely in
any way on the weak field expansion.

To lowest order in h, a solution to the Wheeler-DeWitt
equation is readily found using the standard power series
(or Frobenius) method, appropriate for the study of quan-
tum mechanical wave equations. In this method one first
obtains the correct asymptotic behavior of the solution for
small and large arguments and later constructs a full solu-
tion by writing the remainder as a power series or poly-
nomial in the relevant variable. Of some importance in the
following is the correct determination of the wave func-
tional� for small and large areas (small and large s) and to
what extent the resulting wave function can be expressed in
terms of invariants, such as areas and curvatures, or powers
thereof.

In the following we will see that the natural variable for
displaying results is the scaled total area x, defined as

x � 2
ffiffiffiffi
~�

p
Atot ¼ 2

ffiffiffiffi
~�

p X
�

A�: (53)

We will look at a variety of two-dimensional lattices,
including the regular triangulations of the two- sphere
given by the tetrahedron, octahedron and icosahedron, as
well as the case of a triangulated torus with coordination
number six. In the equilateral case the natural variable for
displaying the results is then

x ¼ 2
ffiffiffiffi
~�

p
Atot ¼ 2N�

ffiffiffiffi
~�

p
A�: (54)

Later on we will be interested in taking the infinite volume
limit, defined in the usual way as

N� ! 1; Atot ! 1;
Atot

N�

! const: (55)

It follows that this last ratio can be used to define a

fundamental lattice spacing l0, for example via Atot=N� ¼
A� ¼ ffiffiffi

3
p

l20=4.

The full solution of the quantum mechanical problem
will, in general, require that the wave functions be properly
normalized, as in Eq. (13). This will introduce at some

stage wave function normalization factors N and ~N ,
which will be fixed by the standard rules of quantum
mechanics. If the wave function depends on the total area
only, then the relevant requirement becomesZ 1

0
dAtotj�ðAtotÞj2 � 1

2
ffiffiffiffi
~�

p
Z 1

0
dxj�ðxÞj2 ¼ 1: (56)

As in nonrelativistic quantum mechanics, two solutions are
expected, only one of which will be regular as the origin and
thus satisfy the wave function normalizability requirement.
At this point it will be necessary to discuss each lattice

separately in some detail. For each lattice geometry, we
will break down the presentation into four separate items:
(a) Equilateral case in the strong coupling limit (¼0).

This subsection will find a solution in the extreme
strong coupling limit (large G), without curvature
term in the Wheeler-DeWitt equation. The solution
will not rely on the weak field expansion, and the
results will be exact to zeroth order in the weak field
expansion of Eq. (52). In this case the simplices are
all taken to be equilateral, and the lattice edge
lengths fluctuate together.

(b) Equilateral case with curvature term ð ¼ 0Þ. Next,
the curvature term is included. The solution again
will not rely on the weak field expansion, and all the
triangles will be taken to be equilateral. The result-
ing solution will, therefore, be valid again (and
exact) to zeroth order in the  expansion parameter
of Eq. (52).

(c) Large area in the strong coupling limit ð � 0Þ. In
this case wewill look at nonzero local fluctuations in
Eq. (52). The method of solution will now rely on
the weak field expansion for large areas (large s), but
nevertheless it will turn out that an exact solution
can be found in this case. The resulting answer will
be found to be correct to arbitrarily large order
OðnÞ, with n a positive integer.

(d) Small area in the strong coupling limit ð � 0Þ.
Finally, we will look at the case of nonzero fluctua-
tions [ � 0 in Eq. (52)] in the limit of small areas
(small s). In this limit wewill find that, in general, the
solution can be written entirely in terms of invariants
involving total areas and curvatures only up to order
OðÞ orOð2Þ, depending on whether a further sym-
metrization of the problem is performed or not.

If the reader is not interested in the details for each
lattice, he can skip the next few subsections and go directly
to the summary presented in Sec. VI F.

A. Single triangle case

From Eq. (34) the Wheeler-DeWitt equation for a single
triangle reads
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�
ð16�GÞ24A�

�
@2

@a@b
þ @2

@b@c
þ @2

@c@a

�
þ 2�A�

�
�ða; b; cÞ

¼ 0; (57)

where a, b, c are the three squared edge lengths for the
given triangle, and A� is the area of the same triangle. Note
that for a single triangle there can be no curvature term.
Equivalently, one needs to solve�

@2

@a@b
þ @2

@b@c
þ @2

@c@a
þ ~�

�
�ða; b; cÞ ¼ 0: (58)

If one sets

�½a; b; c� ¼ �½A��; (59)

then one finds the following equivalent differential equation

A�

d2�

dA2
�

þ 2
d�

dA�

þ 16~�A�� ¼ 0: (60)

For a single triangle the total area equals the area of the
single triangle, Atot ¼ A�. Here it will be convenient to
define

x ¼ 4
ffiffiffiffi
~�

p
Atot � 4

ffiffiffiffi
~�

p
A� (61)

so that the solution will be a function of this variable only.
Note that in this case, and in this case only, we will deviate
from the general definition of the variable x given in Eq. (53).
One can then write the solution to Eq. (60) in the form

�ðxÞ ¼ N
JnðxÞ
xn

(62)

with

n ¼ 1

2
(63)

so that

�ðxÞ ¼ N
J1=2ð4

ffiffiffiffi
~�

p
AtotÞ

ð4
ffiffiffiffi
~�

p
AtotÞ1=2

: (64)

The wave function normalization constant is given here by

N ¼ 2~�1=4: (65)

Note that the above solution is exact and did not require, in
any way, the weak field expansion. Two alternate forms of
the wave function are

�ðAtotÞ¼N
sinð4

ffiffiffiffi
~�

p
AtotÞ

2
ffiffiffiffiffiffiffi
2�

p ffiffiffiffi
~�

p
Atot

¼N

ffiffiffiffi
2

�

s
expð�4i

ffiffiffiffi
~�

p
AtotÞ1F1ð1;2;8i

ffiffiffiffi
~�

p
AtotÞ: (66)

Here, 1F1ða; b; zÞ is the confluent hypergeometric functions
of the first kind. The usefulness of the latter representation
will become clearer later, when other lattices are considered

and the curvature term is included. Expanding the solution
for small area, one obtains

�ðxÞ ¼ N

ffiffiffiffi
2

�

s �
1� x2

6
þ x4

120
þOðx6Þ

�
; (67)

which shows that it is indeed nonsingular and, thus,
normalizable.
In the limit of large areas, a solution to the original

differential equation is given either by the asymptotic
behavior of the above Bessel (here, sine) function (J), the
same limiting behavior for the corresponding Bessel func-
tion Y, or by the two corresponding Hankel functions (H).

��x!1
1

x
expð�ixÞ � 1

Atot

expð�4i
ffiffiffiffi
~�

p
AtotÞ: (68)

Nevertheless, among those four solutions, only one is
regular and, therefore, physically acceptable.
The calculation for a single triangle can be regarded as a

useful starting point, and a basic stepping stone, for the
strong coupling expansion in 1=G. It shows the physical
characteristics of the wave function solution deep in the
strong coupling regime: for G ! 1 the coupling term
between different simplices, which is caused mainly by
the curvature term, disappears and one ends up with a
completely decoupled problem, where the edge lengths
in nonadjacent simplices fluctuate independently.

B. Tetrahedron

In the case of the tetrahedron, one has 4 triangles, 6 edges,
4 vertices, and 3 neighboring triangles for each vertex. Let
us discuss again, here, the various cases individually.
(a) Equilateral case in the strong coupling limit ( ¼ 0)

We first look at the case when  ¼ 0 in Eq. (52),
deep in the strong coupling region and without the
curvature term.
Following Eq. (53), we define the scaled area vari-
able as

x ¼ 2
ffiffiffiffi
~�

p
Atot ¼ 4	 2

ffiffiffiffi
~�

p
A� (69)

and the solution will be found later to be a function
of this variable only. For equilateral triangles, the
wave function � needs to satisfy

�00 þ 2

x
�0 þ� ¼ 0: (70)

The correct solution can be written in the form

�ðxÞ ¼ N
JnðxÞ
xn

(71)

with

n ¼ 1

2
(72)

so that
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�ðxÞ ¼ N
J1=2ð2

ffiffiffiffi
~�

p
AtotÞ

ð2
ffiffiffiffi
~�

p
AtotÞ1=2

: (73)

The wave function normalization constant is given by

N ¼ ffiffiffi
2

p
~�
1
4: (74)

Below are two equivalent forms of the same wave
function

�ðAtotÞ ¼ N
sinð2

ffiffiffiffi
~�

p
AtotÞffiffiffiffiffiffiffi

2�
p ffiffiffiffi

~�
p

Atot

¼ N

ffiffiffiffi
2

�

s
expð�2i

ffiffiffiffi
~�

p
AtotÞ1F1ð1; 2; 4i

ffiffiffiffi
~�

p
AtotÞ
(75)

for the equilateral case. In the limit of small area, one
obtains

� ¼ N

ffiffiffiffi
2

�

s �
1� x2

6
þ x4

120
þOðx6Þ

�
; (76)

which again confirms that the wave function is regular
at the origin. Since one is solving a second- order
linear differential equation, one expects two solutions;
here, one is singular and the other one is not, as is
often the case in quantum mechanics. For the geome-
try of the tetrahedron, one solution can be written in
terms of Bessel functions of the first kind (J)

J1=2ðxÞffiffiffi
x

p ¼
ffiffiffiffi
2

�

s
sinx

x
: (77)

The Bessel function of the second kind (Y) also
satisfies the same differential equation, but since

Y1=2ðxÞffiffiffi
x

p ¼ �
ffiffiffiffi
2

�

s
cosx

x
(78)

this second solution is not normalizable, it is therefore
discarded on physical grounds. We shall see below
that the same behavior at small x holds also for the
nonzero curvature term. Note that both of the above
solutions are real.2

(b) Equilateral case with curvature term ( ¼ 0)
Next, we include the effects of the curvature term.
To zeroth order in weak field expansions, when all
edges fluctuate in unison, one now needs to solve the
ordinary differential equation

�00 þ 2

x
�0 � 2�

x
�þ� ¼ 0; (79)

with � ¼ 2�=
ffiffiffiffi
~�

p
G2 as in Eq. (46). Since the deficit

angle � ¼ � at each vertex, the curvature contribu-
tion for each triangle is 
 � � � 3. In this case one
has, therefore,


tetra ¼ 2 � 1
3

(80)

and, therefore, the solution is given by

� ’ expð�2i
ffiffiffiffi
~�

p
AtotÞ1F1

	
�
1� i

3�
tetra

G2
ffiffiffiffi
~�

p ; 2; 4i
ffiffiffiffi
~�

p
Atot

�

¼ expð�2i
ffiffiffiffi
~�

p
AtotÞ1F1

	
�
1� i

2�

G2
ffiffiffiffi
~�

p ; 2; 4i
ffiffiffiffi
~�

p
Atot

�
(81)

in the equilateral case, up to an overall normaliza-
tion factor. Note that in this case one had to include a
factor of Atot=ð4A�Þ (which in the tetrahedron case
equals one) in the imaginary part of the first argu-
ment of 1F1.

