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In classical gravity, deviations from the predictions of the Einstein theory are often discussed within the

framework of the conformal Newtonian gauge, where scalar perturbations are described by two potentials

� and c . In this paper we use the above gauge to explore possible cosmological consequences of a

running Newton’s constant GðhÞ, as suggested by the nontrivial ultraviolet fixed point scenario arising

from the quantum field-theoretic treatment of Einstein gravity with a cosmological constant term. Here we

focus on the effects of a scale-dependent coupling on the so-called gravitational slip functions � ¼
c =�� 1, whose classical general relativity value is zero. Starting from a set of manifestly covariant but

nonlocal effective field equations derived earlier, we compute the leading corrections in the potentials �

and c for a nonrelativistic, pressureless fluid. After providing an estimate for the quantity �, we then

focus on a comparison with results obtained in a previous paper on matter density perturbations in the

synchronous gauge, which gave an estimate for the growth index parameter �, also in the presence of a

running G. Our results indicate that, in the present framework and for a given GðhÞ, the corrections tend
to be significantly larger in magnitude for the perturbation growth exponents than for the conformal

Newtonian gauge slip function.
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I. INTRODUCTION

Recent years have seen the development of a fascinating
variety of alternative theories of gravity, in addition to the
more traditional alternate frameworks, which used to in-
clude just Brans-Dicke, higher derivative, effective quan-
tum gravity, and supergravity theories. Some of the new
additions to the by now rather long list include dilaton
gravity, fðRÞ gravity, torsion gravity, loop quantum gravity,
holographic modified gravity, and a few others, just to cite
here a few representative examples. All of these theories
eventually predict some level of deviation from classical
gravity, at short- or long-distance scales, which is often
parametrized either by a suitable set of post-Newtonian
parameters, or more recently, by the introduction of a
gravitational slip function [1,2].

In this paper, we will focus on the analysis of departures
from general relativity (GR) in the gravitational slip func-
tion, obtained in the framework of the conformal
Newtonian gauge, and within the rather narrow context
of the nontrivial ultraviolet fixed point scenario for
Einstein gravity with a cosmological term. Thus, instead
of looking at deviations from GR at very short distances,
due to new interactions such as the ones suggested by
string theories [3], we will be considering here infrared
effects, which could manifest themselves at very large
distances.

The specific nature of the scenario we will be investigat-
ing here is motivated by the field-theoretic treatment of

models for quantum gravity, based on the (minimal)
Einstein action with a bare cosmological term. The
theory’s long-distance scaling properties used as the basis
for the present work follow from the existence of a non-
trivial ultraviolet fixed point of the renormalization group
in Newton’s constant G. The latter is inaccessible by direct
perturbation theory in four dimensions, and can be shown
to radically alter the short- and long-distance behavior of
the theory when compared to more naive, perturbative
expectations. The renormalization-group origin of such
fixed points was first discussed in detail by Wilson some
time ago for scalar and self-coupled fermion theories [4].
The general field-theoretic methods were later extended
and applied to gravity, where they are now referred to as
the nontrivial UV fixed point, or asymptotic safety, sce-
nario [5]. It is fair to say that so far this is the only field-
theoretic approach known to work consistently in other not
perturbatively renormalizable theories, such as the non-
linear sigma model above two dimensions [6]. While per-
haps still a bit mundane in the context of gravity, such
nontrivial fixed points are well studied and well understood
in statistical field theory, where they generally describe
phase transitions between ordered and disordered ground
states, or between weakly coupled and condensed states.
The paper is organized as follows. First (Sec. II) we

recall the effective covariant field equations describing the
running of G, and describe briefly the nature of various
objects and parameters entering the quantum nonlocal
corrections; a more complete description of the basic setup
can be found in our previous papers on the subject, and
will not be repeated here. We then discuss the zeroth
order (in the metric fluctuations) field equations and
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energy-momentum conservation equations for the standard
homogeneous isotropic metric, with a runningGðhÞ. Later
(Sec. III) we extend the formalism to deal with small
metric and matter perturbations, and list the relevant field
and energy conservation equations to first order in the
perturbations in the comoving gauge. These above results
are then (Sec. IV) reexpressed in two other choices of
gauge, the synchronous and the conformal Newtonian
gauge. The latter choice of gauge allows us to extract an
expression for the gravitational slip function� due toGðhÞ
(Sec. V). This quantity is then evaluated within the context
of a �CDM model, for redshifts corresponding to the
present era (z ¼ 0). The resulting correction is then com-
pared to current astrophysical observations, as well as to
our previous results (and observations) regarding the cor-
rections due to GðhÞ to the matter density perturbation
growth exponents. The conclusions provide an interpreta-
tion of the theoretical results, and their associated uncer-
tainties, in view of present and future high precision
determination of the gravitational slip function and growth
exponents.

