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Nonperturbative gravity and the spin of the lattice graviton
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The lattice formulation of quantum gravity provides a natural framework in which nonperturbative
properties of the ground state can be studied in detail. In this paper we investigate how the lattice results
relate to the continuum semiclassical expansion about smooth manifolds. As an example we give an
explicit form for the lattice ground-state wave functional for semiclassical geometries. We then do a
detailed comparison between the more recent predictions from the lattice regularized theory and results
obtained in the continuum for the nontrivial ultraviolet fixed point of quantum gravity found using
weak field and nonperturbative methods. In particular we focus on the derivative of the beta function at
the fixed point and the related universal critical exponent � for gravitation. Based on recently available
lattice and continuum results we assess the evidence for the presence of a massless spin-two particle in
the continuum limit of the strongly coupled lattice theory. Finally we compare the lattice prediction for
the vacuum-polarization induced weak scale dependence of the gravitational coupling with recent
calculations in the continuum, finding similar effects.
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I. INTRODUCTION

It is widely believed that an understanding of the
properties of quantum gravitation would have important
consequences in many areas of cosmology and high en-
ergy physics. Unfortunately approaches to quantum grav-
ity based on linearized perturbation methods have had
moderate success so far, as the underlying theory is
known not to be perturbatively renormalizable [1,2]. A
lack of perturbative renormalizability implies that an
increasing number of counterterms needs to be added in
order to make the theory finite order by order in pertur-
bation theory. It has been recognized for some time
though that the lack of perturbative renormalizability is
not necessarily an obstacle in defining a consistent quan-
tum theory [3], as several simpler field theory models
suggest [4] (most notably the nonlinear sigma model
above two dimensions) and recent rigorous results seem
to support [5]. In the continuum nonperturbative renor-
malizability requires the existence of a nontrivial ultra-
violet fixed point of the renormalization group. In the
presence of a lattice momentum cutoff, the corresponding
requirement is the existence of a phase transition with a
divergent correlation length.

In the simplicial lattice formulation of quantum gravity
one proceeds in a way similar to ordinary lattice gauge
theories, and introduces a lattice ultraviolet regulator
which in principle allows for controlled, systematic ana-
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address: rmw7@damtp.cam.ac.uk
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lytical [6,7] and numerical [8–10] nonperturbative calcu-
lations of ground-state properties, anomalous scaling
dimensions and invariant correlations. Once the specific
lattice action has been chosen, numerically exact results
can be obtained on finite volume lattices which then need
to be judiciously extrapolated to the infinite volume limit
using the well-established methods of finite size scaling.
In this paper we address the basic issue of the relationship
between recent lattice results and a variety of approxi-
mate perturbative and nonperturbative results obtained in
the continuum formulation, with the intent of establish-
ing a set of connections between the two formulations that
go beyond weak coupling perturbation theory and the
perturbative expansion about smooth manifolds.

The starting point for a nonperturbative study of quan-
tum gravity is usually a suitable definition of the discrete
Feynman path integral. In the simplicial lattice approach
one starts from the discretized Euclidean path integral for
pure gravity, with the squared edge lengths taken as
fundamental dynamical variables,
ZL �
Z 1
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�
Y
ij
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(1.1)
(see Ref. [10] for notation). The above expression is sup-
posed to represent a lattice discretization of the contin-
uum Euclidean path integral for pure quantum gravity
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with k�1 � 8�G, G Newton’s constant, and the 	 	 	 rep-
resent higher order curvature invariant terms. The Regge
lattice action propagates only spin-two degrees of free-
dom in the weak field limit, while the cosmological and
measure terms contain only local volume contributions.
The discrete gravitational measure in ZL can be consid-
ered as the lattice analog of the DeWitt [11,12] continuum
functional measure [13–15]. A cosmological constant
term with bare � > 0 is needed for convergence of the
path integral [8,16,17]. Without loss of generality one can
rescale the metric and set � � 1. The curvature squared
terms (a! 0) allow one to control the short distance
fluctuations in the curvature, and as far as the functional
measure parameter � is concerned most of the recent
work has focused on the case � � 0 (for more details
on the choice of action and measure the reader is referred
to the review [9], and further references therein).

The present numerical evidence from the discrete
model of Eq. (1.1) suggests that quantum gravity in four
dimensions exhibits a phase transition in the coupling G
between two physically distinct phases [10]: a strong
coupling phase, in which the geometry becomes smooth
at large scales,

hg��i � c��� �G>Gc� (1.3)

with a vanishingly small average curvature in the vicinity
of the critical point at Gc, and a weak coupling phase

hg��i � 0 �G<Gc� (1.4)

in which the geometry becomes degenerate, bearing some
resemblance to a dilute branched polymer. It is clear that
based on its geometric properties, only the smooth phase
is physically acceptable. The existence of a phase transi-
tion at finite coupling G is usually associated with the
appearance of an ultraviolet fixed point of the renormal-
ization group, and implies in principle nontrivial scaling
properties for the coupling constant and invariant
correlations.

In the lattice theory the presence of a fixed point or
phase transition is usually inferred (as in other lattice
field theories) from the appearance of nonanalytic terms
in invariant local averages, such as the average scalar
curvature

h
R
d4x

���
g

p
R�x�i

h
R
d4x

���
g

p
i

�k!kc AR�kc � k�4��1: (1.5)

Without such singularities the lattice continuum limit
cannot be taken, as one needs a divergent correlation
length to define the lattice continuum limit. Indeed kc
124007
here is defined as the location of the nonanalyticity in the
partition function and its averages, the latter often ob-
tained by differentiation with respect to a source or some
other parameter. A precise determination of � then allows
one to connect singularities in averages such as the one
above to other long-distance properties of the theory. In
particular the relation between the critical exponent �
and the derivative of the renormalization group beta
function at the fixed point  0�Gc� � �1=� implies a scale
dependence of Newton’s constant (due to gravitational
vacuum-polarization effects) of the form

G�r� � G�0�f1� c�r="�1=� �O��r="�2=��g; (1.6)

where " is a renormalization group invariant scale pa-
rameter and c a calculable numerical constant of order
one. Detailed numerical studies of the Regge lattice grav-
ity model give a value very close to ��1 � 3 [10]. Since
one finds for the critical value Gc � 0:626 in units of the
lattice spacing, one would conclude that the lattice theory
is not weakly coupled in the vicinity of the fixed point. It
seems natural to interpret the momentum scale "�1 as
arising due to a gravitational analog of dimensional
transmutation, and it playing a role in gravitation similar
to the universal scaling violation parameter �MS of QCD
[18]. Other lattice approaches to quantum gravity based
on discrete dynamical triangulations with fixed edge
lengths and which give rise to a rather different phase
structure are reviewed in Ref. [19].

In this paper we examine a number of fundamental
issues that have a bearing on the relationship between
lattice and continuum models for quantum gravity. First
we will consider the lattice analog of the semiclassical
expansion for the ground-state wave functional of con-
tinuum gravity. Within the continuum formulation, the
semiclassical expansion about smooth manifolds with
bounded quantum fluctuations allows one to exhibit in a
clear and direct way the transverse-traceless modes (or
equivalently spin-two modes) as the only physical gravi-
tational degrees of freedom. Such an expansion is most
easily carried out with the Euclidean functional integral
approach, wherein the gravitational action is expanded in
the weak field metric, and the resulting Gaussian integrals
are subsequently carried out.

In trying to construct the lattice analog of the ground-
state functional for semiclassical gravity one has two
options. The first procedure relies on constructing directly
a lattice expression for the exponent of the ground-state
functional, obtained by transcribing the continuum ex-
pression in terms of lattice variables. The first method we
follow here is to proceed from the lattice expression for
the contribution to the gravitational action from a fixed
time slice, supplemented by the appropriate vacuum
gauge conditions (the boundary action, which gives the
ground-state wave function, is defined on a slice, the
boundary slice). A crucial ingredient in this method is
-2
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the correct identification of the correspondence between
continuum degrees of freedom (the metric) and the lattice
variables (the edge lengths). This correspondence is fixed
by the relationship between the lattice Regge action and
the continuum Einstein action, at least in the weak field
limit. The resulting lattice expression is then equivalent to
the continuum one by construction.

The second procedure relies instead only on the ex-
pression for the lattice gravitational action, as computed
in the weak field limit, and determines the explicit lattice
form for the ground-state functional for linearized grav-
ity by performing explicitly the necessary lattice
Gaussian functional integrals. The resulting discrete ex-
pression can then be compared to the continuum one by
reexpressing the edge lengths in terms of the metric. It is
encouraging that the resulting lattice expression com-
pletely agrees with what is found by using the previous
method.

It is advantageous in performing the above calculation
to introduce spin projection operators, which separate out
the spin-zero, spin-one and spin-two components of the
gravitational action. As a by-product one can then show
that the lattice gravitational action only propagates mass-
less spin-two (or transverse-traceless) degrees of freedom
in the weak field limit, as is the case in the continuum.
Furthermore, as expected, the lattice ground-state func-
tional for linearized gravity only contains those physical
modes.

In subsequent sections of the paper we examine sys-
tematically the relationship between recent nonperturba-
tive results obtained in the lattice theory and
corresponding calculations performed in the continuum
theory. The latter suggest the presence of a nontrivial
ultraviolet fixed point in G, and in some cases have
even led to definite predictions for the universal critical
exponent of quantum gravitation, which can therefore be
compared quantitatively to the lattice results.

Besides relying on the recent lattice and continuum
results for quantum gravitation, one can also try to inde-
pendently estimate the gravitational scaling dimensions
using what is known based on exact and approximate
renormalization group methods for spin zero (self-
interacting scalar field in four dimensions) and spin one
(Abelian noncompact pure gauge theories), for which a
wealth of information is available on the critical indices.
Based on this comparison, we will argue that these results
too are consistent with what is known about the gravita-
tional exponents in four dimensions. Finally we describe
a simple geometric argument which interprets the value
found for the gravitational exponent ��1 � 3.
II. GROUND-STATE WAVE FUNCTIONAL OF
LINEARIZED GRAVITY

According to the path integral prescription for
Euclidean quantum gravity, the wave function of the state
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of minimum excitation for an asymptotically flat three-
geometry with specified metric is

0�
3gij; t� � N

Z
3gij

�dg���e�I�g��� (2.1)

where the integral is over all Euclidean four-geometries
which are asymptotically flat and bounded at time t by an
asymptotically flat hypersurface with induced metric
3gij.

Kuchar̆ [20] has given an expression for the ground-
state wave functional of linearized gravity. In the vacuum
or ‘‘Coulomb’’ gauge hik;k � 0, hii � 0, h0i � 0 the
ground-state functional is given by

0�hTTij ; t� � N exp
�
�
1

4l2P

Z
d3k!khTTij �k� �h

TT
ij �k�

�

(2.2)

where hTTij �k� is a Fourier component of the transverse-
traceless part of the deviation of the three-metric from
the flat three-metric in rectangular coordinates,

hij�x; t� � 3gij�x; t� � �ij; (2.3)

!k � jkj, N is a normalization factor, and lP �

�16�G�1=2 is the Planck length in a system of units where
�h � c � 1. Equivalently one can write, in real space and
in terms of first derivatives of the fields, the expression

0�h
TT
ij ; t� � N exp

�
�

1

8�2l2P

�
Z
d3x

Z
d3x0

hTTij;k�x�h
TT
ij;k�x

0�

jx� x0j2

�
: (2.4)

The above ground-state wave function of linearized grav-
ity was originally evaluated by Kuchar̆ using canonical
methods [20]. Later the same formula was obtained by
Hartle using the Euclidean path integral prescription [21]
(see Sec. III).

A. Electromagnetic case

It is instructive, in view of the calculations to be done
for the gravitational case in the next sections, to consider
as an aside the much simpler case of electromagnetism.
Indeed a completely analogous set of results holds for the
ground-state functional in the electromagnetic case (as
discussed in detail in the original references [20,21]), and
brings out the relatively simple relationship between the
original electromagnetic action and the quantity appear-
ing in the exponent of the ground-state functional. Let us
therefore first examine the structure of the ground-state
functional in the electromagnetic case. In the Coulomb
gauge @iAi � 0, A0 � 0 the ground-state functional is
given by Kuchar̆ in terms of the transverse parts of the
potentials only
-3
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0�A; t� � N exp
�
�
1

2

Z
d3kkATi �k� �A

T
i �k�

�
(2.5)

or, equivalently, in terms of the B fields as

0�B; t� � N exp
�
�

1

4�2
Z
d3x

Z
d3x0 B�x� 	 B�x

0�

jx� x0j2

�
:

(2.6)

It will not be our purpose here to rederive the above
expressions, and we refer to the original paper for further
details on the functional integration procedure leading to
Eq. (2.5). Instead we will point out that the expression in
the exponent of Eq. (2.5) is related in a simple way to the
original electromagnetic action. One has for the action
appearing in the exponent of the Feynman path integral

I�A�� �
1

4

Z
d4xF���x�F���x� (2.7)

which for a single mode reduces to

Ik �
1
4�k�A��k� � k�A��k��

2: (2.8)

The electromagnetic field can, as usual, be decomposed
into transverse and longitudinal components. In terms of
the transverse projection of the field

ATi �

�
�ij �

kikj
k2

	
Aj (2.9)

one has for A0 � 0 (and k0 � 0)

k 2ATi �k� �A
T
i �k� �

1
2�kiAj�k� � kjAi�k��2 (2.10)

and therefore, after summing over all modes,

Z
d3k!kATi �k� �A

T
i �k� �

Z d3k
2!k

�kiAj�k� � kjAi�k��2

(2.11)

with !k �
������
k2

p
. The only point we want to make here is

that, up to a numerical factor, the expression appearing in
the exponent of Eq. (2.5) is the same as the contribution
written in Eq. (2.11), which follows from the continuum
action Eq. (2.7) plus the gauge choice. In the next section
we will see that a similar relationship holds in the gravi-
tational case as well, at least in the linearized case. This
will provide us with a first way of writing down the
exponent of the vacuum functional, starting from the
original action and following a set of steps analogous to
the ones followed here for the much simpler case of
electromagnetism, relying of course on the continuum
result derived by the authors of Refs. [20,21], and, in
particular, the main result of Eq. (2.2).

