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Recent results for simplicial quantum gravity in four dimensions are reviewed. Effects of 
both higher derivative terms and gravitational measure contributions are investigated. Prospects 
for solving numerically quantized gravity in four dimensions are discussed. 

1. INTRODUCTION 

Four-dimensional quantum gravity is a com- 
plex theory due to the unboundedness of the pure 
gravitational action, its non-renormalizability and 
non-polynomial nature 1. We will concentrate here 
on the simplicial formulation of quantum gravity 
also known as Regge calculus (for a review, see 
refs. 2,3). One of the advantages of the approach 
lies in the fact that it can be formulated in any 
space-time dimension (including the physically rel- 
evant case of four dimensions), and that it can be 
shown to be classically equivalent to general rel- 
ativity. Furthermore the correspondence between 
lattice and continuum quantities is clear, and the 
interpretation of the terms in the action as well as 
the identification and separation of, for example, 
the measure contribution is'unambiguous 4-1°. For 
a more complete list of early references, see refs. 
2,3 

One important issue that needs to be ad- 
dressed in lattice gravity is the problem of the gravi- 
tational measure. In the continuum the form of the 
measure for the g~u fields appears not to be unique 
16-18, and it would seem that such an ambiguity 
persist in all known lattice formulation of quantum 
gravity. However the difference among the mea- 
sures seems to be in the power of v ~  in the pref- 
actor, which corresponds to some product of vol- 
ume factors on the lattice. DeWitt has argued that 
the gravitational measure should be constructed by 
first introducing a super-metric over metric defor- 
mations, which leads then to the functional mea- 
sure for pure gravity in d dimensions form 

a.[9] = I-[g ~d-4~d+'/8 I-[ ag.~ (1.1) 
z , a~v  

Other forms of the measure for the gravita- 
tional field have also been suggested, inspired by 
the canonical quantization approach to gravity is. 
If matter fields are present, then the gravitational 
measure has to be further modified 16. 

On the simplicial lattice the edge lengths are 
the elementary degrees of freedom, which uniquely 
specify the geometry for a given incidence matrix, 
and over which one should perform the functional 
integral 2,8,z°. A class of pure gravity measures 
which can be written down on the lattice is ob- 
tained by considering the 'volume associated with 
an edge' Vii, and writing for example in two dimen- 
sions 

/ F d•,[Zl = 1-I V~- ~ dZ~ F,[/] (1.2) 
edges i t  

with a = - 1 / 2  for the lattice analogue of the 
Misner measure, and a = - 1 / 4  for a lattice ana- 
logue of the DeWitt measure (note that the 'Mis- 
ner' and dl / l  measure share the property of being 
scale invariant). One would like to see how the 
results depend on the form of the measure and 
on a. Our simulations suggest that, at least in 
two dimensions, different measures, within a cer- 
tain universality class, will give the same results for 
infrared sensitive quantities, like correlation func- 
tions at ~arge distances and critical exponents. We 
believe though that the lattice path integral might 
not be meaningful for certain values of a. We have 
found in particular that if a is too negative in two 
dimensions, then the measure factors tend to favor 
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configurations of triangles which are long and thin, 
with a small area and a large perimeter. 

2. GRAVITY IN FOUR DIMENSIONS 

The four-dimensional case is substantially more 
complex than the two-dimensional one for a num- 
ber of reasons, which include the fact that there 
are more terms in the pure gravity action, there 
are no exact results in the full theory to compare 
with, and finally that the lattice structure and the 
interactions are more complex and therefore the lat- 
tices that have been studied up to know are quite 
small. Furthermore there is a conceptual issue of 
what physical quantities should be measured, and 
for what boundary conditions. Only a small set of 
t~+ese questions have been addressed up to know. 

In our numerical studiies we have employed 
the discrete analog of the higher derivative action 
in the form 2,8,10 

+ 4b A~tS~ ] 

hinges h 

sites p hinges h,htDp 

r Ah~h ~ Ah,$h, 12 

( the numerical factor ca,a, is equal to 1 if the  two 
hinges h, h '  have one edge in common and - 2  if 
they do not). The motivationff leading to the  above 
action are discussed in detail in 2,s,10 and will not 
be repeated here. The introduction of the  higher 
derivative terms is motiqated by the fact tha t  the  
resulting extended theory of gravity is renormaliz- 
able in four dimensions 1°-23. 