II. RUNNING NEWTON’S CONSTANT GðhÞ
As mentioned in the introduction, it is not the purpose of

this paper to provide a satisfactory description, or motiva-
tion, for the running of G that arises in the quantum-
field-theoretic treatment of Einstein’s gravity with a
cosmological term. Here we only provide a brief summary,
and only the most relevant formulas will be given for later
reference; a more complete set of references can be found,
for example, in [7].

The running of Newton’s constant G has been computed
both on the lattice in four dimensions [8,9], and in the
continuum within the framework of the background field
expansion applied to d ¼ 2þ � spacetime dimensions
[5,10], and later also using truncation methods applied in
d ¼ 4 [11]. In either case one obtains a momentum-
dependentGðk2Þ, which eventually needs to be reexpressed
in a suitable coordinate-independent way, so that it can be
consistently applied to more general problems, involving
arbitrary background geometries. The first step in analyz-
ing the consequences of a running of G is therefore to
rewrite the expression for Gðk2Þ in a coordinate-
independent way, either by the use of a nonlocal
Vilkovisky-type effective gravity action [12,13] or by the
use of a set of consistent effective field equations. In going
from momentum to position space one employs k2 ! �h,
which then gives for the quantum-mechanical running of
the gravitational coupling the replacement G ! GðhÞ.
Then the running of G is given in the vicinity of the UV
fixed point by

GðhÞ ¼ G0

�
1þ c0

�
1

�2

�
1=2� þ . . .

�
; (2.1)

where h � g��r�r� is the covariant d’Alembertian, and

the dots represent higher order terms in an expansion in
1=ð�2hÞ. Current evidence from Euclidean lattice quan-
tum gravity points toward c0 > 0 (implying infrared
growth) and � ’ 1

3 [9]. Within the quantum-field-theoretic

renormalization-group treatment, the quantity � arises
as an integration constant of the Callan-Symanzik
renormalization-group equations.
One issue of great relevance to the physical interpreta-

tion of the results is therefore a correct identification of the
renormalization-group invariant scale �. A number of ar-
guments, mostly based on nonperturbative lattice results
and scaling considerations involving the gravitational
Wilson loop and its relevance for large scale observable
curvature [14], can be given in support of the suggestion
that the dynamically generated infrared cutoff scale �
(analogous to the �MS of QCD) can be quite large in the

case of gravity (for a recent review, see Ref. [7]). These
arguments would then suggest that the new scale � is
naturally expected to be related to the large scale average
curvature, and thus could be of cosmological relevance,

� ’ 3

�2
: (2.2)

These considerations then lead to a more concrete
quantitative estimate for the scale in the running GðhÞ
of Eq. (2.1), namely, �� 1=

ffiffiffiffiffiffiffiffiffi
�=3

p � 1:51� 1028 cm.
Moreover, from these types of arguments one would also
infer that the constant G0 in Eq. (2.1) can, to a very close
approximation, be identified with the laboratory value of
Newton’s constant,

ffiffiffiffiffiffi
G0

p � 1:6� 10�33 cm. The running
of G envisioned above would then remain in agreement
with laboratory and solar system precision tests of general
relativity.
The appearance of the d’Alembertian h in the running

of G naturally leads to both a nonlocal effective gravita-
tional action and a corresponding set of nonlocal modified
field equations. In the simplest scenario, instead of the
ordinary Einstein field equations with constant G,