B. Spin projections

Returning to the case of the gravitational field one can
follow a procedure similar to the one just outlined, first in
the continuum and then on the lattice, and eventually
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obtain a lattice expression for the exponent of the vacuum
functional for linearized gravity, starting from Kuchar̆’s
original expression, Eq. (2.2). It will not be our purpose
here to rederive the gravitational vacuum functional of
Eq. (2.2) from the original path integral by performing
the required functional integrals for a prescribed bound-
ary metric (we refer to the original reference [21] for
details on this procedure), which we will assume here to
be correct. We will show here instead that in the contin-
uum the exponent of the ground-state functional for lin-
earized gravity in Eq. (2.2) can be obtained from the
continuum action by suitably expanding the gravitational
action in the weak field limit, and then imposing a set of
appropriate gauge conditions.

By later following a similar procedure on the lattice, a
corresponding discrete expression can easily be obtained.
The resulting expression will provide a first way of dis-
cretizing the exponent of the vacuum functional of
Eq. (2.2). In Sec. III, the same result will be obtained
by following a significantly more elaborate but also more
satisfactory procedure, in which one starts from the
original lattice gravitational actions, and explicitly per-
forms the required Gaussian functional integrals in the
presence of appropriate boundaries to obtain the vacuum
functional.

The first step in the above-mentioned procedure in-
volves the expansion of the continuum Lagrangian den-
sity �

���
g

p
R in the weak field limit

g�� � ��� � .h�� (2.12)

with . �
����������
8�G

p
and jh��j small. The quadratic part

[2,22] is then given by

L sym � �1
2@�h��@�h�� �

1
2@�h��@�h��

� 1
4@�h��@�h�� �

1
4@�h��@�h�� (2.13)

with residual gauge invariance

h�� ! h�� � @�"� � @�"� (2.14)

and "� an arbitrary gauge function. For one mode with
wave vector k one has

Lsym �1
2k�h��k�h�� �

1
2k�h��k�h�� �

1
4k�h��k�h��

� 1
4k�h��k�h�� (2.15)

�1
2k
2
1��h

2
23�h

2
24� h

2
34�h22h33� h22h44� h33h44�

� 	 	 	 : (2.16)

A gauge-fixing term can be added of the form

L fix � �1
2�k�h�� �

1
2k�h����k�h�� �

1
2k�h��� (2.17)

giving for the combined gauge-fixed weak field action

L tot � Lsym �Lfix

� �1
2@�h/ @�h/ � 1

8@�h//@�h  : (2.18)
-4



NONPERTURBATIVE GRAVITY AND THE SPIN OF THE . . . PHYSICAL REVIEW D 70, 124007 (2004)
However in the following we shall rely instead on the
vacuum (or Coulomb) gauge fixing which gives the
ground-state functional for linearized gravity discussed
previously.

It will be advantageous to define three independent spin
projection operators, which show explicitly the unique
decomposition of the continuum gravitational action for
linearized gravity into spin-two (transverse-traceless)
and spin-zero (conformal mode) parts [23,24]. The
spin-two projection operator is defined as

P�2�
��/ �

1

3k2
�k�k��/ � k/k ���� �

1

2k2
�k�k/�� 

� k�k ��/ � k�k/�� � k�k ��/�

�
2

3k4
k�k�k/k �

1

2
���/�� � �� ��/�

�
1

3
����/ ; (2.19)

the spin-one projection operator as

P�1�
��/ �

1

2k2
�k�k/�� � k�k ��/ � k�k/�� 

� k�k ��/� �
1

k4
k�k�k/k (2.20)

and the spin-zero projection operator as

P�0�
��/ ��

1

3k2
�k�k��/ � k/k ���� �

1

3
����/ 

�
1

3k4
k�k�k/k : (2.21)

The sum of the three spin projection operators is then
equal to unity

P�2�
��/ � P�1�

��/ � P�0�
��/ � 1

2���/�� � �� ��/�:

(2.22)

As a result one can define for the metric three orthogonal
fields of definite spin, the transverse-traceless (spin-two)
part

hTT�� � P�/h/ P � �
1
3P��P/ h / (2.23)

the longitudinal (spin-one) part

hL�� � h�� � P�/h/ P � (2.24)

and the trace (spin-zero) part

hT�� �
1
3P��P/ h/ (2.25)

such that their sum gives h

h � hTT � hL � hT: (2.26)

Here we have defined the projection operator

P�� � ��� �
1

�
@�@� (2.27)
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or equivalently in momentum space

P�� � ��� �
k�k�
k2

: (2.28)

Using the three spin projection operators, the action for
linearized gravity can then be rewritten (for one mode)
simply as

L sym � �1
4h���P

�2� � 2P�0����/ k
2h/ : (2.29)

Imposing the gauge condition hi0 � h00 � hik;k � 0 (and
setting k0 � 0 again, as in the electromagnetic case, to
eliminate some unwanted terms) one obtains

�1
4k
2 �hTTij h

TT
ij � 1

2k
2 �hTijh

T
ij (2.30)

with the second (spin zero) vanishing after further im-
posing the trace condition hii � 0. The resulting expres-
sion is then identical, up to a factor, to the expression
appearing in the exponent of the ground-state functional
of linearized gravity of Eq. (2.2). We should stress here
again that the above steps are not intended as a derivation
of the Kuchar̆ and Hartle result of Eq. (2.2), and are
presented here instead to bring out the relationship be-
tween the original gravitational action density and the
expression appearing in the exponent of the ground-state
wave functional, and as a prescription for obtaining one
from the other.

C. Lattice transverse-traceless modes

In this section an expression for the lattice analog of
the exponent of the Kuchar̆ and Hartle expression for the
vacuum functional [Eq. (2.2)] will be obtained from the
Regge lattice gravitational action, which will then give a
lattice candidate for the gravitational wave functional.
The procedure will be very similar, and parallel to, the
one followed in the previous section dealing purely with
the continuum case. As a first step one needs to perform
the weak field expansion for the Regge action

IR �
X
h

Ah�h (2.31)

where Ah is the area of the hinge h, and �h is the deficit
angle at the same hinge. Following Ref. [7] each hyper-
cube in a hypercubic lattice is divided up into 24 four-
simplices, with vertices at �0; 0; 0; 0�, �0; 0; 0; 1� . . .
�1; 1; 1; 1� (without loss of generality one can take the
lattice spacing to be one). The lengths of the 15 edges
connecting the vertices i and j are denoted by lij, where i
and j range from 1 to 15, with the coordinates of the end
points interpreted as binary numbers (for more details,
see Sec. III). Next each link length is allowed to fluctuate
by an amount 1� e around the hypercubic lattice value.
To lowest order in the edge fluctuation, the lattice action is
given by a quadratic form
-5
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IR �
1

2

X
ij

eiMijej (2.32)

with M a local matrix connecting only nearest-neighbor
points. In Fourier space one can write for each of the
15 displacements ea;b;c;di , defined at the vertex of the cube
with labels �a; b; c; d�,

HERBERT W. HAMBER AND RUTH M. WILLIAMS
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e�a;b;c;d�i � �!1�
a�!2�

b�!4�
c�!8�

de0i (2.33)
with !1 � eik1 , !2 � eik2 , !4 � eik3 , !8 � eik4 (we use
the binary notation for ! and e, but the regular notation
for ki). For one mode (one set of ! ’s) one obtains there-
fore (see Appendix B in Ref. [7])
6e21 � 16e
2
3 � 18e27 � �!1!4 �!2!4 �!1!8 �!2!8 � �!1 �!4 � �!2 �!4 � �!1 �!8 � �!2 �!8�e1e2 � �8� 4!2

� 4 �!2�e1e3 � �2!1 � 2 �!1 � 2!2!4 � 2 �!2 �!4�e1e6 � �12� 6!4 � 6 �!4�e3e7 � 	 	 	 : (2.34)

Each coefficient is real, as expected from the reality of the action. Thus, for example, in the above expression, we have

!1!4 �!2!4 �!1!8 �!2!8 � �!1 �!4 � �!2 �!4 � �!1 �!8 � �!2 �!8
� 4 cos�12�k3 � k4��fcos�

1
2�2k1 � k3 � k4�� � cos�

1
2�2k2 � k3 � k4��g � 8� 2k21 � 2k22 � 2k1k3 � 2k2k3 � 2k23

� 2k1k4 � 2k2k4 � 2k24 �O�k4�: (2.35)

Normally to show the equivalence of the Regge action to the continuum Einstein-Hilbert action one needs to replace the
e fields with metric components (or alternatively, as done in Ref. [7], use trace reversed metric components), with body
principals expanded as

e1 � �1� �1�!1h11�1=2; e2 � �1� �1�!2h22�1=2; e4 � �1� �1�!4h33�1=2;

e8 � �1� �1�!8h44�1=2;
(2.36)

face diagonals as

e3 � �1� �1� 1
2!1!2�h11 � h22� � h12�1=2; e5 � �1� �1� 1

2!1!4�h11 � h33� � h13�1=2;

e9 � �1� �1� 1
2!1!8�h11 � h44� � h14�1=2; e6 � �1� �1� 1

2!2!4�h22 � h33� � h23�1=2;

e10 � �1� �1� 1
2!2!8�h22 � h44� � h24�

1=2; e12 � �1� �1� 1
2!4!8�h33 � h44� � h34�

1=2;

(2.37)

body diagonals as

e7 � �1� f1� 1
3!1!2!4�h11 � h22 � h33� �

1
3��1�!4�h12 � �1�!1�h23 � �1�!2�h13�g

1=2;

e11 � �1� f1� 1
3!1!2!8�h11 � h22 � h44� �

1
3��1�!8�h12 � �1�!1�h24 � �1�!2�h14�g

1=2;

e13 � �1� f1� 1
3!1!2!4�h11 � h33 � h44� �

1
3��1�!8�h13 � �1�!1�h34 � �1�!4�h14�g1=2;

e14 � �1� f1� 1
3!2!4!8�h22 � h33 � h44� �

1
3��1�!8�h23 � �1�!2�h34 � �1�!4�h24�g1=2;

(2.38)

and finally hyperbody diagonals as

e15 � �1� �1� 1
4!1!2!4!8�h11 � h22 � h33 � h44� �

3
4�h12 � h13 � h14 � h23 � h24 � h34��1=2; (2.39)

although the latter quantity is not needed, as it does not appear in the Regge action to lowest order in the weak field
expansion. Each expression is then expanded out for weak h, giving for example

e1 �
1
2!1h11 �O�h2�; e3 �

1
2h12 �

1
4!1!2�h11 � h22� �O�h2�;

e7 �
1
6�h12 � h13 � h23� �

1
6�!1h23 �!2h13 �!4h12� �

1
6!1!2!4�h11 � h22 � h33� �O�h2�

(2.40)
and so on for the other edges by permuting indices.
Setting then !1 � eik1 . . .!8 � eik4 (we switch here
from the binary notation for the !’s to a normal notation
for the k’s), the resulting answer is finally expanded out in
k to give exactly the weak field expansion of the contin-
uum Einstein action as given in Eqs. (2.13) and (2.15),
and completely parallels the procedure for recovering the
continuum limit of the lattice action as described origi-
nally in Refs. [7,25].
To obtain a suitable lattice expression for the ground-
state functional of linearized gravity one needs to com-
pute the contribution to the lattice gravitational action
from a given time slice, and subsequently impose the
appropriate discrete vacuum gauge conditions. This will
then give, as in the continuum, the contribution appearing
in the exponent of the ground-state functional for line-
arized gravity as it appears in Eq. (2.2).
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The first step involves therefore the imposition of the
vacuum gauge conditions hik;k � 0, h00 � h0i � 0 which
gives

e8�0; e9�
1
2!8e1; e10�

1
2!8e2; e12�

1
2!8e4;

e11�
1
3�1�!8�e3�

1
6�1�!8��!2e1�!1e2�;

e13�
1
3�1�!8�e5�

1
6�1�!8��!4e1�!1e4�;

e14�
1
3�1�!8�e6�

1
6�1�!8��!2e4�!4e2�

(2.41)

and results in an action contribution of the form

2e21 � 8e
2
3 � �!1!4 �!2!4 � �!1 �!4 � �!2 � �!4�e1e2

� 2�!2 � �!2 � 2�e1e3 � 2�!1!2 � �!1 �!2 �!4
� �!4�e3e4 � 4�!2 � �!2 �!4 � �!4�e3e5 � 	 	 	

(2.42)

where the dots indicate again additional terms obtainable
by permutation of indices.

