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Physical properties of the quantum gravitational vacuum state are explored by solving a lattice version

of the Wheeler–DeWitt equation. The constraint of diffeomorphism invariance is strong enough to

uniquely determine part of the structure of the vacuum wave functional in the limit of infinitely fine

triangulations of the three-sphere. In the large fluctuation regime, the nature of the wave function solution

is such that a physically acceptable ground state emerges, with a finite nonperturbative correlation length

naturally cutting off any infrared divergences. The location of the critical point in Newton’s constant Gc,

separating the weak from the strong coupling phase, is obtained, and it is inferred from the general

structure of the wave functional that fluctuations in the curvatures become unbounded at this point.

Investigations of the vacuum wave functional further suggest that for weak enough coupling, G<Gc, a

pathological ground state with no continuum limit appears, where configurations with small curvature

have vanishingly small probability. One would then be lead to the conclusion that the weak coupling,

perturbative ground state of quantum gravity is nonperturbatively unstable and that gravitational screening

cannot be physically realized in the lattice theory. The results we find tend to be in general agreement with

the Euclidean lattice gravity results and would suggest that the Lorentzian and Euclidean lattice

formulations of gravity ultimately describe the same underlying nonperturbative physics.
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I. INTRODUCTION

We have argued in previous work that the correct iden-
tification of the true ground state for quantum gravitation
necessarily requires the introduction of a consistent non-
perturbative cutoff, followed by the construction of the
continuum limit in accordance with the methods of the
renormalization group. To this day the only known way to
introduce such a nonperturbative cutoff reliably in quan-
tum field theory is via the lattice formulation. A wealth of
results has been obtained over the years using the
Euclidean lattice formulation, which allows the identifica-
tion of the physical ground state and the accurate calcu-
lations of gravitational scaling dimensions, relevant for the
scale dependence of Newton’s constant in the universal
scaling limit.

In this work we will focus instead on the Hamiltonian
approach to gravity, which assumes from the very begin-
ning a metric with Lorentzian signature. Recently a
Hamiltonian lattice formulation was written down based
on the Wheeler–DeWitt equation, where the gravity

Hamiltonian is expressed in the metric-space representa-
tion. Specifically, in Refs. [1,2] a general discrete
Wheeler–DeWitt equation was given for pure gravity,
based on the simplicial lattice transcription of gravity
formulated by Regge and Wheeler. Here we extend the
work initiated in Refs. [1,2] to the physical case of 3þ 1
dimensions and show how nonperturbative vacuum solu-
tions to the lattice Wheeler–DeWitt equations can be ob-
tained for arbitrary values of Newton’s constant G. The
procedure we follow is similar to what was done earlier in
2þ 1 dimensions. We solve the lattice equations exactly
for several finite and regular triangulations of the three-
sphere and then extend the result to an arbitrarily large
number of tetrahedra. We then argue that for large enough
volumes, the exact lattice wave functional is expected to
depend on geometric quantities only, such as the total
volumes and the total integrated curvature. In this process,
the regularity condition on the solutions of the wave equa-
tion at small volumes plays an essential role in constraining
the form of the vacuum wave functional. A key ingredient
in the derivation of the results is of course the local diffeo-
morphism invariance of the Regge–Wheeler lattice
formulation.
From the structure of the resulting wave function, a

number of potentially useful physical results can be
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obtained. First, one observes that the nonperturbative cor-
relation length is found to be finite for sufficiently large G.
At the critical point G ¼ Gc, which we determine exactly
from the structure of the wave function, fluctuations in the
curvature become unbounded, thus signaling a divergence
in the nonperturbative gravitational correlation length. We
argue that such a result can be viewed as consistent with the
existence of a nontrivial ultraviolet fixed point (or a phase
transition in statistical field theory language) in G.
Furthermore, the behavior of the theory in the vicinity of
such a fixed point is expected to determine, through stan-
dard renormalization group arguments, the scale depen-
dence of the gravitational coupling in the vicinity of the
ultraviolet fixed point.

An outline of the paper is as follows. In Sec. II, as a
background to the rest of the paper, we briefly summarize
the formalism of canonical gravity. At this stage the con-
tinuumWheeler–DeWitt equation with its invariance prop-
erties are introduced. We then briefly outline the general
properties of the lattice Wheeler–DeWitt equation pre-
sented in our previous work, and in Sec. III, we make
explicit various quantities that appear in it. Here we also
emphasize the important role of continuous lattice diffeo-
morphism invariance in the Regge theory, as it applies to
the case of 3þ 1-dimensional gravity. Section IV focuses
on basic scaling properties of the lattice equations and
useful choices for the lattice coupling constants, with the
aim of giving a more transparent form to the results ob-
tained later. Section V presents an outline of the method of
solution for the lattice equations, which are later discussed
in some detail for a number of regular triangulations of the
three-sphere. Then a general form of the wave function is
given that covers all previous discrete cases and thus allows
a study of the infinite volume limit. Section VI discusses
the issue of how to define an average volume and thus an
average lattice spacing, an essential ingredient in the in-
terpretation of the results given later. Section VII discusses
modifications of the wave function solution obtained when
the explicit curvature term in the Wheeler–DeWitt equa-
tion is added. Later, a partial differential equation for the
wave function is derived in the curvature and volume
variables. General properties of the solution to this equa-
tion are discussed in Sec. VIII. Section IX contains a brief
summary of the results obtained so far.

II. CONTINUUM AND DISCRETE
WHEELER–DEWITT EQUATION

Our work deals with the canonical quantization of grav-
ity, and we begin here therefore with a very brief summary
of the classical canonical formalism [3] as formulated by
Arnowitt, Deser, and Misner [4]. Many of the results found
in this section are not new, but nevertheless it will be
useful, in view of later applications, to recall here the
main results and provide suitable references for expres-
sions used in the following sections. Here xi (i ¼ 1, 2, 3)

will be coordinates on a three-dimensional manifold, and
indices will be raised and lowered with gijðxÞ (i, j ¼ 1, 2,

3), the three-metric on the given spacelike hypersurface.
As usual, gij denotes the inverse of the matrix gij. Our

conventions are such that the spacetime metric has signa-
ture �þþþ , that 4R is non-negative in a spacetime
containing normal matter, and that 3R is positive in a
three-space of positive curvature.
One goes from the classical to the quantum description

of gravity by promoting the metric gij, the conjugate

momenta �ij, the Hamiltonian density H, and the momen-
tum density Hi to quantum operators, with ĝij and �̂ij

satisfying canonical commutation relations. Then the clas-
sical constraints select physical states j�i, such that in the
absence of sources

Ĥj�i ¼ 0 Ĥij�i ¼ 0; (1)

whereas in the presence of sources, one has more generally

T̂j�i ¼ 0 T̂ij�i ¼ 0; (2)

with T̂ and T̂i describing matter contributions that can be

added to Ĥ and Ĥi. As is the case in nonrelativistic
quantum mechanics, one can choose different representa-
tions for the canonically conjugate operators ĝij and �̂ij.

In the functional metric representation, one sets

ĝ ijðxÞ ! gijðxÞ �̂ijðxÞ ! �iℏ � 16�G � �

�gijðxÞ :
(3)

Then quantum states becomewave functionals of the three-
metric gijðxÞ,

j�i ! �½gijðxÞ�: (4)

The constraint equations in Eq. (2) then become the
Wheeler–DeWitt equation [5,6],�
�16�G � Gij;kl

�2

�gij�gkl
� 1

16�G

ffiffiffi
g

p ð3R� 2�Þ

þ Ĥ�

�
�½gijðxÞ� ¼ 0; (5)

and the momentum constraint equation listed below. In
Eq. (5), Gij;kl is the inverse of the DeWitt supermetric,

Gij;kl ¼ 1

2
g�1=2ðgikgjl þ gilgjk � gijgklÞ: (6)

The three-dimensional DeWitt supermetric itself is
given by

Gij;kl ¼ 1

2

ffiffiffi
g

p ðgikgjl þ gilgjk � 2gijgklÞ: (7)

In the metric representation, the diffeomorphism constraint
reads
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�
2igijrk

�

�gjk
þ Ĥ�

i

�
�½gijðxÞ� ¼ 0; (8)

where Ĥ� and Ĥ�
i again are possible matter contributions.

In the following, we shall set both of these to zero as we
will focus here almost exclusively on the pure gravitational
case. Then the last constraint represents the necessary and
sufficient condition that the wave functional c ½g� be an
invariant under coordinate transformations [7].

We note here that in the continuum one expects the
commutator of two Hamiltonian constraints to be related
to the diffeomorphism constraint. In the following, we will,
for the time being, overlook this rather delicate issue and
focus our efforts instead mainly on the solution of the
explicit (lattice) Hamiltonian constraint of Eq. (15). It
should nevertheless be possible to revisit this important
issue at a later stage, once an exact, or approximate,
candidate expression for the wave functional is found.
The key issue at that stage will then be if the lattice wave
functional satisfies all physical requirements, including the
momentum constraint, in a suitable lattice scaling limit
wherein the (average) lattice spacing is much smaller than
a suitable physical scale, such as the scale of the local
curvature, or some other sort of agreeable physical corre-
lation length. For a more in-depth discussion of the analo-
gous problem in 2þ 1 dimensions, we refer the reader to
our previous work [2], where an explicit form for the
candidate wave functional was eventually given in terms
of manifestly invariant quantities such as areas and
curvatures.

We should also mention here that a number of rather
basic issues needs to be considered before one can gain
a consistent understanding of the full content of the
theory (see, for example, Refs. [8–12]). These include
potential problems with operator ordering and the speci-
fication of a suitable Hilbert space, which entails a
choice for the norm of wave functionals, for example,
in the Schrödinger form

k�k2 ¼
Z

d�½g���½gij��½gij�; (9)

where d�½g� is the appropriate (DeWitt) functional mea-
sure over the three-metric gij. In this work, we will

attempt to address some of those issues, as they will
come up within the relevant calculations.

In this paper, the starting point will be the Wheeler–
DeWitt equation for pure gravity in the absence of
matter, Eq. (5),

�
�ð16�GÞ2Gij;klðxÞ �2

�gijðxÞ�gklðxÞ�
ffiffiffiffiffiffiffiffiffiffi
gðxÞ

q
ð3RðxÞ� 2�Þ

�
��½gijðxÞ� ¼ 0; (10)

combined with the diffeomorphism constraint of Eq. (8),

�
2igijðxÞrkðxÞ �

�gjkðxÞ
�
�½gijðxÞ� ¼ 0: (11)

Both of these equations express a constraint on the state
j�i at every x. It is then natural to view Eq. (10) as made
up of three terms, the first one identified as the kinetic term
for the metric degrees of freedom, the second one involving
� ffiffiffi

g
p 3R and thus seen as a potential energy contribution (of

either sign, due to the nature of the three-curvature 3R), and
finally the cosmological constant term proportional to
þ�

ffiffiffi
g

p
acting as a masslike term. The kinetic term contains

a Laplace–Beltrami-type operator acting on the six-
dimensional Riemannian manifold of positive definite met-
rics gij, withGij;kl acting as its contravariant metric [7]. As

shown in the quoted reference, the manifold in question has
hyperbolic signature �þþþþþ , with pure dilations
of gij corresponding to timelike displacements within this

manifold of metrics.
Next we turn to the lattice theory. Here we will generally

follow the procedure outlined in Ref. [1] and discretize the
continuumWheeler–DeWitt equation directly, a procedure
that makes sense in the lattice formulation, as these equa-
tions are still formulated in terms of geometric objects, for
which the Regge theory is very well suited. It is known that
on a simplicial lattice [13–19] (see, for example, Ref. [20]
for a more detailed presentation of the Regge–Wheeler
lattice formulation) deformations of the squared edge
lengths are linearly related to deformations of the induced
metric. In a given simplex �, take coordinates based at a
vertex 0, with axes along the edges emanating from 0. Then
the other vertices are each at unit coordinate distance from
0 (see Fig. 1 as an example of this labeling for a tetrahe-
dron). With this choice of coordinates, the metric within a
given simplex is

gijð�Þ ¼ 1

2
ðl20i þ l20j � l2ijÞ: (12)

We note that in the following discussion only edges and
volumes along the spatial directions are involved. Then by
varying the squared volume of a given simplex � in d
dimensions to quadratic order in the metric (in the contin-
uum), or in the squared edge lengths belonging to that
simplex (on the lattice), one is led to the identification
[21,22]

0
1

2

l02

l01

l12

3

l03

l23

l13

FIG. 1. A tetrahedron with labels.
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Gijðl2Þ ¼ �d!
X
�

1

Vð�Þ
@2V2ð�Þ
@l2i @l

2
j

; (13)

where the quantity Gijðl2Þ is local, since the sum over �
only extends over those simplices which contain either the
i or the j edge. In the formulation of Ref. [1], it will be
adequate to limit the sum in Eq. (13) to a single tetrahedron
and define the quantity Gij for that tetrahedron. Then, in
schematic terms, the lattice Wheeler–DeWitt equation for
pure gravity takes on the form�
�ð16�GÞ2Gijðl2Þ @2

@l2i @l
2
j

�
ffiffiffiffiffiffiffiffiffiffi
gðl2Þ

q
½3Rðl2Þ�2��

�
�½l2�¼0;

(14)

with Gijðl2Þ the inverse of the matrix Gijðl2Þ given above.