R�� � 1
2g��Rþ �g�� ¼ 8	GT��; (2.3)

one is now led to consider the modified effective field
equations

R�� � 1
2g��Rþ �g�� ¼ 8	GðhÞT�� (2.4)

with the nonlocal term due to the GðhÞ. By being mani-
festly covariant, these equations still satisfy some of the
basic requirements for a set of consistent field equations
incorporating the running of G. Not unexpectedly though,
the new nonlocal equations are much harder to solve than
the original classical field equations for constant G.
The effective nonlocal field equations of Eq. (2.4) can be

recast in a form very similar to the classical field equations,
but with a new source term ~T�� ¼ ½GðhÞ=G0�T�� defined
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as the effective, or gravitationally dressed, energy-
momentum tensor [15,16]. Ultimately the consistency of
the effective field equations demands that it be exactly
conserved, in consideration of the contracted Bianchi iden-
tity satisfied by the Ricci tensor. In this picture, therefore,
the running of G can be viewed as contributing to a sort of
vacuum fluid, introduced in order to account for the new
gravitational quantum vacuum-polarization contribution.

Due the appearance of a negative fractional exponent in
Eq. (2.1), the covariant operator appearing in the expres-
sion for GðhÞ has to be suitably defined by analytic con-
tinuation. This can be done, for example, by computinghn

for positive integer n, and then analytically continuing to
n ! �1=2� [15]. Equivalently, GðhÞ can be defined via a
regulated parametric integral representation [17], such as�

1

�hðgÞ þ�2

�
1=2� ¼ 1

�ð 12�Þ
Z 1

0
d

1=2��1e�
ð�hðgÞþ�2Þ;

(2.5)

where � ! 0 is a suitable infrared regulator. As far as the
calculations in this paper are concerned, it will not be
necessary to commit oneself to an unduly specific form
for the running of GðhÞ. Thus, for example, although the
lattice gravity results only allow for a nondegenerate phase
for the case c0 > 0, it will nevertheless be possible later to
have either sign for the correction in Eq. (2.1). We note
here that a running cosmological constant �ðkÞ ! �ðhÞ
causes a number of mathematical inconsistencies [15,18]
within the manifestly covariant framework, described here
by the effective field equations of Eq. (2.4). Indeed if one
assumes for the running part of �ðhÞ � ð�2hÞ��, then the
infrared regulated expression in Eq. (2.5) gives no running
of �, after using the identity r�g�� ¼ 0.1 This last con-

clusion is in general agreement with the field-theoretic
results of the nontrivial renormalization-group fixed point
scenario [7], thereby providing perhaps an independent
consistency check. Note that this rather general argument
also applies to possible additional contributions from non-
zero vacuum expectation values of matter fields, such as
the Higgs. As a result, in the present quantum-field-
theoretic motivated framework � is assumed not to run.

A. Zeroth order effective field equations with GðhÞ
A scale-dependent Newton’s constant is expected to lead

to small modifications of the standard cosmological

solutions to the Einstein field equations. Here we will
summarize what modifications are expected from the ef-
fective field equations on the basis of GðhÞ. The starting
point is the quantum effective nonlocal field equations of
Eq. (2.4), withGðhÞ defined in Eq. (2.1). In the Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) framework these are
applied to the standard homogeneous isotropic metric

d�2 ¼ dt2 � a2ðtÞ
�

dr2

1� kr2
þ r2ðd
2 þ sin2
d’2Þ

�
k ¼ 0;�1: (2.6)

In the following, we will only consider the case k ¼ 0
(spatially flat universe). It should be noted that there are
in fact two related quantum contributions to the effective
covariant field equations. The first one arises because of the
presence of a nonvanishing cosmological constant � ’
3=�2, caused by the nonperturbative quantum vacuum
condensate <R> � 0 [14]. As in the case of the standard
FLRW cosmology, this is expected to be the dominant
contribution at large times t, and gives an exponential
(for � > 0) or cyclic (for � < 0) expansion of the scale
factor. The second contribution arises because of the ex-
plicit running of GðhÞ in the effective field equations.
The next step therefore is a systematic examination

of the nature of the solutions to the full effective field
equations, with GðhÞ involving the relevant covariant
d’Alembertian operator

h ¼ g��r�r� (2.7)

acting on second rank tensors as in the case of T��. To start

the process, we will assume that T�� is described by the

perfect fluid form,

T�� ¼ ½pðtÞ þ �ðtÞ�u�u� þ g��pðtÞ; (2.8)