To verify that this is indeed the correct expression one
can use the expansion of the ei’s in terms of the hij’s, as
given in Eq. (2.39), and then expand out the!’s in powers
of k. After setting k4 � 0 (the analog of setting k0 � 0 in
the previous section), one obtains

1
2 �k

2
1h
2
23 � k21h22h33 � 2k1k2h13h23 � 2k1k2h12h33

� k22h
2
13 � k22h11h33 � 2k1k3h13h22 � 2k1k3h12h23

� 2k2k3h12h13 � 2k2k3h11h23 � k23h
2
12 � k23h11h22�

(2.43)

which can in turn be rewritten as the sum of two parts, the
first part being the transverse-traceless contribution

1
4k

2Trf3h�P3hP� 1
2PTr�P

3h��g � 1
4k
2 �hTTij �k�h

TT
ij �k�

(2.44)

�h TTij h
TT
ij � Trf3h�P3hP� 1

2PTr�P
3h��g (2.45)

with Pij � �ij � kikj=k2, and the second part arising due
to the trace component of the metric

�1
4k
2Tr�PTr�P3h�PTr�P3h�� � k2 �hTij�k�h

T
ij�k� (2.46)

with hT � 1
2PTr�P

3h�. In the vacuum gauge hik;k � 0,
hii � 0, h0i � 0 one needs to further solve for the metric
components h12, h13, h23 and h33 in terms of the two
remaining degrees of freedom, h11 and h22,

h12 � �
1

2k1k2
�h11k

2
1 � h22k

2
2 � h11k

2
3 � h22k

2
3�;

h13 � �
1

2k1k3
�h11k21 � h22k22 � h11k23 � h22k23�;

h23 � �
1

2k2k3
��h11k21 � h22k22 � h11k23 � h22k23�;

h33 � �h11 � h22;

(2.47)
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and show that the second (trace) part vanishes. For ex-
ample, in terms of the e variables the vacuum gauge
condition hik;k � 0 then reads

�2�1� �!1� �!2�1�!2� �!4�1�!4��e1
�!1�1�!2�e2 �!1�1�!4�e4 � 2�1�!2�e3
� 2�1�!4�e5 � 0 (2.48)

and permutations. The above manipulations then show
that the expression given in Eq. (2.42) is indeed the
sought-after lattice analog for the continuum expression
k2hTTij �h

TT
ij appearing in the exponent of the ground-state

functional of linearized gravity.
We conclude this section by outlining an example

of a potentially useful application for the above results.
The explicit construction of the ground-state wave func-
tional of linearized lattice gravity in terms of lattice
transverse-traceless modes makes it possible at least in
principle to compare the lattice and continuum results
in the limit of small curvatures, such as would be ob-
tained, for example, from lattice simulations by imposing
flat boundary conditions at spatial infinity. After impos-
ing the boundary conditions by suitably restricting the
values for the edge lengths on the lattice boundary such
that the deficit angle is zero there, one would then have to
further enforce the lattice vacuum gauge conditions of
Eq. (2.48) so as to finally make contact with the semi-
classical lattice functional of Eq. (2.42). But no gauge
fixing is required for determining invariant averages
obtained via the partition function of Eq. (1.1), so in
practice the gauge conditions would have to be imposed
configuration by configuration, by progressively applying
local gauge transformations (such as the ones described in
Ref. [14]) so as to gradually transform the edge lengths
for each configuration to the lattice analog of the vacuum
gauge. It is expected that after such a transformation the
edge distributions on a fixed time slice should follow
closely the distribution of Eq. (2.42), if indeed as ex-
pected the only surviving physical modes are transverse
traceless.
III. GROUND-STATE WAVE FUNCTIONAL
FOR LINEARIZED REGGE

CALCULUS

In the previous section a lattice expression for the
exponent of the vacuum functional for linearized gravity
was obtained, following a procedure which closely par-
allels the one used in the continuum to go from the
original gravitational action density to the exponent of
Eq. (2.2). In this section the ground-state functional will
instead be derived by performing directly the discrete
functional integration over the interior metric perturba-
tions for a lattice with boundary. This will be one of the
-7
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main results of this paper, and is the analog of Hartle’s
continuum calculation of the ground-state wave func-
tional of linearized gravity, using Regge calculus. We
shall now briefly outline Hartle’s calculation since our
calculation later is (intended to be) a discrete version of
his. For further details on the method we refer to the
original paper.

In linearized gravity, the Einstein action is expanded to
quadratic order in deviations of the metric from its flat-
space value. On a surface which becomes the flat surface
t � const when the metric perturbations are zero, we
write the three-metric as

3gij � �ij � hij; (3.1)

and hij can be decomposed into a transverse-traceless
part, a longitudinal part and the trace. Since the physical
degrees of freedom are the two independent components
of hTTij , the transverse-traceless part, the wave function on
the surface can be written as

0 � 0�h
TT
ij �x�; t�: (3.2)

The Euclidean Einstein action is given by

l2PI�g� � �
Z
M
d4x

���
g

p
R� 2

Z
@M
d3x

�����
3g

q
K; (3.3)

and for linearized gravity, the Euclidean four-metric in
the functional integral is written as

g/ �x� � �/ � h/ �x� (3.4)

and the action is expanded to quadratic order in h/ . The
boundary @M is taken to be a flat slice in flat Euclidean
space, and M is the region of flat Euclidean space to the
past of this. The h/ are required to vanish at infinity so
that g/ is asymptotically flat.

The action is required to be gauge invariant, and gauge-
fixing terms in the four-volume and on the surface are
included in the functional integral. The metric perturba-
tions are divided into conformal equivalence classes [26]
by writing

h/ �x� � 2/ �x� � 2�/ 3�x�: (3.5)

The integration contour for 3 is rotated to purely imagi-
nary values to make the integral over 3 converge. Then
the field 2/ is decomposed as

2/ � 2̂/ � f/ ; (3.6)

where 2̂/ is a solution of the linearized field equations
which satisfies the gauge and boundary conditions. The
unique solution is essentially that the spatial components
are the hTTij and the other components vanish. The integral
over the f/ contributes only to the normalization factor,
as does that over 3. The result for the ground-state wave
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function of linearized gravity is

0�h
TT
ij ; t� � N exp

�
�
1

4l2P

Z
d3k!khTTij �k� �h

TT
ij �k�

�
;

(3.7)

where hTTij �k� is the Fourier transform of hTTij �x�, !k �
jkj, N is a normalization factor and lP �

�������������
16�G

p
is the

Planck length. This is exactly the same formula as that
obtained by Kuchar̆ using canonical methods.

Linearized Regge calculus can be implemented as the
theory of the small fluctuations of edge lengths away
from their flat-space values, in a tessellation of four-
dimensional space using rectangular hypercubes subdi-
vided into four-simplices. The methods of subdivision and
the notation are described in detail in earlier work on
linearized Regge calculus [7], the difference in this case
being that we have a four-dimensional Euclidean space
with a flat boundary. The binary notation in Ref. [7],
which we shall also use here, comes from interpreting
lattice vectors �0; 0; 0; 1�, �0; 0; 1; 0�, �0; 1; 0; 0� and
�1; 0; 0; 0� as binary numbers, giving the x1, x2, x4, and
x8 directions. For ease of notation here, we shall take the
boundary surface to be x8 � 0, and the Euclidean four-
space to be x8 
 0 (to avoid lots of minus signs). Unlike
the continuum case, we shall take periodic boundary
conditions in the 1-, 2- and 4-directions, while the space
will be asymptotically flat in the 8-direction. With unit
lattice spacing, the flat-space edge lengths will be 1,

���
2

p
,���

3
p

and 2, and the perturbed edge lengths will be written
as in Sec. II, as

lji � Lji �1� eji �; (3.8)

where L is the flat-space edge length, e is a small
perturbation, and in each case, the upper index j
denotes the lattice point at which the edge is based
and the lower index i denotes the direction of that edge
(all in binary notation). (Note a small change in notation
from Ref. [7] where the small perturbations were
called �.) Thus, for instance, the e’s based at the origin
and lying in the boundary hypersurface will be
e01; e

0
2; e

0
3; e

0
4; e

0
5; e

0
6; e

0
7.

In brief, our method is to write down the action for the
semi-infinite four-dimensional space and to perform a
functional integral over the internal perturbations, leav-
ing an expression in terms of the e’s on the boundary. The
aim is then to identify the quadratic expression in the
surface e’s with the discrete version of the integral of
hTTij �k� �h

TTij�k�. The calculation is long and tedious so we
shall give relatively little detail, but enough for the reader
to reproduce it if required.

A. Interior terms

Consider an interior vertex, which for simplicity we
shall label as if it were the origin. The e’s for the edges
-8
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based at this vertex will be e0i , i � 1; 2; . . . ; 15, and we
first write the total quadratic contribution (the first non-
vanishing order) to the action, which involves any of
these e’s. This will arise from the Regge action  Ah�h,
for the hypercube based at the origin and from neighbor-
ing hypercubes. This is given explicitly in Appendix B in
Ref. [7].

The next step is to differentiate the action with
respect to each of the e0i in turn to obtain their classical
equations of motion. Below we give an example of an
equation of motion of each type, for e01, e

0
3 and e07 respec-

tively:

0 �6e01 � 4�e03 � e05 � e06� � 2�e
1
6 � e110 � e112�

� 4�e�23 � e�45 � e�89 � � 3�e�27 � e�211 � e�47 � e�413
� e�811 � e�813 � � e34 � e38 � e52 � e58 � e92 � e94 � e�62
� e�64 � 2e�66 � e�102 � e�108 � 2e�1010 � e�124

� e�128 � 2e�1212 (3.9)

0 � 8e03 � 2�e
0
1 � e02� � 3�e07 � e011� � 2��e12 � e16

� e110� � 2��e21 � e25 � e29� � e34 � e48 � e�44 � e�88
� 2�e�45 � e�46 � e�89 � e�810 � � 3�e

�4
7 � e�811 �

(3.10)

0 �6e07 � 2e03 � 2e05 � 2e
0
6 � e12 � e14 � 2e16 � e21 � e24

� 2e25 � e41 � e42 � 2e43: (3.11)

All other equations of motion may be obtained by cyclic
permutations of the indices.

We introduce new integration variables fji by

eji � êji � fji ; (3.12)

where the êji satisfy the equations of motion above. By
subtracting each of the êji times the corresponding
classical equation of motion from the contribution to
the action based at the origin, the êji are completely
eliminated, leaving only Gaussian integrals over the fji ,
which contribute only to the normalization. The same
feature appears in the continuum. (Note that as in
Ref. [7], cross terms of the form e0i e

j
k, where j is a

neighboring lattice point of the origin, are assigned half
to each of the lattice points involved.) This elimination of
the interior terms would seem to hold independently of
whether we impose periodic boundary conditions or
asymptotic flatness.
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B. Boundary terms

Having integrated over all contributions to the
action from interior vertices, we are now left with
the contributions assigned to vertices on the x8 � 0
boundary. These will consist not only of terms involv-
ing e’s based at vertices on the boundary hypersurface,
but also of contributions from vertices one layer in but
assigned (as explained above) partly to the boundary
layer.

Suppose now that the origin is back on the boundary
hypersurface. The total contribution to the action
involving e0i has more than 200 terms so will not be
reproduced here. Clearly there are no terms involving
e�ji with j � 8; 9; . . . ; 14 since the boundary is at x8 �
0. All eji terms with i or j � 8; 9; . . . ; 14 are as for interior
vertices, and most of the other terms are half their
interior values.

Recall that the e’s in the boundary three-surface (e0i ,
i � 1; 2; . . . ; 7) are fixed but e0i with i � 8; 9; . . . ; 14 are to
be varied and have exactly the same classical equations of
motion as before. We again simplify the action by sub-
tracting e0i times its equation of motion, for each of these,
and then eliminate e011, e

0
13 and e014 using their equations

of motion. At the same time, we eliminate e07 using a
constraint identical to its equation of motion. This looks
somewhat suspect, but the motivation and justification are
as follows. In three-dimensional linearized Regge calcu-
lus performed in a manner completely analogous to the
four-dimensional case in Ref. [7], the e07 mode is not
dynamical and satisfies a constraint which turns out to
be identical to its equation of motion; this reduces
the number of variables to six, the correct number. We
apply this result to our three-dimensional boundary
hypersurface.