(c) Large area in the strong coupling limit ( � 0)
Next, we look at the case  � 0 in Eq. (52). In the
limit of large areas, one finds that the two indepen-
dent solutions reduce to

��x!1 expð�ixÞ � expð�2i
ffiffiffiffi
~�

p
AtotÞ (82)

to all orders in . To show this, one sets � ¼ e�Atot ,
where Atot is a sum of the four triangle areas that
make up the tetrahedron, and then expands the edge
lengths in the usual way according to Eq. (52), by
setting a ¼ sð1þ haÞ etc. Here we are interested
specifically in the limit when s is large and  is
small. One then finds that the rhs of the lattice
Wheeler-DeWitt equation is given to OðnÞ by
e�

ffiffi
3

p
s

4

1

2n
ffiffiffi
3

p
n!n

�nð�2 þ 4~�Þnsn
�X

h

�
n þ � � � :

(83)

One concludes that in this limit, it is sufficient to
have

�2 þ 4~� ¼ 0; (84)

or � ¼ �2i
ffiffiffiffi
~�

p
, to obtain an exact solution in the

limit n ! 1. Note that in the strong coupling limit,
the two independent wave function solutions in
Eq. (82) completely factorize as a product of
single-triangle contributions.

(d) Small area in the strong coupling limit ( � 0)
In the limit of small area, we have shown before that
the solution reduces to a constant in the equilateral
case [Oð0Þ] for small x or small areas. Beyond the
equilateral case, one can write a general ansatz for
the wave function in terms of geometric invariants

2There are also linear combinations of Bessel functions which
give complex Hankel (H) functions. These satisfy the Wheeler-
DeWitt equation as well; however, they are not physically
acceptable since both are singular at the origin.
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� ¼
�Y

�

A�

�
�0
�
1þ �2

�X
�

A�

�
2

þ �4

�X
�

A�

�
4 þ � � �

�
(85)

and then expand the solution in  for small s. To
zeroth order in , we had the solution�� JnðxÞ=xn
with x ¼ 2

ffiffiffiffi
~�

p
Atot and n ¼ 1=2. This gives in

Eq. (85) �0 ¼ 0, �2 ¼ � 2
3
~� and �4 ¼ 2

15
~�2. To

linear order [OðÞ] one finds, though, that terms
appear which cannot be expressed in the form of
Eq. (85). But one also finds that, while these terms
are nonzero if one uses the Hamiltonian density
(the Hamiltonian contribution from just a single
triangle), if one uses the sum of such triangle
Hamiltonians, then the resulting solution is symme-
trized, and the corrections to Eq. (85) are found to be
of order Oð2Þ. Then, the wave function for small
area is of the form

�� 1� 2

3
~�A2

tot þ 2

15
~�2A4

tot þ . . . (86)

up to terms Oð2Þ.

C. Octahedron

The discussion of the octahedron proceeds in a way that
is similar to what was done before for the tetrahedron. In
the case of the octahedron, one has 8 triangles, 12 edges
and 6 vertices, with 4 neighboring triangles per vertex.
Again we will now discuss the various cases individually.

(a) Equilateral case in the strong coupling limit ( ¼ 0)
Again, we look first at the case  ¼ 0 in Eq. (52),
deep in the strong coupling region and without the
curvature term. Following Eq. (53) we define the
scaled area variable as

x ¼ 2
ffiffiffiffi
~�

p
Atot ¼ 8	 2

ffiffiffiffi
~�

p
A� (87)

and it is found that the solution is a function of this
variable only. For equilateral triangles the wave
function � needs to satisfy

�00 þ 4

x
�0 þ� ¼ 0: (88)

The correct solution can be written in the form

�ðxÞ ¼ N
JnðxÞ
xn

(89)

with

n ¼ 3

2
(90)

so that

�ðxÞ ¼ N
J3=2ð2

ffiffiffiffi
~�

p
AtotÞ

ð2
ffiffiffiffi
~�

p
AtotÞ3=2

: (91)

The wave function normalization factor is given by

N ¼ ffiffiffiffiffiffi
15

p
~�1=4: (92)

Equivalent forms of the above wave function are

�ðAtotÞ ¼ N
1

23=2�ð52Þ
	 expð�2i

ffiffiffiffi
~�

p
AtotÞ1F1ð2; 4; 4i

ffiffiffiffi
~�

p
AtotÞ

¼ N
�
� cosð2

ffiffiffiffi
~�

p
AtotÞ

2
ffiffiffiffiffiffiffi
2�

p
~�A2

tot

þ sinð2
ffiffiffiffi
~�

p
AtotÞ

4
ffiffiffiffiffiffiffi
2�

p
~�3=2A3

tot

�
:

(93)

These can be expanded for small Atot or small x to
give

� ¼ N

ffiffiffi
2

p
3

ffiffiffiffi
�

p
�
1� x2

10
þ x4

280
þOðx6Þ

�
: (94)

We note here again that both Bessel functions of the
first (J) and second (Y) kind, in principle, give
solutions for this case, as well as the two corre-
sponding Hankel (H) functions. Nevertheless, only
the solution associated with the Bessel J function is
regular near the origin.

(b) Equilateral case with curvature term ( ¼ 0)
Next, we include the effects of the curvature term.
Since here the deficit angle � ¼ 2�=3 at each ver-
tex, the curvature contribution for each equilateral
triangle is 
 � 2�3 � 3 ¼ 2�
. For the octahedron, one

has in Eq. (40)


octa ¼ 2 � 1
4
: (95)

With the curvature term, one finds

�ðAtotÞ ’ expð�2i
ffiffiffiffi
~�

p
AtotÞ1F1

	
�
2� i

4�
octaffiffiffiffi
~�

p
G2

; 4; 4i
ffiffiffiffi
~�

p
Atot

�

¼ expð�2i
ffiffiffiffi
~�

p
AtotÞ1F1

	
�
2� i

2�ffiffiffiffi
~�

p
G2

; 4; 4i
ffiffiffiffi
~�

p
Atot

�
: (96)

Note that in this case one had to include a factor
Atot=ð4A�Þ, which in the octahedron case equals
two.

(c) Large area in the strong coupling limit ( � 0)
In the limit of large areas, the two independent
solutions reduce to

��x!1 expð�ixÞ � expð�2i
ffiffiffiffi
~�

p
AtotÞ (97)

to all orders in . In other words, to OðnÞ with
n ! 1, as for the tetrahedron case. Note also that
in the strong coupling limit, the two independent
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wave function solutions again completely factorize
as a product of single-triangle contributions.

(d) Small area in the strong coupling limit ( � 0)
In the limit of small area, the solution approaches a
constant in the equilateral case. To go beyond the
equilateral case, one can write again a general an-
satz for the wave function, written in terms of geo-
metric invariants as in Eq. (85). Then the solution
can be expanded in  for small s. To zeroth order
in , the solution is �� JnðxÞ=xn with n ¼ 3=2.

This gives in Eq. (85) �0 ¼ 0, �2 ¼ � 2
5
~� and

�4 ¼ 2
35

~�2. However, to linear order [OðÞ], one
finds again that linear terms in h appear which
cannot be expressed in the form of Eq. (85). But
one also finds that while these terms are nonzero if
one uses the Hamiltonian density (the Hamiltonian
contribution from just a single triangle), if one uses
the sum of such triangle Hamiltonians, then the
resulting solution is symmetrized, and the correc-
tions to Eq. (85) are found to be of order Oð2Þ.
Then the wave function for small area is of the form

� ’ 1� 2

5
~�A2

tot þ 2

35
~�2A4

tot þ . . . (98)

up to terms of OðÞ.

D. Icosahedron

The discussion of the icosahedron proceeds in a way that
is similar to what was done before for the other regular
triangulations. Here one has 20 triangles, 30 edges and 12
vertices, with five neighboring triangles per vertex. Let us
again discuss the various cases individually.

(a) Equilateral case in the strong coupling limit ( ¼ 0)
Again, we look first at the case  ¼ 0 in Eq. (52),
deep in the strong coupling region and without
curvature term. Following Eq. (53), we define the
scaled area variable as

x ¼ 2
ffiffiffiffi
~�

p
Atot � 20	 2

ffiffiffiffi
~�

p
A� (99)

and a solution is found which is a function of this
variable only. For equilateral triangles, the wave
function � needs to satisfy

�00 þ 10

x
�0 þ� ¼ 0: (100)

A solution can then be found of the form

�ðxÞ ¼ N
JnðxÞ
xn

(101)

with

n ¼ 9

2
(102)

so that

�ðxÞ ¼ N
J9=2ð2

ffiffiffiffi
~�

p
AtotÞ

ð2
ffiffiffiffi
~�

p
AtotÞ9=2

: (103)

The wave function normalization factor is given by

N ¼ 9
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12155

p
~�1=4: (104)

Below is an equivalent form of the same solution

�ðAtotÞ ¼ N
1

29=2�ð112 Þ
	 expð�2i

ffiffiffiffi
~�

p
AtotÞ1F1ð5; 10; 4i

ffiffiffiffi
~�

p
AtotÞ:
(105)

For small area Atot or small x, one obtains

�¼N
1

29=2�ð112 Þ
�
1� x2

22
þ x4

1144
þOðx6Þ

�
; (106)

which shows that the above solution is regular at the
origin and normalizable.

(b) Equilateral case with curvature term ( ¼ 0)
Next, we include again the effects of the curvature
term. Since now the deficit angle � ¼ �=3 at each
vertex, the curvature contribution for each triangle
is 
��3 �3¼�
. For the icosahedron, one has in

Eq. (40)


icosa ¼ 2 � 1
5
: (107)

Then, with the curvature term included for equi-
lateral triangles, one obtains for equilateral triangles
½Oð0Þ�
�ðAtotÞ ’ expð�2i

ffiffiffiffi
~�

p
AtotÞ1F1

	
�
5� i

5�
icosaffiffiffiffi
~�

p
G2

; 10; 4i
ffiffiffiffi
~�

p
Atot

�

¼ expð�2i
ffiffiffiffi
~�

p
AtotÞ1F1

	
�
5� i

2�ffiffiffiffi
~�

p
G2

; 10; 4i
ffiffiffiffi
~�

p
Atot

�
; (108)

up to an overall wave function normalization con-
stant. Note that in this case one had to include a
factor Atot=4A�, which in the dodecahedron case
equals five.