The range of summation over the indices i and j and the
appropriate expression for the scalar curvature will be
made explicit later in Eq. (15).

It is clear that Eqs. (5) or (14) express a constraint at
each ‘‘point’’ in space. Indeed, the first term in Eq. (14)
contains derivatives with respect to edges i and j connected
by a matrix element Gij, which is nonzero only if i and j

are close to each other and thus nearest neighbor.1 One
expects therefore that the first term can be represented by a
sum of edge contributions, all from within one (d� 1)-
simplex � (a tetrahedron in three dimensions). The second
term containing 3Rðl2Þ in Eq. (14) is also local in the edge
lengths: it only involves those edge lengths which enter
into the definition of areas, volumes, and angles around the
point x. The latter is therefore described, through the
deficit angle �h, by a sum over contributions over all
(d� 3)-dimensional hinges (edges in 3þ 1 dimensions)

h attached to the simplex �. This then leads in three
dimensions to a more explicit form of Eq. (14):�

�ð16�GÞ2 X
i;j��

Gijð�Þ @2

@l2i @l
2
j

� 2n�h
X
h��

lh�h

þ 2�V�

�
�½l2� ¼ 0: (15)

In the above expression, �h is the deficit angle at the hinge

(edge) h, lh the corresponding edge length, and V� ¼ffiffiffiffiffiffiffiffiffiffi
gð�Þp

the volume of the simplex (tetrahedron in three
spatial dimensions) labeled by �. The matrix Gijð�Þ is

obtained either from Eq. (13) or from the lattice transcrip-
tion of Eq. (6),

Gij;klð�Þ ¼ 1

2
g�1=2ð�Þ½gikð�Þgjlð�Þ þ gilð�Þgjkð�Þ

� gijð�Þgklð�Þ�; (16)

with the induced metric gijð�Þ within a simplex � given in

Eq. (12). Note that the combinatorial factor n�h gives the
correct normalization for the curvature term, since the
latter has to give the lattice version of

R ffiffiffi
g

p 3R ¼
2
P

h�hlh when summed over all simplices �. One can
see then that the inverse of n�h counts the number of times
the same hinge appears in various neighboring simplices
and depends therefore on the specific choice of underlying
lattice structure. The lattice Wheeler–DeWitt equation
given in Eq. (15) was the main result of a previous paper
[1] and was studied extensively in 2þ 1 dimensions in a
previous work [2].

III. EXPLICIT SETUP FOR THE LATTICE
WHEELER–DEWITT EQUATION

In the following, we will now focus on a
three-dimensional lattice made up of a large number of
tetrahedra, with squared edge lengths considered as the
fundamental degrees of freedom. For ease of notation, we
define l201 ¼ a, l212 ¼ b, l202 ¼ c, l203 ¼ d, l213 ¼ e, l223 ¼ f.
For the tetrahedron labeled as in Fig. 1, we have

g11 ¼ a; g22 ¼ c; g33 ¼ d; (17)

g12 ¼ 1

2
ðaþ c� bÞ; g13 ¼ 1

2
ðaþ d� eÞ;

g23 ¼ 1

2
ðcþ d� fÞ;

(18)

and its volume V is given by

V2 ¼ 1

144
½afð�a� fþ bþ cþ dþ eÞ

þ bdð�b� dþ aþ cþ eþ fÞ
þ ceð�c� eþ aþ bþ dþ fÞ
� abc� ade� bef� cdf�: (19)

1In Regge gravity, spacetime diffeomorphisms correspond to
movements of the vertices which leave the local geometry
unchanged (see, for example, Refs. [13,19,23] and further refer-
ences therein). In the present case, the lattice Hamiltonian
constraints can be naturally viewed as generating local deforma-
tions of the spatial lattice hypersurface. One would therefore
expect the Hamiltonian constraint to be based here on the lattice
vertices as well. But this seems nearly impossible to implement,
as the definition of the local lattice supermetric Gijðl2Þ based on
Eq. (12) clearly requires the consideration of a full tetrahedron,
as do the derivatives with respect to the edges, and finally the
very definition of the curvature and volume terms. One could
possibly still insist on defining the Hamiltonian constraint on a
vertex by averaging over contributions from many neighboring
tetrahedra, but this would make the lattice problem intractable
from a practical point of view. How this choice will ultimately
affect the counting of degrees of freedom is unclear at this stage,
for two reasons. The first one is that in the Regge theory there is
in general a certain redundancy of degrees of freedom [13], with
unwanted ones either decoupling or acquiring a mass of the order
of the ultraviolet cutoff. Furthermore, as will be shown later for
example in Eq. (44), the detailed relationship between the
number of lattice vertices and tetrahedra clearly depends on
the chosen lattice structure, and more specifically on the local
lattice coordination number.
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The matrix Gij is then given by

Gij ¼ � 1

24V

�2f eþ f� b bþ f� e dþ f� c cþ f� d p

eþ f� b �2e bþ e� f dþ e� a q aþ e� d

bþ f� e bþ e� f �2b r bþ c� a aþ b� c

dþ f� c dþ e� a r �2d cþ d� f aþ d� e

cþ f� d q bþ c� a cþ d� f �2c aþ c� b

p aþ e� d aþ b� c aþ d� e aþ c� b �2a

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (20)

where the three quantities p, q, and r are defined as

p ¼ �2a� 2fþ bþ cþ dþ e;

q ¼ �2c� 2eþ aþ bþ dþ f;

r ¼ �2b� 2dþ aþ cþ eþ f:

(21)

To obtain Gij, one can then either invert the above expres-
sion or evaluate

Gij;kl ¼ 1

2
ffiffiffi
g

p ðgikgjl þ gilgjk � gijgklÞ; (22)

and later replace derivatives with respect to the metric by
derivatives with respect to the squared edge lengths, as in
@

@g11
¼ @

@a þ @
@b þ @

@e , etc. One finds [1] that the matrix rep-

resenting the coefficients of the derivatives with respect to

the squared edge lengths is the same as the inverse ofGij, a
result that provides a nontrivial confirmation of the correct-
ness of the Lund–Regge result of Eq. (13). Then in 3þ 1
dimensions, the discrete Wheeler–DeWitt equation is�
�ð16�GÞ2Gij

@2

@si@sj
�2n�h

X
h

ffiffiffiffiffi
sh

p
�hþ2�V

�
�½s�¼0;

(23)

where the sum is over hinges (edges) h in the tetrahedron
and V is the volume of the given tetrahedron. Note that the
above represents one equation for every tetrahedron on the
lattice. Thus, if the lattice containsN3 tetrahedra, there will
beN3 coupled equations that will need to be solved in order
to determine �½s�. Note also the mild nonlocality of the
equation in that the curvature term, through the deficit
angles, involves edge lengths from neighboring tetrahedra.
Of course, in the continuum, the derivatives also give some
very mild nonlocality. Figure 2 gives a pictorial represen-
tation of lattices that can be used for numerical studies of
quantum gravity in 3þ 1 dimensions.

In the following, we will be concerned at some point
with various discrete, but generally regular, triangulations
of the three-sphere [24,25]. These were already studied in
some detail within the framework of the Regge theory in
Ref. [17], where in particular the 5-cell �4, the 16-cell �4,
and the 600-cell regular polytopes (as well as a few others)
were considered in some detail. For a very early

application of these regular triangulations to general rela-
tivity, see Ref. [26].
We shall not dwell here on a well-known key aspect of

the Regge–Wheeler theory, which is the presence of a
continuous, local lattice diffeomorphism invariance, of
which the main aspects in regards to its relevance for the
3þ 1 formulation of gravity were already addressed in
some detail in various works, both in the framework of
the lattice weak field expansion [1,13] and beyond it
[19,23]. Here we will limit ourselves to some brief remarks
on how this local invariance manifests itself in the 3þ 1
formulation and, in particular, in the case of the discrete
triangulations of the sphere studied later on in this paper. In
general, lattice diffeomorphisms in the Regge–Wheeler
theory can be viewed as corresponding to local deforma-
tions of the edge lengths about a vertex, which leave the
local geometry physically unchanged, the latter being de-
scribed by the values of local lattice operators correspond-
ing to local volumes and curvatures [13,19,23]. The case of
flat space (curvature locally equal to zero) or near-flat
space (curvature locally small) is obviously the simplest
to analyze [23]: by moving the location of the vertices
around on a smooth manifold, one can find different as-
signments of edge lengths representing locally the same
flat, or near-flat, geometry. It is then easy to show that one
obtains a d � N0-parameter family of local transformations

FIG. 2. A small section of a suitable spatial lattice for quantum
gravity in 3þ 1 dimensions.
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for the edge lengths, as expected for lattice diffeomor-
phisms. For the present case, the relevant lattice
diffeomorphisms are the ones that apply to the three-
dimensional, spatial theory. The reader is referred to
Ref. [27] and, more recently, Ref. [1] for their explicit
form within the framework of the lattice weak field
expansion.

With these observations in mind, we can now turn to a
discussion of the solution method for the lattice Wheeler–
DeWitt equation in 3þ 1 dimensions. One item that needs
to be brought up at this point is the proper normalization of
various terms (kinetic, cosmological, and curvature)
appearing in the lattice equation of Eqs. (15) and (23).
For the lattice gravity action in d dimensions, one has
generally the following well-understood correspondence:

Z
ddx

ffiffiffi
g

p $ X
�

V�; (24)

where V� is the volume of a simplex; in three dimensions,
it is simply the volume of a tetrahedron. The curvature term
involves deficit angles in the discrete case,

1

2

Z
ddx

ffiffiffi
g

p
R $ X

h

Vh�h; (25)

where �h is the deficit angle at the hinge h, and Vh is the
associated ‘‘volume of a hinge’’ [28]. In four dimensions,
the latter is the area of a triangle (usually denoted by Ah),
whereas in three dimensions, it is simply given by the
length lh of the edge labeled by h. In this work, we will
focus almost exclusively on the case of 3þ 1 dimensions;
consequently the relevant formulas will be Eqs. (24) and
(25) for dimension d ¼ 3.

The continuum Wheeler–DeWitt equation is local, as
can be seen from Eq. (10). One can integrate the Wheeler–
DeWitt operator over all space and obtain�
�ð16�GÞ2

Z
d3x�ðgÞþ2�

Z
d3x

ffiffiffi
g

p �
Z
d3x

ffiffiffi
g

p
R

�
�¼0;

(26)

with the super-Laplacian on metrics defined as

�ðgÞ � Gij;klðxÞ �2

�gijðxÞ�gklðxÞ : (27)

We have seen before that in the discrete case one has one
local Wheeler–DeWitt equation for each tetrahedron [see
Eqs. (14) and (15)], which can be written as�

�ð16�GÞ2�ðl2Þ � 	
X
h��

�hlh þ 2�V�

�
� ¼ 0; (28)

where now �ðl2Þ is the lattice version of the super-
Laplacian, and we have set for convenience 	 ¼ 2n�h.
As we shall see below, for a regular lattice of fixed coor-
dination number, 	 is a constant and does not depend on

the location on the lattice. In the above expression,�ðl2Þ is
a discretized form of the covariant super-Laplacian, acting
locally on the space of s ¼ l2 variables,

�ðl2Þ � Gij

@2

@si@sj
; (29)

with the matrix Gij given explicitly in Eq. (20). Note that
the curvature term involves six deficit angles �h, associated
with the six edges of a tetrahedron.
Now, the local lattice Wheeler–DeWitt equation of

Eq. (23) applies to a single given tetrahedron (labeled
here by �), with one equation to be satisfied at each
tetrahedron on the lattice. At this point, some simple addi-
tional checks can be performed. For example, one can also
construct the total Hamiltonian by simply summing over
all tetrahedra, which leads to�
�ð16�GÞ2X

�

�ðl2Þ þ 2�
X
�

V� � 	
X
�

X
h��

lh�h

�
� ¼ 0:

(30)

The above expression represents therefore an integral over
Hamiltonian constraints with unit density weights. Note
that indeed the second term involves the total lattice vol-
ume (the lattice analog of

R
d3x

ffiffiffi
g

p
), and the third one

contains, as expected, the total lattice curvature (the lattice
analog of

R
d3x

ffiffiffi
g

p
R) [28].

Summing over all tetrahedra (�) is different from
summing over all hinges (h), and the above equation is
equivalent to�
�ð16�GÞ2X

�

�ðl2Þþ2�
X
�

V��	q
X
h

lh�h

�
�¼0; (31)

where q here is the lattice coordination number. The latter
is determined by how the lattice is put together (which
vertices are neighbors to each other, or, equivalently, by the
so-called incidence matrix). Here q is therefore the number
of neighboring simplices that share a given hinge (edge).
For a flat triangular lattice in 2d q ¼ 6, whereas for the
regular triangulations of S3 we will be considering below,
one has q ¼ 3, 4, 5. For more general, irregular triangu-
lations, q might change locally throughout the lattice. In
this case, it is more meaningful to talk about an average
lattice coordination number hqi [16]. For proper normal-
ization in Eq. (30), one requires the three-dimensional
version of Eqs. (24) and (25), which fixes the overall
normalization of the curvature term

	 � 2n�h ¼ 2

q
; (32)

thus determining the relative weight of the local volume
and curvature terms.2 At this point, it seems worth

2For more general, irregular triangulations, q might change
locally throughout the lattice. Then it will be more meaningful to
talk about an average lattice coordination number hqi [16].
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emphasizing that from now on wewill focus exclusively on
the set of coupled local lattice Wheeler–DeWitt equations,
given explicitly in Eq. (23) or (28), with one equation for
each lattice tetrahedron.