for which one needs to compute the action of hn on T��,

and then analytically continue the answer to negative frac-
tional values of n ¼ �1=2�. The results of [15–18] then
show that a nonvanishing pressure contribution is gener-
ated in the effective field equations, even if one initially
assumes a pressureless fluid, pðtÞ ¼ 0. After a somewhat
lengthy derivation one obtains for a universe filled with
nonrelativistic matter (p ¼ 0) the following set of effective
Friedmann equations,

k

a2ðtÞ þ
_a2ðtÞ
a2ðtÞ ¼

8	GðtÞ
3

�ðtÞ þ �

3

¼ 8	G0

3
½1þ ctðt=�Þ1=� þ . . .��ðtÞ þ �

3
(2.9)

for the tt field equation, and

1To be a bit specific, consider the case of a scale-dependent
�ðkÞ, which we will write here as � ¼ �0 þ ��ðkÞ. Let us also
assume, for concreteness, that ��ðkÞ � c1ðk2Þ��, where c1 and
� are some constants, and then make the transition to coordinate
space by using k2 ! �h. Thus ��ðhÞ � ð�hþ�2Þ��, where
one should be careful and use the infrared regulated expression
in Eq. (2.5). The effective field equations will then contain a
term 1

2��ðhÞ �g�� ¼ 1
2c1

1
�ð�Þ

R1
0 d

��1e�
ð�hðgÞþ�2Þ � g�� ¼

1
2c1ð�2Þ�� � g��, which still gives just a constant multiplying
the metric g��.
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k

a2ðtÞ þ
_a2ðtÞ
a2ðtÞþ

2 €aðtÞ
aðtÞ ¼�8	G0

3
½ctðt=�Þ1=�þ . . .��ðtÞþ�

(2.10)

for the rr field equation. In the above expressions, the
running of G appropriate for the Robertson-Walker
metric is

GðtÞ � G0

�
1þ �GðtÞ

G0

�
¼ G0

�
1þ ct

�
t

�

�
1=� þ . . .

�
(2.11)

with ct of the same order as c0 in Eq. (5.48) [15] (in the
quoted reference the estimate ct ’ 0:450 c0 was given for
the tensor box operator). From the above form of �GðtÞ one
sees that the amplitude of the quantum correction is ac-
tually proportional to the combination c0=�

3 for � ¼ 1=3.
Note also that the running of G induces an effective pres-
sure term in the second (rr) equation, due to the presence
of a relativistic fluid whose origin is in the vacuum-
polarization contribution. Another noteworthy general fea-
ture of the new field equations is the additional power-law
acceleration contribution, on top of the standard one due to
the � term.

B. Introduction of the wvac parameter

It was noted in [15,18] that the field equations with a
running G, Eqs. (2.9) and (2.10), can be recast in an
equivalent, but slightly more appealing, form by defining
a vacuum-polarization pressure pvac and density �vac, such
that for the FLRW background one has

�vacðtÞ ¼ �GðtÞ
G0

�ðtÞ; pvacðtÞ ¼ 1

3

�GðtÞ
G0

�ðtÞ: (2.12)

From this viewpoint, the inclusion of a vacuum-
polarization contribution in the FLRW framework seems
to amount to a replacement

�ðtÞ ! �ðtÞ þ �vacðtÞ; pðtÞ ! pðtÞ þ pvacðtÞ (2.13)

in the original field equations. Just as one introduces the
parameter w, describing the matter equation of state,

pðtÞ ¼ w�ðtÞ (2.14)

with w ¼ 0 for nonrelativistic matter, one can do the same
for the remaining contribution by setting

pvacðtÞ ¼ wvac�vacðtÞ: (2.15)

We should remark here that the original calculations [15],
and more recently [18] which included metric perturba-
tions, also indicate that

wvac ¼ 1
3 (2.16)

is obtained generally for the given class of GðhÞ consid-
ered, and is not tied therefore to a specific choice of �, such
as � ¼ 1

3 .