(c) Large area in the strong coupling limit ( � 0)
In the limit of large areas, the two independent
solutions reduce to

��x!1 expð�ixÞ � expð�2i
ffiffiffiffi
~�

p
AtotÞ (109)

to all orders in the weak field expansion parameter ,
as for the tetrahedron and octahedron case. Note also
that in the strong coupling limit, the two indepen-
dent wave function solutions again completely fac-
torize as a product of single-triangle contributions.

HAMBER, TORIUMI, AND WILLIAMS PHYSICAL REVIEW D 86, 084010 (2012)

084010-12



(d) Small area in the strong coupling limit ( � 0)
In the limit of small area, the solution approaches a
constant in the equilateral case. To go beyond the
equilateral case, one can write again a general an-
satz for the wave function, written in terms of geo-
metric invariants as in Eq. (85). Then the solution in
 for small s. To zeroth order in  the solution is
�� JnðxÞ=xn with n ¼ 9=2. This gives in Eq. (85)

�0 ¼ 0, �2 ¼ � 2
11

~� and �4 ¼ 2
143

~�2. But to linear

order [OðÞ], one finds again that linear terms in h
appear which cannot be expressed in the form of
Eq. (85). But one also finds that, while these terms
are nonzero if one uses the Hamiltonian density (the
Hamiltonian contribution from just a single triangle),
if one uses the sum of such triangle Hamiltonians,
then the resulting solution is symmetrized, and the
corrections to Eq. (85) are found to be of order
Oð2Þ. Then the wave function for small area is of
the form

� ’ 1� 2

11
~�A2

tot þ 2

143
~�2A4

tot þ . . . ; (110)

up to terms of OðÞ.

E. Torus

Finally, we will consider a regularly triangulated torus,
which will consist here of an infinite lattice built out of
triangles, with each triangle having 12 neighboring tri-
angles. The torus topology is equivalent to requiring peri-
odic boundary conditions in the two spatial directions. Of
course, one could consider the same type of lattice but with
some other sort of boundary condition, but we shall not
pursue that aspect here.

Due to the local structure of the lattice Wheeler-DeWitt
equation in Eq. (34), it will not be necessary to include in
the wave function triangles that are arbitrarily far apart.
Instead, it will be sufficient, in order to determine the
overall structure of the solution, to include only those
triangles that are affected in a nontrivial way by the inter-
action terms in the Wheeler-DeWitt equation. In the
present case, this requires the consideration of one given
triangle plus its 12 neighbors, giving a total of 13 triangles.

Here, we will also set as before x � 2
ffiffiffiffi
~�

p
Atot.

(a) Equilateral case in the strong coupling limit ( ¼ 0)
For this case the relevant equation and its solution
are largely in line with what was obtained for the
previous cases. For equilateral triangles, the wave
function � has to satisfy

�00 þ 13

2x
�0 þ� ¼ 0: (111)

The wave function can now be written as

�ðxÞ ¼ N
JnðxÞ
xn

(112)

with, here, (due to our specific choice of sublattice)

n ¼ 11

4
(113)

so that

�ðxÞ ¼ N
J11=4ð2

ffiffiffiffi
~�

p
AtotÞ

ð2
ffiffiffiffi
~�

p
AtotÞ11=4

: (114)

The wave function normalization constant is given
in this case by

N ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30�ð134 Þ
�ð114 Þ

vuut ~�1=4: (115)

For the above wave function, an equivalent form is

�ðAtotÞ ¼N
1

211=4�ð154 Þ
	 expð�2i

ffiffiffiffi
~�

p
AtotÞ1F1

�
13

4
;
13

2
;4i

ffiffiffiffi
~�

p
Atot

�
:

(116)

Expanding the above solution for small area, one
obtains

�¼N
1

211=4�ð154 Þ
�
1� x2

15
þ x4

570
þOðx6Þ

�
; (117)

which shows the above solution is indeed regular at
the origin.

(b) Equilateral case with curvature term ( ¼ 0)
In the case of the torus, the curvature term is zero
(� ¼ 0), so there are no changes to the preceding
discussion.

(c) Large area in the strong coupling limit ( � 0)
In the limit of large areas, the two independent
solutions reduce to

��x!1 expð�ixÞ � expð�i2
ffiffiffiffi
~�

p
AtotÞ (118)

to all orders in . This is similar to what was found
earlier for the other lattices. In particular, the two
independent solutions again completely factorize as
a product of single-triangle contributions.

(d) Small area in the strong coupling limit ( � 0)
In the limit of small area, the regular solution ap-
proaches a constant and the discussion, and solution,
is rather similar to the previous cases. Here one finds

� ’ 1� 4

15
~�A2

tot þ 8

285
~�2A4

tot þ . . . ; (119)

up to terms of Oð2Þ.
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F. Summary of results

In this section we will summarize the results obtained so
far for the various finite lattices considered (tetrahedron,
octahedron, icosahedron, and regularly triangulated torus).

(a) Equilateral case in the strong coupling limit ( ¼ 0)
It is rather remarkable that all of the previous cases
(except the trivial case of a single triangle, which has
no curvature) can be described by one single set of
interpolating wave functions, where the interpolat-
ing variable is simply related to the overall lattice
size (specifically, the number of triangles).
Indeed, for equilateral triangles and in the absence
of curvature, the wave function�ðxÞ for all previous
cases is a solution to the following equation

�00 þ 2nþ 1

x
�0 þ� ¼ 0; (120)

with parameter n given by

n ¼ 1

4
ðN� � 2Þ; (121)

where N� � N2 is the total number of triangles on
the lattice. Thus,

N� ¼ 4

�
nþ 1

2

�
(122)

and, consequently,

ntetrahedron ¼ 1

4
ð4� 2Þ ¼ 1

2
;

noctahedron ¼ 1

4
ð8� 2Þ ¼ 3

2
;

nicosahedron ¼ 1

4
ð20� 2Þ ¼ 9

2
;

ntorus ¼ 1

4
ð13� 2Þ ¼ 11

4
:

(123)

Note that for a single triangle, one has n ¼ 1
2 as well,

but the definition of the scaled area is different in
that case.
Furthermore, the differential equation in Eq. (120)
describes, in spherical coordinates and with suitable
choice of constants, the radial wave function for a
free quantum particle in D ¼ 2nþ 2 dimensions.
Indeed, recall that in D dimensions the Laplace
operator in spherical coordinates has the form

�� ¼ @2�

@r2
þD� 1

r

@�

@r
þ 1

r2
�SD�1�; (124)

where �SD�1 is the Laplace-Beltrami operator on the
ðD� 1Þ sphere. In our case, the wave function does
not, to this order, depend on angles and therefore the
last (angular variable) term does not contribute. The
role of the angles is played, in our case, by the h
variables, which to this order do not fluctuate.

A nonsingular, normalizable solution to Eq. (120) is
then given by

�ðxÞ ¼ N
JnðxÞ
xn

¼ ~N e�ix
1F1

�
nþ 1

2
; 2nþ 1; 2ix

�
; (125)

where N is the wave function normalization
constant

N � 2

�
�ðnþ 1

2Þ�ð2nþ 1
2Þ

�ðnÞ
�
1=2

~�1=4 (126)

and

~N � 1

2n�ðnþ 1ÞN : (127)

Here and in Eq. (125), 1F1ða; b; zÞ denotes the con-
fluent hypergeometric function of the first kind,
sometimes denoted also by Mða; b; ; zÞ. In either
form, the above wave function is real, in spite of
appearances. The general asymptotic behavior of the
solution �ðxÞ is found from Eq. (120). For small x
one has

�ðxÞ � x� (128)

with index � ¼ 0, �2n. The latter solution is sin-
gular and will be discarded. For large x one finds
immediately

�ðxÞ � 1

xnþ1
2

expð�ixÞ; (129)

which is of course consistent with all the previous
results. Indeed, the other possible independent solu-
tion of Eq. (120) would be

�ðxÞ ’ YnðxÞ
xn

; (130)

where YnðxÞ is a Bessel function of the second kind
(or Neumann function). However, the latter leads to
a wave function � which is singular as x ! 0,

�ðxÞ � � 1

�
�ðnÞ2nx�2n; (131)

and gives, therefore, a solution that is not normal-
izable. For completeness we record here the small x
(small area) behavior of the normalized wave func-
tion in Eq. (125)

�ðxÞ �N
1

2n�ðnþ 1Þ ; (132)

and the corresponding large x (large area) behavior

�ðxÞ �N

ffiffiffiffi
2

�

s
1

xnþ1
2

cos

�
x� n�

2
� �

4

�
; (133)
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both of which reflect well-known properties of the
Bessel functions JnðxÞ.

(b) Equilateral case with curvature term ( ¼ 0)
When the curvature term is included in the Wheeler-
DeWitt equation, and still in the limit of equilateral
triangles, one obtains the following interpolating
differential equation

�00 þ 2nþ 1

x
�0 � 2�

x
�þ� ¼ 0; (134)

which now describes the radial wave function for a
quantum particle in D ¼ 2nþ 2 dimensions, with a
repulsive Coulomb potential proportional to 2�.
The nonsingular, normalizable solution is now given
by

�ðxÞ ’ e�ix
1F1

�
nþ 1

2
� i�; 2nþ 1; 2ix

�
; (135)

up to an overall wave function normalization con-

stant ~N ðn; �Þ. The normalization constant can be
evaluated analytically but has a rather unwieldy
form and will not be recorded here. Note that the
imaginary part (�) of the first argument in the con-
fluent hypergeometric function of Eq. (135) depends
on the topology but does not depend on the number
of triangles. In view of the previous discussion, the
parameter n increases gradually as more triangles
are included in the simplicial geometry. For the
regular triangulations of the sphere, the total deficit
angle (the sum of the deficit angles in a given
simplicial geometry) is always 4�, so even if one
writes for the wave functional �½Atot; �tot�, the cur-
vature contribution

P
h�h is a constant and does not

contribute in any significant way. Note also that, in
spite of appearances, the above wave function is still
real for nonzero �. That �ðxÞ in Eq. (135) is a real
function can be seen, for example, from its defini-
tion via the power series expansion

�ðxÞ ’ 1þ 2�

2nþ 1
x� 1þ 2n� 4�2

4þ 12nþ 8n2
x2

� �ð5þ 6n� 4�2Þ
6ð3þ 11nþ 12n2 þ 4n3Þ x

3 þOðx4Þ
(136)

and again up to an overall normalization factor
N ðn; �Þ.
The general asymptotic behavior of the solution
�ðxÞ is again easily determined from Eq. (134).
For small x one has