IV. CHOICE OF COUPLING CONSTANTS

We will find it convenient, in analogy to what is com-
monly done in the Euclidean lattice theory of gravity, to
factor out an overall irrelevant length scale from the prob-
lem and set the (unscaled) cosmological constant equal to 1
[17]. Indeed, recall that the Euclidean path integral statis-
tical weight always contains a factor PðVÞ / exp ð��0VÞ,
where V ¼ R ffiffiffi

g
p

is the total volume on the lattice, and �0

is the unscaled cosmological constant. A simple global
rescaling of the metric (or edge lengths) then allows one
to entirely reabsorb this �0 into the local volume term. The
choice �0 ¼ 1 then trivially fixes this overall scale once
and for all. Since �0 ¼ 2�=16�G, one then has � ¼ 8�G
in this system of units. In the following, we will also find it

convenient to introduce a scaled coupling ~� defined as

~� � �

2

�
1

16�G

�
2
: (33)

Then for �0 ¼ 1 (in units of the UV cutoff or, equivalently,
in units of the fundamental lattice spacing), one has
~� ¼ 1=64�G.
Two further notational simplifications will be useful in

the following. The first one is introduced in order to avoid
lots of factors of 16� in many of the formulas. So from now
on, we shall write G as a shorthand for 16�G,

16�G ! G: (34)

In this new notation, one has � ¼ G=2 and ~� ¼ 1=4G. The
above notational choices then lead to a more streamlined
representation of the Wheeler–DeWitt equation, namely,�

��þ 1

G

ffiffiffi
g

p � 1

G2

ffiffiffi
g

p 3R

�
� ¼ 0: (35)

Note that we have arranged things so that now the kinetic
term (the term involving the Laplacian) has a unit coeffi-
cient. Then in the extreme strong coupling limit (G ! 1),
the kinetic term is the dominant one, followed by the
volume (cosmological constant) term (using the facts

about ~� given above) and, finally, by the curvature term.
Consequently, at least in a first approximation, the curva-
ture R term can be neglected compared to the other two
terms, in this limit.

A second notational choice will later be dictated by the
structure of the wave function solutions, which often

involve numerous factors of
ffiffiffiffi
G

p
. It will therefore be useful

to define a new coupling g as

g � ffiffiffiffi
G

p
(36)

so that ~� ¼ 4=g2 (the latter g should not be confused with
the square root of the determinant of the metric).

V. OUTLINE OF THE GENERAL
METHOD OF SOLUTION

The previous discussion shows that in the strong cou-
pling limit (large G) one can, at least in a first approxima-
tion, neglect the curvature term, which will then be
included at a later stage. This simplifies the problem con-
siderably, as it is the curvature term that introduces
complicated interactions between neighboring simplices.
Here the general procedure for finding a solution will be

rather similar to what was done in 2þ 1 dimensions, as the
formal issues in obtaining a solution are not dramatically
different. First, an exact solution is found for equilateral
edge lengths s. Later, this solution is extended to determine
whether it is consistent to higher order in the weak field
expansion, where one writes for the squared edge lengths
the expansion

l2ij ¼ sð1þ 
hijÞ; (37)

with 
 a small expansion parameter. The resulting solution
for the wave function can then be obtained as a suitable
power series in the h variables, combined with the standard
Frobenius method, appropriate for the study of quantum
mechanical wave equations for suitably well-behaved
potentials. In this method, one first determines the correct
asymptotic behavior of the solution for small and large
arguments and later constructs a full solution by writing the
remainder as a power series or polynomial in the relevant
variable. While this last method is rather time consuming,
we have found nevertheless that in some cases (such as the
single triangle in 2þ 1 dimensions and the single tetrahe-
dron in 3þ 1 dimensions, described in Ref. [1] and also
below), one is lucky enough to find immediately an exact
solution, without having to rely in any way on the weak
field expansion.
More importantly, in Ref. [2], it was found that already

in 2þ 1 dimensions this rather laborious weak field
expansion of the solution is not really necessary, for the
following reason. Diffeomorphism invariance (on the lat-
tice and in the continuum) of the theory severely restricts
the form of the Wheeler–DeWitt wave function to a func-
tion of invariants only, such as total three-volumes and
curvatures, or powers thereof. In other words, the wave
function is found to be a function of invariants such asR
ddx

ffiffiffi
g

p
or

R
ddx

ffiffiffi
g

p
Rn, etc. (these will be listed in more

detail below for the specific case of 3þ 1 dimensions,
where one has d ¼ 3 in the above expressions).
For concreteness and computational expedience, in the

following, we will look at a variety of three-dimensional
simplicial lattices, including regular triangulations of the
three-sphere S3 constructed as convex four-polytopes, the
latter describing closed and connected figures composed of
lower dimensional simplices. Here these will include the
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five-cell four-simplex or hypertetrahedron (Schläfli symbol
f3; 3; 3g) with 5 vertices, 10 edges, and 5 tetrahedra; the
16-cell hyperoctahedron (Schläfli symbol f3; 3; 4g) with 8
vertices, 24 edges, and 16 tetrahedra; and the 600-cell
hypericosahedron (Schläfli symbol f3; 3; 5g) with 120 ver-
tices, 720 edges, and 600 tetrahedra [24,25]. Note that the
Euler characteristic for all four-polytopes that are topo-
logical three-spheres is zero, � ¼ N0 � N1 þ N2 � N3 ¼
0, where Nd is the number of simplices of dimension d. We
also note here that there are no known regular equilateral
triangulations of the flat three-torus in three dimensions,
although very useful slightly irregular (but periodic) trian-
gulations are easily constructed by subdividing cubes on a
square lattice into tetrahedra [27].

In the following, we will also recognize that there are
natural sets of variables for displaying the results. One of
them is the scaled total volume x, defined as

x � 4
ffiffiffiffiffiffi
2�

p
qG

X
�

V� ¼ 4
ffiffiffiffiffiffi
2�

p
qG

Vtot: (38)

Later on, we will be interested in making contact with
continuum manifolds, by taking the infinite volume (or
thermodynamic) limit, defined in the usual way as

N� ! 1; Vtot ! 1;
Vtot

N�

! const; (39)

with N� � N3 here the total number of tetrahedra. It
should be clear that this last ratio can be used to define
a fundamental lattice spacing a0, for example, via

Vtot=N� � V� ¼ a30=6
ffiffiffi
2

p
.

The full solution of the quantum mechanical problem
will, in general, require that the wave functions be properly
normalized, as in Eq. (9). This will introduce at some stage
wave function normalization factors N , which will later
be fixed by the standard rules of quantum mechanics. If the
wave function were to depend on the total volume Vtot only
(which is the case in 2þ 1 dimensions, but not in 3þ 1),
then the relevant requirement would simply be

k�k2 �
Z

d�½g� � j�½gij�j2

¼
Z 1

0
dVtot � Vm

tot � j�ðVtotÞj2 ¼ 1; (40)

where d�½g� is the appropriate functional measure over the
three-metric gij and m a positive real number representing

the correct entropy weighting. But, not unexpectedly, in
3þ 1 dimensions, the total curvature also plays a role, so
the above can only be regarded as roughly correct in the
strong coupling limit (large G), where the curvature con-
tribution to the Wheeler–DeWitt equation can safely be
neglected. As in nonrelativistic quantum mechanics, the
normalization condition in Eqs. (9) and (40) plays a crucial
role in selecting out of the two solutions the one that is

regular and therefore satisfies the required wave function
normalizability condition.
To proceed further, it will be necessary to discuss each

lattice separately in some detail. For each lattice geometry,
we will break down the presentation into two separate
discussions. The first part will deal with the case of no
explicit curvature term in the Wheeler–DeWitt equation.
Each regular triangulation of the three-sphere will be first
analyzed separately and subjected to the required regular-
ity conditions. Here a solution is first obtained in the
equilateral case and later promoted on the basis of lattice
diffeomorphism invariance to the case of arbitrary edge
lengths, as was done in Ref. [2]. Later, a single general
solution will be written down, involving the parameter q,
which covers all previous triangulation cases, and thereby
allows a first study of the infinite volume limit. The second
part deals with the extension of the previous solutions to
the case when the curvature term in the Wheeler–DeWitt
equation is included. This case is more challenging to treat
analytically, and the only results we have obtained so far
deal with the large volume limit, for which the solution is
nevertheless expected to be exact (as was the case in 2þ 1
dimensions [2]).

A. Nature of solutions in 3 þ 1 dimensions

In this work, we will be concerned with the solution of
the Wheeler–DeWitt equation for discrete triangulations of
the three-sphere S3. In general, for an arbitrary triangula-
tion of a smooth closed manifold in three dimensions, one
can write down the Euler equation

N0 � N1 þ N2 � N3 ¼ 0 (41)

and the Dehn–Sommerville relation

N2 ¼ 2N3: (42)

The latter follows from the fact that each triangle is shared
by two tetrahedra and each tetrahedron has four triangles,
thus 2N2 ¼ 4N3. In addition, for the regular triangulations
of the three-sphere we will be considering here, one has the
additional identity

N1 ¼ 6

q
N3; (43)

where q is the local coordination number, defined as the
number of tetrahedra meeting at an edge. For the three
regular triangulations of the three-sphere, we will look at
one that has q ¼ 3, 4, 5. The above relations then allow us
to relate the number of sites (N0) to the number of tetrahe-
dra (N3),

N0 ¼ N3

�
6

q
� 1

�
: (44)

It will also turn out to be convenient to collect here a
number of useful definitions, results, and identities that
apply to the regular triangulations of the three-sphere, valid

HAMBER, TORIUMI, AND WILLIAMS PHYSICAL REVIEW D 88, 084012 (2013)

084012-8



strictly when all edge lengths take on the same identical
value l ¼ ffiffiffi

s
p

. For the total volume

Vtot �
X
�

V� $
Z

d3x
ffiffiffi
g

p
; (45)

one has

Vtot ¼ N3V� ¼ s3=2

6
ffiffiffi
2

p N3; (46)

whereas the total curvature

Rtot � 2
X
h

�hlh $
Z

d3x
ffiffiffi
g

p
R (47)

is given by

Rtot ¼ 12
ffiffiffi
s

p
q

�
2�� qcos�1

�
1

3

��
N3: (48)

The latter relationship can be inverted to give the para-
meter q as a function of the curvature

q ¼ q0

�
1� Rtot

Rtot þ 24�
ffiffi
s

p
q0

N3

�
(49)

and its inverse as

q�1 ¼ q�1
0 þ Rtot

24�
ffiffiffi
s

p
N3

; (50)

so that this last quantity is just linear in Rtot. A very special
value for q corresponds to the choice q ¼ q0 for which
Rtot ¼ 0. For this case, one has

q0 � 2�

cos�1ð13Þ
¼ 5:1043: (51)

We emphasize here again that the relationships just given
above apply to the rather special case of an equilateral
triangulation.

Then, summarizing all the previous discussions, the
discretized Wheeler–DeWitt equation one wants to solve
here in the most general case is the one given in Eq. (23)
or (28),�
�G2

X
i;j��

Gijð�Þ @2

@l2i @l
2
j

� 	
X
h��

lh�h þ 2�V�

�
c ½l2� ¼ 0;

(52)

with parameter 	 given by

	 ¼ 2

q
: (53)

Note that Eq. (52) still represents one equation per lattice
tetrahedron. Thus, if the lattice is made up of N3 tetrahe-
dra, the problem will in general still require the solution of
N3 coupled equations of the type given in Eq. (52), involv-
ing in the most general case N1 edge lengths. As will be
discussed further below, the proposed method of solution

will be quite similar to what was used earlier in 2þ 1
dimensions [2], namely, a combination of the weak field
expansion and the Frobenius method, which in Ref. [2]
gave the exact solution for the wave function for each
lattice in the limit of large areas. If the reader is not
interested here in the details of the solution for each
individual lattice, then (s)he can skip the following
sections and move on directly to Sec. V F.