The previous, slightly more compact, notation allows
one to rewrite the field equations for the FLRW back-
ground in an equivalent form, which we will describe
next. We note here that, when dealing with density
perturbations, we will have to distinguish the background,
which will involve a background pressure ( �p) and back-
ground density ( ��), from the corresponding perturbations
which will be denoted here by �p and ��. With this
notation and for constant G0, the FLRW field equations
for the background are written as

3
_a2ðtÞ
a2ðtÞ ¼ 8	G0 ��ðtÞ þ �;

_a2ðtÞ
a2ðtÞ þ 2

€aðtÞ
aðtÞ ¼ �8	G0 �pðtÞ þ �:

(2.17)

Then in the presence of a runningGðhÞ, and in accordance
with the results of Eqs. (2.9) and (2.10), the modified
FLRW equations for the background read

3
_a2ðtÞ
a2ðtÞ¼8	G0

�
1þ�GðtÞ

G0

�
��ðtÞþ�;

_a2ðtÞ
a2ðtÞþ2

€aðtÞ
aðtÞ¼�8	G0

�
wþwvac

�GðtÞ
G0

�
��ðtÞþ�; (2.18)

using the definitions in Eqs. (2.14) and (2.15), here with
�pvacðtÞ ¼ wvac ��vacðtÞ.
Of course the procedure of defining a �vac and a pvac

contribution, arising from quantum vacuum-polarization
effects, is not necessarily restricted to the FLRW back-
ground metric case. In general one can decompose the full
source term in the effective nonlocal field equations of
Eq. (2.4), making use of

GðhÞ ¼ G0

�
1þ �GðhÞ

G0

�
with

�GðhÞ
G0

� c0

�
1

�2

�
1=2�

;

(2.19)

as two contributions,

1

G0

GðhÞT�� ¼
�
1þ �GðhÞ

G0

�
T�� ¼ T�� þ Tvac

�� :

(2.20)

The latter involves the nonlocal part

Tvac
�� � �GðhÞ

G0

T��: (2.21)

Consistency of the full nonlocal field equations requires
that the sum be conserved,

r�ðT�� þ Tvac
�� Þ ¼ 0: (2.22)

In general one cannot expect that the contribution Tvac
�� will

always be expressible in the perfect fluid form of Eq. (2.8),
even if the original T�� for matter (or radiation) has such a

form. The former will in general contain, for example,
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nonvanishing shear stress contributions, even if they were
originally absent in the matter part.

III. RELATIVISTIC TREATMENT OF MATTER
DENSITY PERTURBATIONS

Besides the modified cosmic scale factor evolution just
discussed, the running of GðhÞ, as given in Eq. (2.1), also
affects the nature of matter density perturbations on large
scales. In computing these effects, it is customary to in-
troduce a perturbed metric of the form

d�2 ¼ dt2 � a2ð�ij þ hijÞdxidxj; (3.1)

with aðtÞ the unperturbed scale factor and hijðx; tÞ a small

metric perturbation, and h00 ¼ hi0 ¼ 0 by choice of coor-
dinates. After decomposing the matter fields into back-
ground and fluctuation contribution, � ¼ ��þ ��,
p ¼ �pþ �p, and v ¼ �vþ �v, it is customary in these
treatments to expand the density, pressure, and metric
perturbations in spatial Fourier modes,

��ðx; tÞ ¼ ��qðtÞeiq�x; �pðx; tÞ ¼ �pqðtÞeiq�x;
�vðx; tÞ ¼ �vqðtÞeiq�x; hijðx; tÞ ¼ hqijðtÞeiq�x;

(3.2)

with q the comoving wave number. Once the Fourier
coefficients have been determined, the original perturba-
tions can later be obtained from

��ðx; tÞ ¼
Z d3x

ð2	Þ3=2 e
�iq�x��qðtÞ (3.3)

and similarly for the other fluctuation components. Then
the field equations with a constant G0 [Eq. (2.3)] are given
to zeroth order in the perturbations by Eq. (2.17), which
fixes the three background fields aðtÞ, ��ðtÞ, and �pðtÞ. Note
that in a comoving frame the four-velocity appearing in
Eq. (2.8) has components ui ¼ 1, u0 ¼ 0. Without GðhÞ,
to first order in the perturbations and in the limit q ! 0 the
field equations give

_aðtÞ
aðtÞ

_hðtÞ ¼ 8	G0 ��ðtÞ�ðtÞ;

