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A model for quantized gravity coupled to matter in the form of a single scalar field is
investigatedin four dimensions.For themetricdegreesof freedomwe employ Regge’ssimplicial
discretization,with thescalarfield definedat theverticesof the four-simplices.We examinehow
the continuousphasetransition found earlier, separatingthe smoothfrom the rough phaseof
quantizedgravity, is influencedby the presenceof scalarmatter.A determinationof thecritical
exponentsseemsto indicate that the effects of matterare rathersmall, unlessthe numberof
scalarflavors is large.Close to the critical point where the averagecurvatureapproacheszero,
the couplingof matter to gravity is foundto beweak.The natureof the phasediagramand the
valuesfor the critical exponentssuggestthat gravitationalinteractionsincreasewith distance.

1. Introduction

Any seriousattempt at understandingthe ground-statepropertiesof quantized
gravity has to include at somestagethe considerationof the effects of matter
fields. While thereare many choicesfor the matter fields and for their interac-
tions, the simplestactions to deal with in the frameworkof a lattice model for
gravity are theonesthat representone(or more)scalarfields. In this paperwe will

discussa first attemptat determiningthoseeffects.
Regge’smodel is the natural discretizationfor quantizedgravity [1]. At the

classicallevel, it is completelyequivalentto generalrelativity, and the correspon-
dence is particularly transparentin the lattice weak field expansion,with the
invariantedgelengthsplaying the role of infinitesimal geodesicsin the continuum.
In the limit of smoothmanifoldswith small curvatures,the continuousdiffeomor-
phism invarianceof the continuum theory is recovered[2,31.But in contrast to
ordinary lattice gauge theories, the model is formulated entirely in terms of
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coordinate invariant quantities, the edge lengths, which form the elementary
degreesof freedomin the theory[4,51.

Recentwork basedon Regge’ssimplicial formulation of gravity hasshown, in

pure gravity without matter, the appearancein four dimensionsof a phase
transition in the bare Newton constant, separatinga smooth phasewith small
negativeaveragecurvaturefrom a rough phasewith large positivecurvature[6,71.
While the fractal dimension is rather small in the rough phase, indicating a
tree-likegeometryfor the groundstate,it is verycloseto four in the smoothphase

close to the critical point. Furthermore,a calculationof the critical exponentsin
the smooth phase close to the critical point indicates that the transition is
apparentlysecondorder with divergentcurvaturefluctuations,and that a lattice
continuumcan be constructed.

Very similar resultshaverecently beenobtainedin the dynamical triangulation
model for gravity, in the sensethat a similar phasetransitionwasfound separating
what appearto be the same type of phases[81.This developmentrepresentsan

alternativeandcomplementaryapproachto what is beingdiscussedhere.However
it hasnot beenpossibleyet in thesemodelsto extractthe critical exponents,andit
is thereforenot clearyet whethera continuumlimit really exists. In particular it
appearsthat close to the transition, the dynamical triangulation model doesnot
give rise to the correctscalingpropertiesfor thecurvature,which arenecessaryto

define a lattice continuumlimit really exists. In particular it appearsthat close to
the transition, the dynamicaltriangulationmodel doesnot give rise to the correct
scaling properties for the curvature, which are necessaryto define a lattice
continuumlimit. It is thereforeunclearwhether the transition is first order as a
consequenceof the discretenessof thecurvatures,with no continuumlimit (asone
finds for examplein lattice gaugetheoriesbasedon discretesubgroupsof SU(N)

[91).While in two dimensionsboth lattice modelsleadto similar resultsboth in the
absenceandpresenceof scalarmatter[10—121in threedimensionsthe dynamical
triangulationmodel hasno continuumlimit [13], in apparentdisagreementwith
the continuum expectations[14,15], and the simplicial Reggegravity results [31,
which suggestinsteadthat a well-defined continuumlimit exists (albeit trivial in
the absenceof matter,with the scalarcurvatureplaying the role of a scalarfield).
Theseresults are rather disappointing,since it would be desirable to havetwo
rather different, independentdiscretizationsfor gravity, with the samelattice
continuumlimit. It is not clearyet at this point whether theseresults indicate a
fundamentalflaw in the model (lack of restorationof broken diffeomorphism
invariance),or simply a perhapssurmountabletechnical difficulty in determining
exponents.For a clear recentreview of some of theseaspectsin the dynamically
triangulatedmodelswe refer the readerto the last referencein [81.

In this paperwe will presentsome first result on the propertiesof Regge’s
simplicial gravity coupledto a scalar field, as derivedfrom numericalstudieson
lattices of up to 24 x 16~= 1 572 864 simplices.The paperis organizedas follows.
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First we discussin sect. 2 the simplicial action and measurefor the combined
gravitationalandscalardegreesof freedom.Thenwe digressin sect.3 on whatis
known aboutthe effectsof scalarmatterfields in the continuum,to the extentthat
the resultswill be relevantfor out latercalculations.We thenpresentin sect.4 the
definition of physical observableswhich can be measuredwhen scalar fields are
present,besidesthe purely gravitationalonesintroducedpreviously,andhow these

canbe relatedto effective low energycouplings.In sect. 5 we presentour results
andtheir interpretation,andin sect.6 we give a discussionon how otherquantities
suchas the curvatureandvolume distributionscanbe obtainedcloseto the critical
point. Sect.7 thencontainsour conclusions.

2. Action and measure for the scalar field

Following ref. [17], the four-dimensionalpure gravity action on the lattice is
written as

Ig[1] = ~ AI/J~— ‘~-‘~h~h+ a , (2.1)
hingesh h

where Vh is the volume per hinge(representedby a triangle in four dimensions),
Ah is the areaof the hingeand 5h the correspondingdeficit angle,proportionalto
the curvatureat h. The termproportionalto k is theoriginal Reggeaction. In the
lattice weak field expansion, the last two terms both contain higher derivative
contributions[2,3] (in the last term it is the leadingcontribution).This is a simple
consequenceof the fact that on the lattice finite differences give rise, when
Fourier transformed,to terms involving trigonometric functions of the lattice
momenta.The higher-ordercorrectionsare in generalexpectedto be irrelevant in
the continuumlimit, if one canbe found, andunlessthe coefficient a is takento
be verylargein this limit. Wheneversystematicstudieshavebeendone,thereare
indications that this is indeed the case [12,3], as one would expect from the
experiencegainedin other, simpler model field theories.The resultsof ref. [7] in

four dimensionsalso suggestthat the corrections are negligible in the lattice
continuumlimit (k —* k~),and that the “ghost mass” associatedwith the higher
derivativecorrectionsremainsof theorder of the ultraviolet cutoff, of the order of
the inverseaveragelattice spacing,mghost IT/l

0 (for a generaldiscussionof some
of thesepoints in simpler field theorymodels,seee.g. ref. [16]). In the contextof
the presentwork the higher derivative terms will be consideredas convenient
invariant regulators,in additionto the usuallattice cutoff.

In the classicalcontinuumlimit the aboveaction is equivalent[2,3,17—19]to

Ig[g] = fd4x ~/~[A — ~kR + ~ + .. .~, (2.2)



466 H.W Hamber, R.M Williams / Gravity coupledto scalarmatter

with a cosmologicalconstantterm (proportionalto A), the Einstein—Hilbert term
(k = 1/(8irG)), anda higherderivativeterm,andwith the dotsindicating higher-
order lattice corrections.In thefollowing wewill follow theconventionof choosing
the fundamentallattice spacingto be equalto one;the correctpowerof the lattice
spacingneededto convertlattice to continuum quantitiescanalwaysbe restored
by invoking dimensionalarguments(but we haveto rememberthat due to the
dynamicalnatureof the lattice, the averagedistancebetweensites, in units of the
fundamentallattice spacing, will still dependon the bare couplings and the
measure).For an appropriatechoice of bare couplings,the abovelattice action is
boundedbelow for a regular lattice, evenfor a = 0, due to the presenceof the
lattice momentumcutoff [21.Fornon-singularmeasuresandin the presenceof the
A-term sucha regularlattice canbe shownto arisenaturally.The higherderivative
termscan be set to zero (a = 0), but they neverthelessseemto be necessaryfor
reachingthe lattice continuumlimit, and are in any casegeneratedby radiative

correctionsalready in weak coupling perturbationtheory. When scalarfields are
introduced,higherderivativetermsare generatedaswell by the quantumfluctua-
tions of the scalar field. Renormalizationgroup argumentsthen suggestthat in
generalthe continuumlimit shouldbe exploredin this enlargedmulti-parameter
space.Somevery interestingsuggestionsregardingpropertiesof non-renormaliz-
abletheoriesbeyondperturbationtheoryhavebeenput forward in ref. [20].