�ðxÞ � x� (137)

with again � ¼ 0, �2n and, therefore, independent
of the curvature contribution involving �. The sec-
ond solution is singular and will be discarded as
before. For large x one finds immediately

�ðxÞ � 1

xnþ1
2

expf�iðx� � lnxÞg; (138)

which is of course consistent with all previous re-
sults. It also shows that the convergence properties
of the wave function at large x are not affected
by the � term. A second independent solution to
Eq. (134) is given by

�ðxÞ ’ e�ixU

�
nþ 1

2
� i�; 2nþ 1; 2ix

�
; (139)

where Uða; b; ; zÞ is the confluent hypergeometric
function of the second kind (sometimes referred to
as Tricomi’s function). This second solution is sin-
gular at the origin, leading to a wave function that is
not normalizable and will not be considered further
here.
The asymptotic behavior of the regular solution for
large argument z (discussed in standard quantum
mechanics textbooks such as Refs. [25,26] and
whose notation we will follow here) can be obtained
from the asymptotic form of the confluent hyper-
geometric function 1F1, defined originally, for small
z, by the series

1F1ða;b;zÞ¼1þ az

b1!
þaðaþ1Þz2
bðbþ1Þ2!þ��� : (140)

It is common procedure to then write 1F1ða; b; zÞ ¼
W1ða; b; zÞ þW2ða; b; zÞ, where W1 and W2 are
separately solutions of the confluent hypergeometric
equation

z
d2F

dz2
þ ðb� zÞ dF

dz
� aF ¼ 0: (141)

Then an asymptotic expansion for 1F1 (or M) is
obtained from the following relations:

W1ða;b;zÞ¼ �ðbÞ
�ðb�aÞð�zÞ�awða;a�bþ1;�zÞ

W2ða;b;zÞ¼�ðbÞ
�ðaÞe

zza�bwð1�a;b�a;zÞ; (142)

where

wð�;�;zÞ�z!1 1þ��

z1!
þ�ð�þ1Þ�ð�þ1Þ

z22!
þ��� ;
(143)

with the irregular (at the origin) solution given in-
stead by the combination Gða;b;zÞ¼iW1ða;b;zÞ�
iW2ða;b;zÞ. One immediate and useful consequence
of the above result is that, as anticipated before, the
behavior of the regular solution close to the origin is
not affected by the presence of the � (curvature)
term. In other words, the wave function solution
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�ðxÞ in Eq. (135) is always well behaved for small
areas and, therefore, leads to a perfectly acceptable,
normalizable solution.
Furthermore, the combination and properties of
arguments in the confluent hypergeometric function
in Eq. (135) allow one to write it equivalently as a
Coulomb wave function with (Sommerfeld) pa-
rameter �

Clð�Þ�lþ1 � e�i�
1F1ðlþ 1� i�; 2lþ 2; 2i�Þ

¼ Flð�; �Þ; (144)

where Flð�; �Þ denotes the regular Coulomb wave
function that arises in the solution of the quantum
mechanical three-dimensional Coulomb problem in
spherical coordinates [25,26]. The latter is a solution
of the radial differential equation

d2Fl

d�2
þ
�
1� 2�

�
� lðlþ 1Þ

�2

�
Fl ¼ 0; (145)

with the actual radial wave function then given by
RlðrÞ ¼ FlðkrÞ=r. After comparing the above
equation with Eq. (135), one then identifies � ¼ x,
l ¼ n� 1

2 and � ¼ �. Thus l ¼ N�=4� 1, where

N� is the number of triangles on the lattice. The
proportionality constant Cl in Eq. (144) is given by
the (Gamow) parameter

Clð�Þ � 2le�
��
2 j�ðlþ 1þ i�Þj
�ð2lþ 2Þ : (146)

One then has immediately, from Eq. (135), an
equivalent representation for the regular wave func-
tion as

�ðxÞ ’ ½Cn�1
2
ð�Þ��1 1

xnþ1
2

Flð�; xÞ; (147)

again up to an overall wave function normalization

constant ~N ðn; �Þ. Again, we note here that, on the
other hand, the irregular Coulomb wave function
[usually denoted by Glð�; �Þ] is singular for small r
and will, therefore, not be considered here. Further
relevant properties of the Coulomb wave function
can be found in Refs. [25–29].
The known asymptotics of Coulomb wave function
[27–29] allow one to derive the following result for
the wave function � for large x

�ðxÞ ’ ~N
1

Cn�1
2
ð�Þ � xnþ1

2

sin

�
x� � ln2x

� ð2n� 1Þ�
4

þ 	n

� (148)

with (Coulomb) phase shift

	nð�Þ ¼ arg�

�
nþ 1

2
þ i�

�
: (149)

Also, from Eq. (146),

Cn�1
2
ð�Þ � 2n�1

2e�
��
2 j�ðnþ 1

2 þ i�Þj
�ð2nþ 1Þ : (150)

It is easy to check that the above result correctly
reduces to the asymptotic expression given earlier
for � in Eq. (133) in the limit � ¼ 0. The structure
of the wave function in Eq. (148) implies that the
norm is still finite for � � 0, since the convergence
properties of the wave function are not affected by
the curvature term.

(c) Large area in the strong coupling limit ( � 0)
In the limit of large areas the two independent
solutions reduce to

� �
x!1 expð�ixÞ; (151)

where x / Atot. This is true without assuming the
weak field expansion, as was already the case before
(see, in particular, the section discussing the tetrahe-
dron case).
Consequently, in the strong coupling limit, the two
wave function solutions in Eq. (151) completely fac-
torize as a product of single-triangle contributions,

� ’Y
�

expð�2i
ffiffiffiffi
~�

p
A�Þ; (152)

again up to an overall normalization constant. The
above result, anticipated in Ref. [1], was the basis for
the variational treatment using correlated product
wave functions given in our previous work. Note
also, in view of the result of Eq. (133), that the correct
solution, satisfying the required regularity condition
for small areas, is actually a linear combination of the
above factorized solutions.

(d) Small area in the strong coupling limit ( � 0)
In the limit of small area, we have shown before in
all cases that the solution reduces to a constant in the
equilateral case [Oð0Þ] for small x or small areas.
To linear order [OðÞ], the general result is still that
linear terms in h appear which cannot be expressed
in the form of Eq. (85). But one also finds that, while
these terms are nonzero if one uses the Hamiltonian
density (the Hamiltonian contribution from just a
single triangle), if one uses the sum of such triangle
Hamiltonians, then the resulting solution is symme-
trized, and the corrections to Eq. (85) are found to be
of order Oð2Þ. In other words, it seems that some
residual lattice artifacts that survive at very short
distances can be partially removed by a suitable
coarse-graining procedure on the Hamiltonian density.
One might wonder what lattices correspond to values
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of n greater that 9=2, which is the highest value
attained for a regular triangulation of the sphere,
corresponding to the icosahedron. For each of the
three regular triangulations with N0 sites, one has for
the number of edgesN1 ¼ q

2N0 and for the number of

trianglesN2 ¼ ðq2 � 1ÞN0 þ 2, where q is the number

of edges meeting at a vertex (the local coordination
number). In the three cases examined before, q was
between three and five, with six corresponding to the
regularly triangulated torus. Note that for a sphere
N0 � N1 þ N2 ¼ 2 always. The interpretation of
other, even noninteger, values of q is then clear.
Additional triangulations of the sphere can be con-
structed by considering irregular triangulations, where
now the parameter q is interpreted as an average
coordination number. Of course, the simplest example
is a semiregular lattice with Na vertices with coordi-
nation number qa and Nb vertices with coordination
number qb, such that Na þ Nb ¼ N0. Various irregu-
lar and random lattices were considered in detail some
time ago in Ref. [16], and we refer the reader to this
work for a clear exposition of the properties of these
lattices.
We conclude this section by briefly summarizing the
key properties of the gravitational wave function given
in Eqs. (135) and (147), which from now on will be
used as the basis for additional calculations. First we
note that the above wave function is a function of the
total area and total curvature only and, as such, is
manifestly diffeomorphism invariant and in accord
with the spatial diffeomorphism constraint. While it
was derived by looking at the discrete triangulations
of the sphere, it contains a parameter n, related to the
total number of triangles on the lattice by Eq. (121),
that will allow us to go beyond the case of a finite
lattice and investigate the physically meaningful, and
presumably universal, infinite volume limit n ! 1
[see Eq. (55)]. We have also shown that the above
wave function is, in all cases, an exact solution of the
full lattice Wheeler-DeWitt equation of Eq. (21) in
the limit of large areas and to all orders in the weak
field expansion. Again, this last case is most relevant
for taking the infinite volume limit, defined previ-
ously in Eq. (55). Furthermore, the small area behav-
ior of the wave function plays a crucial role in
uniquely constraining, through the regularity condi-
tion, the correct choice of solution. In this last limit
one also finds that the various individual lattice solu-
tions agree with the universal form of Eqs. (135) and
(147) only to a low order in the weak field expansion,
which is expected given the different short distance
lattice artifacts of the regular triangulation solutions.
Nevertheless, knowledge of their behavior is com-
pletely adequate for extracting the most important
physically relevant piece of information, namely the

constraint on the wave function based on the stated
regularity condition at small areas, which comes down
to a simple integrability or power counting argument.

VII. AVERAGE AREA

In this section we will look at a natural quantum me-
chanical expectation value, the average total physical area
of the lattice simplicial geometry. It is one of many quan-
tities that can be calculated within the lattice quantum
gravity formalism and is clearly both manifestly geometric
and diffeomorphism invariant. Here, we will use the wave
functions given in Eqs. (135) and (147), originally obtained
for the tetrahedron, octahedron and icosahedron and later
extended to any number of triangles N�

�ðAtotÞ ’ e�i
Atot
g
1F1

�
nþ 1

2
� i�; 2nþ 1; 2i

Atot

g

�
; (153)

with n � 1
4 ðN� � 2Þ, � � 4�=g3 and g � ffiffiffiffi

G
p

, and again

valid up to an overall wave function normalization con-
stant. Due to the structure of the wave function, the result-
ing probability distribution for the area is rather nontrivial,
having many peaks associated with the infinitely many
minima and maxima of the hypergeometric function.
Clearly, the most interesting limit is one where one con-
siders an infinite number of triangles, N� ! 1, which
corresponds to n ! 1 in Eq. (153). In Figs. 4 and 5, we
display the behavior of the wave function in Eq. (153), both
with and without the curvature contribution in the
Wheeler-DeWitt equation. One notices that when the cur-
vature term is included (� � 0), the peak in the wave
function shifts away from the origin. This is largely ex-
pected, based on the contribution from the repulsive
Coulomb term in the wave equation of Eq. (134).