In the classical continuum limit the  above ac- 
tion is equivalent to the continuum higher deriva- 
tive action 

R 2 + b Rt,,,ao-R #t'aa 

+ l ( a  - -  4b) C..o=C gv°a] (2.2) 

with a cosmological constant term (proportional to 
A), the Einstein term (k -- 1/8¢rG, where G is the 
bare Newton constant), and two higher derivative 
terms with additional dimensionless coupling con- 
stants aT 1 and b -1. 
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Non-perturbative studies of quantum gravity 
were thus motivated by the search for a non-trivial 
fixed point in four dimensions 2°,2. The first numer- 
ical simulations for lattice gravity, with the above 
action, were discussed in 2,10. As in previous two- 
dimensional studies, the lattice was chosen to be 
regular and built out of rigid hypercubes. This 
choice is not unique, and is dictated mostly by a 
criterion of simplicity, with the advantage that such 
a lattice zan be used to study rather large systems 
with little algorithm modification. Also for reasons 
of simplidtv up to now only the action with a = 4b 
only (no Weyl term) was considered. In the numeri- 
cal simulations which were done the  lattice was cho- 
sen of size L x L x L x L  with 15154 edges, and only the  
cases L = 2 (240 edges), L = 4 (3840 edges), and 
exceptionally L = 8 (61440 edges), were consid- 
ered. Periodic boundary conditions were used, and 
the topology was therefore restricted to a hyper- 
torus; other topologies can in principle be studied 
by changing the boundary conditions. 

In the case in which all the couplings are zero 
(a = b ---- k = ), = 0) the total ac~on is zero, 
and variations in the edge lengths are only cow 
strained by the non-trivial gravitational measure of 
eq. (1. 2 ). Quantities of interest which have been 
computed indude the average curvature 

7~ = < t 2 > < 2 ~]]]h 6hA~, > 
< ~ vk > (2.3)  

and the average curvature squared 27~ 2 

7g2 = < l 2 >2 < 4 E h  6~A~/Vh > 
< E h  Vk > (2.4) 

which are here both dimensionless quantit/es, since 
they have been expressed in units of  the  average 
edge length. Remarkably one finds tha t  at  s trong 
coupling the  system tends to develop an average 
negative curvature. 

When the parameters A, k and a in eq. (2.1) 
take non-zero values, then one finds a sudden very 
sharp transition between a state in which the cur- 
vature is small and one in which it is very large, pre- 
sumably a reflection of the  unbounded fluctuations 
in the  conformal modes found in the  continuum. 
For example for the  d l / l  measure, ,~ = 1 and for 
small higher derivative coupling (a = 4b = 0.005), 
the  average curvature T¢ jumps from a small neg- 
ative value to a large positive one for k -- 2.0 or 
greater. A similar type of transition is found if k is 
kept fixed and A is varied 2,10. The jump in T~ is so 
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Figure 1 : Histogram of  the distribution of  curva- 
tures bhA¢, ~ ½v/g R on a lattice with 15 x 164 = 
983040 edges, and for ,k = 1, k = 0.2 and 
a = 0.005 (dl 2 measure). 
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Figure 2 : Average curvature/?, as a function o f  
k, lor  A = 1 and a = 0.005 (dE 2 measure). The 
circles refer to  L = 2, the squares to L = 4, and 
the diamonds to L = 8. 

large, that  it appears to be indicative of  perhaps 
a discontinuous transition. Indications o f  a dis- 
continuous transition were later found also for the 
pure Einstein action in a fixed volume ensemble 13, 
as well as in the hypercubic lattice formulation of  
gravity 

Recently we have performed a number of  
large scale simulations o f  pure gravity using the 
dl  2 ( 'DeWi t t ' )  measure, and ~mploying lattices o f  
size up to 84 (with 61440 edges) (we have also 
done some short runs on 164 lattices (with 983040 
edges), but we will not discuss the results here since 
the statistics is at this point still too low). Let us 
emphasize that  at this point the nature of  the re- 
suits is still rather preliminary. The lengths o f  our 
runs typically vary .between 18k iterations on the 
24 lattice, 6k iterations on the 44 lattice, and at 
least 800 iterations on the 84 lattice. In all cases 
the starting lattices were duplicated copies o f  the 
smaller lattice, for each k, and as usual a number 
of  additional thermalization sweeps were performed 
for each lattice and value of k. In Fig. 1 we show 
the distribution of  curvatures 6t, Ah ,,, v ~ R ( x )  on 
the 164 lattice, for ~ -- 1, k = 0.2 and a -- 03205. 