Next a scalarfield is introduced,as the simplesttype of dynamicalmatterthat
canbe coupledto gravity. Consideran nrcomponentfield 4~,a = 1,..., n1, and
definethis field at the verticesof the simplices.Introduce finite lattice differences
defined in the usualway,

(~a) = - ~. (2.3)
.1+~L

The index p. labelsthepossibledirectionsin which onecanmove from apoint in a
given triangle,and lH~ is the length of the edgeconnectingthe two points. For

simplicity let us considerfor now the casefl~= 1. Thenadd to the abovediscrete
puregravitationalaction the contribution

2

i~[’,~]=~Ev~ ~ (2.4)
(Ii) I

where U(4) is a potential for the scalarfield, andthe termcontainingthe discrete
analogof the scalarcurvatureinvolves

VER~~ hAh~V~~ (2.5)
h Di
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In the expressionfor the scalaraction, l’~ is the volume associatedwith the edge
li,, while l/ is associatedwith the site i. Thereis morethanoneway to definesuch
a volume [17,21,22],but under reasonableassumptions,such as positivity, one
shouldget equivalentresultsin the continuum.The agreementbetweendifferent
lattice actionsin the smoothlimit canbe shown explicitly in the lattice weak field
expansion,but the calculationscan be rather tedious and we will present the
resultselsewhere.Herewewill restrictourselvesto thebaricentricvolume subdivi-

sion [17] which is the simplest to deal with. The above lattice action then
correspondsto the continuumexpression

1
4[g ~= ~f~/~[g~va çba~+ (m2 + ~R)~2J + f~1~U(~)+ ..., (2.6)

with the inducedmetric relatedin the usualway to the edgelengths[2,3]. As is
alreadythe casefor the purely gravitationalaction, the correspondencebetween
lattice and continuumoperatorsis true classicallyonly up to higher derivative
corrections.But such higher derivativecorrectionsin the scalar field action are
expectedto be irrelevant and we will not considerthem here any further. The
scalarfield potentialU(4) could containquartic contributions,whoseeffectsare of
interestin thecontextof cosmologicalmodelswherespontaneouslybrokensymme-
tries play an importantrole. For the momentwe will be consideringa scalarfield
without direct self-interactions,andwill set U = 0.

The lattice scalaractioncontainsa massparameterm, whichhas to betunedto
zero in lattice units to achievethe lattice continuumlimit for scalarcorrelations.
The dimensionlesscoupling ~ is arbitrary; two special cases are the minimal
(~= 0) and the conformal(~= ~)coupling case.As an extreme caseone could
consider a situation in which the matter action by itself is the only action
contribution, without any kinetic term for the gravitationalfield, but still with a
non-trivial gravitationalmeasure;integrationover the scalarfield would thengive
rise to an effectivenon-localgravitationalaction.

Having discussedthe action, let us turn now to the measure.The discretized
partition function can be written as

Z=fd~[l] dp.[çb] det{_Ig[1]_I1,[1, 4~]}. (2.7)

It is well known that the continuum gravitational measureis not unique,and

different regularizationswill lead to different forms for the measure.DeWitt has
arguedthat the gravitationalmeasureshouldhavethe form [23,24]

Jdp.[g] =Jflg(d_4Xd+1)/8fldg. (2.8)
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The main differencebetweenvariouseuclideanmeasuresseemsto be in the power
of ~ in the prefactor, which on the lattice correspondsto some product of
volume factors. On the lattice thesevolume factors do not give rise to coupling
terms,andarethereforestrictly local. It should also be clear that sincediffeomor-
phisminvarianceis lost in all lattice modelsof gravity, at leastaway from smooth
manifolds(theverydefinitionof a lattice breakslocal Poincaréinvariance),thereis
no clearcriterionat this point to helponedecidewhich measureshouldbe singled

out. We havearguedbefore that the power appearingin the measureshouldbe
consideredasan additional,hopefully irrelevant,bareparameter[171.

On the simplicial lattice the invariant edgelengths representthe elementary
degreesof freedom,which uniquely specify the geometryfor a given incidence

matrix. Sincethe inducedmetricat a simplex is linearly relatedto theedgelengths
squaredwithin that simplex, one would expect the lattice analog of the DeWitt
metric to simply correspondto d12 [4]. We will thereforewrite the lattice measure
as [6,17,25]

fd~jl] = fl fl7~ dl~.FE[l], (2.9)
edgesif 0

whereV~is the “volume peredge”, F~[l] is a function of the edgelengthswhich
enforcesthe higher-dimensionalanalogsof the triangleinequalities,and ci = 0 for
the lattice analogof the DeWitt measurefor pure gravity. The parameterc is
introducedas an ultraviolet cutoff at small edgelengths:the function FE[l] is zero
if any of the edgesare equal to or less than e. In general it is neededfor
sufficiently singular measures;for the ci = 0 measuresuch a parameteris not
necessarysince the triangle inequalities already strongly suppresssmall edge
lengths[7], andso we will set it to zero. Note thereforethat no cutoff is imposed
on small or largeedgelengths,if a non-singularmeasuresuchas d12 is used.This
fact is essentialfor the recoveryof diffeomorphisminvariancecloseto the critical

point, whereon a largelattice a few ratherlongedges,as well as somerathershort
ones,start to appear[1]. Eventually it is of interest to systematicallyexplorethe
sensitivity of the results to the type of gravitationalmeasureemployed.This has
beendoneto a certainextent in two [12]andthree[3] dimensions.The conclusion

seemsto be that for non-singularmeasuresthe results relevant for the lattice
continuumlimit (i.e. the long-distancepropertiesof the theory, as characterized
for exampleby the critical exponents)appearto be independentof ci. From a
generalpoint of view it is difficult to seehow local volume factors,which involve
no gradientterms,canpossibly affect the natureof the continuumlimit, which is

expected to be dominated by shear-wave-likedistortions of the geometryof
space-time.The experiencegainedso far seemsto indicate that the volumefactors
coming from the measurewill only affectthe overall lattice scaleand the shapeof
the distribution for the edgelengths,andwill lead thereforeto different renormal-
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izationsof the cosmologicalconstant,butwill leavethe long-wavelengthexcitation
spectrum,which is determinedby the relatively small fluctuations in the edge
lengths about the lattice equilibrium position, unaffected.But of course these
argumentscannot be taken as a substitutefor a systematicinvestigationof this
issuein four dimensions.

In the presenceof matter, similar considerationsapply. If an nçcomponent
scalarfield is coupledto gravity the power ci appearingin the measurehasto be

changed,dueto an additional factor of fl (~/~)nf/2 in the continuumgravitational
measure.On the lattice one then has ci = fl~/3O,sincewith our discretizationof
space-timebasedon hypercubesthereare2” — 1 = 15 edgesemanatingfrom each
lattice vertex.The additional measurefactor insuresthat

ffl {d~(~)~2}ex~(- ~m2f~2) = = const., (2.10)

or that for large mass,the scalar field completely decouples,leaving only the
dynamicsof the puregravitationalfield.

3. Effects of matterfields

As long as the scalar action is quadratic,one can formally integrateout the
matter fields and obtain an effective lagrangiancontributionwritten entirely in
termsof the metric field,

fd~[q~]exP(_~JV~cbM[~IQ~)

=ffl{d~(~)~2} exP{-~fv~M[~]~}

{det M[g]} -n~/2 ~-I~ff[~]• (3.1)

Herewe havefrom the scalarfield action

~xIM[g]Iy)~(—82+~R+m2)~(x—y), (3.2)

wherea2 is the usualcovariantlaplacian,

(3.3)

Thefull effectiveaction,with termsfrom eq.(2.2) included,can be obtainedfrom
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the resultsof ref. [271(after introducinga proper-timeshort-distancecutoff of the
order of s0 1/A

2).Onefinds then

jeff[g] = f~/~[A’— ~k’R + ~ ...~, (3.4)

with effectivecouplings(for oneflavor, flf = 1)

1 1 1
A’ = A + A4 — m2A2+ m4 ln A2 +

64ir2 32ir2 64~2

~ ln A2+...,

1

a’=a+
19202lnA

2+.... (3.5)

For a fixed cutoff thesecorrectionsarequite small in magnitudecomparedto the
correspondinggravitationalradiativecorrectionscomputedin the 2 + c expansion
[14,15]or in higherderivativetheories[28]. Wewill seelater that this is alsoclearly
the case for the lattice results. As in ordinary gaugetheories,matter vacuum

polarizationeffectsare small unlessone has a large numberof matterfields (in
which case evena new phasemight appear).To the extent that the lattice scalar
action is equivalentin the lattice continuumlimit to the correspondingcontinuum

scalaraction, the aboveperturbativeresults,valid for small curvatures,shouldbe
relevantfor the lattice model as well.