€hðtÞ þ 3
_aðtÞ
aðtÞ

_hðtÞ ¼ �24	G0w ��ðtÞ�ðtÞ
(3.4)

with the matter density contrast defined as �ðtÞ �
��ðtÞ= ��ðtÞ, hðtÞ � hiiðtÞ the trace part of hij, and w ¼ 0

for nonrelativistic matter. When combined together, these
last two equations then yield a single equation for the trace
of the metric perturbation,

€hðtÞ þ 2
_aðtÞ
aðtÞ

_hðtÞ ¼ �8	G0ð1þ 3wÞ ��ðtÞ�ðtÞ: (3.5)

From first order energy conservation, one has
� 1

2 ð1þ wÞhðtÞ ¼ �ðtÞ, which then allows one to eliminate

hðtÞ in favor of �ðtÞ, which then allows one to obtain a
single second order equation for the density contrast �ðtÞ.

In the case of a running GðhÞ, the above equations need to
be rederived from the effective covariant field equations of
Eq. (2.4), and lead to several additional terms not present at
the classical level [18].

A. Zeroth order energy-momentum conservation

As a first step in computing the effects of density matter
perturbations, one needs to examine the consequences of
energy and momentum conservation, to zeroth and first
order in the relevant perturbations. If one takes the cova-
riant divergence of the field equations in Eq. (2.4), the
left-hand side has to vanish identically because of the
Bianchi identity. The right-hand side then gives
r�ðT�� þ Tvac

�� Þ ¼ 0, where the fields in Tvac
�� can be ex-

pressed, at least to lowest order, in terms of the pvac and
�vac fields defined in Eqs. (2.12) and (2.15). The first
equation one obtains is the zeroth (in the fluctuations) order
energy conservation in the presence of GðhÞ, which reads

3
_aðtÞ
aðtÞ

�
ð1þ wÞ þ ð1þ wvacÞ�GðtÞ

G0

�
��ðtÞ þ

_�GðtÞ
G0

��ðtÞ

þ
�
1þ �GðtÞ

G0

�
_��ðtÞ ¼ 0: (3.6)

In the absence of a runningG these equations reduce to the
ordinary mass conservation equation for w ¼ 0,

_��ðtÞ ¼ �3
_aðtÞ
aðtÞ ��ðtÞ: (3.7)

It is often convenient to solve the energy conservation
equation not for ��ðtÞ, but instead for ��ðaÞ. This requires
that, instead of using the expression for GðtÞ in Eq. (2.11),
one uses the equivalent expression for GðaÞ,

GðaÞ ¼ G0

�
1þ �GðaÞ

G0

�
; (3.8)

which is easily obtained once the relationship between t
and aðtÞ is known (see discussion later). Note, for example,
that the solution to Eq. (3.6) can be written as

��ðaÞ ¼ const exp

�
�

Z da

a

�
3þ �GðaÞ

G0

þ a
�G0ðaÞ
G0

��
:

(3.9)

B. Effective energy-momentum tensor
involving �vac and pvac

The next step consists in obtaining the equations which
govern the effects of small field perturbations. These equa-
tions will involve, apart from the metric perturbation hij,

the matter and vacuum-polarization contributions. The
latter arise from [see Eq. (2.20)]�

1þ �GðhÞ
G0

�
T�� ¼ T�� þ Tvac

�� (3.10)
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with a nonlocal Tvac
�� � ð�GðhÞ=G0ÞT��. Fortunately to

zeroth order in the fluctuations the results of Ref. [15]
indicated that the modifications from the nonlocal
vacuum-polarization term could simply be accounted for
by the substitution

��ðtÞ ! ��ðtÞ þ ��vacðtÞ; �pðtÞ ! �pðtÞ þ �pvacðtÞ:
(3.11)

Here we will apply this last result to the small field fluctu-
ations as well, and set

��qðtÞ ! ��qðtÞ þ ��qvacðtÞ;
�pqðtÞ ! �pqðtÞ þ �pqvacðtÞ:

(3.12)

The underlying assumption is of course that the equation of
state for the vacuum fluid still remains roughly correct
when a small perturbation is added. Furthermore, just
like we had �pðtÞ ¼ w ��ðtÞ [Eq. (2.14)] and �pvacðtÞ ¼
wvac ��vacðtÞ [Eq. (2.15)] with wvac ¼ 1