10 20 30 40 50
Atot

0.2

0.0

0.2

0.4

0.6

0.8

Atot g 1

without R
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Octahedron

FIG. 4 (color online). Wave Function � vs total area for the
octahedron lattice, with and without curvature contribution. The
wave function is shown here for g ¼ ffiffiffiffi

G
p ¼ 1, a value chosen

here for illustration purposes. The relevant expression for the
wave function is given in Eq. (153). We refer to the text for
further details on how the wave function was obtained and what
its domain of validity is. The wave functions shown here have
been properly normalized. Note that with a nonzero curvature
term, the peak in the wave function moves away from the origin.
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The average total area can then be computed from the
above wave function, as the ground state expectation value

hAi ¼ h�jAj�i
h�j�i ¼

R
d�½g�AðgÞj�ðgÞj2R
d�½g�j�ðgÞj2 ; (154)

where g here, is the three-metric, and d�½g� denotes a
functional integration over all three-metrics. In our case we
use the measure Z

d�½g� !
Z 1

0
dAtot; (155)

which then gives, in terms of the scaled area variable x,

hAtoti ¼ g

R1
0 dxx � j�ðxÞj2R1
0 dxj�ðxÞj2 : (156)

In the absence of a curvature term in the Wheeler-DeWitt
equation (� ¼ 0), the average area can easily be computed
analytically in terms of Bessel function integrals, and the
result is

hAtoti ¼ g � �ð4n� 1Þ�ð4n� 2Þ
28n�5�ðnÞ4 : (157)

Note that the average area diverges as n ! 1
2 , which cor-

responds to the tetrahedron; this entirely spurious diver-
gence prevents us from using the tetrahedron lattice in
plotting and numerically extrapolating the remaining two
lattices (octahedron and icosahedron) to the infinite lattice
limit. For the octahedron, one finds hAtoti ¼ 15g=�, for the
icosahedron hAtoti ¼ 21879g=3920�, and in the large n

limit hAtoti ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2n=�

p
gþOð1= ffiffiffi

n
p Þ.

One finds that in the presence of a curvature term
(� � 0), the resulting integrals are significantly more com-
plicated. We have, therefore, resorted to a number of tools,
which include an analytic expansion in�, the use of known
asymptotic expansions for the wave function at large argu-
ments, and an exact numerical integration of the resulting
integrals. Let us first discuss here the expansion in �. It is
known that the Coulomb wave functions can be expanded
in terms of spherical Bessel functions (Neumann expan-
sion) [27–29], so that one has

Flð�;�Þ ¼ 2lþ1ffiffiffiffi
�

p �

�
lþ 3

2

�
Clð�Þ�

ffiffiffiffiffiffi
�

2�

s
�
�X1
k¼l

bkð�ÞJkþ1
2
ð�Þ

�

(158)

with coefficients bkð�Þ given by a simple recursion rela-
tion. When written out explicitly, the expression in curly
brackets involves

Jlþ1
2
ðxÞ þ 2lþ 3

lþ 1
� � Jlþ3

2
ðxÞ þ 2lþ 5

lþ 1
�2 � Jlþ5

2
ðxÞ þ � � � ;

(159)

with additional terms linear in � reappearing at higher
orders. That the above expansion is a bit problematic is
not entirely surprising, given the modified asymptotic be-
havior of the Coulomb wave functions for � � 0. In the
following, in order to provide initially some insight into the
effects of the � (or �) term on the wave function �, we
will include the first correction as a perturbation, and drop
the rest. Later on, higher order corrections can be included
as additional contributions. With this truncation, the
Coulomb wave function in Eq. (144) becomes

Flð�;�Þ ¼ 2lþ1ffiffiffiffi
�

p �

�
lþ 3

2

�
Clð�Þ�

ffiffiffiffiffiffi
�

2�

s

	
�
Jlþ1

2
ð�Þ þ �

2lþ 3

lþ 1
Jlþ3

2
ð�Þ þ � � �

�
(160)

with the last term treated as a perturbation, giving for the
wave function itself [see Eq. (135)]

�ðxÞ ’ e�ix
1F1

�
nþ 1

2
� i�; 2nþ 1; 2ix

�

¼ 1

xn

�
JnðxÞ þ �

2nþ 2

nþ 1
2

Jnþ1ðxÞ þ � � �
�
; (161)

again up to an overall wave function normalization con-

stant ~N . Note that if m Bessel function terms are kept in
Eq. (161), beyond the zeroth order, strong coupling, term
involving JnðxÞ, then the resulting expansion in � contains
terms up to �m. One finds to lowest order (m ¼ 1)

1
~N 2

¼ �ðnÞ
2�ðnþ 1

2Þ�ð2nþ 1
2Þ
þ 41�nðnþ 1Þ�

ð2nþ 1Þ�ðnþ 1Þ2 þ � � � :
(162)

From the above expressions, the average area can then be
computed as some still rather complicated function,

hAtoti ¼ g

�
�ð4n� 1Þ�ð4n� 2Þ

28n�5�ðnÞ4 þ 4ðnþ 1Þ�
2nþ 1

�
1

� 41�2n�ðn� 1
2Þ�ðnþ 1

2Þ�ð2nþ 1
2Þ2

n2�ðnÞ6
�
þ � � �

�
:

(163)
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FIG. 5 (color online). Same wave function � as in Fig. 4, but
now for the icosahedron lattice.
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Additional terms can later be included in the Bessel func-
tion expansion of Eq. (158), so as to obtain more accurate
values for the averages; this will be done later.

Figure 6 shows the exact value of the average area for a
single triangle hA�i ¼ hAtoti=N� as a function of the cou-
pling g, obtained by doing the integral in Eq. (156) nu-
merically, with the wave function given in Eq. (153). One
noteworthy aspect is that a qualitative change seems to
occur when one includes the curvature term: a well defined
minimum occurs at g� 1, which would suggest the ap-
pearance of some sort of phase transition. Doing the in-
tegrals numerically, one finds a minimum in the average
area of a triangle at gc 
 3:1 for the octahedron and at
gc 
 2:6 for the icosahedron. On the other hand, using the
lowest order Bessel function expansion of Eq. (161) for the
octahedron (n ¼ 3=2), one finds a minimum at gc ¼ 2:683
and for the icosahedron (n ¼ 9=2) at gc ¼ 2:271. Adding
one more Bessel function correction term then gives
gc ¼ 3:135 and gc ¼ 2:637 for the two cases, respectively,
which suggests that the expansion is converging.

The limit of a large number of triangles N� ! 1 cor-
responds to taking the parameter n in Eq. (153) to infinity,
since n � 1

4 ðN� � 2Þ. From the lowest order Bessel func-

tion expansion, one obtains the following analytic expres-
sion for the average total area

hAtoti ¼ g �
ffiffiffiffiffiffi
2n

�

s �
1þ 3

16n
þO

�
1

n2

��
þ 2ð�� 2Þg

�
�

þ � � � ; (164)

with � � 4�=g3 [see Eq. (50)]. In this limit the resulting
function of g has, again, a well-defined minimum at

g3c ¼ 8ð�� 2Þ ffiffiffiffiffiffiffi
2�

p
ffiffiffi
n

p (165)

or gc ’ 2:839=n1=6 for large n with one Bessel function
correction term. With two Bessel function correction terms

in Eq. (161), one finds gc ’ 3:276=n1=6, which again sug-
gests that the expansion is slowly converging. Using the
exact wave function to do the integrals numerically, one

finds for the minimum gc ’ 3:309=n1=6, which is close to
the above answer. Interestingly enough, the above result
would suggest that in the limit of infinitely many lattice
points, the critical point gc actually moves to the origin,
indicating a phase transition located at exactly g ¼ 0
(G ¼ 0) in the infinite volume (n ! 1) limit (see further
discussion later). We note here that the average area for a
single triangle is obtained by simply dividing the average
total area by the total number of triangles N� ¼ 4nþ 2,
which then gives in the same limit of large n and strong
coupling

hA�i ¼ g

2
ffiffiffiffiffiffiffiffiffi
2�n

p þO
�
1

n

�
: (166)

Quite generally, the average of the area per site in the
lattice theory (the spatial volume per site) appears to be
well defined mainly due to our wave function normaliza-
tion choices and, consequently, can be explicitly calculated
without any leftover ambiguity.
As will be discussed further below in more detail, the

estimate for the critical point given in Eq. (165) is also in
good agreement with a previous variational estimate. In
Ref. [1] the quantum-mechanical variational (Rayleigh-
Ritz) method was used to find an approximation for the
ground state wave function, using as variational wave
function a correlated (Jastrow-Slater) product of single-
triangle wave functions. There it was found, from the roots
of the equation h�jHj�i ¼ 0, that the variational parame-
ters are almost purely imaginary for strong coupling
(large G>Gc), whereas for weak enough coupling (small
G<Gc), they become real. This abrupt change in behavior
of the wave function atGc then suggested the presence of a
phase transition. With the notation used in this paper, the
result of Ref. [1] reads g3c � 1=N�, in qualitative agree-
ment with the result of Eq. (165), in the sense that both
calculations point to a critical point Gc ¼ 0 in the infinite
volume limit.
Let us now make some additional comments which

should help clarify the interpretation of the previous re-
sults. It is well known that if there is some sort of continu-
ous phase transition in the lattice theory, the latter is
generally associated with a divergent correlation length
in the vicinity of the critical point. In our case it is clear
that at strong coupling (large g), the correlation length is
small (of order one) in units of lattice spacing. This can be
seen from the fact that (a) the coupling term in the
Wheeler-DeWitt equation is due mainly to the curvature
term, which is small for large g and (b) that the ground
state wave function is of the form of a correlated product in
the same limit [see Eq. (152)]. Then, as the effects of the

0 2 4 6 8 10 12 14
g0.0

0.5

1.0

1.5

A

Octahedron with R

Octahedron without R

Icosahedron with R

Icosahedron without R

FIG. 6 (color online). Average area of a single triangle vs g ¼ffiffiffiffi
G

p
for the octahedron and the icosahedron configurations. The

average area was calculated using the expression in Eq. (156).
Note the qualitative change when one includes the curvature
term, with a minimum appearing at g�Oð1Þ.
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curvature term are included, the correlation length starts to
grow due to the additional coupling between edge varia-
bles. The previous calculation would then suggest that the
point of divergence is located at g ¼ 0. It is, of course,
essential that one looks at the limit of infinitely many
triangles, N� ! 1, since no continuous phase transition
can occur in a system with a finite number of degrees of
freedom.