The effectsof matter fields are small also from the point of view of the 2 + E

perturbativeexpansionfor gravity [14,15].Oneanalyticallycontinuesin the space-
time dimension by using dimensional regularization, and applies perturbation
theoryaround d = 2, where Newton’s constantis dimensionless(it is not entirely
clear if this approachmakessensebeyondperturbationtheory). In this expansion

thedimensionfulbarecouplingis written as G
0 = A

2”G, where A is an ultraviolet
cutoff (correspondingon the lattice to a momentumcutoff of the order of the
inverse average lattice spacing, A 1r/(12)h/’2) and G a dimensionlessbare
coupling constant.A double expansionin G and E then leadsto a nontrivial fixed
point in G abovetwo dimensions,wheresome local averagesandtheir fluctuations
areexpectedto developanalgebraicsingularityin G. Closeto two dimensionsthe
gravitationalbetafunctionsis given to oneloop by

p(G) a 1ogA =eG—4(25—n~)G2+...~ (3.6)
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where flf is the numberof masslessscalar fields. To lowest order the ultraviolet
fixed point is at

3E

G*= 2(25—nf) +0(e). (3.7)

Integratingeq. (3.6) close to the non-trivial fixed point in 2 + c dimensionswe
obtain

GdG
~o=AexP(_f ~(G’) )G~G*AGG*11/~ )=AIG_G*ll/E, (3.8)

wherep.
0 is an arbitraryintegrationconstant,with dimensionof a mass,andwhich

shouldbe identifiedwith some physicalscale.The derivativeof the betafunction
at the fixed point definesthe critical exponentv, which to this order is indepen-
dent on fly,

/3~(G*)= —�= —1/i.’. (3.9)

The possibility of algebraicsingularitiesin the neighborhoodof the fixed point,
appearingin vacuumexpectationvalues such as the averagecurvatureand its
derivatives,is then a natural one,at least from the point of view of the 2 + �

expansion.
The previousresultsalso illustrate how in principle the lattice continuumlimit

shouldbe taken[16]. It correspondsto A —~ m, G —~ G * with p.0 held constant;for
fixed lattice cutoff the continuum limit is approachedby tuning G to G*.
Alternatively, we canchooseto computedimensionlessratios directly, and deter-
mine their limiting valueas we approachthe critical point (we will show examples
of this later). Away from G * onewill in generalexpect to encountersomelattice
artifacts, which reflect the non-uniquenessof the lattice transcription of the
continuumaction andmeasure,as well as its reducedsymmetryproperties.

Let us concludethis section by mentioning that the Nielsen—Hughesformula
[29] for the one-loop beta function associatedwith a spin-s particle in four
dimensionsprovides for a physical interpretation of the fact that the matter
contribution is so small comparedto the gravitationalone. It appearsthat this
result is related to the fact that the spin of the graviton is not a small number.
Consideringonly spin 0 and 2, the formula gives the lowest-orderresult for the
betafunction coefficient as

16~r2~o= — ~ ( - 1)25[(2s)2 - = - ~(47 — flf), (3.10)

making the matter contributionquite negligible unlessthe numberof flavors is
large. In higher derivative theories one finds similar large coefficients. It is
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encouragingthat similar results are found from the lattice calculationsto be
describedbelow. Furthermore,for a sufficiently largenumberof flavorsonewould
expect eventually a phase transition (if these lowest-order results are taken
seriously),dueto the changeof sign in the betafunction.

4. Observables

Whenwe considergravity coupledto a scalarfield, we candistinguishtwo types
of observables,those involving the metric field (the edgelengths)only, and those
involving also the scalar field. Quantitiessuch as the expectationvalue of the
scalarcurvature, the fluctuations in the curvaturesor the curvaturecorrelations
belongto the first class,while scalarfield averagesandscalarcorrelationsbelong
to the secondclass.

Following ref. [6], we define the following gravitationalphysical observables,
suchas the averagecurvature:

<f~R)
~(A, k, a) , (4.1)

<I
andthe fluctuation in the local curvatures,

((f~R)2)(f~R)2 1 a2

~ k, a) ~~-~-ln Z. (4.2)

<I
The lattice analogsof theseexpressionsare readilywritten down by making useof
the correspondences[17,25]

fd4x~/~—* ~ Vh, (4.3)
hingesh

fd4x~/~R—42~ shAh, (4.4)
hingesh

fd4x ~ —s 4 ~ Vh(~A~/V,~). (4.5)
hingesh

On the lattice we preferto definequantitiesin such a way that variationsin the
average lattice spacing ~/~7~5are compensatedby the appropriate factor as
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determinedfrom dimensionalconsiderations.In the caseof the averagecurvature
we definethereforethe lattice quantity.~l’as

(2E~hAh)

= K1~) ~ , (4.6)

~EVh)
h

and similarly for the curvaturefluctuation. The curvaturefluctuation is relatedto
the (connected)scalarcurvaturecorrelatorat zero momentum,

fd4xfd4yK ~R( x)~R( ‘) )~
(4.7)

(fd4X~)

A divergencein the fluctuation is then indicative of long-rangecorrelations(a
masslessparticle). Close to the critical point one expectsfor large separationsa

powerlaw decayin the geodesicdistance,

2n’ (4.8)
Fx—yH~ x—yj

which in turn leadsto the expectationx~‘-~~ where L l/’/’ is the linear
size of the system.In refs. [6,7] it was found that x~divergesclose to the critical
point as

X~kkLd(1~)/(1±~)~ (4.9)

where ~ is the curvaturecritical exponentintroducedin ref. [61,and therefore
n = 5d/(1 + ~)= d — 1/v, with the exponent r’ defined as v = (1 + ~)/d. Note
that for a scalar field in four dimensionsone would expect v = 1/2, whereaswe
find ô 0.63 andtherefore i.’ 0.41.

It is of interestto contrastthe behaviorof the precedingquantities,associated
with the curvature,with the analogousquantities involving the local volumes(or
the squareroot of the determinantof the metric in the continuum) only. We can
considerthereforethe averagevolume <V>, andits fluctuation definedas

_____ 1 ~2

(4.10)
(Jvj V3A
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The latter is then relatedto the connectedvolume correlatorat zero momentum,

fd4xfd4y(~~~g(y) )~
Xv’~ . (4.11)

(fd4xV~)

We havearguedbefore[6] that fluctuations in the curvaturearesensitiveto the
presenceof a spin-2 masslessparticle,while fluctuationsin thevolume probeonly
the correlationsin the scalarchannel.In the caseof gravity a dramaticdifference
is therefore expected in the two type of correlations. Indeed the numerical
simulationsshowclearly a divergencein thecurvaturefluctuations,butat the same
time no divergencein the volume fluctuations.Other, more complex invariant
correlationfunctionsat fixed geodesicdistancecanbe written down andmeasured
[71.