As a first step in linking our position-space represen-
tation of the action to the momentum representation in the
Kuchar̆-Hartle formula [20,21], we take the Fourier trans-
form in the 1-, 2- and 4-directions, which are those in
which there are periodic boundary conditions. (In the 8-
direction, we have contributions from only one other
layer, the first interior one). The details are explained in
Ref. [7] but there the complex nature of the Fourier trans-
forms was not taken into account. Here our convention is
that e0i e

a
j transforms to !a~e

0
i
�~e0j , where a � 1; 2; 4 and

!a � eika . For consistency with this, the linear expres-
sions in the e’s in the equations of motion transform
slightly differently from in Ref. [7], with eai transforming
to �!a~e0i . To simplify the notation, we immediately drop
the tildes from the Fourier transforms and the super-
scripts 0.

We have not yet eliminated e8, e9, e10 and e12; this is
not straightforward in the way it was for e11, e13 and e14
as their equations of motion are simultaneous equations
for the four e’s. For example, the Fourier transforms of
those for e8 and e9, with /i defined to be 1�!i, are
-9



HERBERT W. HAMBER AND RUTH M. WILLIAMS PHYSICAL REVIEW D 70, 124007 (2004)
e8�2�j/1j
2 � j/2j

2 � j/4j
2� � /1 �/2 � /2 �/1 � /1 �/4 � /4 �/1 � /2 �/4 � /4 �/2� � 2e9��j/2j

2 � j/4j
2 � /1 �/2 � /1 �/4�

� 2e10��j/1j2 � j/4j2 � /2 �/1 � /2 �/4� � 2e12��j/1j2 � j/2j2 � /4 �/1 � /4 �/2� � e1�2/1 � 2/2 � 2/4 � �/2
� �/4 � 2/1/2 � 2/1/4 � /1 �/2 � /1 �/4� � e2�2/1 � 2/2 � 2/4 � �/1 � �/4 � 2/1/2 � 2/2/4 � /2 �/1 � /2 �/4�

� e4�2/1 � 2/2 � 2/4 � �/1 � �/2 � 2/1/4 � 2/2/4 � /4 �/1 � /4 �/2� � 2e3�2/1/2 � /1 � /2� � 2e5�2/1/4
� /1 � /4� � 2e6�2/2/4 � /2 � /4� � e81��2/1 � /2 � /4 � 2 �/2 � 2 �/4� � e82��2/2 � /1 � /4 � 2 �/1 � 2 �/4�

� e84��2/4 � /1 � /2 � 2 �/1 � 2 �/2� � 2e83�/1 � /2� � 2e
8
5�/1 � /4� � 2e

8
6�/2 � /4�; (3.13)

e8� � j/2j
2 � j/4j

2 � /2 �/1 � /4 �/1� � 2e9�j/2j
2 � j/4j

2� � 2e10/2 �/1 � 2e12/4 �/1 � e1� �/2 � �/4�

� e2�2 �/1 � /2 � /2 �/1� � e4�2 �/1 � /4 � /1 �/1� � 2e3/2 � 2e5/4 � e81�/2 � /4� � e82�/2 � 2 �/1�

� e84�/4 � 2 �/1� � 2e83/2 � 2e
8
5/4; (3.14)

and those for e10 and e12 by cyclic permutations of the indices.
These equations are not all independent. Adding the left-hand sides gives zero, while adding the right-hand sides

gives
0 �2�e1�j/2j2 � j/4j2 � /1/2 � /1/4� � e2�j/1j2 � j/4j2 � /1/2 � /2/4� � e4�j/1j2 � j/2j2 � /1/4 � /2/4�

� 2e3/1/2 � 2e5/1/4 � 2e6/2/4�: (3.15)
This expression is precisely the three-dimensional scalar
curvature at the origin [27] and is constrained to be zero.
[The constraint on a three-dimensional hypersurface also
includes �trK�2 and trK2 terms but these terms are of
higher order in the e’s.] We can also show that /1 times
the e9 equation plus /2 times the e10 equation plus /4
times the e12 equation gives zero on the left-hand side but
on the right-hand side, it gives half the difference be-
tween the three-dimensional curvature scalars at the
origin and at vertex 8, and so again is zero. (3R is also
zero at the interior vertex 8 as the constraint is propagated
into the bulk.)

Thus we have a situation where only two of the equa-
tions are independent, and where the consistency is guar-
anteed by the constraint. To solve the equations
symmetrically, we take

� � e8; (3.16)

� � /1e9 � /2e10 � /4e12 (3.17)

to be arbitrary parameters. We then obtain
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e9 �
1

2 
�B� �X24 � 2 �/1��; (3.18)

e10 �
1

2 
�C� �X14 � 2 �/2��; (3.19)

e12 �
1

2 
�D� �X12 � 2 �/4��; (3.20)

where  � j/1j
2 � j/2j

2 � j/4j
2 and Xij � j/ij

2 �

j/jj
2 � /i �/k � /j �/k with i; j; k � 1; 2; 4 and k � i; j.

B, C and D are the expressions on the right-hand sides
of the e9, e10 and e12 equations. We now substitute for �e9,
�e10 and �e12 in the boundary action. The total coefficients
obtained for �� and �� are both multiples of 3R at the origin
and so vanish.

What remains is an extremely long expression.We write
the coefficient of ei in this asWi �Ui (for ‘‘wanted’’ and
‘‘unwanted’’). We will now give the expressions for i �
1; 3, all others being obtainable by cyclic permutations of
the indices.
4 W1 � � �e1�j/2j
2 � j/4j

2 � /2 �/4 � /4 �/2� � �e2��j/4j
2 � 2/1/4 � 2 �/2 �/4 � /1 �/2 � /1 �/4 � /4 �/2� � �e4��j/2j

2

� 2/1/2 � 2 �/2 �/4 � /1 �/2 � /1 �/4 � /2 �/4� � 2�e3�/4 �/2 � j/4j2� � 2�e5�/2 �/4 � j/2j2� � 2�e6�/1 �/2 � /1 �/4
� 2 �/2 �/4���2� � � 2�e81�j/2j

2 � j/4j2 � /2 �/4 � /4 �/2� � 2�e
8
2��j/4j2 � 2/1/4 � 2 �/2 �/4 � /1 �/2 � /1 �/4

� /4 �/2� � 2�e
8
4��j/2j

2 � 2/1/2 � 2 �/2 �/4 � /1 �/2 � /1 �/4 � /2 �/4� � 4�e
8
3�/4 �/2 � j/4j

2� � 4�e85�/2 �/4
� j/2j

2� � 4�e86�/1 �/2 � /1 �/4 � 2 �/2 �/4�; (3.21)

2 W3 � � �e1�/2 �/4 � j/4j2� � �e2�/1 �/4 � j/4j2� � �e4�/1 �/4 � /2 �/4 � 2/1/2� � 2�e3j/4j2 � 2�e5/2 �/4
� 2�e6/1 �/4��2� � � 2�e81�/2 �/4 � j/4j

2� � 2�e82�/1 �/4 � j/4j
2� � 2�e84�/1 �/4 � /2 �/4 � 2/1/2�

� 4�e83j/4j
2 � 4�e85/2 �/4 � 4�e

8
6/1 �/4; (3.22)
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 U1 � �e2�j/1j
2 � �/2j/1j

2 � /1/4 � /4 �/2 � /1/4 �/2 � �/22� � �e4�j/1j
2 � �/4j/1j

2 � /1/2 � /2 �/4 � /1/2 �/4 � �/24�

� 2�e3 �/1 �/2 � 2�e5 �/1 �/4 � 2�e6 �/2 �/4 � �e81�/1/2 � /1/4 � �/1 �/2 � �/1 �/4� � �e82��j/1j
2 � j/2j

2 � /1/2 � �/1 �/2
� /1/4 � �/2 �/4� � �e84��j/1j2 � j/4j2 � /1/4 � �/1 �/4 � /1/2 � �/2 �/4� � 2�e83 �/1 �/2 � 2�e

8
5 �/1 �/4 � 2�e86 �/2 �/4;

(3.23)

 U3 � 2� �e1/2 �/1 � �e2/1 �/2 � �e4/1/2�1� �/4� � �e81/1/2 � �e82/1/2 � �e84/1/2�: (3.24)

We see that

 U1 � �3R�0� � 3R�8��=2� �e1�j/2j2 � j/4j2 � �/1 �/2 � �/1 �/2 � �/1 �/4� � �e2� �/22 � j/4j2 � /1 �/2 � /1/4 � /4 �/2
� �/2 �/4 � /1/4 �/2� � �e4� �/24 � j/2j2 � /1 �/4 � /1/2 � /2 �/4 � �/2 �/4 � /1/2 �/4� � � �e81 � �e82 � �e84��j/2j

2

� j/4j
2 � /1/2 � /1/4�: (3.25)

Repeatedly using 3R�0� � 3R�8� � 0, we then have the following expression for the boundary action:

 �e1U1 � e2U2 � e3U3 � e4U4 � e5U5 � e6U6� � � �e81 � �e82 � �e84 � � �e1 � �e2 � �e4��
3R�0�=2�U; (3.26)

where the remainder U is given by

U � fe1� �e1� �/1 �/2 � /1/2 � �/1 �/4 � /1/4� � �e2�j/2j
2 � �/22 � /1/2 � /1 �/2 � /4 �/2 � �/2 �/4 � /1/4 �/2� � �e4�j/4j

2

� �/24 � /1/4 � /1 �/4 � /2 �/4 � �/2 �/4 � /1/2 �/4�� � e2� �e1�j/1j
2 � �/21 � /2 �/1 � /1/2 � /4 �/1 � �/1 �/4

� /2/4 �/1� � �e2� �/1 �/2 � /1/2 � �/2 �/4 � /2/4� � �e4�j/4j2 � �/24 � /2 �/4 � /2/4 � /1 �/4 � �/1 �/4 � /1/2 �/4��

� e4� �e1�j/1j2 � �/21 � /4 �/1 � /1/4 � /2 �/1 � �/1 �/2 � /2/4 �/1� � �e2�j/2j2 � �/22 � /4 �/2 � /2/4 � /1 �/2
� �/1 �/2 � /1/4 �/2� � �e4� �/1 �/4 � /1/4 � �/2 �/4 � /2/4�� � 2e3� �e1�/2 �/1 � /1/2� � �e2�/1 �/2 � /1/2�

� �e4�/1/2 �/4�� � 2e5� �e1�/4 �/1 � /1/4� � �e2/1/4 �/2 � �e4�/1 �/4 � /1/4�� � 2e6� �e1/2/4 �/1 � �e2�/4 �/2 � /2/4�

� �e4�/2 �/4 � /2/4��g: (3.27)

The next step is to expand in powers of k, using !i � eiki ; /i � 1�!i (in contrast to the previous section, here we
keep the binary notation for the ki’s). For the remainder U above, we obtain

U � 2i�k1 �e1 � k2 �e2 � k4 �e4�3R�0� �O�k4�: (3.28)

For W1 and W3, we have

2�k21 � k22 � k24�W1 � � �e1 � �e81��k
2
2 � k24 � 2k2k4� � � �e2 � �e82��k

2
4 � 3k1k4 � 3k2k4 � k1k2� � � �e4 � �e84��k

2
2 � 3k1k2

� 3k2k4 � k1k4� � 2� �e3 � �e83��k2k4 � k24� � 2� �e5 � �e85��k2k4 � k22� � 2� �e6 � �e86��k1k2 � k1k4
� 2k2k4� �O�k3�; (3.29)

�k21 � k22 � k24�W3 � � �e1 � �e81��k2k4 � k24� � � �e2 � �e82��k1k4 � k24� � � �e4 � �e84��k1k4 � k2k4 � 2k1k2� � 2� �e3 � �e83�k
2
4

� 2� �e5 � �e85�k2k4 � 2� �e6 � �e86�k1k4 �O�k3�: (3.30)

Thus our final expression for the boundary action is

1

2�k21 � k22 � k24�
fe1�� �e1 � �e81��k

2
2 � k24 � 2k2k4� � � �e2 � �e82��k

2
4 � 3k1k4 � 3k2k4 � k1k2� � � �e4 � �e84��k

2
2 � 3k1k2

� 3k2k4 � k1k4� � 2� �e3 � �e83��k2k4 � k24� � 2� �e5 � �e85��k2k4 � k22� � 2� �e6 � �e86��k1k2 � k1k4 � 2k2k4�

�O�k3�� � e2�. . .� � e4�. . .� � 2e3�� �e1 � �e81��k2k4 � k24� � � �e2 � �e82��k1k4 � k24� � � �e4 � �e84��k1k4
� k2k4 � 2k1k2� � 2� �e3 � �e83�k

2
4 � 2� �e5 � �e85�k2k4 � 2� �e6 � �e86�k1k4 �O�k3�� � 2e5�. . .� � 2e6�. . .�g:

(3.31)
The coefficients of e2 and e4 can be obtained from those
of e1, and those of e5 and e6 from those of e3, by cyclic
permutation of indices.