B. One-cell complex (single tetrahedron)

As a first case, we consider here the quantum-
mechanical problem of a single tetrahedron. One has
N0 ¼ 4, N1 ¼ 6, N2 ¼ 4, N3 ¼ 1, and q ¼ 1 [note that
these do not satisfy the Euler and Dehn–Sommerville
relations; only the relation between N1, N3, and q,
Eq. (44), is satisfied for a single tetrahedron]. The single
tetrahedron problem is relevant for the strong coupling
(large G) limit. In this limit, one can neglect the curvature
term, which couples different tetrahedra to each other, and
one is left with the local degrees of freedom, involving a
single tetrahedron.
The Wheeler–DeWitt equation for a single tetrahedron

with a constant curvature density term R reads�
�ð16�GÞ2Gij

@2

@si@sj
þ ð2�� RÞV

�
�½s� ¼ 0; (54)

where now the squared edge lengths s1 . . . s6 are all part of
the same tetrahedron, and Gij is given by a rather compli-

cated, but explicit, 6� 6 matrix given earlier.
As in the 2þ 1 case previously discussed in Ref. [2],

here, too, it is found that, when acting on functions of the
tetrahedron volume, the Laplacian term still returns some
other function of the volume only, which makes it possible
to readily obtain a full solution for the wave function. In
terms of the volume of the tetrahedron V�, one has the
equivalent equation for �½s� ¼ �ðV�Þ (note that we have
now replaced for notational convenience 16�G ! G),

c 00ðV�Þ þ 7

V�

c 0ðV�Þ þ 32�

G2
c ðV�Þ ¼ 0; (55)

with primes indicating derivatives with respect to V�. From
now on, wewill set the constant curvature densityR ¼ 0. If
one introduces the dimensionless (scaled volume) variable

x � 4
ffiffiffiffiffiffi
2�

p
G

Vtot; (56)

where Vtot � V� is the volume of the tetrahedron, then
the differential equation for a single tetrahedron becomes
simply

c 00ðxÞ þ 7

x
c 0ðxÞ þ c ðxÞ ¼ 0: (57)

Solutions to Eq. (55) or (57) are Bessel functions Jm or Ym

with m ¼ 3,
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c RðVtotÞ ¼ const: J3

�
4

ffiffiffiffiffiffi
2�

p
G

Vtot

�
=V3

tot; (58)

or

c SðVtotÞ ¼ const: Y3

�
4

ffiffiffiffiffiffi
2�

p
G

Vtot

�
=V3

tot: (59)

Only JmðxÞ is regular as x ! 0, JmðxÞ � �ðmþ 1Þ�1 �
ðx=2Þm. In terms of the variable x, the regular solution is
therefore

c ðVtotÞ / J3ðxÞ
x3

/
J3
�
4
ffiffiffiffi
2�

p
G Vtot

	
V3
tot

; (60)

and the only physically acceptable wave function is

�ða; b; . . . fÞ ¼ �ðVtotÞ ¼ N
J3
�
4
ffiffiffiffi
2�

p
G Vtot

	
V3
tot

; (61)

with normalization constant

N ¼ 45
ffiffiffiffiffiffiffiffiffi
77�

p

1024 23=4

�
Gffiffiffiffi
�

p
�
5=2

: (62)

The latter is obtained from the wave function normali-
zation requirementZ 1

0
dVtotj�ðVtotÞj2 ¼ 1: (63)

Note that the solution given in Eq. (60) is exact and a
function of the volume of the tetrahedron only; its only
dependence on the values of the edge lengths of the tetra-
hedron [or, equivalently, on the metric; see Eq. (12)] is
through the total volume. It is worth stressing here that in
order to find the exact solution for the wave function it
would have been enough to in fact just consider the equi-
lateral case. The complete solution would then be read off
immediately from this special case, if one were to assume
(as one should) that the exact wave functional is expected
to be a function of invariants only, and therefore gauge
independent.

One can compute the average volume of the single
tetrahedron, which is given by

hVtoti �
Z 1

0
dVtot � Vtot � j�ðVtotÞj2 ¼ 31185�G

262144
ffiffiffiffiffiffi
2�

p

¼ 0:2643
Gffiffiffiffi
�

p : (64)

This last result allows us to define an average lattice
spacing by comparing it to the value for an equilateral

tetrahedron for which Vtot ¼ ð1=6 ffiffiffi
2

p Þa30. One obtains

a0 ¼ 1:3089

�
Gffiffiffiffi
�

p
�
1=3

: (65)

In terms of the parameter ~� defined in Eq. (33) one hasffiffiffiffi
�

p
=G ¼

ffiffiffiffiffiffi
2~�

p
. With the notation of Eq. (36) one has as

well G=
ffiffiffiffi
�

p ¼ ffiffiffiffiffiffiffi
2G

p ¼ ffiffiffi
2

p
g. Then for a single tetrahedron

one has hVtoti � hV�i ¼ 0:3738g.
The single tetrahedron problem is clearly quite relevant

for the limit of strong gravitational coupling, 1=G ! 0. In
this limit lattice quantum gravity has a finite correlation
length, comparable to one lattice spacing,

�� a0: (66)

This last result is seen here simply as a reflection of the fact
that for large G the edge lengths, and therefore the metric,
fluctuate more or less independently in different spatial
regions, due to the absence of the curvature term in the
Wheeler–DeWitt equation. This is of course true also in
the Euclidean lattice theory, in the same limit [17]. It is the
inclusion of the curvature term that later leads to a coupling
between fluctuations in different spatial regions, an essen-
tial ingredient of the full theory.

C. Five-cell complex (configuration of five tetrahedra)

The first regular triangulation of S3 we will consider is
the five-cell complex, sometimes referred to as the hyper-
tetrahedron. Here one has N0 ¼ 5, N1 ¼ 10, N2 ¼ 10,
N3 ¼ 5, and q ¼ 3, since there are three tetrahedra meet-
ing on each edge. Then for the parameter 	 appearing in
Eq. (52), one has

	 ¼ 2

3
: (67)

First, we will consider the case of no curvature term in the
lattice Wheeler–DeWitt equation of Eq. (52). The curva-
ture term will be reintroduced at a later stage (see Sec. VII),
as its presence considerably complicates the solution of the
lattice equations.
Solving the lattice equations directly (by brute force, one

might say) in terms of the edge length variables is a rather
difficult task, since many edge lengths are involved, in-
creasingly more so for finer triangulations. Nevertheless,
it can be done, to some extent, in 2þ 1 dimensions [2], and
possibly even in 3þ 1 dimensions, analytically for some
special cases or numerically for more general cases. To
obtain a full solution to the lattice equations, we rely here
instead on a simpler procedure, already employed success-
fully (and checked explicitly) in 2þ 1 dimensions.
First, an exact wave function solution to the lattice

Wheeler–DeWitt equations is obtained for the equilateral
case, where all edges in the simplicial complex are
assumed to have the same length. This is achieved (as in
Ref. [2]) by utilizing a combination of the weak field
expansion of Eq. (37) and the Frobenius (or power series
expansion method) in order to obtain a solution to Eq. (52).
In order to obtain such a solution, one first looks at the limit
of large and small volumes, from which the asymptotic
behavior of the solution is determined. Note that one has
one Wheeler–DeWitt equation per lattice tetrahedron,
which implies that one is seeking a solution to N3 coupled
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equations, involving a single wave function for which the
arguments are the N1 edge lengths. Nevertheless, since one
is dealing here with a regular triangulation of the sphere,
all equations will have exactly the same form due to the
symmetry of the problem. It will therefore be adequate,
because of this symmetry, to focus on a given single
tetrahedron and on how the associated local lattice
Wheeler–DeWitt operator acts on the total wave function.
As stated previously, the latter will in general involve all
lattice edge lengths. But a further simplification arises
because of the locality of the lattice Wheeler–DeWitt
equation, which restricts interactions to edge lengths that
are not too far apart. As a consequence, when determining
the structure of the wave function solution, it will be
adequate to only consider terms (local volume contribu-
tions, for example) that involve edges which are directly
affected by the derivative terms in the local Wheeler–
DeWitt operator of Eqs. (28) and (52). Nevertheless, the
problem is, in spite of the above-mentioned simplifica-
tions, still of considerable algebraic complexity in view
of the many edges that still are affected by the action of the
local Wheeler–DeWitt operator. These generally include
all the edges within the given tetrahedron, as well as a
rather considerable number of edges located in the neigh-
boring tetrahedra. For a given candidate solution (written
in terms of invariants, such as the total volume and the
curvature), the task is then to determine if such a solution
indeed satisfies the local Wheeler–DeWitt equation, mean-
ing that the rhs of Eq. (52) can be made to vanish, for
example, by a suitable choice of wave function parameters.
Again this can be a challenging task (due to the large
number of variables involved) unless further simplifica-
tions are invoked in order to reduce the complexity of the
problem. An additional step at this stage is therefore to
constrain the solution by expanding the rhs of the local
lattice Wheeler–DeWitt equation [Eq. (52)] according to
the weak field expansion of Eq. (37).

Then, in the next step, the diffeomorphism invariance of
the simplicial lattice theory is used to promote the previ-
ously obtained expression for the wave function to its
presumably unique general coordinate invariant form, in-
volving various geometric volume and curvature terms. It
is a nontrivial consequence of the invariance properties of
the theory that such an invariant expression can be
obtained, without any further ambiguity, at least in some
suitable limits to be discussed further below (essentially,
the large volume and small curvature limit). Note that as a
result of this procedure the wave function is ultimately not
necessarily assumed to depend on a single, global mode;
instead, it is still regarded as a function of all lattice metric
degrees of freedom, as will be discussed, and used, further
below [see, for example, the expressions given later in
Eqs. (115) and (117)]. In a number of instances, such a
procedure can be checked explicitly and systematically
within the framework of the weak field expansion and

used to show that the form of the relevant wave function
solution is indeed, as expected, strongly constrained by
diffeomorphism invariance [2]. In this respect, the proce-
dure we will follow here is quite different from the one
used for minisuperspace models, where the infinitely many
metric degrees of freedom of the continuum are condensed,
from the very beginning and therefore already in the origi-
nal Wheeler–DeWitt equation, to one or two single modes,
such as the scale factor and the vacuum expectation of a
scalar field.3

In the case of the five-cell complex, and for now without
an explicit curvature term in the Wheeler–DeWitt
equation, one obtains the differential equation

c 00ðVtotÞ þ 95

9Vtot

c 0ðVtotÞ þ 32�

9G2
c ðVtotÞ ¼ 0 (68)

for a wave function that, for now, depends only on the total
volume, c ¼ c ðVtotÞ. To obtain this result, it is assumed at
first that the simplicial complex is built out of equilateral
tetrahedra; in accordance with the previous discussion,
this constraint will be removed below. In terms of the
dimensionless variable x defined as

x � 4
ffiffiffiffiffiffi
2�

p
3G

Vtot; (69)

one has the equivalent form for Eq. (68):

c 00ðxÞ þ 95

9x
c 0ðxÞ þ c ðxÞ ¼ 0: (70)

This last equation can then be solved immediately, and the
solution is

c ðVtotÞ /
J43

9
ðxÞ
x
43
9

/
J43

9

�
4
ffiffiffiffi
2�

p
3G Vtot

	
Vtot

43
9

; (71)

up to an overall wave function normalization constant. As
in the previously discussed tetrahedron case, and also as in
2þ 1 dimensions, one discards the Bessel function of the
second kind (Y) solution, since it is singular at the origin.

D. 16-cell complex (configuration of 16 tetrahedra)

The next regular triangulation of S3 we will consider
is the 16-cell complex, sometimes referred to as the
hyperoctahedron. One has in this case N0 ¼ 8, N1 ¼ 24,

3We should recall that in 2þ 1 dimensions, an exact wave
functional was obtained for the three regular triangulations of the
sphere (the tetrahedron, octahedron, and icosahedrons), for ar-
bitrary edge length assignments, in addition to the other two
cases of a single triangle and of a regularly triangulated two-
torus. In all the above instances, it was found that the exact wave
function solution could be described by a single function of the
total area, of the Bessel type for strong coupling and of the
confluent hypergeometric type in the more general case [2]. As is
the case here in 3þ 1 dimensions, the Bessel function index n
there was found to be linearly related to the total number of
lattice triangles N2.
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N2 ¼ 32, N3 ¼ 16, and q ¼ 4, since there are four tetra-
hedra meeting on each edge. For the parameter 	 in
Eq. (52), one has

	 ¼ 2

4
: (72)

In the case of the 16-cell complex (again for now without
an explicit curvature term in the Wheeler–DeWitt
equation), one obtains the differential equation

c 00ðVtotÞ þ 47

2Vtot

c 0ðVtotÞ þ 2�

G2
c ðVtotÞ ¼ 0 (73)

for a wave function that depends only on the total volume,
c ¼ c ðVtotÞ. In terms of the variable

x �
ffiffiffiffiffiffi
2�

p
G

Vtot; (74)

one has an equivalent form for Eq. (73):

c 00ðxÞ þ 47

2x
c 0ðxÞ þ c ðxÞ ¼ 0: (75)

The correct wave function solution is now

c ðVtotÞ /
J45

4
ðxÞ
x
45
4

/
J45

4

� ffiffiffiffi
2�

p
G Vtot

	
Vtot

45
4

; (76)

up to an overall wave function normalization constant.
Again, we discarded the Bessel function of the second
kind (Y) solution, since it is singular at the origin.

E. 600-cell complex (configuration
of 600 tetrahedra)

The last, and densest, regular triangulation of S3 we will
consider here is the 600-cell complex, often called the
hypericosahedron. For this lattice, one has N0 ¼ 120,
N1 ¼ 720, N2 ¼ 1200, N3 ¼ 600, and q ¼ 5, since there
are now five tetrahedra meeting at each edge. For the
parameter 	 in Eq. (52), one has

	 ¼ 2

5
: (77)

For this 600-cell complex (again for now without an
explicit curvature term in the Wheeler–DeWitt equation),
one obtains the differential equation

c 00ðVtotÞ þ 672

Vtot

c 0ðVtotÞ þ 32�

25G2
c ðVtotÞ ¼ 0 (78)

for a wave function that depends only on the total volume,
c ¼ c ðVtotÞ. In terms of the variable

x � 4
ffiffiffiffiffiffi
2�

p
5G

Vtot; (79)

one has an equivalent form for Eq. (78):

c 00ðxÞ þ 672

x
c 0ðxÞ þ c ðxÞ ¼ 0: (80)

Then the solution of the Wheeler–DeWitt equation without
a curvature term is

c ðVtotÞ /
J671

2
ðxÞ

x
671
2

/
J671

2

�
4
ffiffiffiffi
2�

p
5G Vtot

	
Vtot

671
2

; (81)

again up to an overall wave function normalization con-
stant. As in previous cases, we discard the Bessel function
of the second kind (Y) solution, since it is singular at the
origin.