Let us turn now to theobservablesinvolving the scalarfield. Due to the form of
the action, the averageof the scalarfield is alwayszero,but onecancomputethe
discreteanalogof the following coordinateinvariant fluctuation:

(fd4xfd4y~g(x)~(x)~g(y) ~(~))
(fd4x~g(x))

(fd4x~g(x)~(x)) (fd4y~g(y)~(~))
— ____ (4.12)

(fd4x~g(x))

(again, for the gaussianscalaraction we will be considering,the secondterm on
the r.h.s.will be zero). On the lattice such an expressioncanbe written as

(~~ (~~ (~~)
x~-~ — I . (4.13)

(~) (~)
Since ~ is the zero-momentumcomponentof the scalarparticlepropagator,it is
expectedto divergelike m2 for small mass,up to anomalousdimensions.Also of
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interestare the local coordinateinvariant averages

(fd4xv’~2~

Kq~2)
(fd4X~)

(I d4xV~4)

(4.14)
(fd4X~)

For free fields oneexpectsthe following dependenceon the scalarfield mass:

d4k 1 1 A2+m2(~2)= ~ (2~)~k2 + m2 = 16~2 A2 — m2 In m2 (4.15)

d4k 1 1 A2+m2 m2
(~4)=2f ~ (k~+m~= 8~2In m2 + A2+m2 —1 , (4.16)

where A is the ultraviolet momentumcutoff. In the interactingcase one antici-
pates,amongothereffects,a multiplicative renormalizationof the massparameter
m. In the presenceof gravity, the behaviorof thesequantitieswill be discussed

below.
We can write schematicallythe propagatorfor the scalar field in a fixed

backgroundgeometryspecifiedby somedistribution of edgelengthsas

1
G(d)=KyI a2+~R+2~>’ (4.17)

where d is the geodesicdistancebetween the two space-timepoints being
considered.Now fix onepoint at the origin 0, and usethe discretizedform of the
scalarfield actionof eq.(2.4). Thenthe discreteequationof motion for the field 4,
in the presenceof a 8-functionsourceof unit strengthlocalizedat theorigin gives
us the sought-afterGreenfunction. For ~ = 0 we write the equationas

(4.18)
I j*j

with the weights W given by

m2 1 V.
W~=~—~-+~ ~, ~ (4.19)

j~Li ii ii
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Here the sums extend over nearest-neighborpoints only, V~ is the volume
associatedvia a baricentricsubdivisionwith the edgeii, and 6j0 is a delta-function
sourcelocalizedat the origin on site 0. The aboveequationfor ~, canbe solvedby
an iterativeprocedure,taking 4~,= 0 as an initial guess.After the solution ç&, has
beendeterminedby relaxation,at largedistancesfrom the origin onehas

~~=G(d~
0) =A~m/d~exp(—md~0), (4.20)

which determinesthe geodesicdistanced10 from lattice lattice point 0 to lattice
point i. This methodis more efficient and accuratethan trying to determinethe

geodesicdistanceby samplingpathsconnectingthe two points as wasdone in ref.
[7], but is of courseequivalentto it [301.

In quantumgravity it is of greatinterest to try to determinethe value of the
low-energy,renormalizedcouplingconstants,andin particularthe effectivecosmo-
logical constant~ andthe effectiveNewtonconstantGeff = (8~Tkeff)~

1.Equiva-
lently, onewould like to be ableto determinethe large-distancelimiting valueof a
dimensionlessratio suchas AeffGe2~f,and its dependenceon the linear size of the
systemL = jzl/4• (In the realworld oneknows that Geff = (1.6160x iO~ cm)2,
while AeffGe2ff 10— 120 is very small). The vacuumexpectationvalue of the scalar
curvaturecan be usedas a definition of the effective, long-distancecosmological
constant

(f~R) 4A
(4.21)(iv) k

In the pure gravity caseone finds that thereis a critical point in k at which the
curvaturevanishes,andfor k <k~onehas

k-’k~—AR(kC— k)8 (4.22)

andthus(A/k)eff—s 0 in lattice units.The location of the critical point k~andthe
amplitude in general dependon the higher derivative coupling a and other
non-universalparameters,but the exponentis expectedto be universal,andwas
estimatedpreviouslyto be about0.63; more detailscanbe found in refs. [6,71.

One immediate consequenceof this result is that in the smooth phasewith
k <k~(or G > G~ G*), the gravitationalcoupling constantG must increasewith
distance(anti-screening),at least for rather short distances.Introducing an arbi-
trarymomentumscalep., one hasclose to the ultraviolet fixed point the following

short-distancebehaviorfor Newton’s constant:

A ~
— (4.23)
p.
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with A the ultraviolet cutoff; the exponents6 and v are calculableandarerelated
to eachothervia the scalingrelation u = (1 + 6)/4 0.41. The oppositebehavior
(screening)would be true in the phasewith k > k~,but sucha phaseis known not
to be stableandleadsto no lattice continuumlimit [7].

If the systemis of finite extent, with linear dimensionsL = V”4, then the
scaling laws for ~ should also give the volume dependenceof the effective
cosmologicalconstantat the fixed point. For puregravity onefinds at the critical

point:

1 ~
— , (4.24)

L>>1

0 L

with l~of the orderof the averagelatticespacing,l~= V~
7~5,and 6/~ 1.52. The

critical pointhereis defined,as usual,as the point in bare couplingconstantspace
wherethe curvaturefluctuationsdivergein the infinite volume limit. Similarly for
the dimensionlesscoupling G in a finite volume,one expectsthe scalingbehavior

1 1/P

G(p.) G~+ — . (4.25)
L,1/p~>l

0 p.L

Theseresultsareall direct consequencesof the scalinglaws andthe valuesof the
critical exponents[71.An important issueis how theseresultsareaffectedby the
presenceof dynamicalmatter.This will be addressedlater in the paper.

The gravitational exponent 6 determinesthe universal scaling behaviorof a
variety of observables.Among the simplest ones which are relevant for simple
cosmologicalmodelsonecan mentionthe FRW scalefactor a(t), as it appearsin
the line element

ds
2= —dt2+ a2(t){ 1 —kr2 + r2(d02 + sin2O d~2)}, (4.26)

andwhich we would expect to scaleat short distancesaccordingto the equation

a2(t) t

2 — (4.27)a (t

0) t>>t5 t0

with Ct0 = 10. It is amusingto note that in this model the scalefactorcannotexhibit
a singularityfor short times, t ‘- t0. For suchshort distancesthe strongfluctuations
in the metric field and the curvaturepreventthis from happening.We shouldadd

thoughthat the scalefactor itself is essentiallya semiclassicalquantity, linked to a
specific ansatzfor the (classical) metric at large distances.In the presenceof
strong metric fluctuations it is no longer clear that it remainsa well-defined
concept.
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The bare Newtonconstantalso describesthe coupling of gravity to matterat
scalescomparableto the ultraviolet cutoff. Consider the classicalequationsof
motionfor pure Einsteingravity with a cosmologicalconstantterm,

~ — ~ +Ag~~= 8~rGT~~. (4.28)

Here we havefollowed the usual conventionsby defining A = 8~GA(not to be
confusedwith the ultraviolet momentumcutoff introducedearlier). In the pres-
ence of higher derivative terms and higher-orderlattice corrections this is of
coursenot the right equation(the equationsof motion for higherderivativegravity
aresubstantiallymorecomplex),but at sufficiently largedistancesit shouldbe the
appropriateequationif the averagecurvature is small and a sensiblecontinuum
limit can be found in the lattice theory. If we haveonly one realscalarfield, the
energy—momentumtensoris givenby

~ = 0~43~4— ~ + m2~2) (4.29)

(we will considerfrom now on only the case~ = 0). Taking the tracewe obtain

R = 4A — 8~-TGT~= 4A + 81rG[(a~)2 + 2m242]. (4.30)

Now considerthe effectsof quantumfluctuations,and separatethe pure gravity
and matter contributions to the scalar curvature, by writing for the average
curvatureKR) = KR gravity) + KRmatter)’ whereKR) is the averageof thetotal scalar

curvaturein the presenceof matter, and KRgravity) is the samequantity in the
absenceof matter. More specifically, by the expectationvalue K Rgravity) we will
simply mean the averagesobtained in the absenceof any matter fields, as

computedin ref. [7]. We will seebelow that KRmatter) representsa rather small
contribution, unless there are many scalar fields contributing to the vacuum
polarization.In the presenceof quantumfluctuations,we canwrite thereforefor
the mattercorrection

KRmatter) = 8~GK(a4)2+ 2m2~2)= 8irG[2K1
4) + m

2K~2)]. (4.31)

In otherwords, the changein the averagevalueof the scalarcurvaturethat arises
whenmatter fields are included is proportionalto Newton’s constantG, andit is
expected to be positive. This is indeed what will be found in the numerical
simulationsdiscussedbelow,eventhoughthemagnitudeof the correctionis quite
small (in agreementwith the perturbativeargumentspresentedin the previous
section).To the extent that the feedbackof the scalardegreesof freedomon the
gravitationaldegreesof freedomappearsto be rathersmall (almost to thepoint of
being difficult to measure),we shall arguebelow that gravity is indeed‘weak’, at
leastfor the typeof scalaractionwe have investigatedhere.
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5. Numericalprocedure

In order to explore the ground state of four-dimensionalsimplicial gravity
coupled to matter beyond perturbationtheory one has to resort to numerical
methods.As in our previouswork, the edgelengthsand scalarsareupdatedby a
standardMetropolis algorithm, generatingeventuallyan ensembleof configura-
tions distributedaccordingto the action of eqs.(2.1) and(2.4), with the inclusion
of the appropriategeneralizedtriangle inequality constraintsarising from the
nontrivial gravitationalmeasure.Further detail of the methodas applied to pure
gravity are discussedin ref. [32], andwill not be repeatedhere,since the scalar
actioncontributioncanbe dealtwith in essentiallythe sameway.