It is also of interest here to discuss how the above
(Lorentzian) results relate to what is known about the
corresponding Euclidean lattice theory in three dimen-
sions, which was studied in some detail in Ref. [24].
There, a phase transition was found between two phases,
with the weak coupling phase G<Gc exhibiting a sort of
pathological behavior, whereby the lattice collapses into
what geometrically could be described as a branched poly-
mer. This is clearly a nonperturbative phenomenon that
cannot be seen from perturbation theory in G. In the
Euclidean formulation, average volumes are obtained as
suitable derivatives of logZlatt with respect to the bare
cosmological constant �0, where Zlatt is the lattice path
integral

Zlatt ¼
Z
½dl2�e�Ilattðl2Þ (167)

with, in four dimensions, the action given by

Ilatt ¼ �0

X
h

Vhðl2Þ � k
X
h

�hðl2ÞAhðl2Þ (168)

and h denoting a hinge [more details can be found in
Ref. [24]]. Similarly, the average curvature can also
be obtained as a derivative of logZ with respect to
k�1=ð8�GÞ. More importantly, a nonanalyticity in Z, as
induced by a phase transition, is expected to show up in
local averages as well. From the above expression for Zlatt

exact sum rules can be derived relating various averages
[30]. In the case of the three-dimensional Euclidean theory,
the sum rule reads

2�0

�X
T

VT

	
� k

�X
h

�hlh

	
� C0 ¼ 0; (169)

where the first term contains a sum over all lattice tetrahe-
dra, and the second term involves a sum over all lattice
hinges (just edges in this case). The quantity C0, here, is a
constant that solely depends on how the lattice is put
together (i.e., on the local coordination number, or inci-
dence matrix).

In Ref. [24] it was found that the average curvature goes
to zero at some gc with a characteristic universal ex-
ponent �, �X

h

�hlh

	
¼ �R0jg� gcj� (170)

and that the curvature fluctuation diverges in the same
limit. From the sum rule in Eq. (169), one then deduces

that the average volume in the Euclidean theory has a
singularity of the type�X

T

VT

	
¼ V0 � V1jg� gcj� (171)

with the same exponent � ’ 0:77. The latter is related by
standard universality and scaling arguments [31–33]
(see Ref. [19] for details specific to the gravity case) to
the correlation length exponent � by � ¼ ð1þ �Þ=d in d
dimensions. To compare to the Lorentzian theory dis-
cussed in this paper, one notes that the three-dimensional
Euclidean theory corresponds to the (2þ 1)-dimensional
Wheeler-DeWitt theory, so that the average volume in the
above discussion should be taken to correspond to an
average area in our case.3 To conclude, the results for the
average area suggest the existence of a phase transition in
the Lorentzian theory located at g ¼ 0. In the next sections
we will present a further test of this hypothesis, based on
physical observables that can establish directly and unam-
biguously the location of the phase transition point.

VIII. AREA FLUCTUATION, FIXED POINT
AND CRITICAL EXPONENT

Another quantity that can be obtained readily from the
wave function � is the fluctuation in the total area

�A ¼ 1

N�

fhðAtotÞ2i � hAtoti2g: (172)

The latter is related to the fluctuations in the individual
triangles by

�A ¼ N�fhA2
�i � hA�i2g (173)

with the usual definition of averages, such as the one given
in Eq. (154).
Generally, for a field �ðxÞ with renormalized mass m

and correlation length � ¼ m�1, wave function renormal-
ization constant Z, and (Euclidean) propagator

h�ðxÞ�ð0Þi ¼
Z ddp

ð2�Þd e
�ip�x Z

p2 þm2
; (174)

one has for � � R
x �ðxÞ

3It should be noted that in the case of the lattice Wheeler-
DeWitt equation of Eqs. (20) and (21) and, generally, in any
lattice Hamiltonian continuous-time formulation, the lattice con-
tinuum limit along the time direction has already been taken.
This is due to the fact that one can view the resulting 2þ 1
theory as originating from one where there exist initially two
lattice spacings, at and a. The first one is relevant for the time
direction and the second one for the spatial directions. In the
present lattice formulation, the limit at ! 0 has already been
taken; the only limit left is a ! 0, which requires the existence
of an ultraviolet fixed point of the renormalization group.
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h�2i¼
Z
x;y
h�ðxÞ�ðyÞi¼V

Z
x
h�ðxÞ�ð0Þi¼V

Z

m2
¼VZ�2:

(175)

Thus, the field fluctuation probes the propagator at zero
momentum, which in turn is directly related to the renor-
malized mass (and thus �) for the field in question. If the
field � acquires a nonzero expectation value, the above
result is modified to

1

V
fh�2i � h�i2g ¼ Z

m2
¼ Z�2; (176)

involving instead the connected propagator. In the gravity
case, the quantity Atot plays the role of�; if the fluctuation
diverges (� ! 1), then one has a phase transition or an
ultraviolet fixed point in quantum field theory language
[17,30].

Without the curvature term in theWheeler-DeWitt equa-
tion [� ¼ 0 for the wave function� in Eq. (161)], the area
fluctuation does not diverge, even when n is large and is
simply proportional to g2. In this case one finds

�Að� ¼ 0Þ ¼ 4n� 1

16

�
2n� 1

2n2 � n� 1

� �2ð4n� 1Þ�ð4n� 2Þ2
216n�13ð2nþ 1Þ�ðnÞ8

�
g2

� �� 2

4�
g2 þO

�
1

n

�
: (177)

Note the spurious singularity for the special case of the
tetrahedron, n ¼ 1=2. When the curvature term is taken
into account, one finds, from the full wave function � in
Eq. (161) and in the limit of large n,

�A ¼
�
1� 2

�

�
g2

4
þ 2ð4� �Þ

ffiffiffiffiffiffiffi
2

n�

s
1

g
þ � � � : (178)

Note that the fluctuations now appear to diverge as g ! 0
(see also Fig. 7). Furthermore, �A is nonanalytic in the
original Newton’s coupling G ¼ g2, which suggests that
perturbation theory in G is useless. A divergence of the
fluctuations as g ! 0 implies that in this limit, the correlation
length diverges in lattice units, signaling the emergence of a
massless excitation.

Just as for the case of the average curvature [Eq. (169)],
an exact sum rule can be derived in the (Euclidean) lattice
path integral formulation, relating the local volume fluctu-
ations to the local curvature fluctuations. In the three-
dimensional Euclidean path integral theory, the following
exact identity holds for the fluctuations [30]

4�2
0

���X
h

Vh

�
2
	
�
�X

h

Vh

	
2
�
� k2

���X
h

�hlh

�
2
	

�
�X

h

�hlh

	
2
�
� 2N1 ¼ 0; (179)

where N1 is the number of edges on the lattice (further
exact sum rules can be derived by considering even higher

derivatives of the free energy lnZL with respect to the
parameters �0 and k). Since the last equation relates the
fluctuation in the curvature to fluctuations in the volumes,
it also implies a relationship between their singular (diver-
gent) parts.4

According to the sum rule of Eq. (179), a divergence in
the curvature fluctuation

�R �
��X

h

�hlh

�
2
	
�
�X

h

�hlh

	
2

(180)

for the three-dimensional (Euclidean) theory generally im-
plies a corresponding divergence in the volume fluctuation

�V �
��X

h

Vh

�
2
	
�
�X

h

Vh

	
2

(181)

for the same theory. In our case a divergence is expected in
2þ 1 dimensions of the form

�A �g!gc jg� gcj�� (182)

with exponent � � 1� � ¼ 2� 3�, where � is the uni-
versal curvature exponent defined previously in Eq. (170)
and � the correlation length exponent. The latter is defined
in the usual way [31,32] through

��g!gc jg� gcj��; (183)

where � is the invariant gravitational correlation length.
The scaling relations among various exponents (�, �,�) are

0.0 0.5 1.0 1.5 2.0
g0

2

4

6

8

10

Icosahedron

Octahedron

FIG. 7 (color online). Area fluctuation �A vs g ¼ ffiffiffiffi
G

p
for the

octahedron and icosahedron, computed from Eq. (172). Note the
divergence for small g.

4We noted previously that in our Hamiltonian formulation, the
lattice continuum limit along the time direction has already been
taken. This results in two lattice spacings, one for the time and
one for the space directions, denoted here respectively by at and
a, with the first lattice spacing already sent to zero. It is then
relatively straightforward to relate volumes between the two
formulations, such as V ’ atA. Relating curvatures (for example,
2R in the 2þ 1 theory vs the Ricci scalar R in the original three-
dimensional theory) in the two formulations is obviously less
easy, due to the presence of derivatives along the time direction.
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rather immediate consequences of the scaling assumption
for the singular part of the free energy, Fsing � ��d in the

vicinity of a critical point (for more detailed discussion see,
for example, Refs. [19,31,32]). The preceding argument
then implies, via scaling, that a determination of � provides
a direct estimate for the correlation length exponent �
defined in Eq. (183). Note that based on the results so far,
one would be inclined to conclude that for 2þ 1 gravity the
critical point gc ! 0 as n ! 1. Equation (182) can then be
rewritten either as

�A �g!gc �
�=� (184)

or, in a finite volume with linear lattice dimensions L�
N1=d

0 � ffiffiffiffiffiffiffi
N�

p � ffiffiffi
n

p
(since N� ¼ 4nþ 2), as

�A �g!gc L
�=� � n1=��3=2; (185)

since, for a very large box and g very close to the critical
point gc, the correlation length saturates to its maximum
value �� L. Hence, the volume- or n-dependence of �
provides a clear and direct way to estimate the critical
correlation length exponent � defined in Eq. (183).