3 , we now write for

the fluctuations

�pqðtÞ ¼ w��qðtÞ; �pqvacðtÞ ¼ wvac��qvacðtÞ;
(3.13)

at least to leading order in the long wavelength limit,
q ! 0. In this limit we then have simply

�pðtÞ ¼ w��ðtÞ;

�pvacðtÞ ¼ wvac��vacðtÞ � wvac

�GðtÞ
G0

��ðtÞ;
(3.14)

with GðtÞ given in Eq. (2.11), and we have used Eq. (2.12),
now applied to the fluctuation ��vacðtÞ,

��vacðtÞ ¼ �GðtÞ
G0

��ðtÞ þ . . . ; (3.15)

where the dots indicate possible additional OðhÞ contribu-
tions. A bit of thought reveals that the above treatment is
incomplete, since GðhÞ in the effective field equation of
Eq. (2.4) contains, for the perturbed Robertson-Walker
metric of Eq. (3.1), terms of order hij, which need to be

accounted for in the effective T��
vac. Consequently the co-

variant d’Alembertian operatorh ¼ g��r�r� acting here

on second rank tensors, such as T��,

r�T
� ¼ @�T
� � ��

�T�� � ��

��T
� � I�
�;

r�ðr�T
�Þ ¼ @�I�
� � ��
��I�
� � ��


�I���

� ��
��I�
�; (3.16)

needs to be Taylor expanded in the small field perturbation
hij,

hðgÞ ¼ hð0Þ þhð1ÞðhÞ þOðh2Þ: (3.17)

One then obtains for GðhÞ itself

GðhÞ ¼G0

�
1þ c0

�1=�

�
1

hð0Þ þhð1ÞðhÞþOðh2Þ
�
1=2�þ . . .

�
;

(3.18)

which requires the use of the binomial expansion for the
operator ðAþ BÞ�1 ¼ A�1 � A�1BA�1 þ . . . . Thus for
sufficiently small perturbations it should be adequate to
expand GðhÞ entering the effective field equations in
powers of the metric perturbation hij. Next we turn to a

discussion of the above results in different gauges.

IV. GAUGE CHOICES AND CORRESPONDING
TRANSFORMATIONS

The previous discussion and summary focused exclu-
sively on the comoving gauge choice for the metric, im-
plicit in the definition of Eq. (2.6). Next we will consider
some additional gauges. In this paper we will specifically
refer to three choices for the metric: the comoving, syn-
chronous, and conformal Newtonian forms. The first two
are closely related to each other, and were used to obtain
part of the results presented in our previous work [15,18],
which was summarized in the previous section. Note that in
our previous work [18] we did not include the effects of a
stress field s, since it was not necessary for the discussion
of density perturbations; new terms arising from such a
field are included below. The third form of the metric is the
primary focus of the present discussion; the results ob-
tained later on in this paper will either be derived for this
metric, or transformed to it by relying on results obtained
previously in the other gauges.

A. Comoving, synchronous, and conformal
Newtonian gauges

The comoving metric has the form

g�� ¼ �g�� þ h��; (4.1)

with background metric

�g �� ¼ diagð�1; a2; a2; a2Þ: (4.2)

For the fluctuation one sets

h0i ¼ hi0 ¼ 0; (4.3)

and decomposes the remaining hij as

hijðk; tÞ ¼ a2
�
1

3
h�ij þ

�
1

3
�ij �

kikj

k2

�
s

�
(4.4)

so that TrðhijÞ ¼ a2h. Besides the scale factor a, the metric

is therefore parametrized in terms of the two functions s
and h.
On the other hand, in the synchronous gauge one sets

again g�� ¼ �g�� þ h�� now with background metric

�g�� ¼ a2diagð�1; 1; 1; 1Þ: (4.5)
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For the fluctuation one sets again h0i ¼ hi0 ¼ 0 and

hijðk; tÞ ¼ a2
�
kikj

k2
hsync þ

�
kikj

k2
� 1

3
�ij

�
6�

�
; (4.6)

so that now TrðhijÞ ¼ a2hsync. Here, besides the overall

scale factor a, the metric is parametrized in terms of the
two functions � and hsync. From a comparison of the two

gauges (comoving and synchronous) one has

2� ¼ �1
3ðhþ sÞ (4.7)

and

hsync þ 6� ¼ �s: (4.8)