We have not included here a term coupling the scalar field directly to the
curvature(~= 0), since the continuumperturbativeresults discussedpreviously
appearrathersimilar for different valuesof ~~ ~, andthe scalaractionbecomes
significantly simpler for ~ = 0. Also we note that, in the absenceof matter, KR>
itself vanishesat the critical point [6,7]. In mean-field theory, we can replacethe
term Rcf2 by RK42). Since K42) is finite at the critical point (see discussion
below), we expect the inclusion of this term to mostly affect a renormalizationof
the critical coupling k~(related to the critical value of Newton’s constant by
k~= 1/(8irG~)),which shouldnot changethe universalcritical behavior.

Let uspoint out hereonly the fact that,while the scalarfield action of eq. (2.4)
looks ratherinnocuous,dueto the simplicial natureof the lattice a largenumber
of interactionterms are involved at eachsite: at eachvertex thereare 15 edges
emanating in the positive lattice ‘directions’, and 15 in the negative lattice
‘directions’ [2]. In the updateof the scalar field eachof the 30 edgevolumesl’~
hasto be re-computed,by addingtogetherthe contributionsfrom all thefour-sim-
plices that meeton that edge.For the edgevolume onehas

(5.1)
simplicess

since thereare ten edgesper simplexin four dimensions.Here the volume of an
n-simplexwith edgelengthsl~,is given as usualby the determinant

0 1 1 1/2

1 0 l~

I l~ 0

n!2PI~’2 1 131 l~
2 ... , (5.2)

1 j2
nl n2

1 j2
~ n±1,2
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andcorrespondsto the determinantof a 6 x 6 matrix in the caseof a four-simplex;
when expandedout it contains 130 distinct terms. Furthermorethe numberof
four-simplices meetingon a given edge dependson the type of edge.With our
simplicial subdivisionof the four-dimensionalhypercubesthat makeup the lattice,
we havefour body principals, six face diagonals,four body diagonalsand one
hyperbodydiagonalperhypercube[2]. For a body principal or hyperbodydiagonal
thereare 24 four-simplicesmeetingon it, while for a faceor body diagonalthere
are 12 four-simplices meeting on it. When updating one scalar field by the
multi-hit Monte Carlo or heatbath method,the 30 neighboringlink contributions
needto be computedonce,with their associatedlink volumes,andspecialcarehas
to be takenof the order of the edgelengthsappearingin the simplexformulae.
When updating a given edge length, all the scalar field action contributions
involving that particular edgehaveto evaluated,in additionto the purelygravita-
tional part. For a body principal and hyperbody diagonal there are 65 such
contributionsthat haveto be addedup, while for a faceor body diagonal35 such
contributionshave to be addedup. By assigningthen special fixed valuesto the
edgelengths,onecanperform a numberof checksagainstthe expectedanalytical
result to verify that the volumes are computedand addedup correctly. Even
thoughthe programis quite computingintensive, it is well suitedfor a massively
parallel machine. In the two parallelversionsof the programwe havewritten, a
large number(64—256) of independentedgeand scalarvariablesare all updated
simultaneouslyin parallel.

We consideredlatticesof sizebetween4 x 4 x 4 x 4 (256 vertices,3840 edges,
6144 simplices) and 16 X 16>< 16 X 16 (65536 vertices, 983040 edges, 1572864
simplices).Eventhoughtheselatticesarenot very large,one shouldkeepin mind
that dueto thesimplicial natureof the lattice therearemany edgesperhypercube
with many interactionterms,andas a consequencethe statisticalfluctuationsare
comparativelysmall, unlessone is very close to a critical point. In all casesthe
measureover the edge lengthswas of the form d12J/7’f/3° times the triangle
inequality constraints(see eq. (2.9)). We shall restrict here our attention to the
casen~= 1; results for largervaluesof flf will be presentedelsewhere.

The topologywasrestrictedto a four-torus(periodicboundaryconditions),and
it is expectedthat for this choiceboundaryeffectson physical observablesshould
be minimized. One could perform similar calculationswith lattices of different
topology, but the universal infrared scaling propertiesof the theory should be
determinedonly by short-distancerenormalizationeffects, independentlyof the
specific choice of boundaryconditions.This is a consequenceof the fact that the
renormalization group equationsare independentof the boundary conditions,
which enteronly in their solution asit affectsthe correlationfunctionsthroughthe
presenceof a new dimensionful parameterL. Thus the four-torusshould be as
good as any other choice of topology, as long as we consider the universal
long-distanceproperties.
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Let us give here a few details about the runs performed to compute the

averages.In the presenceof matterfields, the lengthsof the runsare muchshorter
than in the pure gravity case[7], sincethe scalarfield updateis rathertime-con-
suming.The couplingsA anda in the gravitationalactionof eq.(2.1) were fixed, as
in the pure gravity case,to 1 and0.005, respectively.For pure gravity this choice
leadsto a well-definedgroundstatefor k ~ k~ 0.244(the systemthenresidesin
the smoothphase,with a fractal dimensionvery close to four). In the presenceof
matter, we also restrictedmost of our runs to this physically more interesting
phase,where the curvatureis small andnegative.We investigatedfive valuesof k
(0.0, 0.05, 0.1, 0.15, 0.20), andfor eachvaluewe lookedat a scalarmassof 1.0, 0.5
and0.2 in lattice units. In addition, we haveaccurateresults for infinite massfrom
thepreviouspure gravity calculations.Besidesthe resultson latticeswith L = 4 for
all the abovevaluesof k and m, we also haveaccurateresultson latticesof size
L = 8 and 16 for m = 0.5, and of size L = 8 for m = 0.2. For thesevaluesof the
scalarmass, the scalarcorrelationsonly extendover a few lattice spacings,and
finite-size effects should therefore be contained(we have checkedthat this is
indeedthecasefor the quantitieswe havemeasured).In generalwe are interested
in a regimein which the scalarmassis much larger than the infrared cutoff, but
much smallerthan the lattice ultraviolet cutoff, or

(5.3)

in order to avoid finite lattice spacingand finite volume effects. Similarly, one
should also impose the constraint that the scaleof the curvaturein magnitude
shouldbe much smallerthan the averagelattice spacing,but muchlarger than the
size of the system,or

K!2> ~ K!2> I I~<< ~‘/2~ (5.4)

It is equivalent to the statementthat in momentum spacethe physical scales
should be much smaller that the ultraviolet cutoff, but much larger than the
infraredone.

The lengthsof the runs typically varied between2—6k Monte Carlo iterations

on the 44 lattice, 1 — 2k on the 8~lattice, and0.6—0.9 k on the 16~lattice. The
runs arecomparatively longeron the larger lattices, since it was possiblein that
caseto use a fully parallel version of the program.As input configurations,we
used the thoroughly thermalized configurationsgeneratedpreviously for pure
gravity. Theseconfigurationsare rather ‘close’ to the onesthat include the effects

of matter,sincethe feedbackof matterturns out to be rathersmall. On the larger
latticesduplicatedcopiesof thesmallerlatticesareusedas startingconfigurations

for each k, allowing for additional equilibration sweepsafter duplicating the
lattice in all four directions.This allows for a substantialsavingsin time, sincethe
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initial edge length configurationon the larger lattice is alreadyquite close to a
representativeconfiguration. We have found that in the well behavedphase
(k <k~)the autocorrelationtimesarecontained,of the orderof at mostaboutone
hundredsweeps.Whenwe duplicatethe smallerlattice to a larger lattice,almost
no drift in the averagesis observedduring later re-thermalization,which indicates
that for our parametersthefinite-sizecorrectionsaresmall. On the largerlattices,
becausethereare so many variables to averageover, the statistical fluctuations
from configurationto configurationareof coursemuch smaller.