F. Summary and general case for zero curvature

In this section, we summarize and extend the previous
results for the wave functions, obtained so far for the three
separate cases of the 5-cell, 16-cell, and 600-cell triangu-
lation of the three-sphere S3. The single tetrahedron case is
somewhat special (it cannot contain a curvature term) and
will be left aside for the moment. Also, all the previous
results so far apply to the case of no explicit curvature term
in the Wheeler–DeWitt equation of Eq. (52); the inclusion
of the curvature term will be discussed later. Consequently,
the following discussion still focuses on the strong
coupling limit, G ! 1.
For the following discussion, the relevant Wheeler–

DeWitt equation is the one in Eq. (52),�
�G2

X
i;j��

Gijð�Þ @2

@l2i @l
2
j

� 	
X
h��

lh�h þ 2�V�

�
c ½l2� ¼ 0;

(82)

which depends on the parameter

	 ¼ 2

q
; (83)

where q represents the number of tetrahedra meeting at an
edge. The above equation is quite general and not approxi-
mate in any way. Nevertheless, it depends on the local
lattice coordination number q (how the edges are con-
nected to each other, or, in other words, on the incidence
matrix).
Now, all previous differential equations for the wave

function as a function of the total volume Vtot [Eqs. (68),
(73), and (78)] can be summarized as a single equation:

c 00ðVtotÞ þ ð11þ 9qÞ
2q2

N3

Vtot

c 0ðVtotÞ þ 32

q2
�

G2
c ðVtotÞ ¼ 0:

(84)

Equivalently, in terms of the scaled volume variable
defined as
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x � 4
ffiffiffiffiffiffi
2�

p
qG

Vtot; (85)

one can summarize the results of Eqs. (70), (75), and (80)
through the single equation

c 00ðxÞ þ ð11þ 9qÞ
2q2

N3

x
c 0ðxÞ þ c ðxÞ ¼ 0: (86)

It will be convenient here to define the (Bessel function)
index n as

n � 11þ 9q

4q2
N3 � 1

2
; (87)

so that for the 5-cell, 16-cell, and 600-cell, one has

2nþ 1 ¼ 95

9
ðq ¼ 3; N3 ¼ 5Þ;

¼ 47

2
ðq ¼ 4; N3 ¼ 16Þ;

¼ 672ðq ¼ 5; N3 ¼ 600Þ; (88)

respectively, and in the general case,

2nþ 1 ¼ ð11þ 9qÞ
2q2

N3; (89)

thus reproducing n ¼ 43=9, 45=4 and 671=2, respectively,
in the three cases. Then Eq. (86) is just

c 00ðxÞ þ 2nþ 1

x
c 0ðxÞ þ c ðxÞ ¼ 0: (90)

Consequently, the wave function solutions are

c / JnðxÞ
xn

/
Jn
�
4
ffiffiffiffi
2�

p
qG Vtot

	
�
4
ffiffiffiffi
2�

p
qG Vtot

	
n
; (91)

up to an overall wave function normalization constant, thus
summarizing all the results so far for the individual regular
triangulations [Eqs. (71), (76), and (81)]. A more explicit,
but less transparent, form for the wave function solution is

c ðVtotÞ ¼ N � V
1
2�

N3ð11þ9qÞ
4q2

tot � J�1
2þ

N3ð11þ9qÞ
4qq2

�
4

ffiffiffiffiffiffi
2�

p
qG

Vtot

�
; (92)

with N an overall wave function normalization constant.
Its large volume behavior is completely determined by the
asymptotic expansion of the Bessel J function,

c ðxÞ’JnðxÞ
xn

�x!1 x�n

ffiffiffiffiffiffiffi
2

�x

s
sin

�
xþ�

4
�n�

2

�
þO

�
1

xnþ3
2

�
:

(93)

It is also easy to see that the argument of the Bessel
function solution J in Eqs. (91) and (92) has the following
expansion for large volumes:

x ¼ 4
ffiffiffiffiffiffi
2�

p
q0G

Vtot þ a20
36

ffiffiffi
2

p
�

ffiffiffiffiffiffi
2�

p
G

Rtot; (94)

with a0 (a30 � 6
ffiffiffi
2

p
V=N3) representing here the average

lattice spacing. Thus, the second correction is of order

ðV=N3Þ2=3Rtot. Note that nothing particularly interesting
is happening in the structure of the wave function so far.
Similarly, the index n of the Bessel function solution in
Eqs. (91) and (92) has the following expansion for large
volumes and small curvatures:

n ¼ ð11þ 9q0Þ
4q20

N3 � 1

2
þ ð22þ 9q0Þ

96�q0a0
Rtot þOðR2Þ; (95)

with a0 again defined as above. Note here that the second

correction is of order ðN3=VÞ1=3Rtot. It follows that the
asymptotic behavior for the exponent of the fundamental
wave function solutions for large volume and small
curvature is given by

	 i

�
4

ffiffiffiffiffiffi
2�

p
q0G

Vtot þ a20
36

ffiffiffi
2

p
�

ffiffiffiffiffiffi
2�

p
G

Rtot þOðR2Þ
�

�
�
11þ 9q0

4q20
N3 þ 22þ 9q0

96�q0a0
Rtot þOðR2Þ

�
lnVtot:

(96)

Let us make here some additional comments. One might
wonder what concrete lattices correspond to values of n
greater that 671=2, which is after all the highest value
attained for a regular triangulation of the three-sphere,
namely, the 600-cell complex. For each of the three regular
triangulations of S3 with N0 sites, one has for the number

of edges N1 ¼ 6
6�q N0, for the number of triangles N2 ¼

2q
6�q N0, and for the number of tetrahedra N3 ¼ q

6�q N0,

where q is the number of tetrahedra meeting at an edge
(the local coordination number). In the three cases exam-
ined previously, q was of course an integer between three
and five; in two dimensions, it is possible to have one more
integer value of q corresponding to the regularly triangu-
lated torus, but this is not possible here. In any case, one
always has for a given triangulation of the three-sphere the
Euler relationN0 � N1 þ N2 � N3 ¼ 0. The interpretation
of other, even noninteger, values of q is then clear.
Additional triangulations of the three-sphere can be con-
structed by considering irregular triangulations, where the
parameter q is now seen as an average coordination num-
ber. Of course the simplest example is what could be
described as a semiregular lattice, with Na edges with
coordination number qa and Nb edges with coordination
number qb, such that Na þ Nb ¼ N1. Various irregular and
random lattices were considered in detail some time ago in
Ref. [16], and we refer the reader to this work for a clear
exposition of the properties of these kind of lattices. In the
following, we will assume that such constructions are
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generally possible, so that even noninteger values of q are
meaningful and are worth considering.

VI. AVERAGE VOLUME AND
AVERAGE LATTICE SPACING

At this stage, it will be useful to examine the question of
what values are allowed for the average volume. The latter
will be needed later on to give meaning to the notion of an
average lattice spacing. In general, the average volume is
defined as

hVtoti � h�jVtotj�i
h�j�i ¼

R
d�½g� � Vtot½gij� � j�½gij�j2R

d�½g� � j�½gij�j2
;

(97)

where d�½g� is the appropriate (DeWitt) functional mea-
sure over three-metrics gij.

Now consider the wave function obtained given in
Eq. (91), with n defined in Eq. (87). This wave function
is relevant for the strong coupling limit, where the explicit
curvature term in the Wheeler–DeWitt equation can be
neglected. In this limit, one can then compute the average
total volume

hVtoti ¼
R1
0 dVtot � Vtot � jc ðVtotÞj2R1

0 dVtot � jc ðVtotÞj2
: (98)

One then obtains immediately for the average volume of a
tetrahedron

hV�i ¼
2�3

2�2n�ðn� 1
2Þ�ð2nþ 1

2Þ
�ðnÞ3N3

� qGffiffiffiffi
�

p : (99)

If the whole lattice is just a single tetrahedron, then one has
n ¼ 3 and consequently

hV�i ¼ 31185�G

262144
ffiffiffi
2

p ffiffiffiffi
�

p ¼ 0:2643
Gffiffiffiffi
�

p ; (100)

from which one can define an average lattice spacing a0 via

hV�i ¼ a30=6
ffiffiffi
2

p
. For large N3, one has

a30 ¼
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11þ 9q

p
2

ffiffiffiffiffiffiffi
2�

p
N3

Gffiffiffiffi
�

p : (101)

But, in general, one cannot assume a trivial entropy factor
from the functional measure, and one should evaluate
instead

hVtoti ¼
R1
0 dVtot � Vm

tot � Vtot � jc ðVtotÞj2R1
0 dVtot � Vm

tot � jc ðVtotÞj2
; (102)

with some powerm ¼ c0N3 and c0 a real positive constant.
One then obtains for the average volume of a single
tetrahedron

hV�i ¼ 1

N3

hVtoti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0½11þ q0ð9� c0q0Þ�

q G

8
ffiffiffiffiffiffi
2�

p ;

(103)

which is finite as N3 ! 1. Note that in order for the
above expression to make sense, one requires c0 < ð11þ
9q0Þ=q20 ’ 2:185. If the exponent in the entropy factor is

too large, the integrals diverge. One then finds that the
corresponding lattice spacing is given by

a30 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0½11þ q0ð9� c0q0Þ�

q 3G

4
ffiffiffiffi
�

p : (104)

The lesson learned from this exercise is that in gravity the
lattice spacing a0 (the fundamental length scale, or the
ultraviolet cutoff if one wishes) is itself dynamical and
thus set by the bare values of G and �. In a system of units

for which �0 ¼ 1, one then has a0 � g1=3. Either way, the
choice for a0 has no immediate direct physical meaning
and has to be viewed instead in the context of a subsequent
consistent renormalization procedure. In the following, it
will be safe to assume, based on the results of Eqs. (65) and
(104), that

a30 ¼ f3
Gffiffiffiffi
�

p ; (105)

in units of the UV cutoff, where f is a numerical constant
of order 1 (for concreteness, in the single tetrahedron case,
one has f 
 1:3089).

VII. LARGE VOLUME SOLUTION FOR
NONZERO CURVATURE

The next task in line is to determine the form of the wave
function when the curvature term in the Wheeler–DeWitt
equation of Eq. (52) is not zero. In particular, we will be
interested in the changes to the wave function given in
Eqs. (91) and (92), with argument x in Eq. (94) and
parameter n in Eq. (95). We define here the total integrated
curvature Rtot as in Eq. (47), which is of course different
from the local curvature appearing in the lattice Wheeler–
DeWitt equation of Eq. (52),

R� � X
h��

�hlh: (106)

In order to establish the structure of the solutions for large
volumes Vtot, we will assume, based in part on the results of
the previous sections and on the analogous calculation in
2þ 1 dimensions [2], that the fundamental wave function
solutions for large volumes have the form

exp

�
	i

�
�
Z

d3x
ffiffiffi
g

p þ �
Z

d3x
ffiffiffi
g

p
Rþ 

Z
d3x

ffiffiffi
g

p
R2

þ �
Z

d3x
ffiffiffi
g

p
R��R

�� þ � � �
��
: (107)

Note here that the structure of the above expression, and
the nature of the terms that enter into it, are basically
dictated by the requirement of diffeomorphism invariance
as it applies to the argument of the wave functional. Apart
from the cosmological term, allowed terms are all the ones
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that can be constructed from the Riemann tensor and its
covariant derivatives, for a fixed topology of three-space.
Clearly, at large distances (infrared limit), the most impor-
tant terms will be the Einstein and cosmological terms,
with coefficients � and �, respectively. In three dimen-
sions, the Riemann and Ricci tensor have the same number
of algebraically independent components (6) and are
related to each other by

R��
�� ¼ 
��	
���

�
R�

	 � 1

2
��

	

�
: (108)

The Weyl tensor vanishes identically, and one has

R����R
���� � 4R��R

�� � 3R2 ¼ 0

C����C
���� ¼ 0:

(109)

As a consequence, there is in fact only one local curvature
squared term one can write down in three spatial dimen-
sions. Nevertheless, higher derivative terms will only
become relevant at very short distances, comparable or

smaller than the Planck length
ffiffiffiffi
G

p
; in the scaling limit, it

is expected that these can be safely neglected.
When expressed in lattice language, the above form

translates to an ansatz of the form

exp f	iðc0Vtot þ c1R
m
totÞg; (110)

with m assumed to be an integer. In addition, from the
studies of lattice gravity 2þ 1 dimensions, one expects a
lnVtot term as well in the argument of the exponential [2].
This suggests a slightly more general ansatz,

exp f	iðc0Vtot þ c1R
m
totÞ þ c2 lnVtot þ c3 lnRtotg: (111)