This is to be compared with the expression for hTTij �h
TTij

stated earlier, Eq. (2.42) supplemented by the gauge
124007
conditions of Eq. (2.48). Note that that expression does
not distinguish between �eiej and �ejei, and once this is
taken into account, the expressions are identical (apart
from an overall minus sign which arises from the fact that
-11
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the Regge calculus expressions are calculated from the
changes in dihedral angles rather than the deficit angles).
Thus we can write our expression for the action as

I �
Z
d3khTTij � �h

TTij�0� � �hTTij�8�� (3.32)

which is the lattice equivalent of the continuum expres-
sion

I �
Z
d3khTTij

�
�

@
@x8

�hTTij
	
�

Z
d3k!khTTij �h

TTij

(3.33)

where x8 is the coordinate normal to the boundary and

!k � k8 �
���������������������������
k21 � k22 � k24

q
. In the last step we have made

use of the usual replacement of a finite difference by a
derivative, which is correct here up to higher order terms
in k, and we do not need to distinguish here between the
lattice and continuum version of !k. Also we have used
the behavior of h�k� in a space with Euclidean signature,
where, if the expansion is periodic in the 1-, 2-, and 4-
directions, we shall have

h�k� � C exp�i�k1x1 � k2x2 � k4x4� � k8x8�; (3.34)

with k28 � k21 � k22 � k24 to satisfy the wave equation
�h � 0. The ground-state wave function obtained is
thus identical to the continuum result of Kuchar̆ and
Hartle.
IV. THE EVIDENCE FOR SPIN TWO

In the weak field limit the lattice theory described by
the partition function Eq. (1.1) is known to be equivalent
to the continuum theory of a massless spin-two particle,
as embodied in Einstein’s general relativity with a cos-
mological constant term. One would hope that the local
gauge invariance (continuous lattice diffeomorphism in-
variance) of the discrete gravitational action under metric
deformations—taken sufficiently small so as not to vio-
late the triangle inequalities [14]—would be powerful
enough to ensure that the lattice theory still describes a
regularized model for quantum gravity, even away from
smooth manifolds. In this section we shall examine the
evidence in support of the argument that the lattice
theory, treated nonperturbatively and in the vicinity of
the critical point at Gc where the lattice continuum limit
is formally defined, still describes a massless spin-two
particle. A comparison will be made between the lattice
results and those obtained recently in the continuum
using a variety of perturbative (2� : expansion) and
nonperturbative (renormalization group combined with
a derivative expansion) methods. A second line of ap-
proach will be to compare the lattice results for the
critical exponents of gravitation with what is known
either exactly or approximately for other spin values
�0; 1� in four dimensions, and look for a discernible trend.
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The cornerstone for these kind of arguments is the
basic idea of universality. It is known that the long-
distance behavior of quantum field theories is to a great
extent determined by the scaling behavior of the coupling
constant under a change in momentum scale [3]. It is also
well known that asymptotically free theories such as
QCD lead to vanishing gauge couplings at short dis-
tances, while the opposite is true for QED and self-
interacting scalar field theories in four dimensions.
More generally, the fixed points of the renormalization
group need not be at zero coupling, but can be located at
some finite coupling, leading to nontrivial fixed points
not necessarily accessible by perturbation theory, or pos-
sibly even more complex fixed lines and limit cycles
[3,28].

The existence of nontrivial ultraviolet fixed points, at
which the theory becomes scale invariant, corresponds in
statistical mechanics language to the existence of one or
more critical points. There the partition function develops
nonanalyticities and singularities caused by infrared di-
vergences associated with a divergent correlation length.
Lattice gravity exhibits precisely such a transition [9,10]
where, for example, the curvature fluctuation

3R�k� �
h�
R ���

g
p
R�2i � h

R ���
g

p
Ri2

h
R ���

g
p

i
(4.1)

diverges at some kc. Such a divergence signals a singu-
larity in the partition function itself, since averages such
as the average curvature R and the curvature fluctuation
3R are related to derivatives of ZL [of Eq. (1.1)], with
respect to the gravitational coupling k � 1=�16�G�.

Simple scaling arguments allow one to determine the
scaling behavior of correlation functions from the critical
exponents which characterize the singular behavior of
local averages in the vicinity of the critical point. The
appearance of a singularity in the free energy F�k� is
caused by the divergence of the correlation length ",
which close to the critical point at kc is assumed to behave
as

" � 1=m�k!kc A"�kc � k��� (4.2)

and defines the exponent �. Since for the singular part of
the free energy one expects Fsing�k� � "�d simply on
dimensional grounds, one then obtains by differentiation
with respect to k for the curvature fluctuation

3R�k� �k!kc A3R
�kc � k���2�d��: (4.3)

The last expression allows, at least in principle, a direct
determination of the critical exponent �. Large scale
direct numerical studies of the lattice theory [10] give
the values � � 0:33 and Gc �� 0:626, which suggests
� � 1=3 for pure gravitation.

Apart from a detailed comparison between critical
exponents (which will be done later in this paper), a
number of direct and indirect arguments can be given
-12



NONPERTURBATIVE GRAVITY AND THE SPIN OF THE . . . PHYSICAL REVIEW D 70, 124007 (2004)
in support of the fact that the nonperturbative lattice
theory still describes a massless spin-two particle in the
vicinity of the critical point at kc. Firstly the gravitational
lattice action only propagates spin-two (transverse-
traceless) degrees of freedom, as shown explicitly in the
weak field expansion of the previous sections (the lattice
gravitational functional measure is completely local, and
does not contain any propagation terms, to any order of
the weak field expansion). This result is further supported
by rigorous work describing the convergence of the lattice
action towards the continuum one for smooth enough
manifolds [29,30]. Secondly, the static interaction of
two heavy particles of mass m described by two world
lines kept at a fixed distance d has been shown to scale
consistently as the mass squared, as expected for gravi-
tational type interactions [31]. In the following we will
explore this delicate issue further, by pursuing the con-
nection with available nonperturbative results in the
continuum.

A. Ultraviolet fixed point

One can contrast and compare the lattice results with
what one obtains for quantum gravity in the continuum.
Since gravity is not perturbatively renormalizable in four
dimensions, one has to go to a lower dimension �d � 2�
where the perturbative expansion becomes meaningful,
and expand about that dimension. Similar expansions
have been shown to be quantitatively very successful in
scalar field theories [32,33], but the series are shorter and
a significantly larger extrapolation is required in the
gravitational case (for a general review of the diagram-
matic field theory methods as applied to statistical me-
chanics models see [34–36]).

In the 2� : perturbative expansion for gravity [37]
(earlier references can be found in Refs. [38–40]) one
analytically continues in the space-time dimension by
using dimensional regularization, and applies perturba-
tion theory about d � 2, where the theory is formally
power counting renormalizable and Newton’s constant
is dimensionless. An expansion in the number of dimen-
sions of course goes back to Wilson’s original work [3],
and since then similar methods have been shown to be
quite successful in determining among others the critical
properties of the O�n�-symmetric nonlinear sigma model
above two dimensions [41]. This model is not perturba-
tively renormalizable either, yet describes a completely
well-defined and physically relevant statistical spin sys-
tem, namely, the universality class of the 3-d Heisenberg
ferromagnet. The same dimensional expansion methods
have been extended with some success to fermionic mod-
els as well [42].

In the gravitational case the dimensionful bare cou-
pling is written as G0 � �2�dG, where G is dimension-
less and� is an ultraviolet cutoff (not to be confused here
with the scaled cosmological constant), corresponding on
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the lattice to a momentum cutoff of the order of the
inverse average lattice spacing, �� 1=l0. The method
has of course its share of problems, as the Einstein action
is a topological invariant in two dimensions, which leads
to kinematic singularities in the propagator. In addition,
to recover the physical case d � 4 requires a rather bold
extrapolation from two dimensions. The series them-
selves are rather short and strong assumptions need to
be made about the nature of possible singularities in the
complex coupling constant plane (in particular the ab-
sence of singularities close to d � 3). Still, one can view
this approach as providing some sort of gauge-invariant
resummation of a specific set of subdiagrams which may
or may not be ultimately relevant in d � 4.

A double expansion in G and : � d� 2 then leads
above two dimensions to a nonvanishing beta function

 �G� �
@G

@ log�
� �d� 2�G�  0G

2 �  1G
3 � 	 	 	 ;

(4.4)

and consequently a nontrivial ultraviolet fixed point in G,
since  0 > 0 for pure gravity. Integrating Eq. (4.4) close
to the fixed point, one obtains for G>Gc a nonperturba-
tive, dynamically generated mass scale

m � �exp
�
�
Z G dG0

 �G0�

�
�G!Gc �jG�Gcj�1= 

0�Gc�:

(4.5)

It should be noted at this point that Eq. (4.5) is essentially
the same as Eq. (4.2), with slightly different notations. It
also brings out the central importance of the exponent �,
and how it relates to the scale dependence of the coupling
G. The derivative of the beta function at the fixed point
defines the critical exponent � (which to lowest order is in
fact independent of  0),

 0�Gc� � �1=�: (4.6)

In the previous expression m is an arbitrary integration
constant, with dimensions of a mass, and has to be
associated with some physical scale to be determined
(as in QCD) by physical considerations (we will argue
that it is the analog of �MS for gravitation). It would
appear natural here to identify it with the inverse of a
gravitational correlation length (" � m�1), perhaps a
length scale associated with some average long-distance
curvature (more on this later). The above renormalization
group result also illustrates in a direct way how the lattice
continuum limit should be taken. It corresponds to taking
the ultraviolet cutoff�! 1, and therefore G! Gc, with
m held constant. For a fixed lattice cutoff, the continuum
limit is approached by tuning G to Gc.

The value of the universal critical exponent � has
important physical consequences, as it directly deter-
mines the running of the effective coupling G���, where
� is an arbitrary momentum scale. The renormalization
-13
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group tells us that in general the effective coupling will
grow or decrease with length scale r � 1=�, depending
on whether G>Gc or G<Gc, respectively. The physical
mass parameter m is itself by definition scale indepen-
dent, and therefore obeys a Callan-Symanzik renormal-
ization group equation, which in the immediate vicinity
of the fixed point takes on the simple form

�
@
@�

m��� � �
@
@�

fAm�jG��� �Gcj�g � 0 (4.7)

with Am a numerical constant. As a consequence, forG>
Gc, corresponding to the smooth phase, one expects for
the running, effective gravitational coupling [10,15]

G�r� � G�0�f1� c�r="�1=� �O��r="�2=��g; (4.8)

with c a calculable numerical constant of order one.1 The
physical renormalization group invariant mass m � "�1

determines the magnitude of scaling corrections, and
separates the short distance, ultraviolet regime from the
large distance, infrared region. As already mentioned in
the introduction, there are in fact indications that in the
Euclidean lattice theory only the smooth phase with G>
Gc exists (since space-time becomes branched-
polymerlike and therefore degenerates for G<Gc),
which would then imply that the gravitational coupling
can only increase with distance (this point will be dis-
cussed further in Sec. V).

Recently the continuum 2� : expansion for gravita-
tion has been pushed to two loops, giving close to two
dimensions [37]

 �G� � �d� 2�G�
2

3
�25� nf�G

2

�
20

3
�25� nf�G3 � 	 	 	 ; (4.9)

for nf massless real scalar fields minimally coupled to
gravity. After solving the equation �Gc� � 0 to establish
the location of the fixed point, one obtains for pure
gravity (nf � 0)

Gc � �3=50��d� 2� � �9=250��d� 2�2 � 	 	 	 (4.10)

and therefore close to two dimensions

��1 � � 0�Gc� � �d� 2� �
9

5
�d� 2�2 �O�d� 2�3;

(4.11)

which gives to lowest order ��1 � 2 independently of d,
and ��1 � 4:4 at the next order in d � 4. The uncertainty
in these results can perhaps best be judged by comparing
to similar calculations in the scalar case, for which much
1At very short distances r� lP one finds finite perturbative
corrections to the potential as well, which can be computed
analytically using weak coupling diagrammatic techniques
[43].
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longer series exist, and for which rather sophisticated
resummation methods based on Pade-Borel transforms,
conformal mappings, and incorporating asymptotic large
order estimates, are available [32,33] (the methods of
statistical field theory are discussed in detail in
Refs. [34,35]). Unfortunately in general the convergence
properties of the 2� : expansion for the nonlinear sigma
model are not encouraging, even when comparing to well-
established results in d � 3 (: � 1) [41].

The 2� : expansion is not the only method that has
been applied in the continuum to extract quantitative
information about nonperturbative properties of gravita-
tion. In this context we should mention another set of
related results for the critical exponents of quantum
gravitation. Recently in a separate, approximate renor-
malization group calculation based on the Einstein-
Hilbert action truncation [44] one finds in the limit of
vanishing bare cosmological constant ��1 � 2d�d�
2�=�d� 2� � 2:667 in d � 4, and ��1 � 1:667 in a
more elaborate truncation. In this paper the sensitivity
of the results to the choice of gauge-fixing term and to the
specific shape of the momentum cutoff is investigated as
well. These more recent results extend earlier calculations
for the exponent � done by similar operator truncation
methods, and described in detail in Refs. [45,46]. A
quantitative comparison of these various continuum re-
sults with the lattice answer for ��1 will be postponed
until later in this paper.