6. Results

In the puregravity case,onefinds that for fixed positivea and A (the latter can
beset equalto onewithout lossof generality,sinceit determinesthe overall scale)
and sufficiently small k, the curvatureis small andnegative(smoothphase),and
goesto zeroat the critical point k~(a),wherethecurvaturefluctuationdiverges.In
the puregravity casewe write therefore,for k less than k~

~(k, a) —A~(a)(k~(a)_k)b, (6.1)
k -ak/a)

x~(k,a) A~(z)(k~(a)—k)~, (6.2)
k —~k/a)

where 6 is a universal curvaturecritical exponent,characteristicof the gravita-
tional transition [6]. Herewe will only considerthe casea = 0.005, for which the
phasetransition is secondorder, leading thereforeto a well-defined continuum
limit at least in the pure gravity case [7]. For k ~ k~the curvatureis very large
(roughphase),andthe lattice tendsto collapseinto degenerateconfigurationswith
very long, elongatedsimplices(with KV~)/K!2)2 0). (In ref. [7] severalvaluesfor
a were studied, and it was found that the model actually exhibits multicritical
behavior.While for a = 0.005 onefinds a second-orderphasetransition,for a = 0
the singularity appearsto be in fact logarithmic (6 = 0), suggestinga first-order
transitionwith no continuumlimit for sufficiently small a,with a multicritical point
separatingthe two transition lines.)

Whenincluding the effectsof the scalarfield, onefinds that the largestchanges
are in the averagevolumes(which decreaseby about threepercent for a scalar
mass m = 0.5) and the averageedge lengths. But such changesare somewhat
uninteresting,since they correspondeffectively to a shift (here actually an in-
crease)in thebarecosmologicalconstant(alsoby aboutthe samepercentage,since
ÔV/V—’ —6A/A). We note hereincidentally that such a small effect is consistent
with the perturbativeresult of eq.(3.5), which predictsan increasein the effective
cosmologicalconstantA by about one percent,for a cutoff A ~/1~ 1. Indeed
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Fig. 1. Average curvature .~ as a function of the massof the scalarfield m, for different valuesof
k = 1/8.irG. From top to bottom k = 0.0, 0.05, 0.1, 0.15, 0.2. The valuesfor pure gravity (z = 0) are
includedfor comparison,and drawnalso as lines of constant .~‘. The valuesfor m= 1.0 (z = 0.5) and
m = 0.2 (z = 0.962) are from a relatively small latticewith L = 4 and are thereforefor referenceonly,
while the valuesfor m = 0.5 (z = 0.80) are averagesfrom the L = 8 and L = 16 lattices, with much
smalleruncertainties.The slightbut cleardecreasein themagnitudeof the curvaturein thepresenceof

the scalarfield shouldbenoted.

beforewe havechosento define observablesin such a way that theseeffectsare
largelycompensated,by rescalingby an appropriatepowerof the averagelattice

spacing,as in eq.(4.6). Physicallymore interestingare the resultsfor the average
curvaturein the presenceof the scalarfield. As canbeseenfrom fig. 1, the effects
of the feedbackof one scalarfield on the curvaturearequite small. It is useful to
display the resultsas a function of z = 1/(1 + m2), since this allows usto put the
results for infinite mass(no scalarfeedback,from ref. [7]) on the samegraph. The
most accurateresultsin the presenceof the scalarfield are for m = 0.5, wherewe
have relatively accurateresults for threedifferent lattice sizes(L = 4, 8, 16) and
the higheststatistics.The points for m = 1.0 are for referenceonly, since theyare
from an L = 4 lattice only. For m = 0.5 and m = 0.2 the resultsshow a small but
clear systematicdecreasein the magnitudeof the averagecurvaturein the smooth
phasefor all valuesof k, at the level of a few percent;to seesuch a small effect
long runswereneeded.The resultsare in qualitative agreementwith the expecta-
tion that the presenceof the scalar field shouldgive a positivecontributionto the
averagecurvature. In any case,for all valuesof the masswe haveconsidered,the
effectsare rathersmall.

As shouldbe clearfrom the discussionin sect.5, we are interestedin how the
critical behaviorof the theory is affectedin the neighborhoodof the critical point
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k = 1/8aC

Fig. 2. Comparisonof the averagecurvature.1k as a functionof k in thepresence(cOt) and absence(D)
of thescalarfield, with massm = 0.5. The resultsfor puregravity are from ref. [7] on an L = 16 lattice.
The line correspondsto a fit of the pure gravity resultsto an algebraicsingularity, as discussedin the

text.

by the presenceof the scalar field. We will write thereforeagainfor the average
curvature,now in the presenceof the scalarfield,

k_ak~—A~(k~— k)5, (6.3)

3.5 I I I I

3

2.5

[—71(k)]1!5

0.~__________

—0.2 —0.15 —0.1 —0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0 = 1/8,rG

Fig. 3. Minus the averagecurvature .1k raisedto thepower 1/b 1/0.63. Parametersanddata arethe
sameasin fig. 2. Thestraightline is a fit to the puregravity results.The linearity is now quite striking.
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wherenow we expectA~,,k~,6 to dependalso on the numberof scalar flavors,
n~.In the presenceof the scalarswe haveto look at thescalinglimit m —s 0, which
in practical terms correspondsto a mass much smaller than the inverse average
lattice spacing.It is not clear if m = 0.5 (wherewe haveour mostaccurateresults)
in our casecorrespondsalreadyto sucha scalingregion,butour resultsshouldnot
betoo far off, if the experiencein other lattice modelscanbe usedhereas a guide.

If we adoptthe sameprocedureas for puregravity, and fit the averagecurvature
for m = 0.5 to an algebraicsingularity, we find A~= 3.68(5), k~= 0.243(2) and
6 = 0.61(6).This shouldbe comparedto the estimatesfor puregravity (andfor the
samevalueof a = 0.005), A~.,= 3.79(4),k~= 0.244(1)and 6 = 0.63(3) [7]. In fig. 2
we comparethe results for the averagecurvature~(k) with and without the
presenceof the scalarfields. In fig. 3 the samedatais usedto display[—~(k)]”~
instead,which as canbe seenfrom the graphdeviatesvery little from a straight
line behaviorin k, if one uses6 = 0.63.

We concludetherefore that, within our errors, switching on the scalar fields
leavesthe exponentsalmostunchanged,andthe critical point movesverylittle; our
resultssuggeststhat k~decreaseswhen we include the effectsof the scalar field.
Again we notice that such a small shift is not unexpectedon the basis of the

perturbativeresult of eq. (3.5), which alsosuggestsa small decreasein the effective
k, for a cutoff A rr/l0 1. For small non-integer flf we can expand the
amplitude,critical value of k andthe exponentin powersof thenumberof flavors

flf,

A~=A0 + n~A1+ O(n~)

= k0 + n~k1+ O(n~)

6 = 6~+ flf

6

1 + O(n~), (6.4)

andfor the averagecurvatureitself we get

A1 6k1
—A0(k0—k)

0°1 +n~, + ° +6~ln(k
0—k) +0(n~) , (6.5)

flflO A0 k0—k

which showsthat the k1 renormalizationis dominantfor very small n~.Since the
results for flf = 1 indicate that the correctionsdue to the scalar field are quite
small, we would tend to concludethat coefficientsof the n~termsmustbe rather
small, andthat the puregravity theory is alreadya good approximationto the full
theory including scalars,provided nf is not too large.

Let us assumefor the momentthat k1 and 6~are so small that they can be
neglectedto a first approximationwhenwe considera singlescalarmatterfield (in

the 2 + e expansionthe matter corrections are certainly very small, and the
exponentis independentof the numberof matter fields to leading order in �).



486 H.W. Hamber,R.M Williams / Gravitycoupledto scalar matter

0.05 I I I I I I I I I

0.045

0.04

0.035

—0.2 —0.15 —0.1 —0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0 = 1/8irG

Fig. 4. Difference ii.1k(k) betweenthe averagecurvaturein the presenceand absenceof one scalar
field, againfor m = 0.5 and L = 8, 16. The differenceis small and positive. The curve representsa
behaviorclose to the critical point of the type i..1k(k) A(k~— k)

1, with b 0.63 and k~ 0.244 (the
valuesfor pure gravity).