The next step is to insert the above expression into the
lattice Wheeler–DeWitt equation, Eq. (52), and determine
the values of the five constants c0 . . . c3, m. This can be
done consistently just to leading order in the weak field
expansion of Eq. (37), which is entirely adequate here, as it
will provide enough information to uniquely determine
the coefficients. Here we will just give the result of this
exercise. For the five-cell complex (q ¼ 3), one obtains

c � exp

�
	i

�
4

ffiffiffi
2

p ffiffiffiffi
�

p
3G

Vtot �
ffiffiffi
2

p

G
ffiffiffiffi
�

p Rtot

�
� 95

18
lnVtot

�
;

(112)

whereas for 16-cell complex (q ¼ 4), one finds

c � exp

�
	i

� ffiffiffi
2

p ffiffiffiffi
�

p
G

Vtot � 3
ffiffiffi
2

p

4G
ffiffiffiffi
�

p Rtot

�
� 47

4
lnVtot

�
;

(113)

and finally for 600-cell complex (q ¼ 5),

c � exp

�
	i

�
4

ffiffiffi
2

p ffiffiffiffi
�

p
5G

Vtot � 3
ffiffiffi
2

p

5G
ffiffiffiffi
�

p Rtot

�
� 336 lnVtot

�
:

(114)

These expressions allow us again to identify the answer for
general q as

c � exp

�
	i

�
4

ffiffiffiffiffiffi
2�

p
qG

Vtot � 3
ffiffiffi
2

p

qG
ffiffiffiffi
�

p Rtot

�

� ð11þ 9qÞN3

4q2
lnVtot

�
: (115)

Note that in deriving the above results, we considered the
large volume limit V ! 1, treating the number of tetrahe-
draN3 as a fixed parameter. In writing down this last result,
we have used the fact that such a q dependence of the
curvature term is expected on the basis of Eq. (32), and
similarly for the volume term in view of Eq. (38). In
addition, the log term is expected on general grounds to
have a coefficient proportional to the number of lattice
tetrahedra N3, as it does (exactly) in 2þ 1 dimensions
[2]. Note that later the effect of the log term will be in
part compensated by the measure (or entropy) contribution
of Eq. (102).4

Then from the previous expression, we can now read off
the values for the various coefficients, namely,

c0 ¼ 4
ffiffiffiffiffiffi
2�

p
qG

c1 ¼ � 3
ffiffiffi
2

p

qG
ffiffiffiffi
�

p

c2 ¼ �ð11þ 9qÞN3

4q2
c3 ¼ 0;

(116)

with the only possible value m ¼ 1.
In order to make contact with the strong coupling result

for the wave function derived in the previous sections
[Eqs. (92) and (94)–(96)], one needs to again expand the
above answer for small curvatures. One obtains for the
exponent of the wave function the following expression:

	 i

�
4

ffiffiffiffiffiffi
2�

p
q0G

Vtotþ
�

a20
36

ffiffiffi
2

p
�

ffiffiffiffiffiffi
2�

p
G

� 6

q0G
ffiffiffiffiffiffi
2�

p
�
RtotþOðR2Þ

�

�
�
11þ9q0

4q20
N3þ 22þ9q0

96�q0a0
RtotþOðR2Þ

�
lnVtot; (117)

4A rather similar procedure was successfully used earlier in
2þ 1 dimensions, where it was found that the three regular
triangulations of the sphere, the single triangle, and the regular
triangulation of the torus were all described, for large areas and
to all orders in the weak field expansion, by a single wave
functional involving confluent hypergeometric functions, with
the total area and total curvature serving as arguments. The
resulting extrapolation to the infinite volume limit yielded exact
gravitational scaling exponents [2] in rough agreement (to about
6%) with results obtained earlier by numerical integration in the
Euclidean lattice theory of gravity [27].
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with a0 again representing the average lattice spacing,

a30 � 6
ffiffiffi
2

p
V=N3. This finally determines uniquely the

coefficients � and � appearing in Eq. (107),

�¼ 4

q0
�

ffiffiffiffiffiffi
2�

p
G

�¼ a20
36

ffiffiffi
2

p
�
�

ffiffiffiffiffiffi
2�

p
G

� 6

q0
� 1

G
ffiffiffiffiffiffi
2�

p : (118)

The most important result so far is the appearance of two
contributions of opposite sign in �, signaling the appear-
ance of a critical value for G where � vanishes.

This critical point is located at �c ¼ 108
ffiffiffi
2

p
�=q0a

2
0 or,

in a system of units where � ¼ G=2 (see Sec. IV),5

Gc ¼ 216
ffiffiffi
2

p
�

q0
� 1

a20
: (119)

But since the average lattice spacing a0 is itself a function
of G and � [see Eqs. (65), (104), and (105)], one obtains in
the same system of units

Gc ¼ 36 23=831=4�3=4

f3=2q3=40

’ 28:512; (120)

using the value of f for the single tetrahedron, or equiv-
alently gc ’ 5:340, a rather large value. Nevertheless, we
should keep in mind that in this paper we are also using a
system of units where we set 16�G ! G. So, in a conven-
tional system of units, one has the more reasonable result
Gc 
 0:5672 in units of the fundamental UV cutoff.6

Evidence for a phase transition in lattice gravity in 3þ 1
dimensions was also seen earlier from an application of the

variational method, using Jastrow–Slater correlated
product trial wave functions [1]. Note that the results
of Eqs. (117) and (118) imply a dependence of the funda-
mental wave function on the curvature, of the type

c ðRÞ � e	iRtot=R0 ; (121)

with R0 a characteristic scale for the total, integrated
curvature. Thus, R0 � 1=ðg� gcÞ with Gc, and therefore
gc ¼

ffiffiffiffiffiffi
Gc

p
, given in Eq. (119). Therefore, at the critical

point, fluctuations in the curvature become unbounded, just
as is the case for the fluctuations in a scalar field when the
renormalized mass approaches zero.7 Note that since at the
critical point Gc the curvature term vanishes further inves-
tigations there would require the retention of curvature
squared terms, which in general are not expected to be
zero. One would then expect, based again on invariance
arguments, that the leading contribution there should come
from the TT mode contribution, which is indeed quadratic
in the curvature.
At this stage, one can start to compare with the results

obtained previously without the explicit curvature term in
the Wheeler–DeWitt equation, Eqs. (94) and (95). The
main change is that here one would be led to identify

x ¼ 4
ffiffiffiffiffiffi
2�

p
q0G

Vtot þ
�

a20
36

ffiffiffi
2

p
�
�

ffiffiffiffiffiffi
2�

p
G

� 6

q0
� 1

G
ffiffiffiffiffiffi
2�

p
�
Rtot;

(122)

so that the Bessel function argument x [see Eq. (94)] now
contains a new contribution, of opposite sign, in the cur-
vature term. Its origin can be traced back to the new
curvature contribution c1 in Eq. (116), which in turn arises
because of the explicit curvature term now present in the
full Wheeler–DeWitt equation. On the other hand, as is
already clear from the result for c2 in Eq. (116), the index n
of the Bessel function solution in Eqs. (91) and (92) is left
unchanged,

n ¼ 11þ 9q0
4q20

N3 � 1

2
þ 22þ 9q0

96�q0a0
Rtot þOðR2

totÞ; (123)

with again an average lattice spacing a0 defined as before.
But there is a better way to derive correctly the modified

form of the wave function. From the asymptotic solution
for the wave function of Eq. (115), it is possible to first

5As in the Euclidean lattice gravity case, one does not expect
the critical coupling Gc to represent a universal quantity; its
value will still reflect specific choices made in defining the
underlying lattice discretization and therefore more generally
in specifying a suitable ultraviolet cutoff (this fact is known in
field theory language as scheme dependence). These circum-
stances can be seen here already when looking at the simplest
regular lattices enumerated previously in this work and which
are clearly not unique choices even for a fixed number of sites. In
addition, one expects a further dependence of Gc on the choice
of functional measure and therefore on the supermetric [see, for
example, Eq. (103)]. In the present context, this leads, for
example, to a dependence of the results on the parameter f of
Eq. (105). Nevertheless, one would expect, based largely on
universality arguments, that critical exponents and scaling di-
mensions (such as the ones obtained exactly in Ref. [2]) should
be universal, and therefore independent of the specific details of
the ultraviolet cutoff, for which the introduction nevertheless is
essential at some stage in order to regularize the inevitable
quantum infinities.

6One can compare the above value for Gc obtained in the
Lorentzian 3þ 1 theory with the corresponding value in the
Euclidean four-dimensional theory. There one finds Gc 

0:6231 [29], which is within 10% of the above quoted value.
The two Gc values are not expected to be the same in the two
formulations, due to the different nature of the UV cutoffs. In
particular, in the lattice Hamiltonian formulation, the continuum
limit has already been taken in the time direction. Nevertheless,
it is encouraging that they are quite comparable in magnitude.

7It is tempting to try to extract a critical exponent from the
result of Eq. (121). In analogy to the wave functional for a free
scalar field with mass m, and thus correlation length � ¼ 1=m,
one would obtain for the correlation length exponent � (with �
defined by �� jg� gcj��) from the above wave function the
semiclassical estimate � ¼ 1

2 . In the 2þ 
 perturbative expan-
sion for pure gravity, one finds in the vicinity of the UV fixed
point ��1 ¼ ðd� 2Þ þ 3

5 ðd� 2Þ2 þOððd� 2Þ3Þ [30–32]. The
above lowest order lattice result would then agree only with
the leading, semiclassical term.
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obtain a partial differential equation for c ðRtot; VtotÞ. The
equation reads (in the following, we shall write Rtot as R
and Vtot as V to avoid unnecessary clutter)

@2c

@V2
þ cV

@c

@V
þ cR

@c

@R
þ cVR

@2c

@V@R
þ cRR

@2c

@R2

þ c�c þ ccurvc ¼ 0: (124)

The coefficients in the above equation are given by

cV ¼ 11þ 9q

2q2
� N3

V

¼ 11þ 9q0
2q20

� N3

V
þ 22þ 9q0

48
ffiffiffi
2

p
31=3�q0

� N
1=3
3 R

V4=3
þOðR2Þ

cR ¼ � 2

9

R

V2
þ 11þ 9q0

6q20
� N3R

V2
þOðR2Þ

cVR ¼ 2

3

R

V
þOðR2Þ

cRR ¼ 2

9

R2

V2

c� ¼ 32�

q2G2
¼ 32

G2q20
þ 4

ffiffiffi
2

p
�

331=3�q0G
� R

N2=3
3 V1=3

þOðR2Þ

ccurv ¼ � 16

G2q2
� R
V
¼ � 16

G2q20
� R
V
þOðR2Þ: (125)

Note that in the small curvature, large volume limit [this is
the limit in which, after all, Eq. (115) was derived], one can
safely set the coefficients cR and cRR to zero. It is then easy
to check that the solution in Eq. (115) satisfies Eqs. (124)
and (125), up to terms of order 1=V2. Also note that here,
and in Eqs. (112)–(115), we take the large volume limit
V ! 1, treating the number of tetrahedra N3 as a large,
fixed parameter. A differential equation in the variable V
only can be derived as well (with coefficients that are
functions of R), but then one finds that the required coef-
ficients are not real, which makes this approach less
appealing.8

In the limit R ! 0, Eq. (124) reduces to

@2c

@V2
þ 11þ 9q0

2q20
� N3

V
� @c
@V

þ 32�

G2q20
c ¼ 0; (126)

which is essentially Eq. (84) in the same limit, with
solution given previously in Eq. (91).