B. Geometric argument for � � 1=3

A simple geometric argument can be given in support
of the exact value � � 1=3 for pure quantum gravitation.
The vacuum-polarization induced scale dependence of
the gravitational coupling G�r� as given in Eq. (4.8) im-
plies the following quantum corrected static gravitational
potential, for a point source of mass M located at the
origin:

V�r� � �G�r�
mM
r

� �G�0�
mM
r

f1� c�r="�1=� �O��r="�2=��g

(4.12)

and for intermediate distances lp � r� ". As a result,
the vacuum-polarization effects due to virtual graviton
loops cause an effective antiscreening of the primary
gravitational source M. Thus the effect of the running
gravitational coupling G�r� is to give rise to a new non-
perturbative quantum contribution to the potential, pro-
portional to r1=��1. Remarkably for � � 1=3 the
additional contribution, now proportional to r2, can be
interpreted as being due to what ultimately appears as a
uniform mass distribution surrounding the original
source. Its origin lies with a nonperturbative graviton
vacuum-polarization contribution, localized around the
-14
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point source, and of strength

�0 �
3cM

4�"3
: (4.13)

Of course such a simple geometric interpretation fails
unless the critical exponent � for gravitation is exactly
one-third. In fact in any dimensions d 
 4 one would
expect based on the geometric argument that � 0�Gc� �
��1 � d� 1, if the leading correction to the gravitational
potential is due to a uniformly distributed, antiscreening
cloud of virtual gravitons. These arguments rely of course
on the lowest order result V�r� �

R
dd�1peipx=p2 � r3�d

for single graviton exchange in d > 3 dimensions.
Equivalently, the running of G can be characterized as

being due to a tiny nonvanishing (and positive) nonper-
turbative gravitational vacuum contribution to the cos-
mological constant, with

�" �
3cM

"3
(4.14)

and therefore an associated effective curvature of magni-
tude R�G�" �GM="3. It is amusing that for a very
large mass distribution, the above expression for the
curvature can only be reconciled with the naive dimen-
sional estimate R� 1="2, provided for the gravitational
coupling G itself one has G� "=M [47].

C. Random gravitational paths

Within the Feynman path integral formulation of quan-
tum field theory, a well-known relationship exists be-
tween the properties of random paths and those of field
correlations (see for example [48]). In this section the
analogy will be exploited in trying to gain more insight
on the specific values for the gravitational critical
exponents.

In the simpler case of self-interacting scalar field theo-
ries a rigorous argument can be given [49] based on an
exact geometric characterization of criticality in the �24

theory and the Ising model, in and above four dimensions.
The key element of the argument lies in the recognition of
the fact that random walks representing the propagation
of free particles in Euclidean space-time have fractal [50]
dimensions dH � ��1 � 2, with vanishing probability of
self-intersection above d � 4. As a consequence these
models are governed by mean field theory above d � 4,
with mild logarithmic corrections to free field behavior at
d � 4. They provide rigorous support for the original
claim that in the infinite cutoff limit all scalar field
theories are trivial in four dimensions [3].

Let us first illustrate these results for the simplest case
of a free scalar field in d dimensions with action

S �
1

2

Z
x;y
2�x�M�x; y�2�y�: (4.15)

On a lattice one has for the matrixMij � Dij � Sij, where
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S is the (nearest-neighbor) hopping part, and the rest is
the diagonal part Dij � �2d�m20��ij, with d the dimen-
sions and m0 the bare mass. The propagator connecting
point 1 to point 2 is then given in terms of the kernel S by

G12 �
1

m20 � 2d

X1
n�0

S

m20 � 2d
(4.16)

or, equivalently, in terms of a sum over paths

G12 �
X

paths 1!2

e�ml12�path� � r��d�1�=2
12 e�r12=" (4.17)

where l12�path� is the length of the random path connect-
ing points 1 and 2. In the second part of the expression we
have indicated the asymptotic behavior of the free propa-
gator for large distances, which brings in the correlation
length " � m�1

0 .
In its simplest form, the lattice partition function

needed to generate the above random curves is given by

Z� � � N
Z YN

i�1

dDXi exp
�
� 

XN
i�1

jXi �Xi�1j
/
�

(4.18)

which for / � 1 generates closed (XN�1 � X1) piece-
wise linear curves embedded in D Euclidean dimensions.
For / � 2 it is equivalent to the generating function for a
one-dimensionalD-component massless field theory with
unit lattice spacing, with infrared divergences appearing
as the size N goes to infinity. In the limit of a large
number of steps N one obtains for the size of the random
walk

hX2i �
1

N

XN
i�1

hX2
i i �N!1 N2=dH (4.19)

with dH � 2 for free Brownian motion, independently of
/. The Hausdorff dimension dH characterizes the devia-
tion of an ensemble of random paths from what one would
expect based on their topological dimension of one.
Furthermore dH is known to be a universal number, i.e.,
independent of the specific choice for the measure over
random paths, and describing general geometric proper-
ties of random curves in the limit of very long paths. The
relation ��1 � dH for free fields follows as a direct con-
sequence of the representation of the field correlation
function in terms of a sum over random paths with fixed
end points, as given by Eq. (4.17).

Below four dimensions nontrivial continuum behavior
is expected for scalar fields, including non-Gaussian ex-
ponents and nontrivial fractal dimensions. Thus, for ex-
ample, for an interacting scalar field in two dimensions
� � 1 (Onsager solution of the Ising model), while for a
self-avoiding random walk one has instead dH � ��1 �
4=3 exactly in d � 2 [51]. Other nontrivial constraints,
such as the requirement that the random walks do not
-15



FIG. 1. Gravitational critical exponent ��1 � � 0�Gc� as a
function of dimension. Direct determinations from the Regge
lattice (small circles at two, three and four dimensions), in the
continuum using renormalization group truncation methods
(squares), and by extrapolating lattice results from lower spin
(triangles) are compared (see Tables I and II). The solid line is
an interpolation through the Regge lattice results, incorporat-
ing the asymptotic behavior d� 1 for large d. The thin-dotted
line is the analytic 2� : result of Eq. (4.11). The dotted line is
the continuum renormalization group result of Ref. [44]. The
origin, methodology and comparison of the these various
results are discussed further in the text.
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backtrack, are also expected to change the fractal dimen-
sion dH.

In the gravitational case one is dealing with random
paths associated with a massless particle of spin two. As a
result new constraints on the nature of the random paths
come into play, which are not present in the simpler case
of a spinless scalar field. As discussed in Feynman and
Hibbs [52], these constraints are in fact already rather
complicated for the case of a particle of spin one-half,
and give rise even in this simplest case to a set of non-
trivial complex weights needed to correctly reproduce the
continuum expression for the Dirac propagator. In four
dimensions such paths involve Dirac projection operators
1� A� [53].

On general grounds one would then be inclined to
identify the value � � 1=3 found for four-dimensional
gravitation with a fractal dimension of random gravita-
tional paths dH � 3. Unfortunately (or fortunately) the
value � � 1=3 itself does not correspond to any known
field theory or statistical mechanics model in four dimen-
sions. For dilute branched polymers it is known that � �
1=2 in three dimensions [54], and � � 1=4 at the upper
critical dimension d � 8 [55], so one would expect a
value close to 1=3 somewhere in between. A value for
the fractal dimension close to 1 would indicate the paths
have almost linear Euclidean geometry, while at the
opposite end a very large fractal dimension would indi-
cate the paths are largely collapsed to a very small region
about the origin. The paths in this latter case are highly
folded and to some extent self-intersecting. Therefore the
value dH � 3 found for quantum gravitation would sug-
gest a far greater degree of folding compared to the
spinless case, for which dH � 2.

One could further develop these arguments and, in
analogy with the scalar case, conclude that below six
space-time dimensions two random gravitational paths
will have a nonvanishing probability of self-intersection.
These arguments would imply that the ‘‘upper critical
dimension’’ for gravity is six, above which the theory
becomes in some sense noninteracting and therefore triv-
ial.2 Unfortunately this argument is probably flawed, as
dH � 3 holds only in d � 4, and presumably not at the
upper critical dimension, if one indeed exists. On the
other hand, the large-d geometric estimate discussed pre-
viously, ��1 � d� 1, equates to two (the fractal dimen-
2One can obtain a direct estimate for the upper critical
dimension by equating 2��1�d� � d, which after interpolating
in d the known Regge lattice results gives as a solution the
surprisingly low value d � 2:929 (see also Fig. 1). This in turn
would lead to the somewhat paradoxical conclusion that quan-
tum gravity, in spite of being perturbatively nonrenormaliz-
able, is weakly interacting in the infrared above three
dimensions, in the same sense that self-interacting scalar field
theories, in spite of not being perturbatively renormalizable,
become weakly interacting at low energies above four
dimensions.
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sion for an unconstrained, spinless random walk) in three
space-time dimensions, where it is in fact known that
there can be no propagating, genuine spin-two degrees
of freedom.

D. Approaching quantized gravitation from spin zero
and spin one

While only limited results exist for the nonperturba-
tive scaling dimensions of quantum gravitation in four
dimensions, the same is not quite true for spin one (com-
pact pure Abelian gauge theory) and spin zero (self-
interacting scalar field theory). It has been known since
the work of Wilson [3] that all local one-component
scalar field theories in four dimensions are described by
the Gaussian fixed point. The fact that these theories
become noninteracting (up to logarithmic corrections)
at large distances in four dimensions implies that the
critical exponents and scaling dimensions coincide with
those of a free field. In particular one finds for the uni-
versal critical exponent

��1 � 2 �s � 0� (4.20)

a result which in fact can be proven rigorously [49] (for
some unresolved issues and an unconventional point of
view regarding the self-interacting scalar field theory in
four dimensions see [56]). In three dimensions the inter-
acting �24 scalar field theory shares the same universal
long-distance properties with the Ising ferromagnet. For
-16



NONPERTURBATIVE GRAVITY AND THE SPIN OF THE . . . PHYSICAL REVIEW D 70, 124007 (2004)
both incarnations a wealth of numerical and analytical
data exists on the critical exponents, and for the purposes
of the present discussion the relevant result here is ��1 �
27=17 � 1:5882 [33].

In the massless spin-one case the results for the critical
exponent � are somewhat less unambiguous, and further-
more no exact results are available yet. If one considers
just ordinary (noncompact) electrodynamics without
matter, then the universality class is that of a free
(Gaussian) field. Wilson’s compact lattice electrodynam-
ics (without matter),3 on the other hand retains, at least in
the naive continuum limit, the same degrees of freedom
as ordinary electrodynamics (a field Un� � expiAn� on
each lattice link, with An� periodic with period 2�), but
adds gauge-invariant nonlinear interactions [which in the
naive continuum limit appear as terms of the type
�D�F���2, �F���4, etc.]. These extra terms make the
theory self-interacting and nontrivial, and in Wilson’s
lattice formulation give rise to a phase transition between
a Coulomb phase and a strong coupling confining phase
[57]. An open question has remained for some time as to
the nature of the transition and the value of the critical
exponents, although specific scenarios have been put for-
ward in the quoted references. An analytical variational
real space renormalization group analysis of the Abelian
U(1) lattice gauge theory in d � 4 [58] gave for the non-
trivial mass gap (or leading thermal) exponent

��1 � 2:5�2� �s � 1�: (4.22)

The errors there can be estimated from an analysis of the
results for � using the same renormalization group meth-
ods in the 3-d U(1) spin system, which gave � �
0:6702�6� [58], compared to the present best theoretical
value [33] � � 0:6698�15� based on the : expansion about
four dimensions as well as the 3-d 24 field theory, and
also in good agreement with the latest experimental value
� � 0:6706�5�, as quoted again in the recent comprehen-
sive review [33].