Then the differencebetweenthe averagecurvature in the presenceof the scalar
field and in puregravity determinesthe ratio of curvatureamplitudesA

1/AO,

~matter — ‘~gravity+matter ~gravity 1 6 6

~gravity — ~gravity k~k~A0

The difference in the numeratoris of course quite small, and requires a very
accuratemeasurementof the averagecurvaturein bothcases.At the sametime it
providesa direct determinationof the physical effectsof dynamicalmatterfields,
on a quantity that representsa direct physical observable,since the average
curvaturecanin principlebe measuredby performingparallel transportsof vectors
around large closed loops. The calculateddifference c

9egravity+matter ~gravity is
shown in fig. 4, togetherwith a fit to a behavior ‘~ (k~— k)8, treating only the
amplitude as a free parameter.To reduceany systematiceffects coming from
finite-volume corrections,it is advisableto subtractthe averagecurvatureson the
same lattice size. In addition, such a subtraction can be done without any
assumptionabout the (singular) behavior of the curvature at k~.One then
estimatesapproximatelyfor the ratio A

1/AO 0.053/3.79= 0.014;we will leavea
more accuratequantitative determinationof this ratio for future work. We note
thoughthat the signof themattercorrectionto the curvatureis consistentwith the
fact that the effective Newton constant gives rise to an attractive interaction
(Geff> 0), thereby adding a positive contribution to the pure gravity average
curvature.
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For an explanationfor the smallnessof sucha ratio, we can look againat the

formula (3.10). Therethe relative smallnessof the mattercontribution is simply a
consequenceof the particle’s relativespin. For spinzero andspin two, as we have
here,the ratio of the matter over gravity contributionsis ~/(4~2 — ~)= 0.021,
indeedof the sameorder as the ratio we computed.Onecango perhapsas far as
turning this argument around, and argue that the smallnessof the vacuum
polarizationeffectscomparedto the purelygravitationalcontributionis an indirect
indication of the spin-two natureof the graviton(if we wereto treatthe value of
the gravitonspin asanunknownparameter,we would obtain a valuevery closeto
two, s 2.5).

Let us turn now to a discussionof the renormalization properties of the
couplings G and A. It is clear from the precedingdiscussionthat the effects of
scalarmatter are quite small. In the following we shall thereforenot distinguish
betweenthe caseswith andwithout matterfields, assumingthat if thereareonly a
few matterfields, the exponentswill not changedrastically.

As we indicatedpreviously,usingthe methodsof finite sizescaling[33], onecan
translatethe dependenceof the curvatureon k — k~into a statementabout the

uo!umedependenceof the curvatureat the critical point k~.In a finite volume,of
linear size L, finite-size scaling(from eqs.(4.21) and(4.24)) gives

1 \4—1/P

(GA)eff(L) !~2 ~ , (6.7)
L,1/p.>>l

0 Lj

since essentiallythe correlation length ~ saturatesat the systemsize, ~ — (k~—

L. Combining this result with eq. (4.25),one obtainsfor the dimensionful
Newtonconstantthe following scaledependence,valid for short distances1/p. ~

L:

1 1/v
Ge11(p.) l~G~+1~ (6.8)

L,1/~a>>ly p.L

(with 1/~ 2.46), andfor the dimensionfulcosmologicalconstant

1 1/v 1—4 4—1/v
Aeff(p.) l~ (p.!0) G~+ — (6.9)

L,1/~>>10 p.

(with 4 — 1/~ 1.54). Here again!~is of the order of the averagelattice spacing,
and we have restoredthe correctdimensionsfor Geff (length squared)and Aeff

(inverse length to the fourth power). For the dimensionlessratio G
2A we then

obtain the cutoff-independentresult

1 1/v
(G2A)eff(p.) (p.!

0)
4~’~G~+ — . (6.10)

L,1/p.>>1

5 p.L
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As a check,it is immediateto seethat the exponentassociatedwith Geff iS indeed
what one would expect from the form of the Einsteinpart of the gravitational
action in eq.(2.2) andthevalueof the curvaturecritical exponent6, irrespectiveof
whethermatter fields are presentor not (the specific values of 6 and v will
dependof courseon how many matterfields arepresent).

In conclusion, it seemsthat the dimensionlessratio G2A can be made very
small, provided the momentumscalep. is small enough,or, in other words, at
sufficiently largedistances.We shouldaddalso that the fixed pointvalue for the
dimensionlessgravitationalconstant,G~,is in generalnon-universalandcutoff-de-
pendent, and dependson the specific way in which an ultraviolet cutoff is
introduced(herevia an averagelattice spacing).In our model it is of order onefor
very small a, but for larger a it decreasesin magnitude. One notices that the
smaller G~,the smallerthe distancedependenceof G(r), since one has for the
distancevariation the result

6G(r) 6r
______ = _____________— (6.11)
G(r) G~(L/r)”~+1 r

(we haveset r = 1/p.), so in practice G~cannotbe too large. For small G~,l~
becomessubstantiallylarger than the Plancklength.It shouldbe pointedout here
that thereis apparentlyno reasonwhy in this model the effective coupling GCff
should turn out to beof the sameorder asthe ultraviolet cutoff 1i51, andindeedit
doesnot. The previousresultsseemto indicate that the situation is more subtle.
Let us add also that we do not expect the results to dependsignificantly on the
form of the lattice scalar action we have used. In particular the presenceof
additional higherderivativetermsinvolving the scalar fields shouldnot affect the
resultscloseto the continuumlimit, sincethe correctionsshouldbe suppressedby
inversepowersof the ultraviolet cutoff.

Another simpleway of interpretingthe results related to the scalarfield is as
follows. Close to the critical point, the averagecurvatureapproacheszero, andat
largedistancesit is thereforelegitimateto write ~ = + ~ where is the
flat metric, and ~ is a small correction.Thenthe scalar field actionof eq. (2.4)
is, again at large distances,close to the action describinga free scalar,and its
coupling to gravity is correspondinglyweak. At short distancesthe geometry
fluctuateswildly, and the coupling betweengravity and matteris strong,while at
largedistancesthe fluctuationseventuallyaverageout to zero,effectively reducing
the coupling.

Turning to thebehaviorof the scalarfield itself, we show in fig. 5 theresults for

K412>, in fig. 6 thosefor K~4>(see eq. (4.14)), andin fig. 7 for x~(definedin eq.
(4.13)).The behaviorof thesethreequantitiesis qualitativelyrather similarto their
free field behavior(eqs. (4.15) and(4.16)), andis not too sensitive,at the level of
our accuracy, to the value of k. We note in particular that K 4,2> approachesa
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~

Fig. 5. The scalar field average (4,2) as a function of m, and for different values of the bare
gravitationalcoupling k (k = 0.0, 0.05, 0.10, 0.15, 0.20). The data for m = 1.0 and m = 0.2 is from a

latticewith L = 4, while data for m= 0.5 from latticeswith L = 8 and 16. The line is a fit assumingthe
free-field dependenceon themassm.

constantat m = 0, while both K4,~>andx~divergeat m = 0, in agreementwith a
multiplicative massrenormalization(no shift in the critical point for the field 4,,

which remainsat m = 0).
Let us concludethis section with a brief, qualitative discussionof the phase

diagram, reconsideredin light of the resultsobtainedin the presenceof scalar
matter.In thecaseof puregravity,the phasediagramshowsa line of critical points

2.5 I I I I I

1.5

0.5

0 0.2 0.4 0.6 0.8 1
m

2

Fig. 6. Sameasin fig. 5, but for thescalarfield average(4,4).
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Fig. 7. Sameas in fig. 5, but for thescalarfield fluctuation

in the (a, k) planeseparatingthe smoothfrom the rough (or collapsed)phaseof
gravity. The curvaturevanishesalong this line when it is approachedfrom the
smoothphase,and for some sufficiently negativea <a

0 < 0 a stableground state
ceasesto existentirely. For a = 0 or very small positive a, the transitionfrom one
phaseto the other is first order, with no continuumlimit, while for larger a is

becomessecondorder,with a well-definedlattice continuumlimit, aswe indicated
previously.Thesefindings in particular would seemto indicatethe presenceof a
multicritical point, where the two transitionlines intersect[7].