VIII. NATURE OF THE WAVE FUNCTION
SOLUTION c

In this section, we discuss some basic physical proper-
ties that can be extracted from the wave function solution
c ðV; RÞ. So far, we have not been able to find a general
solution to the fundamental Eq. (124), but one might
suspect that the solution is still close to a Bessel or hyper-
geometric function, possibly with arguments ‘‘shifted’’
according to Eqs. (122) and (123), as was the case in
2þ 1 dimensions. As a consequence, some physically
motivated approximations will be necessary in the follow-
ing discussion. Let us discuss here in detail one possible
approach. If one sets the troublesome coefficient cVR ¼ 0
in Eq. (124), and keeps only the leading term in cV , then
the relevant differential equation becomes

@2c

@V2
þ cV

@c

@V
þ c�c þ ccurvc ¼ 0; (127)

with coefficients given in Eq. (125), except that from now
on only the leading term in cV and c� will be retained
(otherwise, it seems again difficult to find an exact solu-
tion). Note that the above equation still contains an explicit
curvature term proportional to R, from ccurv. Now a com-
plete solution can be found in terms of the confluent hyper-
geometric function of the first kind, 1F1ða; b; zÞ [33–35].
Up to an overall wave function normalization constant, it is

c ðV;RÞ

’e
�4i

ffiffiffi
2�

p
V

q0G �
�
�ð11þ9q0ÞN3

4q2
0

þ i
ffiffi
2

p
R

q0G
ffiffiffi
�

p
	

�
�
1�ð11þ9q0ÞN3

4q2
0

þ i
ffiffi
2

p
R

q0G
ffiffiffi
�

p
	

� 1F1

�ð11þ9q0ÞN3

4q20
� i

ffiffiffi
2

p
R

q0
ffiffiffiffi
�

p
G
;
ð11þ9q0ÞN3

2q20
;
8i

ffiffiffiffiffiffi
2�

p
V

q0G

�
:

(128)

Here again q0 is just a number, given previously in
Eq. (51), and N3 is the total number of tetrahedra for a
given triangulation of the manifold. Note that this last
solution still retains three key properies: it is a function
of geometric invariants ðV; RÞ only; it is regular at the
origin in the variable V (the irregular solution is discarded
due to the normalizability constraint); and, finally, it
agrees, as it should, with the zero curvature solution of
Eqs. (91) and (92) in the limit R ¼ 0.
The above wave function exhibits some intriguing

similarities with the exact wave function solution found
in 2þ 1 dimensions; the difference is that the total

8It would of course be of some interest to derive a result
similar to Eq. (117) using an entirely different set of methods,
such as the Wentzel–Kramers–Brillouin (WKB) approximation.
Such an approximation was discussed, again on the lattice, in
Ref. [1], but the resulting equations there turned out to be too
complicated to solve. In the context of a continuum WKB
approximation, one would expect the approximate results for
the wave function to contain some remnants of short distance
infinities and therefore depend, at least in part, implicitly or
explicitly, on the specifics of the ultraviolet regularization pro-
cedure. But, more generally, one would expect such a continuum
expansion to be poorly convergent in four dimensions, in view of
the perturbative nonrenormalizability of ordinary gravity. The
lattice methods presented here are, on the other hand, genuinely
nonperturbative in nature and therefore not immediately affected
by the escalating divergences encountered in the continuum
treatment in four dimensions.
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curvature R here plays the role of the Euler characteristic �
there. Let us be more specific and discuss each argument
separately. For the arguments of the confluent hypergeo-
metric function of the first kind, 1F1ða; b; zÞ, one finds
again b ¼ 2a for R ¼ 0, with both a and b proportional
to the total number of lattice sites, as in 2þ 1 dimensions
[2]. Specifically, here one has

ReðaÞ ¼ 11þ 9q0
4q20

N3 
 0:5464N3; (129)

whereas in 2þ 1 dimensions, the analogous result is

ReðaÞ ¼ 1

4
N2: (130)

The curvature contribution in both cases then appears as an
additional contribution to the first argument (a) and is
purely imaginary. Here one has

ImðaÞ ¼ �
ffiffiffi
2

p

q0
ffiffiffiffi
�

p
G

Z
d3x

ffiffiffi
g

p
R; (131)

whereas in 2þ 1 dimensions, the corresponding result is

ImðaÞ ¼ � 1

2
ffiffiffiffiffiffi
2�

p
G

Z
d2x

ffiffiffi
g

p
R: (132)

Finally, here again the third argument z is purely imaginary
and simply proportional to the total volume. From the
above solution,

z ¼ i
8

ffiffiffiffiffiffi
2�

p
q0G

Z
d3x

ffiffiffi
g

p
; (133)

whereas in 2þ 1 dimensions,

z ¼ i
2

ffiffiffiffiffiffi
2�

p
G

Z
d2x

ffiffiffi
g

p
: (134)

Nevertheless, we also find some significant differences
when compared to the exact 2þ 1-dimensional result,
most notably the various gamma-function factors involv-
ing the curvature R, which are entirely absent in the lower
dimensional case, as well as the fact that the critical
(UV fixed) point is located at some finite Gc here [see
Eq. (119)], whereas it is exactly at Gc ¼ 0 in 2þ 1
dimensions [2].

Let us now continue here with a discussion of the main
properties of the wave function in Eq. (128). First, let us
introduce some additional notational simplification. By
using the coupling g [see Sec. IV and Eq. (36)], one can
make the above expression for c slightly more transparent,

c ðV; RÞ

’ e
�4iV

q0g �
�
�ð11þ9q0ÞN3

4q2
0

þ 2iR
q0g

3

	
�
�
1� ð11þ9q0ÞN3

4q2
0

þ 2iR
q0g

3

	
� 1F1

�ð11þ 9q0ÞN3

4q20
� 2iR

q0g
3
;
ð11þ 9q0ÞN3

2q20
;
8iV

q0g

�
:

(135)

We remind the reader that, by virtue of Eq. (51), in all
the above expressions, q0 is just a numerical constant, q0 �
2�=cos�1ð13Þ ¼ 5:1043. Note that for weak coupling the

curvature terms become more important due to the 1=g3

coefficient. The resulting probability distribution jc ðV; RÞj2
is shown, for some illustrative cases, in Figs. 3–5.
One important proviso should be stated here first. We

recall that having obtained an (exact or approximate)
expression for the wave function does not lead immedi-
ately to a complete solution of the problem. This should be
evident, for example, from the general expression for the
average of a generic quantum operator OðgÞ,

hOðgÞi � h�jOj�i
h�j�i ¼

R
d�½g� �OðgijÞ � j�½gij�j2R

d�½g� � j�½gij�j2
;

(136)

where d�½g� is the appropriate (DeWitt) functional measure
over the three-metric gij. Because of the general coordinate

invariance of the state functional, the inner products shown
above clearly contain an infinite redundancy due to the
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FIG. 3 (color online). Wave function of Eq. (135) squared,
jc ðV;RÞj2, plotted as a function of the total volume V and the
total curvature R, for coupling g ¼ ffiffiffiffi

G
p ¼ 1 and N3 ¼ 10. One

notes that for strong enough coupling g the distribution in
curvatures is fairly flat around R ¼ 0, giving rise to large
fluctuations in the curvature. These become more pronounced
as one approaches the critical point at gc.
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geometrical indistinguishability of three-metrics which dif-
fer only by a coordinate transformation [7]. Nevertheless,
this divergence is of no essence here, since it cancels out
between the numerator and the denominator.

On the lattice, the above average translates into

hOðl2Þi � h�jOj�i
h�j�i ¼

R
d�½l2� �Oðl2Þ � j�½l2�j2R

d�½l2� � j�½l2�j2 ; (137)

where d�½l2� is the Regge–Wheeler lattice transcription of
the DeWitt functional measure [7] in terms of edge length
variables, here denoted collectively by l2. The latter
includes an integration over all squared edge lengths, con-
strained by the triangle inequalities and their higher
dimensional analogs [27]. Again, because of the continu-
ous local diffeomorphism invariance of the lattice theory,
the individual inner products shown above will contain an
infinite redundancy due to the geometrical indistinguish-
ability of three-metrics, which differ only by a lattice
coordinate transformation. And, again, this divergence
will be of no essence here, as it is expected to cancel
between numerator and denominator [19].

It seems clear then that, in general, the full functional
measure cannot be decomposed into a simple product of
integrations over V and R. It follows that the averages
listed above are, in general, still highly nontrivial to evalu-
ate. In fact, quantum averages can be written again quite

generally in terms of an effective (Euclidean) three-
dimensional action,

h�j ~OðgÞj�i ¼ N
Z

d�½g� ~OðgijÞ exp f�Seff½g�g; (138)

with Seff½g� � � ln j�½gij�j2 and N a normalization con-

stant. The operator ~OðgÞ itself can be local, or nonlocal as
in the case of correlations such as the gravitational Wilson
loop [36]. Note that the statistical weights have zeros
corresponding to the nodes of the wave function �, so
that Seff is infinite there.

9

Nevertheless, it will make sense here to consider a
semiclassical expansion for the 3þ 1-dimensional theory,
where one simply focuses on the clearly identifiable sta-
tionary points (maxima) of the probability distribution jc j,
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FIG. 4 (color online). Same wave function of Eq. (135)
squared, jc ðV;RÞj2, plotted as a function of the total volume
V and the total curvature R, but now for weaker coupling g ¼ffiffiffiffi
G

p ¼ 0:5 and still N3 ¼ 10. For weak enough coupling g, the
distribution in curvature is such that values around R ¼ 0 are
almost completely excluded, as these are associated with a very
small probability. Note that, unless the total volume V is very
small, the probability distribution is markedly larger toward
positive curvatures.
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FIG. 5 (color online). Curvature distribution in R as a function
of the coupling g ¼ ffiffiffiffi

G
p

. The strong coupling relationship be-
tween the average volume and the coupling g [Eq. (64)] allows
one to plot the wave function of Eq. (135) squared as a function
of the coupling g and the total curvature R only (we use again
here N3 ¼ 10 for illustrative purposes). Then, for strong enough
coupling g ¼ ffiffiffiffi

G
p

, the probability distribution jc j2 is again
fairly flat around R ¼ 0, giving rise to large fluctuations in the
curvature. The latter are interpreted here as signaling the pres-
ence of a massless particle. On the other hand, for weak enough
coupling g, one notices that curvatures close to R ¼ 0 have
essentially vanishing probability. The distribution shown here
points therefore toward a pathological ground state for weak
enough coupling g < gc [given in Eq. (119)], with no sensible
continuum limit.

9In practical terms, the averages in Eqs. (136) and (137) are
difficult to evaluate analytically, even once the complete wave
function is known explicitly, due to the nontrivial nature of the
gravitational functional measure; in the most general case, these
averages will have to be evaluated numerically. The presence of
infinitely many zeros in the statistical weights complicates this
issue considerably, again from a numerical point of view.
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obtained by squaring the solution in Eq. (128) or (135).
In the following, we will therefore focus entirely on the
properties of the probability distribution jc ðV; RÞj2
obtained from Eq. (128) or (135). For illustrative purpose,
the reader is referred to Figs. 3–5 below.

As discussed previously, the asymptotic expansion for
the wave function at large volumes is suggestive of a phase
transition at someG ¼ Gc [see for example Eqs. (118) and
(119)]. In addition, the explicit solution in Eq. (135) allows
a more precise non-perturbative characterization of the two
phases. In view of the non-trivial and generally complex
arguments of both the gamma function and the confluent
hypergeometric function, the analytic properties of the
wave function, and therefore of the probability distribu-
tion, are quite rich in features, at least for the more general
and physically relevant case of non-zero curvature.

One first notes that for strong enough coupling g the
distribution in curvature is fairly flat around R ¼ 0, giving
rise to large fluctuation in the latter (see Figure 3). On the
other hand, for weak enough coupling g the probability
distribution in curvature is such that values around R ¼ 0
are almost excluded, since they are associated with a very
small probability. Furthermore, unless the volumeV is very
small, the probability distribution is also generally mark-
edly larger towards positive curvatures (see Figure 4).

In order to explore specifically the curvature (R) depen-
dence of the probability distribution, it would be desirable
to factor out or remove the dependence of the wave func-
tion c ðV; RÞ on the total volume V. To achieve this, one
can employ a mean-field-type prescription, and replace the
total volume V by its average hVi. After all, the probability
distribution in the volume is well behaved at large G [see
Sec. VI], and does not exhibit any marked change in
behavior for intermediate G [as can be inferred, for
example, from the asymptotic form of the wave function
in Eq. (115)]. Consequently we will now make the replace-
ment in c ðV; RÞ

V ! hVi � N3hV�i ¼ 0:2643
Gffiffiffiffi
�

p ¼ 0:3738g; (139)

obtained by inserting the result of Eq. (64). This replace-
ment then makes it possible to plot the wave function of
Eq. (135) squared as a function of the coupling g and the
total curvature R only (in the following we use again
N3 ¼ 10 for illustrative purposes); see Figure 5. One then
notes that for strong enough gravitational coupling

g ¼ ffiffiffiffi
G

p
the probability distribution is again fairly flat

around R ¼ 0, giving rise to large fluctuations in the
curvature. On the other hand, for weak enough coupling
g one observes that curvatures close to zero have near
vanishing probability. The distributions shown suggest
therefore what seems a pathological ground state for
weak enough coupling g<gc [or G<Gc, see Eq. (119)],
with no sensible four-dimensional continuum limit.

At this point some preliminary conclusions, based on the
behavior of the wave function discussed previously in
Sec. VII and the shape shown in Figs. 3–5, are as follows.
For large enough G>Gc, but nevertheless close to the
critical point, the flatness in the curvature probability
distribution implies that different curvature scales are all
equally important. The corresponding gravitational corre-
lation length is finite in this region as long as G>Gc and
expected to diverge at the critical point, thus presumably
signaling the presence of a massless excitation at Gc [see
the argument after Eq. (121)]. On the other hand, for weak
enough coupling, G<Gc, we observe that the probability
distribution appears to change dramatically. The main
evidence for this is the shape of the approximate wave
function given in Eq. (128), which points to a vanishing
relative probability for metric field configurations for
which the curvature is small R 
 0. This would suggest
that the weak coupling phase, for which G<Gc, has no
continuum limit in terms of manifolds that appear smooth,
at least at large scales. The geometric character of the
manifold is then inevitably dominated by nonuniversal
short-distance lattice artifacts; no sensible scaling limit
exists in this phase.
If this is indeed the case, then the results obtained in the

present, Lorentzian, 3þ 1 theory generally agree with
what is found in the Euclidean case, where the weak
coupling phase was found to be pathological as well
[17,18] (it bears more resemblance to a branched polymer
and has thus no sensible interpretation in terms of smooth
four-dimensional manifolds). In either case, the only
physically acceptable phase, leading to smooth manifolds
at large distances, seems to be the one with G>Gc. It is a
simple consequence of renormalization group arguments
that in this phase the gravitational coupling at large dis-
tances can only flow to larger values, implying therefore
gravitational antiscreening as the only physically possible
outcome. Nevertheless, it needs to be emphasized here
again that these conclusions have been obtained from a
determination of the wave functional at small curvatures; it
should be clear that when the curvature cannot be regarded
as small, higher order terms in the curvature expansion of
Eqs. (107) and (128) need to be retained, which leads us
beyond the scope of the present work.