IX. RESULTS FOR ARBITRARY EULER
CHARACTERISTIC �

The results of the previous sections refer to regular
triangulations of the sphere (� ¼ 2) and the torus
(� ¼ 0) in 2þ 1 dimensions. It would seem that one has
enough information at this point to reconstruct the same
type of answers for arbitrary �. In particular, one has for
the parameter � [see Eqs. (48) and (51)]

� ¼ 2��

g3
; (186)

relevant for the wave functions in Eqs. (135) or (147). For
the average total area, one then finds, using the wave
function expansion in Eq. (161),

hAtoti ¼ g

�
21�2n�ðn� 1

2Þ�ð2nþ 1
2Þ

�ðnÞ3

þ
8ðnþ 1Þ��½1� 41�2n�ðn�1

2Þ�ðnþ1
2Þ�ð2nþ1

2Þ2
n2�ðnÞ6 �

g3ð2nþ 1Þ þ � � �
�
:

(187)

In the large n limit, one obtains for the average area of a
single triangle

hA�i ¼ g

2
ffiffiffiffiffiffiffiffiffi
2�n

p
�
1� 5

16n
þO

�
1

n2

��

þ ð�� 2Þ�
g2n

�
1þ 1

4nð�� 2Þ þ � � �
�

(188)

and for the average total area

hAtoti �
ffiffiffiffiffiffi
2n

�

s
gþ 4ð�� 2Þ�

g2
þ � � � : (189)

For the area fluctuation defined in Eq. (173), one finds in
the same large n limit

�A ¼
�
1� 2

�

�
g2

4
þO

�
1

n

�
þ ð4� �Þ

ffiffiffiffiffiffiffi
2

n�

s
�

g
þ � � � :

(190)

Again, note that the fluctuation appears to diverge as
g ! 0, which implies that this is the more interesting limit,
so from now on we will focus specifically on this limit. It is
clear from the analytic expression for hAtoti in Eqs. (187) or
(188) that as n ! 1, the gravitational coupling gðnÞ, to
this order in the Bessel expansion, has to scale like

gðnÞ � 1ffiffiffi
n

p ; (191)

so that the expression for hAtoti scales like n orN�, with the
expression for hA�i staying finite.
The result of Eq. (190) for �A then implies

�A � 1

g
ffiffiffi
n

p � n0 (192)

in the same limit n ! 1. In view of Eqs. (187) and (185)
with n� N� � L2, this would imply 2=�� 3 ¼ 0, and
thus for the universal critical exponent �, itself, � ¼ 2

3 ¼
0:666 to first order (m ¼ 1) in the Bessel function expan-
sion of Eq. (161) and � ¼ 17

10 ¼ 0:588 to the next order

(m ¼ 2) in the same expansion.
With some additional work one can, in fact, completely

determine the asymptotic behavior of various averages for
large � (small g) and large n. First, one notes that when m
Bessel functions are included in the expansion for the wave
function given in Eq. (161), beyond the leading order one
at strong coupling, one obtains a wave function which
contains powers of � up to �m. For a given fixed m, one
then finds for the average area per triangle the following
asymptotic result

hA�i � 1

g3m�1n
mþ1
2

; (193)

up to terms which contain higher powers of 1=n (making
these less relevant in the limit n ! 1) and also up to terms
which are less singular in g for small g. The requirement
that the average area per triangle be finite as n ! 1, then
requires that the coupling g, itself, should scale with n
according to

gðnÞ � 1

n
mþ1

2ð3m�1Þ
: (194)

For the area fluctuation, itself, one then computes in the
same limit
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�A � 1

g3m�2n
m
2
; (195)

again to leading order in 1=n and 1=g. The requirement
that gðnÞ scale according to Eq. (194), then implies from
Eq. (195) that the area fluctuation diverges in the limit
n ! 1 as

�AðnÞ � n
m�1
3m�1: (196)

By comparing with Eqs. (184) and (185), one obtains
immediately for the exponent

�

�
¼ 2m� 2

3m� 1
; (197)

and, therefore, from the scaling relation � ¼ 2� 3�,
finally,

� ¼ 6m� 2

11m� 5
: (198)

One can now take the limit m ! 1 [infinite number of
Bessel functions retained in the expansion of Eq. (161)],
which leads to the exact result for the correlation length
exponent of 2þ 1 dimensional quantum gravity

� ¼ 6

11
¼ 0:5454 . . . : (199)

The derivation shows that the exponent � does not seem to
depend on the Euler characteristic � or, therefore, on the
boundary conditions.5 Furthermore, one can compare the
above value for � with the (numerically exact) Euclidean
three-dimensional quantum gravity result obtained over
twenty years ago in Ref. [24], namely � ’ 0:59ð2Þ. It
would, of course, be of great interest to repeat the above
Euclidean lattice calculation in order to refine the estimate
and improve on the statistical and systematic uncertainty.
The exponent � is expected to represent a universal quan-
tity, independent of short-distance regularization details
and, therefore, characteristic of gravity’s universal scaling
properties on distances much larger than the lattice cutoff.
As such, it should apply equally to both the Lorentzian and
the Euclidean formulation, and our results are consistent
with this conclusion. Moreover, in 3þ 1 dimensions the
exponent � is a key physical quantity as it determines the
power for the running of the gravitational constant G [34]
and, for the Euclidean theory, it is known [30] that the
universal scaling exponent is consistent with � ¼ 1=3.

It is perhaps worthwhile at this point to compare with
other attempts at determining the critical exponent � in
three-dimensional gravity. The latest and best results for
quantum gravity in the perturbative diagrammatic 2þ 
continuum expansion using the background field method
[35,36] give in d ¼ 3 ( ¼ 1 and central charge c ¼ 1)

��1 ¼ 1þ 3

5
þ . . . (200)

to two-loop order and, therefore, � 
 0:625, with a sub-
stantial uncertainty of about fifty percent (which can be
estimated for example by comparing the one- and two-loop
results). On the other hand, truncated renormalization
group calculations for gravity directly in three dimensions
[37,38] give to lowest order in the truncation (i.e., with the
inclusion of the cosmological and Einstein-Hilbert terms
only), the estimate

��1 ¼ 2dðd� 2Þ
dþ 2

(201)

and, therefore, in d ¼ 3 the value � 
 0:833. This last
result is also affected by a rather substantial uncertainty
(again as much as fifty percent), which can be estimated,
for example, by including curvature-squared terms in the
truncated expansion. Nevertheless, and in light of the un-
certainties associated with the various methods, it is very
encouraging to note that widely different calculations (on
the lattice and in the continuum) give values for the uni-
versal scaling exponent � that are roughly in the same
ballpark.
From Eq. (199) one obtains the fractal dimension for a

gravitational path in 2þ 1 dimensions

��1 ¼ dF ¼ 11

6
¼ 1:8333 . . . : (202)

This is slightly smaller than the value for a free scalar field
dF ¼ 2, corresponding to the Brownian motion (or Wiener
path) value. It is closer to the value expected for a dilute
branched polymer in the same dimension [39,40], and the
best match at this point seems to be the OðnÞ vector model
for n ¼ �1. The exact value � ¼ 6=11 for 2þ 1 gravity
would then suggest a connection between the ground state
properties of quantum gravity and the geometry of dilute
branched polymers in the same dimension.
In light of the results obtained so far, it is possible to

make a number of additional observations. First, note from
Eq. (194) that as n ! 1, the critical point (or renormal-
ization group ultraviolet fixed point) moves to g ¼ 0

gðnÞ �m!1
1

n1=6
: (203)

For comparison, a variational calculation based on corre-
lated product (Slater-Jastrow) wave functions [1] in 2þ 1
dimensions gave

g3c ¼ 4��

N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	0ð	0 � 2Þp ; (204)

where 	0 > 2 was a parameter associated there with the
choice of functional measure over edges. The variational
result of Eq. (204) can be compared directly with the result
of Eqs. (165) and (203), for � ¼ 2 and N� ¼ 2nþ 2.
Thus, in both treatments the limiting value for the critical

5One might wonder if the value for � is affected by the choice
of normalization in Eqs. (56) and (155). It is easy to check that at
least the inclusion of a weight factor Am, withm integer, does not
change the result given in Eq. (199).
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point for g in 2þ 1 dimensions is zero, gc ! 0 as the
number of triangles N� ! 1.

Physically, this last result implies that there is no weak
coupling phase (g < gc, or in terms of Newton’s constant
G<Gc): the only surviving phase for gravity in three
dimensions is the strongly coupled one (g > gc or
G>Gc). Furthermore, the correlation length � of
Eq. (183) is finite for g > 0 and diverges at g ¼ 0. In
particular, the weak field expansion, which assumes g
small, is expected to have zero radius of convergence.6 In
a sense this is a welcome result, as in the Euclidean theory
the weak coupling phase was found to be pathological and
thus physically unacceptable in both three [24] and four
dimensions [17,30]. It would seem, therefore, that the
Euclidean and Lorentzian lattice results are ultimately com-
pletely consistent: quantum gravity in 2þ 1 dimensions
always resides in the strong coupling, gravitational antiscre-
ening phase; the weak coupling, gravitational screening
phase is physically excluded. In addition, the exact value
for � determines, through standard renormalization group
arguments, the scale dependence of the gravitational cou-
pling in the vicinity of the ultraviolet fixed point [34].7

X. SUMMARYAND CONCLUSIONS

In this paper we have discussed the form of the gravita-
tional wave function that arises as a solution of the lattice
Wheeler-DeWitt equation [Eqs. (20), (21), and (34)] for
finite lattices. The main result was the wave function �
given in Eqs. (135), (147), and (153) with strong coupling
limit (curvature term absent) corresponding to the choice
of parameter � ¼ 0.

To summarize, and for the purpose of the following
discussion, the wave function � given in Eq. (153) can
be written in the most general form as

�� e�ix
1F1ða; b; 2ixÞ (205)

up to an overall normalization constant ~N, and with
parameters related to various geometric invariants

a � 1

4
N� �

ffiffiffi
2

p
�iffiffiffiffi
�

p
G

� ¼ 1

4
N� � i

2
ffiffiffiffiffiffi
2�

p
G

Z
d2y

ffiffiffi
g

p
R

b � 1

2
N� x �

ffiffiffiffiffiffi
2�

p
G

Atot ¼
ffiffiffiffiffiffi
2�

p
G

Z
d2y

ffiffiffi
g

p
: (206)

In the above definitions one can trade, if one so desires, the
total number of triangles N� for the total area

N� ¼ 1

hA�iAtot ¼ 1

hA�i
Z

d2y
ffiffiffi
g

p
: (207)

Use has been made of the relationship between various

coupling constants (g, G, �, ~�, �) to reexpress the wave
function c in slightly more general terms, as a function of
the original couplings � and G appearing in the original
form of the Wheeler-DeWitt equation [see for example
Eqs. (42) and (44)]. We did show that an equivalent form
for the wave function� can be given in terms of Coulomb
wave functions [see Eq. (147)], with argument

� �
ffiffiffi
2

p
��ffiffiffiffi
�

p
G

¼ 1

2
ffiffiffiffiffiffi
2�

p
G

Z
d2x

ffiffiffi
g

p
R (208)

and x defined as in Eq. (206).
The above wave function is exact in the limit of large

areas and completely independent of the weak field expan-
sion. Nevertheless, it is only correct to some low order in
the same expansion in the limit of small areas. This situ-
ation was interpreted as follows. For large areas one has a
very large number of triangles, and the short distance de-
tails of the lattice setup play a vanishingly small role in this
limit. One recognizes this limit as being relevant for uni-
versal scaling properties, including critical exponents. For
small areas, on the other hand, a certain sensitivity to the
short distance properties of the lattice regularization per-
sists, and thus a universal behavior is, not unexpectedly,
hard to achieve. In any case this last limit, in the absence of
a truly fundamental and explicit microscopic theory, is
always expected to be affected by short distance details
of the regularization, no matter what its ultimate nature
might be (a lattice of some sort, dimensional regulariza-
tion, or an invariant continuum momentum cutoff, etc.)
In principle, any well-defined diffeomorphism-invariant

average can be computed using the above wave functions.
This will involve, at some point, the evaluation of a vac-

uum expectation value of some operator ~OðgÞ

h�j ~OðgÞj�i ¼
R
d�½g� ~OðgijÞj�½gij�j2R

d�½g�j�½gij�j2
; (209)

where d�½g� is the appropriate functional measure over
three-metrics gij. Evaluating such an average is, in general,

nontrivial, as it requires the computation of a (Euclidean)
lattice path integral in one dimension less

h�j ~OðgÞj�i ¼ N
Z

d�½g� ~OðgijÞ expf�Seff½g�g (210)

6These circumstances are perhaps unfamiliar in the gravity
context but are nevertheless rather similar to what happens in
gauge theories, including compact quantum electrodynamics in
2þ 1 dimensions [41]. There, the theory always resides in the
strong coupling or disordered phase, with a finite correlation
length which eventually diverges at zero charge.