Our intention was to explore the dependence 
of the results on the measure, and to investigate in 
more detai~ the transition between the 'smooth' and 
the 'rough' phase of  spacetime described above. 

Besides the quantit ies 7~ and Tv~2 discussed before, 
we have also computed the lattice analogues o f  the 
f luctuations in the curvatures 

1 

[< (2 Z > - < 2 >2] (2.5) 
h h 

and of the  fluctuations in the volumes 

1 [< v )2 > _ < >2] 
x v  = < ~ h V h >  h h 

(2 .6)  
The dimensionless average curvature 72~ is shown, 
for different latt ice sizes, in Fig. 2 .  One notes that  
as k is varied, the curvature goes to zero at some 
value ke. In this particular case, namely for A = 1 
and a = 0.005, one finds ke -- 0.239 4- 0.012 on 
the largest lattice ( L  --- 8), with values compatible 
within errors on the smaller lattices. For k close to, 
but less than, ke one can write 

7¢ ~ A u ( k ~ - k )  6 
k~k~ 

X~ kZ~o A× (k¢ - k) 6-1 
(2.7) 
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Figure 3 : Curvature fluctuation X~ as ~ run . ion  
of k, for the same parameters as in Fig.2. 

and performing a simultaneous fit in A, kc and 
the exponents, one finds ~ = 0.61 4- 0.04 (A~  = 
-3.68 4-0.07) from the average curvature, and 

-- 1 = -0.35 + 0.22 from the curvature suscep- 
tibility. From the curvature susceptibility (see also 
Fig. 3 ) we estimate k, = 0.24 4- 0.06, in agree- 
ment with the previous estimate from the average 
curvature, but with a much larger error due to the 
difficulty of estimating the susceptibility accurately 
on the larger lattice, since our runs are still a bit 
too short. 

The above results are consistent with the pic- 
ture of a vanishing curvature and a divergent cur- 
vature fluctuation, at the same value of ke. If we 
compute the volume susceptibility, we find on the 
other hand that it approaches a finite value at kc, 
suggesting the absence of critical volume fluctua- 
tions (see Fig. 4 ). These appear to be desirable 
properties in a theory supposedly describing grav- 
ity, where the excitations in the continuum are ex- 
pected to be massless gravitons, without any mass- 
less scalar particles and no massless volume density 
fluctuations. 

On the other side of the transition (k > kc) 
one has that the curvatures are infinite since the 
simplices collapse into degenerate configurations 
with very small volumes (<  Vh > / < 12 > 2 ~  0). 
This is the region of the weak field expansion 
(G --~ 0), and it is therefore not surprising that 
it has difficulties in extending to the region where 
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Figure 4 : Volume density fluctuation Xv as a 
function of k, for the same parameters as in Fig.2. 

a sensible path integral for pure gravity can be de- 
fined. A qualitative picture of the phase diagram 
for pure gravity with our action is sketched in Fig. 
5 -  

The result presented above for the average 
curvature P.. is not inconsistent with known re- 
suits within the weak field expansion. Substitut- 
ing k -1 = 81rG, and setting k~ = cA 2, where c is 
a constant independent of  k, and A the ultravio- 
let cutoff, here of the order of the average inverse 
lattice spacing N</2 >-z /2 .  one obtains 

- 1  6 
~ A s  (8-76) (z - cA2S~G) ~ 

- 1  ~ [1 + ~ cA2(--8zG) (2.8) ~A~  (8-70) 

+ ~  (~A~) ~ ( -S~a)  ~ +...] 

One can see that. besides "R. possibly not being 
analytic at G -~ 0. an expansion in powers of G 
involves increasingly higher powers of the ultravi- 
olet cutoff A, as expected from a theory which is 
not perturbatively renormaEzable in G. The above 
results are therefore not inconsistent with what is 
known in the continuum. More detailed and care- 
ful computations are needed to better understand 
these interesting issues, and it seems that correla- 
tions shoul~l be computed in order to determine the 
excitation spectrum. 
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Smooth Phase RouBh Phase 

Figure 5 : Phase diagram for pure 4-d gravity. 
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