IX. SUMMARYAND CONCLUSIONS

In this work, we have discussed the nature of gravita-
tional wave functions that were found to be solutions of the
lattice Wheeler–DeWitt equation for finite simplicial latti-
ces. The main results here were given in Eqs. (124), (128),
and (135). While there are many aspects of this problem
that still remain open and unexplored, we have neverthe-
less shown that the very structure of the wave function is
such that it allows one to draw a number of useful and
perhaps physically relevant conclusions about ground state
properties of pure quantum gravity in 3þ 1 dimensions.
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These include the observation that the theory exhibits a
phase transition at some critical value of Newton’s constant
Gc [given in Eq. (119)].

The structure of the wave function further suggests that
the weak coupling phase, for which the coupling G<Gc,
is pathological and cannot be interpreted in terms of
smooth manifolds at any distance scale. In view of these
results, it is therefore not entirely surprising that calcula-
tions that rely on the weak field, semiclassical, or small G
expansion run into serious trouble and uncontrollable di-
vergences very early on. Such an expansion does not seem
to exist if the nonperturbative lattice results presented here
are taken seriously. The correct physical vacuum appar-
ently cannot in any way be obtained as a small perturbation
of flat, or near-flat, spacetime. On the other hand, the strong
coupling phase does not exhibit any such pathology and is
therefore a good candidate for a physically acceptable
ground state for pure quantum gravity. It is then a simple
consequence of standard renormalization group arguments
that in this phase Newton’s constant grows with distance,
so that this phase is expected to exhibit gravitational anti-
screening. Still, to make the problem tractable, most of the
results presented in this work have been obtained in
the limit of small curvatures. This is clearly a limitation
of the present approach. A more general treatment of the
problem, where a variety of curvature squared terms are
retained in the expansion of the wave functional, should be
feasible by the methods presented here but is for now
clearly beyond the scope of the present work.

Let us mention here that in the Euclidean lattice
theory of gravity in four dimensions it was also found early
on [17,18] (see Ref. [29] for more recent numerical inves-
tigations of four-dimensional lattice gravity, including
the determination of the critical point and scaling expo-
nents) that the weak coupling (or gravitational screening)
phase is pathological with no sensible continuum limit,
corresponding to a degenerate lower dimensional branched
polymer. The calculations presented here can be regarded,
therefore, as consistent with the conclusions reached ear-
lier from the Euclidean lattice framework. No new sur-
prises have arisen so far when considering the Lorentzian
3þ 1 theory, using what can be regarded as an entirely
different set of tools.

It seems also worthwhile at this point to compare with
other attempts at determining the phase structure of quan-
tum gravity in four dimensions. Besides the Regge lattice
approach, there have been other attempts at searching for a
nontrivial renormalization group UV fixed point in four
dimensions using continuum methods. In one popular field
theoretic approach, one develops a perturbative diagram-
matic 2þ 
 continuum expansion using the background
field method to two-loop order [30–32]. This then leads to
a nontrivial UV fixed point Gc ¼ Oð
Þ close to two
dimensions. Two phases emerge, one implying again
gravitational screening and the other antiscreening. In the

truncated renormalization group calculations for gravity in
four dimensions [37,38], where one retains the cosmologi-
cal and Einstein–Hilbert terms and possibly later some
higher derivative terms, one also finds evidence for a non-
trivial UV fixed point scenario. As in the case of gauge
theories, both of these methods are ultimately based on
renormalization group flows and the weak field expansion
and are therefore unable to characterize the nonperturba-
tive features of either one of the two ground states. Indeed,
within the framework of the weak field expansion inherent
in these methods, only the weak coupling phase has a
chance to start with. It is nevertheless encouraging that
such widely different methods tend to point in the same
direction, namely, a nontrivial phase structure for gravity in
four dimensions.
Let us add here a few more comments, aimed at placing

the present work in a wider context. Over the years, a
number of attempts has been made to obtain results for
the gravitational wave functional �½g� in the absence of
sources. Often these have relied on the weak field expan-
sion in the continuum; see, for example, Refs. [9,10].
In 3þ 1 dimensions, one then finds

�½hTT� ¼ N exp

�
� 1

4

Z
d3k khTTik ðkÞhTT�ik ðkÞ

�
; (140)

where hTTik ðkÞ is the Fourier amplitude of transverse-

traceless modes for the linearized gravitational field. It is
clear that the above wave functional describes a collection
of harmonic oscillator contributions, one for each of the
physical modes of the linearized gravitational field. It is not
necessary to use Fourier modes, and, as in the case of the
electromagnetic field, one can write equivalently the
ground state wave functional in terms of first derivatives
of the field potentials,

�½hTT� ¼ N exp

�
� 1

8�2

Z
d3x

Z
d3y

hTTik;lðxÞhTT�ik;l ðyÞ
jx� yj2

�
:

(141)

Nevertheless, it is generally understood that the above
expressions represent only the leading term in an expan-
sion involving infinitely many terms in the metric fluctua-
tion hij (in an expansion about flat space, the cosmological

constant contribution does not appear). Since Eq. (140) is
just the leading term in the weak field expansion, no issue
of perturbative renormalizability appears to this order.
Nevertheless, higher orders are expected to bring in ultra-
violet divergences which cannot be reabsorbed into a sim-
ple redefinition of the fundamental couplings G and �.
Then the results presented in this paper [namely,
Eqs. (124), (128), and (135)] can be viewed therefore as
a first attempt in extending nonperturbatively the result
of Eq. (140), beyond the inherent limitations of the weak
field limit.
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We see a number of additional avenues by which the
present work could be extended. One issue, which could
be rather laborious to work out in 3þ 1 dimensions, is
the systematic determination of the relevant lattice wave
functionals for the regular triangulations of the sphere
to higher order in the weak field expansion, as was
done, for example, in 2þ 1 dimensions [2]. It should
also be possible to obtain the lattice wave functional
numerically in cases where the triangulation itself is not
regular but is described instead by an average coordi-
nation number hqi, as described earlier in the text.
Another interesting problem would be the derivation
of the general form of the lattice wave functional by
methods which differ from the Frobenius power series
method presented here, such as the WKB approximation
[7] or the Raleigh–Schrödinger approach. Finally, it

would also be of some interest to rederive the form
of the lattice wave functional for other discrete triangu-
lations, such as the case of the three-torus T3 (the
Kasner model) [39].10
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Institute, Cargése, France, 1983, edited by G. ’t Hooft
et al. (Plenum, New York, 1984), p. 337.

[17] H.W. Hamber and R.M. Williams, Nucl. Phys. B248, 392
(1984); B260, 747 (1985); B269, 712 (1986); Phys. Lett.
157B, 368 (1985).

[18] H.W. Hamber, in Critical Phenomena, Random Systems
and Gauge Theories, Les Houches Summer School,
Session XLIII (North Holland, Amsterdam, 1986).

[19] J. B. Hartle, J. Math. Phys. (N.Y.) 26, 804 (1985); 27, 287
(1986); 30, 452 (1989).

[20] H.W. Hamber, Quantum Gravitation, Springer Tracts in
Modern Physics (Springer, New York, 2009).

10Models of lattice gravity were recently considered also from the point of view of area-angle variables in Ref. [40]. In this last
approach, one is no longer integrating over just the primary gravitational degrees of freedom (the metric in the continuum, or the edge
lengths on the Regge lattice), and thus new issues arise regarding what measure should be used to integrate over the dihedral angles
(which can be loosely viewed as the lattice analogs of the affine connections), while at the same time still ensuring a form of local
gauge invariance. A number of possible options regarding this issue are offered in the quoted paper. We also note that a discrete
Wheeler–DeWitt equation in 2þ 1 dimensions was written down recently in Ref. [41]. Nevertheless, there the relevant equations are
written as difference equations involving integer or half-integer valued 6j angular momentum recoupling coefficients. Finally, in
Ref. [42] the connection between lattice path integral and canonical quantization was explored in view of possible applications to the
perturbative weak field expansion.

HAMBER, TORIUMI, AND WILLIAMS PHYSICAL REVIEW D 88, 084012 (2013)

084012-22

http://dx.doi.org/10.1103/PhysRevD.84.104033
http://dx.doi.org/10.1103/PhysRevD.84.104033
http://dx.doi.org/10.1103/PhysRevD.86.084010
http://dx.doi.org/10.1103/PhysRevD.86.084010
http://dx.doi.org/10.1098/rspa.1958.0142
http://dx.doi.org/10.1103/PhysRev.114.924
http://dx.doi.org/10.1103/PhysRev.114.924
http://dx.doi.org/10.1007/s10714-008-0661-1
http://dx.doi.org/10.1007/s10714-008-0661-1
http://dx.doi.org/10.1103/PhysRev.160.1113
http://dx.doi.org/10.1103/PhysRev.162.1195
http://dx.doi.org/10.1103/PhysRev.162.1195
http://dx.doi.org/10.1103/PhysRev.162.1239
http://dx.doi.org/10.1103/PhysRev.134.B1155
http://dx.doi.org/10.1063/1.522976
http://dx.doi.org/10.1016/S0550-3213(98)00349-6
http://dx.doi.org/10.1016/0370-2693(81)90848-0
http://dx.doi.org/10.1016/0370-2693(81)90848-0
http://dx.doi.org/10.1007/BF01581603
http://dx.doi.org/10.1007/BF01210729
http://dx.doi.org/10.1007/BF01210729
http://dx.doi.org/10.1016/0550-3213(84)90603-5
http://dx.doi.org/10.1016/0550-3213(84)90603-5
http://dx.doi.org/10.1016/0550-3213(85)90057-4
http://dx.doi.org/10.1016/0550-3213(86)90518-3
http://dx.doi.org/10.1016/0370-2693(85)90382-X
http://dx.doi.org/10.1016/0370-2693(85)90382-X
http://dx.doi.org/10.1063/1.526571
http://dx.doi.org/10.1063/1.527331
http://dx.doi.org/10.1063/1.527331
http://dx.doi.org/10.1063/1.528410


[21] F. Lund and T. Regge, ‘‘Simplicial Approximation to some
Homogeneous Cosmologies,‘‘ Princeton preprint, unpub-
lished (1974).

[22] J. B. Hartle, W.A. Miller, and R.M. Williams, Classical
Quantum Gravity 14, 2137 (1997).

[23] H.W. Hamber and R.M. Williams, Nucl. Phys. B487, 345
(1997); B451, 305 (1995); H.W. Hamber and J. Kagel,
Classical Quantum Gravity 21, 5915 (2004).

[24] H. Coxeter, Regular Polytopes (Methuen, London, 1948).
[25] H. Coxeter, Regular Complex Polytopes (Cambridge

University Press, Cambridge, England, 1974).
[26] R.W. Lindquist and J. A. Wheeler, Rev. Mod. Phys. 29,

432 (1957).
[27] H.W. Hamber and R.M. Williams, Phys. Rev. D 47, 510

(1993).
[28] T. Regge, Nuovo Cimento 19, 558 (1961).
[29] H.W. Hamber, Nucl. Phys. B400, 347 (1993); Phys. Rev.

D 61, 124008 (2000); unpublished (2013).
[30] S. Weinberg, Ultraviolet Divergences in Quantum Gravity,

General Relativity—An Einstein Centenary Survey, edited
by S.W. Hawking and W. Israel (Cambridge University
Press, Cambridge, England, 1979).

[31] H. Kawai and M. Ninomiya, Nucl. Phys. B336, 115
(1990); H. Kawai, Y. Kitazawa, and M. Ninomiya, Nucl.
Phys. B393, 280 (1993); B404, 684 (1993); Y. Kitazawa
and M. Ninomiya, Phys. Rev. D 55, 2076 (1997).

[32] T. Aida and Y. Kitazawa, Nucl. Phys. B491, 427
(1997).

[33] Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, edited by M.
Abramowitz and I. A. Stegun (Dover, New York, 1972).

[34] Digital Library of Mathematical Functions, http://
dlmf.nist.gov/.

[35] NIST Handbook of Mathematical Functions, edited by
F.W. J. Olver et al. (Cambridge University Press,
Cambridge, England, 2010).

[36] H.W. Hamber and R.M. Williams, Phys. Rev. D 76,
084008 (2007); 81, 084048 (2010).

[37] M. Reuter, Phys. Rev. D 57, 971 (1998); M. Reuter and H.
Weyer, Gen. Relativ. Gravit. 41, 983 (2009), and further
references therein.

[38] D. F. Litim, Phys. Rev. Lett. 92, 201301 (2004); P. Fischer
and D. F. Litim, Phys. Lett. B 638, 497 (2006).

[39] H.W. Hamber, R. Toriumi, and R.M. Williams
(unpublished).

[40] B. Dittrich and S. Speziale, New J. Phys. 10, 083006
(2008); B. Bahr and B. Dittrich, New J. Phys. 12,
033010 (2010).

[41] V. Bonzom and L. Freidel, Classical Quantum Gravity 28,
195006 (2011).
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