More recently [59,60] detailed numerical simulation
studies of the Abelian U(1) compact lattice gauge theory
have been performed with various additional action terms
besides the standard Wilson action plaquette term. Away
from the ‘‘Wilson line’’ (where the adjoint coupling A �

0, and where the transition, being first order, is more
difficult to analyze regarding the true singularity of the
free energy located at the end of the metastable phase) the
3The partition function for Wilson’s compact Abelian U(1)
lattice gauge theory, without matter, is given by

Z �
Y
n;�

Z 2�

0
dAn� exp

�
 
X
n;�;�

�cosFn�� � 1�
�

(4.21)

with An� the angle on the directed link from n to n� �̂, and
Fn�� � ��An� � ��An� with �� a finite difference operator
in the � direction.
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value ��1 � 2:57�6� is found for an adjoint gauge cou-
pling A � �1=2. Closer to the first-order Wilson line A �
0 they find the larger value ��1 � 2:81�6�, but which
perhaps should be discarded in view of the first-order
nature of the intervening transition for A � 0 [61], unless
as mentioned above a more refined analytic continuation
towards the true critical point is performed, in order to
extract the required critical exponent characteristic of the
end-point singularity.4

There is one item though that clouds the picture pre-
sented above regarding the spin content of the pure
Abelian Wilson lattice gauge theory, and that is the pres-
ence of monopole degrees of freedom, which can be
clearly exhibited in the Villain or periodic Gaussian for-
mulation of the action [57]. When the lattice partition
function is suitably transformed using the Poisson resum-
mation formula, these scalar degrees of freedom can be
exhibited directly and their properties investigated. Thus
in the scaling region of the lattice theory one finds both
photon and (integer valued) magnetic monopole degrees
of freedom. We refer, for example, to Ref. [63] for a
discussion of the rich features of the theory, which in-
clude monopole condensation and a whole spectrum of
‘‘gauge balls’’ in the strong coupling phase. In the follow-
ing we shall assume that it still remains legitimate to
compare the critical exponents for the compact Abelian
pure gauge theory to the other two cases in question (s �
0 and s � 2), but caution the reader that such a compari-
son might not be entirely warranted. At the same time we
hope that the present discussion will perhaps renew inter-
est in a high-accuracy determination of the critical ex-
ponent(s) (including possibly multicritical behavior) for
the compact U(1) gauge theory, which is, after all, the
simplest four-dimensional lattice gauge theory still en-
dowed with a continuous local gauge symmetry.

Given the above values for the critical exponent ��1 for
the massless spin-zero and spin-one fields, but bearing in
mind the above-mentioned cautionary statements, it is
tempting to use them to estimate independently the scal-
ing dimensions for gravitation, using

��1�s� � s��1s�1 � �1� s���1s�0 (4.23)

(see Table I). Assuming ��1 � 2 for s � 0 and ��1 � 5=2
for s � 1 one then obtains ��1 � 3 for spin two, in good
agreement with the previous discussion. In addition the
simple formula
4One might wonder to what extent the quoted numerical
results for the critical exponents, often obtained on relatively
small lattices, are reliable. To further estimate the uncertainties
in the numerical determination for � in d � 4 one can, for
example, compare to a recent high-accuracy determination of �
in the spin-zero case (Ising model) in d � 4, which yields
��1 � 1:992�6� [62] on similarly sized lattices, and which is
quite close to the expected exact value ��1 � 2.
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TABLE II. Direct determinations of the critical exponent
��1 for quantum gravitation, using a variety of analytical
and numerical methods in three and four space-time dimen-
sions. The unweighted average of all direct determinations for
quantum gravitation in four dimensions listed above gives
��1 � 2:93.

Reference ��1 in d � 3 ��1 in d � 4

[25] 1.67(6) -
[10] 	 	 	 3.08(62)
[10] 	 	 	 2.98(7)
[37] 1.6 4.4
[45] 1.11(5) 1.68(26)
[46] 	 	 	 2.8(6)
[44] 1.2 2.666
Exact 1.5882 3

TABLE I. Critical exponent ��1 for a massless spin-two
particle in four dimensions, as obtained indirectly either by
extrapolation from other dimensions (d � 3 in row 1) or from
information on other spin values (rows 2–4). Included in the
table is also one direct (lattice) determination in d � 3. The
unweighted average of all extrapolated values listed in the
second column is ��1 � 2:98.

Reference ��1 in d � 3 ��1 in d � 4

[25] 1.67(6) 3.34
[58] 	 	 	 2.98(25)
[59] 	 	 	 2.74(6)
[60] 	 	 	 2.86(8)
Exact 1.5882 3

5Furthermore, the critical point obtained from the analytic
continuation of the strong coupling (small k) branch of the free
energy lies at the end of the metastable phase of the Euclidean
theory, which is not necessarily a concern here as one is
ultimately interested in the pseudo-Riemannian theory.
Indeed one would not have expected otherwise, in view of
the well-known and seemingly unavoidable conformal insta-
bility of the Euclidean theory.
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��1 � 2�
s
2

(4.24)

gives for the exponent /=� � �2� d��=� � s in four
dimensions, and therefore a divergence of the second
derivative of the free energy of the remarkably simple
form C� "s.

Yet another, independent way of estimating the critical
exponent for four-dimensional quantum gravitation in-
volves looking at the two lower-dimensional cases of pure
gravity in d � 2 (where ��1 � 0) and pure gravity in d �
3 (where ��1 � 1:67) [25]. A linear extrapolation to four
dimensions would then give ��1 � 3:3 which is quite
consistent with what has been said in the previous dis-
cussion. It is worth noting here that the value for the
exponent for three-dimensional gravity is tantalizingly
close to the scalar field case. In the 2� : expansion one
finds ��1 � 1:6 while some relatively old direct numeri-
cal simulations in d � 3 give ��1 � 1:67. Both values are
quite close to the 3� d scalar field exponent ��1 �
27=17 � 1:5882 [33], which would be in line with the
conjecture that in the infrared limit three-dimensional
gravity belongs to the same universality class as a self-
interacting single-component scalar field, with the scalar
curvature playing the role of the scalar field R� �2, as
in fact suggested some time ago by the authors of
Ref. [64].

As one last exercise one can look at the case of frac-
tional spin, which presumably corresponds to massless
self-interacting fermions. In the spin-one-half case,
which should apply to self-interacting fermions in four
dimensions (such as those represented by the nonrenor-
malizable 4-d Gross-Neveu [42] and similar four-fermion
models), one obtains ��1 � 9=4 � 2:25 in d � 4, which
should be compared to the known values ��1 � 27=17 �
1:5882 in d � 3 (interacting 3-d fermions as described by
Ising model exponents), and � � 1 in d � 2 (based on the
rigorous equivalence between the two-dimensional criti-
cal Ising model and a free Majorana fermion). Had one
extrapolated linearly these known results to four dimen-
sions, one would have estimated 2:18, a value quite close
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to 9=4 (to within 3%). It is of course not obvious at this
point how to interpret the above result in terms of a
fermion random walk, which would have fractal dimen-
sion dh � ��1 � 9=4. But the trend in the exponents is at
least consistent with the expectation that the fractal di-
mension increases with embedding dimension d, as there
are more dimensions to expand into.

The various estimates for the critical exponent are
compared in Tables I (indirect determinations) and II
(direct determinations). Table II provides a list of critical
exponents for gravitation as obtained by direct perturba-
tive and nonperturbative methods in three and four di-
mensions. As mentioned before, direct numerical
simulations for the lattice model of Eq. (1.1) in four
dimensions give for the critical point Gc � 0:626 in units
of the ultraviolet cutoff, and one finds [10]

��1 � 2:99�8� �s � 2� (4.25)

which is used for comparison in Table II and III.5

To conclude this section, one could reverse the line of
the above arguments relating to the critical exponents for
gravitation, and instead estimate the spin of the massless
lattice graviton by considering the dependence of the
measured exponent � on the spin. Again optimistically
assuming a roughly linear dependence of the exponent
��1 on the spin, and using the more accurate values at s �
0 and s � 1 one obtains, from ��1 � 2:98�7� [10], about
s � 1:96� 0:38, which is not far from the expected value
of spin two.
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TABLE III. Summary table for the critical exponent ��1 as a
function of spin and dimension.

��1 d � 2 d � 3 d � 4

Spin s � 0 1 1.588 2
Spin s � 1 0 0 2.5
Spin s � 2 0 1.588 3

7Light matter fields will modify the exponent �, and there-
fore the result of Eq. (5.1), provided their mass is small enough
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V. EXPONENTS AND LONG-DISTANCE
QUANTIZED GRAVITATION

The result of Eq. (4.8) implies that the gravitational
constant is no longer constant as in the classical theory,
but instead slowly changes with scale due to the presence
of weak vacuum-polarization effects,

G�r� � G�0�f1� c�r="�1=� �O��r="�2=��g: (5.1)

The exponent �, related to the derivative of the beta
function evaluated at the nontrivial ultraviolet fixed point
via the relation  0�Gc� � �1=� � �3 (see the previous
discussion in Sec. IV and Ref. [10]) for pure quantum
gravitation, is supposed to characterize the universal
long-distance properties of quantum gravitation, and is
therefore expected to be independent of the specifics
related to the nature of the ultraviolet regulator, intro-
duced to make the quantum theory well defined.

The mass scale m � "�1 in Eq. (5.1) determines the
magnitude of quantum deviations from the classical the-
ory, and separates the short distance, ultraviolet regime
with characteristic momentum scale �� m where non-
perturbative quantum corrections are negligible, from the
long-distance regime where quantum corrections are sig-
nificant.6 It should be emphasized here that most of these
considerations are in fact quite general, to the extent that
they rely mainly on rather general principles of the re-
normalization group and are in fact not tied to any
particular value for the exponent �, although the value
� � 1=3 clearly has some aesthetic appeal. Furthermore
the dimensionless constant c is, at least in principle, a
calculable number. In Ref. [65] c was estimated from the
curvature correlation function at c � 0:014�4�, while
more recently in Ref. [31] it was estimated to be c �
0:056�27� from the correlation of Wilson lines. It is im-
portant to note that while the exponent � is universal, c in
general depends on the specific choice of regularization
scheme (i.e., lattice regularization versus dimensional
regularization or momentum subtraction scheme).

It is worthwhile to note that the result of Eq. (5.1),
which as discussed in Sec. IV is a direct consequence of
6The very existence of a nonperturbative correlation length "
implies that the growth of the coupling G�r� with distance
cannot persist indefinitely. At distances much larger than "
qualitatively new behavior sets in, since a finite correlation
length is expected to rapidly cut off any correlation effects.
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Eq. (4.3) and the value for � found in the lattice theory
[defined by the partition function of Eq. (1.1) with higher
derivative coupling (a! 0) and functional measure pa-
rameter � � 0], only applies to the simplest case of pure
Einstein gravity with a bare cosmological term.7 But one
does not expect this to be the correct theory at sufficiently
short distances r� lP, where higher derivative curvature
terms will come into play, either through direct inclusion
and gravitational radiative corrections, or via matter field
and the conformal anomaly. In this limit the gravitational
potential will be further modified by exponential and
logarithmic terms, as discussed in Ref. [66].

Let us recall here that in SU�N� gauge theories and, in
particular, in QCD, the theory of the strong interactions, a
similar set of results is known to hold [18]. The crucial
difference lies in the fact that there the scale evolution of
the coupling constant can be systematically computed in
perturbation theory due to asymptotic freedom, a state-
ment which reflects the fact that such theories become
free at short distances (up to logarithmic corrections). In
non-Abelian gauge theories one has for weak coupling

1

g2���
�

1

g2��MS�
� 2 0 log

�
�
�MS

	
� 	 	 	 (5.2)

with  0 �
1

16�2
�11N3 � 2

3nf� where N is the number of
colors, nf is the number of flavors of massless fermions,
� � 1=r is an arbitrary momentum scale, and �MS �
217� 25 MeV is a scale parameter which determines the
overall size of scaling violations. The dots indicate higher
order loop corrections. Of course QCD does not deter-
mine �MS (it appears as an integration constant of the
Callan-Symanzik renormalization group equations), and
therefore it has to be fixed by experiment from a mea-
surement of the size of scaling violations, i.e., via the
observed deviations from free field behavior at suffi-
ciently high energies. It is a remarkable fact that a good
fraction of QCD and electroweak standard model phe-
nomenology simply follows from the result in Eq. (5.2)
and its electroweak analog.8

If one pursues in a straightforward way the analogy
with non-Abelian gauge theories one is led to conclude
that in quantum gravitation the quantity " plays the same
role as �MS in QCD, "$ 1=�MS. One major difference
between the two theories lies of course in the fact that in
one case the ultraviolet fixed point is at the origin g2 � 0,
while in the other it is not. As a result one has logarithmic
to contribute significantly to vacuum-polarization loops,
m� "�1.

8In QED the scale dependence of the vacuum-polarization
effects is of course quite small, with the fine structure constant
only changing from /�0� � 1=137:036 at atomic distances to
about /�mZ0 � � 1=128:978 at energies comparable to the Z0

mass.
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quantum corrections to free field behavior in QCD, but
power law corrections in gravitation.