In the presenceof scalarmatter fields, and for sufficiently large a, our new
results presentedhere seemto suggestthat a continuum limit still exists. In
addition,we havefound that in the smoothphasethe averagecurvaturedecreases
in magnitudeby a small but calculablerelativeamount.A quantitativeestimatefor
the amount of this decreasegives ~ =A1/A0 0.014. As the numberof
(degenerate)scalarfields increases,we expectthis trendto continue,until ~

flf A1/AO 1, at which point a new phasetransition might take place, in the
sensethat the smoothphasedisappearsaltogether(we expect that the critical
value k~will continueto decrease,and might evenbecome negativeat some
point). The appearanceof a new phase in the presenceof matter, with the
geometryresemblingbranchedpolymers,is a well-known fact in two dimensions
[34]. In fig. 8 we havesketchedwhat a possiblephasediagramin the (k, nf) plane
might look like. Presumablythis new phaseis nothingbut the roughphasefound
for n~= 0 and sufficiently large k. It is characterizedby very long elongated
simplices,with very small volumes,and a fractal dimensionmuch smaller than
four, reminiscentof a tree-like structureof space-time.Given our rather limited
results,a crudeestimatefor the critical numberof flavorsat which this is expected
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0.5 I I I I I

0.45

0.4 RaaghPhase

0.35

O 60

Fig. 8. A possibleschematicphasediagramfor gravity coupledto fl~ scalarfields.The presenceof the
scalarfields shifts thecritical point k~= l/871G~towardssmallervaluesasthenumberof scalarflavors

is increased,until the smoothphasedisappearsentirely for somelargenumberof flavors.

to happenwould be flf 71, a ratherlarge number.But such an estimateis not
inconsistentwith theperturbativeestimatesof eqs.(3.6) and(3.10), which also give
such largenumbers(24 and47, respectively).And of coursefor such largevalues,
we expect deviations from linearity in io~,and we will have to leave a direct
investigationof this issue for future work. Finally let us remark that since the
effectsof fermionscanbe mimicked by having scalarswith negativen~,the above

conclusions would be rather different in that case, and their presenceshould
ratherimpedethe appearanceof thisnew phasetransitions.While scalarstend to
makethe geometryrougher,fermionsshouldmake it smoother.

7. Volume and curvature distributions

In this sectionwe will discussthe propertiesof volume andcurvaturedistribu-
tions, and how their behaviorclose to the critical point, which definesthe lattice
continuum limit, can be related largely to the critical exponentsdiscussedprevi-
ously. Let us assumethat close to the critical point A~one hasfor the average
volume a singularity of the type

Ky> (JV~- ~ln Z~ (A ~e)W + reg (7.1)
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with w # 1, and “reg” denotesthe regularpart. For the volume fluctuationone
then expectscloseto A~

KV2> — Ky>2 ~—~lnZ~ (A — A~)~°~’ + reg, (7.2)

andit follows that the partition functioncloseto the singularityis given by

Zsing(A) ex~{— JAdA, (A’ )~+ re~}. (7.3)

Now let us introducethe quantityN(V) definedby

N(V) = fdp.[g] 6(1v~- v) ~ (7.4)

It canbe evaluatedfrom

1 +ise
N(V) = .~—f dA Z(A) efl’, (7.5)

to give, in the saddle-pointapproximation,the following expressionfor the density
of states:

N(V) V~3exp(A~V(1+ b/V~’°’)}, (7.6)

where b is a constantinvolving ~, J/~and A~,andthe exponenty parameterizesa
possiblepower law correction.Let us denoteby K . .. > v the averagesobtainedin
the fixed volume ensemble.Then it is easy to see, from the transformation
propertiesof the fixed-volumepartition functionundera changeof scale,that one

has

alnN(V) 1 ci k (J%1~R)
______ V (7.7)

av V 4 2 V

whichcanbe combinedwith thepreviousequationto give the result,valid for large
volumesandin the fixed volume ensemble[6],

(JV~R) 2-y c~
V c

0— +—+.... (7.8)
~ V-a= y yl/oa
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We havenot calculatedthe aboveaveragein the fixed volume ensemble,but in the
canonical ensemble,where the volume is allowed to fluctuate, one finds the
following result closeto the critical point [7]:

(1 i/ER) 1

V—SIn

with 6 0.63. It is reasonableto assumethat the exponent~ is the samein the

two ensembles,in which caseone gets w 2.60. But this result then implies that
the volume fluctuationscannotdrive a continuousphasetransitions.If this were
the case,then the specific heat exponent a 2 — 4v = 1 + w would haveto be
a < 1 or v> 1/d = 1/4, otherwisethe transitionis expectedto be first order [35],
in which caseonewould not be ableto define a lattice continuumlimit. Indeeda

direct determinationof the volume fluctuationsshows that they are alwaysfinite,
andin particular do not divergeat the critical point at k~,indicating that the mass
associatedwith thevolume fluctuations(the conformalmode)is of the orderof the
ultraviolet cutoff [6,7].

Let us look for completenessat the analogousresult for the curvaturedistribu-
tion. Again the exponentsappearingin this casecanbe relatedto the curvature
critical exponent6. Let us assume,as seemsto be the case,that close to the
critical point k~one has

___ 1 a
+ — —ln Z ‘~- —A~(k~— k)8. (7.10)

(fv’) Vôk k-sk~

(seeeq. (6.1)).Thenfor the curvaturefluctuationone expectscloseto k~

1 a2 6A~,

x
71,— ~~-~ln Z’-.~ (k~—k)

1~ (7.11)

Here we are interestedin the singular part of the free energy. Close to the
singularitythe partition function is thengiven by

Zsing(k)~exp{_Vfkdk~A~(kc_kf)o+reg}. (7.12)

Now let us introducethe quantityN(R) definedby

N(R) = ~—of~dk Z(k) ekR, (7.13)
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with R= — V~(R is thereforea positive quantity, relatedto themagnitudeof the
curvature,in the smoothphasewhere ~ <0). In the saddle-pointapproximation
the densityof statesis given by

N(R) exP{kcR— ~R[R/(VA~)I1~}. (7.14)

We find therefore that the full probability distribution for R has an algebraic
singularityclose to R = 0 of the type

6
in P(R) —kR+ in N(R) (k~—k)R— 1 + 6R[R/(VA~)] / , (7.15)

Again therewill alsobe a regularpart, whichwe haveomittedhere.Onecanverify
that the stationary point of the distribution P(R) gives indeed the singular

behaviorof eq. (6.1).

8. Conclusions

In the previous sectionswe have presentedsome first results regarding the
effectsof scalarmatter on quantizedgravity, in the contextof a quantumgravity
model basedon Regge’ssimplicial formulation. It was found that the feedbackof
the scalar fields on the geometryis quite small on purely gravitationalquantities
such as the average curvature, in agreementwith some of the perturbative
predictionsin the continuum,which also seemto suggestthat the scalarvacuum
polarization effectsshouldbe rather small. The qualitativefeaturesof the phase
diagram for gravity, and in particular the appearanceof a smoothand a rough
phase,seemunchanged,at least as long as one doesnot havetoo many matter

fields. It appearsthereforethat the approximationin which matterinternal loops
are neglected(quenchedapproximation)could be considereda reasonableone,
andthat quantitiessuch as the critical exponentsshouldnot be too far off in this
case.To the extent that the coupling betweenthe scalarand metric degreesof
freedomis weak closeto the critical point, we havearguedthat gravity is indeed
weak, andhave presenteda procedureby which the effective low-energyNewton
constantcan be estimatedindependentlyof the renormalizedcosmologicalcon-
stant,which is determinedfrom thescalingbehaviorof the averagecurvatureclose

to the critical point. Our results suggestthat in this model the effective gravita-
tional coupling close to the ultraviolet fixed point grows with distance,and is
expectedto dependin a non-trivialway on theoverall linearsizeof the system.For
the gravitationalcoupling we havefound an infraredgrowth away from the fixed
pointof thetype G(p.) p. - 1/v while for the cosmologicalconstantwe havefound
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a decreasein the infrared, A(p.) p.4_1/v with an exponentr givenapproximately
by ~ — 0.41 andonly weekly dependenton the mattercontent.

Finally let us addthat our resultsbearsomesimilarity with the resultsobtained
recentlyfrom the dynamicaltriangulationmodel in four dimensions[361,wherethe

scalarfield also seemsto give a rathersmall contribution. On the otherhand the
matter contribution does not seemto improve on the fact that in thesemodels,
which only allow discretelocal curvatures,the averagecurvaturedoesnot show the
correctscalingbehaviorclose to the critical point, which is a necessarycondition
for defining a lattice continuumlimit (in thesemodelsat the critical point the
curvaturedivergesin physical units). Clearly morework is neededin bothmodels

to further clarify theseissues.

The numerical computationswere performed at the NSF-sponsoredSDSC,
NCSA and PSC SupercomputerCentersunder a Grand Challenge allocation

grant.The parallelMIMD versionof thequantumgravity programwaswritten and
optimized for the CM5-512with YasunariTosaof TMC, and his invaluablehelp is
heregratefully acknowledged.
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