7Specifically, the universal exponent � is related to the behav-
ior of the Callan-Symanzik beta function for Newton’s constant
G in the vicinity of the ultraviolet fixed point by �0ðGÞjG¼Gc

¼
�1=�. Integration of the renormalization group equations for G
then determines the scale dependence of Gð�Þ or GðhÞ in the
vicinity of the ultraviolet fixed point. Concretely, � determines
the exponent in the running of G. One finds GðhÞ � ð�2hÞ�1=2�,
with h � g��r�r� the covariant d’Alembertian and � the
renormalization group invariant correlation length. A broader
discussion of renormalization group methods as they apply to
quantum gravity can be found, for example, in Ref. [19].
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with Seff½g� � � lnj�½gij�j2 and N a normalization con-

stant. The operator ~OðgÞ, itself, can be local, or nonlocal as
in the case of the gravitational Wilson loop discussed in
Ref. [42]. Note that the statistical weights have many zeros
corresponding to the nodes of the wave function �, and
that Seff is infinite there.

In the previous sections we have shown that the wave
function allows one to calculate a number of useful and
physically relevant averages and fluctuations, which were
later extrapolated to the infinite volume limit of infinitely
many triangles. It was found that these diffeomorphism-
invariant observables point in 2þ 1 dimensions to the
existence of a fixed point (a phase transition in statistical
field theory language) at the origin, Gc ¼ 0. One con-
cludes, therefore, that the weak coupling (or gravitational
screening) phase has completely disappeared in the lattice
nonperturbative formulation and that the theory resides in
the strong coupling phase only. By contrast, in the
Euclidean theory it was found in Ref. [24] that the weak
coupling or gravitational screening phase exists but is
pathological, corresponding to a degenerate branched
polymer. A similar set of results is found in the four-
dimensional Euclidean theory, where the weak coupling,
gravitational screening phase also describes a branched
polymer.8

The calculations presented in this paper and in Ref. [1]
can be regarded, therefore, as consistent with the conclu-
sions reached earlier from the Euclidean framework, and
no new surprises arise when considering the Lorentzian
2þ 1 theory. Furthermore, we have emphasized before
that the results obtained point at a nonanalyticity in the
coupling atG ¼ 0, signaling a strong vacuum instability of
quantum gravitation in this dimension. In view of these
results, it is, therefore, not surprising that calculations that
rely on the weak field, semiclassical or small G expansion
run into serious trouble and uncontrollable divergences
very early on. Such an expansion does not seem to exist
if the nonperturbative lattice results presented here are
taken seriously. The correct physical vacuum apparently
cannot in any way be obtained as a small perturbation of
flat or near-flat spacetime.

Let us add here a few final comments aimed at placing
the present work in the context of previous calculations for
the same theory. A number of attempts have been made
over the years to obtain an estimate for the gravitational
wave functional �½g� in the absence of sources. These
generally have relied on the weak field expansion in the
continuum, as originally done in Refs. [8,9]. Thus, for
example, one finds in 3þ 1 dimensions

�½hTT� ¼ N exp

�
� 1

4

Z
d3kkhTTik ðkÞhTT�ik ðkÞ

�
; (211)

where hTTik ðkÞ is the Fourier amplitude of transverse-

traceless modes for the linearized gravitational field in
four dimensions. The above wave functional describes a
collection of harmonic oscillator wave functions, one for
each of the infinitely many physical modes of the linear-
ized gravitational field. As in the case of the electromag-
netic field, the ground state wave functional can be
expressed equivalently in terms of first derivatives of the
field potentials (the corresponding B field for gravity),
without having to mention Fourier amplitudes, as

�½hTT� ¼ N exp

�
� 1

8�2

Z
d3x

Z
d3y

hTTik;lðxÞhTT�ik;l ðyÞ
jx� yj2

�
:

(212)

Clearly both of the above expressions represent only the
leading term in an expansion involving infinitely many
terms in the metric fluctuation hij (and since they apply

to an expansion about flat space, the cosmological constant
term does not appear either). Now, in 2þ 1 dimensions,
the above expressions become meaningless, since there
cannot be any transverse-traceless modes. The only expec-
tation that remains true is that the wave functional should
still depend on physical degrees of freedom only: it should
be a function of the intrinsic geometry of 3-space and
should not change under a general coordinate change.
If one restricts oneself to local terms, a number of

invariants are possible in 2þ 1 dimensions. In principle,
the wave function could depend on, besides the total area

Atot ¼
Z

d2x
ffiffiffi
g

p
(213)

and curvature

4�� ¼
Z

d2x
ffiffiffi
g

p
R; (214)

other invariants such as

rn ¼
Z

d2x
ffiffiffi
g

p
Rn (215)

with n an integer. The latter result follows from the fact that
in d ¼ 2, both the Riemann and Ricci tensors only have
one component, related to the scalar curvature,

R���	 ¼ 1

2
Rðg�	g�� � g��g�	Þ; R�� ¼ 1

2
Rg��:

(216)

Nonlocal terms are possible as well, involving inverse
powers of the covariant d’Alembertian h, but these do
not seem to play a significant role in the lattice theory.
Now, the relevant Euclidean theory for the present work

is, of course, gravity in three (2þ 1) dimensions. But in
three dimensions the Riemann and Ricci tensor have the
same number of algebraically independent components (6)
and are related to each other by

8The nature of solutions to the lattice Wheeler-DeWitt equa-
tion in 3þ 1 dimensions will be discussed in a separate pub-
lication [43].
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R��
�	 ¼ ��
�	�

�
R�


 � 1

2
��




�
: (217)

The field equations then imply, using Eq. (217), that the
Riemann tensor is completely determined by the matter
distribution implicit in T��,

R���	 ¼ 8�G½g��T�	 þ g�	T�� þ g�	T�� � g��T�	

þ Tðg�	g�� � g��g�	Þ�:
(218)

In empty space T�� ¼ 0, which then implies for zero

cosmological constant the vanishing of Riemann there,

R���	 ¼ 0: (219)

As a result in three dimensions, classical spacetime is
locally flat everywhere outside a source, gravitational
fields do not propagate outside matter, and two bodies
cannot experience any gravitational force: they move uni-
formly on straight lines. There cannot be any gravitational
waves either: the Weyl tensor, which carries information
about gravitational fields not determined locally by matter,
vanishes identically in three dimensions.

What seems rather puzzling at first is that the Newtonian
theory seems to make perfect sense in d ¼ 3. This can only
mean that the Newtonian theory is not recovered in the
weak field limit of the relativistic theory. To see this
explicitly, it is sufficient to consider the trace-reversed
form of the field equations,

R�� ¼ 8�G

�
T�� � 1

d� 2
g��T

�
(220)

with T ¼ T�
�, in the weak field limit. In the linearized

theory, with h�� ¼ g�� � ���, and in the gauger�h
�
� �

1
2r�h

�
� ¼ 0, one obtains the wave equation

hh�� ¼ �16�G

�
��� � 1

d� 2
����

�
(221)

with ��� the linearized stress tensor. After neglecting the

spatial components of ��� in comparison to the mass

density �00, and assuming that the fields are quasistatic,
one obtains a Poisson equation for h00,

r2h00 ¼ �16�G
d� 3

d� 2
�00: (222)

In four dimensions this is equivalent to Poisson’s equation
for the Newtonian theory when one identifies the metric

with the Newtonian field � in the usual way via h00¼
�2�. But in three dimensions such a correspondence is
obstructed by the fact that, from Eq. (222), the nonrelativ-
istic Newtonian coupling appearing in Poisson’s equation
is given by

GNewton ¼ 2ðd� 3Þ
ðd� 2Þ G (223)

and the mass density �00 completely decouples from the
gravitational field h00. As a result, the linearized theory in
three dimensions fails to reproduce the Newtonian theory.
In a complementary way one can show that gravitational

waves are not possible either in the linearized theory in
three dimensions. Indeed, the counting of physical degrees
of freedom for the d-dimensional theory goes as follows.
The metric g�� has 1

2dðdþ 1Þ independent components;

the Bianchi identity and the coordinate conditions reduce
this number to 1

2 dðdþ 1Þ � d� d ¼ 1
2dðd� 3Þ, which

gives indeed the correct number of physical degrees of
freedom (two) corresponding to a massless spin two parti-
cle in d ¼ 4, and no physical degrees of freedom in d ¼ 3
(and minus one degree of freedom in d ¼ 2, which is in
fact incorrect). Nevertheless, investigations of quantum
two-dimensional gravity have uncovered the fact that there
can be surviving degrees of freedom in the quantum theory,
at least in two dimensions. The usual treatment of two-
dimensional gravity [44] starts from the metric in the
conformal gauge g��ðxÞ ¼ e�ðxÞ~g��, where ~g�� is a

reference metric, usually taken to be the flat one. The
conformal gauge-fixing then implies a nontrivial
Faddeev-Popov determinant, which, when exponentiated,
results in an effective Liouville action, with a potential
term coming from the cosmological constant contribution.
One would, therefore, conclude from this example that
gravity in the functional integral representation needs a
careful treatment of the conformal degree of freedom,
since, in general, its dynamics cannot be assumed to be
trivial. The calculations presented in this paper show that
this is, indeed, the case in 2þ 1 dimensions as well.
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