To determine the actual physical value for the non-
perturbative scale " further physical input is needed. It
seems natural to identify 1="2 with either some average
spatial curvature, or perhaps more appropriately with the
Hubble constant determining the macroscopic expansion
rate of the present Universe [10,15], via the correspon-
dence

" � 1=H0; (5.3)

in a system of units for which the speed of light is equal
to one. This correspondence can be elaborated upon fur-
ther. In the standard homogeneous isotropic Friedmann-
Robertson-Walker model of classical relativistic cosmol-
ogy one uses the line element

ds2 � dt2 � R2�t�
�
dr2

1� kr2
� r2dB2 � r2sin2Bd22

�

(5.4)

with k � 0;�1 and H�t0� � � _R=R�t0 denoting today’s
expansion rate as determined from the field equations.
It is well known that the presence of a small cosmological
constant induces an exponential expansion of the scale
factor at large times. In this very distant future, domi-
nated by a nonvanishing cosmological constant, an
equivalent description can be given in terms of the static
isotropic de Sitter metric

ds2 � �1�H21r2�dt2 � �1�H21r2��1dr2 � r2�dB2

� sin2Bd22�

(5.5)

with a horizon radius H1 � limt!1H�t�. From Einstein’s
classical field equations one has

H21 �
8�G
3
� �

�

3
(5.6)

so the existence of an H1 is equivalent to assuming the
presence of a nonvanishing cosmological constant � (here
we follow common convention in defining the scaled
cosmological constant �, which should not be confused
with the ultraviolet cutoff). It is presumably this quantity
which should be identified with ". Given the rather crude
nature of our arguments, in the following we shall not
distinguish between H0 and H1, and simply take H�1

0 �
1028 cm as today’s estimate for the size of the visible
Universe.9
9While the observational evidence for a nonvanishing cos-
mological constant is quite recent, simplicial lattice theories of
Euclidean quantum gravity can, as far as one knows, only be
formulated with a nonvanishing positive bare cosmological
constant (� > 0). In the absence of such a constant the path
integral does not converge for large edge lengths, and no stable
ground state exists in the Euclidean theory [8,9,13,16].
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The appearance of the renormalization group invariant
quantity " in the quantum evolution of the coupling G, a
very large quantity by the identification of Eq. (5.3),
suggests that the leading scale-dependent correction,
which gradually increases the strength of the effective
gravitational interaction as one goes to larger and larger
length scales, should be extremely small. One would
therefore expect the deviations from classical general
relativistic behavior for most physical quantities to be in
the end practically negligible, at least until one reaches
very large distances r� ".

At this stage we should comment on an apparent para-
dox associated with the identification of the correlation
length " with 1=H0. Naively one would expect, simply on
the basis of dimensional arguments, that the curvature
scale close to the fixed point be determined by the corre-
lation length10

R �R!0 1="2; (5.7)

but one cannot in general exclude the appearance of some
nontrivial exponent. Indeed one finds for the vacuum
expectation value of the Ricci scalar [see Eqs. (1.5) and
(4.2)]

R �"� �k!kc

1

l2�d�1=�P "d�1=�
(5.8)

with � � 1=3 in four dimensions, and therefore R�
1=lP". Only close to two dimensions one recovers the
classical result, for which �� 1=�d� 2�.

At first one might be tempted to identify the expecta-
tion value of the local scalar curvature with the quantity
H20 , but further thought reveals that this correspondence
is inconsistent with the identification " � 1=H0 proposed
before, and would only be legitimate if the local scalar
curvature average Rwere to indeed correctly describe the
rotation of vectors, parallel transported around very large
loops. But the analogy with the local action density hF2��i
in non-Abelian gauge theories seems to suggest that such
an identification might in fact be incorrect [67], and that
the long-distance contribution to the curvature is not
given by the local average in Eq. (5.8), but should instead
be measured directly by computing the parallel transport
of vectors around very large loops (with characteristic
size much larger that the Planck length, A� "2 � l2p).
This is rather laborious and has not been done yet. Indeed
at the other end one expects, for very short distances
comparable to the size of the ultraviolet cutoff, significant
fluctuations in the curvature with fluctuations of the order
of R� 1=l2P. In other words, the above arguments would
suggest that the observable average curvature should be
scale dependent.
10There is at least in principle an even more naive expectation,
namely R� 1=l2P, which is excluded though by all numerical
studies of simplicial lattice gravity.
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On the other hand for the curvature correlation at fixed
geodesic distance d one obtains from simple scaling, and
for ‘‘short distances’’ (r� "),

h
���
g

p
R�x�

���
g

p
R�y���jx� yj � d�ic �d�"

1

d2�d�1=��
�
A

d2
;

(5.9)

for � � 1=3 in four dimensions, and with A a calculable
constant of order one [10] (here jx� yj denotes the geo-
desic distance between the points x and y, which is a
function of the background metric, and an integration
over x and y is understood [65]). The above result is an
immediate consequence of the relationship between the
curvature-curvature correlation function and the second
derivative of the partition function with respect to G,
which determines the curvature fluctuation and thus the
curvature correlation function at zero momentum. If one
then considers the (scalar) curvature R averaged over a
very small spherical volume Vr � 4�r3=3,

���
g

p
R �

1

Vr

Z
Vr
d3x

�������������
g�x; t�

q
R�x; t� (5.10)

one can compute the corresponding variance as

���
���
g

p
R��2 �

1

V2r

Z
Vr
d3x

Z
Vr
d3yh

���
g

p
R�x�

���
g

p
R�y�ic

�
9A

4r2
: (5.11)

As a result the rms fluctuation of
���
g

p
R averaged over a

small spherical region of size r is given by

��
���
g

p
R� �

3
����
A

p

2

1

r
; (5.12)

with a Fourier transform power spectrum of the form

Pk � j
���
g

p
Rkj

2 �
4�2A
2V

1

k
: (5.13)

These results only hold for relatively short distances, and
presumably get modified at distances r� ". The semi-
classical answer would look quite different; in this limit
�� 1=�d� 2� and therefore for the curvature correlation
the distance dependence would tend to 1=d4 close to d �
2, where it makes sense to make a comparison.

One can go one step further and use Einstein’s field
equations to relate the local curvature to the local mass
density. From the field equations

R�� �
1
2g��R � 8�GT�� (5.14)

for a perfect fluid

T�� � pg�� � �p� ��u�u� (5.15)

one obtains for the Ricci scalar, in the limit of negligible
pressure,
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R�x� � 8�G��x�: (5.16)

As a result one obtains from Eq. (5.9) for the density
fluctuations a power law decay of the form

h��x���y�ic �jx�yj�"
1

jx� yj2
: (5.17)

One can list a few other classical general relativistic
results which are presumably affected by a running gravi-
tational constant. It should be clear from the above dis-
cussion that in order for the quantum corrections to
become quantitatively significant, one needs to look at
rather large distance scales, comparable to " or equiva-
lently r� 1=H0. For example, in standard classical cos-
mology one writes

H2�t� �
8�G�t�
3

����t� � �DM�t� � �B�t�� (5.18)

with G usually assumed to be constant, and with the �’s
representing various density contributions. On the left-
hand side one usually neglects terms of order k=R20 arising
from the curvature of the hypersurface of homogeneity.
In view of the what has been said before though it seems
natural that G�t� in the above expression should be taken
at the largest length scale H�1

0 . Then one obtains for the
overall coefficient a quantity slightly larger than the
laboratory value �G�0�, namely G�H�1

0 � � G�0��
�1� c�>G�0�. On the lattice one finds a rather small
value for c � 0:06. One should recall however, as stated
earlier, that while the exponent � is universal, the quan-
tity c is not, and in general depends on the specific
regularization scheme. More specifically, in ordinary lat-
tice gauge theories one finds large but calculable finite
renormalization factors, relating the lattice gauge cou-
pling to the continuum coupling [68]. A more reasonable
expectation would therefore be that G�H�1

0 � is related to
G�0� by a constant of proportionality which is roughly of
order one. Additional cosmological and astrophysical ar-
guments and proposed tests can also be found in Ref. [69].

In addition, one would have to find a consistent way to
formulate the running of G in invariant terms, which
should give a more precise meaning to the quantity r
and makes its coordinate independence manifest. The
problem of finding a consistent, invariant effective non-
local action which incorporates the quantum running of
G, using an extension of the methods of Ref. [70], is
presently under study and the results will be presented
in a separate forthcoming publication.
VI. CONCLUDING REMARKS

In this paper we have examined some aspects of the
connection between lattice and continuum models for
quantum gravity. In particular the aim of the paper was
to elucidate the relationship between the more recent
simplicial lattice results, which do not rely on the weak
-21
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field expansion and are therefore inherently nonperturba-
tive, and the semiclassical Euclidean functional integral
expansion in the continuum.

The first issue addressed was the very definition of the
notion of spin content in the lattice theory. Proceeding
from the Euclidean Feynman path integral approach, we
have constructed the lattice analog of the semiclassical
expansion for the ground-state functional of linearized
gravity. Two procedures were followed. The first one
relied on constructing directly a lattice expression for
the exponent of the ground-state functional, obtained by
transcribing the continuum expression in terms of lattice
variables. There one proceeds from the lattice expression
for the gravitational action, restricted to its contribution
on a fixed time slice, and supplemented by the appropriate
vacuum gauge conditions. A crucial ingredient in this
method is the correct identification of the correspondence
between continuum degrees of freedom (the metric) and
the lattice variables (the squared edge lengths). The re-
sulting lattice expression is then equivalent to the con-
tinuum one by construction.

The second procedure relies instead only on the ex-
pression for the lattice gravitational action, as expanded
in the weak field limit, and determines the explicit lattice
form for the ground-state functional for linearized grav-
ity by performing explicitly the necessary lattice
Gaussian functional integrals. The resulting discrete ex-
pression can then be compared to the continuum one by
systematically reexpressing the edge lengths in terms of
the metric. It is encouraging that the resulting lattice
expression completely agrees with what is found by using
the previous method.

It is advantageous in performing the above calculation
to introduce spin projection operators, which separate out
the spin-zero, spin-one and spin-two components of the
gravitational action. As a by-product one can show that
the lattice gravitational action only propagates massless
spin-two (or transverse-traceless) degrees of freedom in
the weak field limit, as is the case in the continuum.
Furthermore, as expected the lattice ground-state func-
tional for linearized gravity only contains these physical
modes.

We further discussed the fact that an explicit construc-
tion of the ground-state wave functional of linearized
lattice gravity in terms of the lattice transverse-traceless
modes makes it possible, at least in principle, to compare
the lattice and continuum results in the limit of small
curvatures. After imposing appropriate boundary condi-
tions at infinity, by suitably restricting the values for the
edge lengths on the lattice boundary such that the deficit
angle is zero there, one would then have to enforce the
lattice vacuum gauge conditions of Eq. (2.48) as well, so
as to make contact with the semiclassical lattice func-
tional of Eq. (2.42). Since no gauge fixing is required for
determining invariant averages obtained via the partition
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function of Eq. (1.1), the gauge conditions would have to
be imposed on each edge length configuration, by pro-
gressively applying local gauge transformations, such as
the ones discussed in Ref. [14]. It is then expected that
after such a transformation the edge distributions on a
fixed time slice should follow closely the distribution of
Eq. (2.42), if indeed as expected the only surviving
physical modes are transverse traceless. We hope to return
to this interesting problem in a future publication.

In subsequent sections of the paper we have systemati-
cally examined the relationship between recent nonper-
turbative results obtained in the lattice theory and the
corresponding calculations as performed in the contin-
uum theory. The latter suggest the presence of a nontrivial
ultraviolet fixed point in G, and in some cases have led to
definite predictions for the universal critical exponent of
quantum gravitation, which can therefore be compared—
even quantitatively—to the lattice results.

Besides relying on the recent lattice and continuum
results for quantum gravitation, one can also indepen-
dently try to estimate the gravitational scaling dimen-
sions based on what is known based on exact and
approximate renormalization group methods for spin
zero (self-interacting scalar field in four dimensions)
and spin one (Abelian noncompact gauge theories), for
which a wealth of information is available on the critical
indices. We have argued that these results too are remark-
ably consistent with what is known about the gravitational
exponents in four dimensions, both from the discrete as
well as from the continuum side. We have also presented a
simple geometric argument which interprets the value for
the gravitational exponent ��1 � 3.

In the last section of the paper we have discussed some
(almost immediate) physical implications of recent lat-
tice and continuum results, with an emphasis on the small
expected deviations from classical general relativity ex-
pected at sufficiently large scales due to the running ofG.
We have argued that it is an almost inevitable conse-
quence of the existence of an ultraviolet fixed point that
the gravitational coupling becomes scale dependent, with
power law corrections involving the correlation length. In
analogy with non-Abelian gauge theories, and in the
absence of any other likely physical candidate, it seem
natural to identify the nonperturbative scale determining
the size of deviations from classical gravitation with
1=H0, as suggested in Ref. [15].

ACKNOWLEDGMENTS

The authors thank James Hartle for suggesting we look
at the formulation of transverse-traceless modes on the
lattice and for suggesting a Regge calculus version of the
continuum semiclassical expansion for the ground-state
functional, and for many helpful discussions. The authors
also thank James Bjorken, Stanley Deser and Gabriele
Veneziano for useful comments on an early draft of the
-22



NONPERTURBATIVE GRAVITY AND THE SPIN OF THE . . . PHYSICAL REVIEW D 70, 124007 (2004)
manuscript, and the CERN Th division, where this work
was completed, for warm hospitality. The work of
124007
R. M.W. was supported in part by the UK Particle
Physics and Astronomy Research Council.
[1] R. P. Feynman, Acta Phys. Pol. 24, 697 (1963); B.
DeWitt, Phys. Rev. 160, 1113 (1967); 162, 1195 (1967);
162, 1239 (1967).

[2] G. ’t Hooft and M. Veltman, Ann. Inst. Henri Poincaré, A
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