Finally the conformal Newtonian gauge is in turn de-
scribed by two scalar potentials c and �. In this case the
line element is given by

d�2 ¼ �g��dx
�dx�

¼ a2fð1þ 2c Þdt2 � ð1� 2�Þdxidxig: (4.9)

Therefore for the metric itself one writes again g�� ¼
�g�� þ h�� with �g�� ¼ a2diagð�1; 1; 1; 1Þ as for the syn-

chronous case, and furthermore h0i ¼ hi0 ¼ 0 as before,
and now

h00 ¼ a2ð�2c Þ; (4.10)

hij ¼ a2ð�2�Þ�ij: (4.11)

A suitable set of gauge transformations then allows one to
go from the synchronous, or comoving, to the conformal
Newtonian gauge [19].

B. Tensor box in the comoving gauge

To compute higher order contributions from the hij’s

appearing in the comoving gauge metric, one needs to
expand GðhÞ in the various metric perturbations,

GðhÞ¼G0

�
1þ c0

�1=�

��
1

hð0Þ

�
1=2�

� 1

2�

1

hð0Þ �hð1Þðh;sÞ �
�

1

hð0Þ

�
1=2�þ . . .

��
; (4.12)

where the superscripts ð0Þ and ð1Þ refer to zeroth and first
order in this expansion, respectively. To get the correction
of Oðh; sÞ to the field equations, one therefore needs to
consider the relevant term in the expansion of
ð1þ �GðhÞ=G0ÞT��,

� 1

2�

1

hð0Þ �hð1Þðh;sÞ ��Gðhð0ÞÞ
G0

�T��

¼� 1

2�

c0

�1=�

1

hð0Þ �hð1Þðh;sÞ �
�

1

hð0Þ

�
1=2� �T��: (4.13)

This last form allows us to use the results obtained pre-
viously for the FLRW case, namely,

�Gðhð0ÞÞ
G0

T�� ¼ Tvac
�� (4.14)

with here

Tvac
�� ¼ ½pvacðtÞ þ �vacðtÞ�u�u� þ g��pvacðtÞ (4.15)

to zeroth order in h, and

�vacðtÞ ¼ �GðtÞ
G0

��ðtÞ; pvacðtÞ ¼ wvac

�GðtÞ
G0

��ðtÞ:
(4.16)

and wvac ¼ 1=3. Therefore, in light of the results of
Ref. [15], the problem has been reduced to computing
the more tractable expression

� 1

2�

1

hð0Þ �hð1Þðh; sÞ � Tvac
�� : (4.17)

To make progress, we will assume a harmonic time depen-
dence for both the perturbations hðtÞ ¼ h0e

i!t and sðtÞ ¼
s0e

i!t, and for the background quantities aðtÞ ¼ a0e
i�t,

�ðtÞ ¼ �0e
i�t, and �GðtÞ ¼ �G0e

i�t. From now on we
shall consider both ! and � as slowly varying functions
(indeed constants), with the time scale of variations for the
perturbation much shorter than the time scale associated
with all the background quantities. A more sophisticated
treatment will be reserved for future work. Therefore we

will take here ! � � or _h=h � _a=a, which is the same
approximation that was used in obtaining the results of
Ref. [18].
Let us now list, in sequence, the required matrix ele-

ments needed for the present calculation. For the tensor

box tt matrix element ð� 1
2�

1
hð0Þ �hð1Þðh; sÞ � TvacÞ00 one

obtains

þ 1

2�

11

3

�GðtÞ
G0

�ðtÞ �
!
hþOðk2Þ: (4.18)

For the tensor box ti matrix element ð� 1
2�

1
hð0Þ �hð1Þðh; sÞ �

TvacÞ0i one obtains

� iki
1

2�

2

9

�GðtÞ
G0

�ðtÞ 1

i!
ðh� 2sÞ þOðk2Þ: (4.19)

For the tensor box ii matrix element, summed over i,

ð� 1
2�

1
hð0Þ �hð1Þðh; sÞ � TvacÞii, one obtains

3

�
þ 1

2�
wvac

11

3
a2

�GðtÞ
G0

�ðtÞ �
!
h

�
þOðk2Þ: (4.20)

For the tensor box ii matrix element, not summed over i,

ð� 1
2�

1
hð0Þ �hð1Þðh; sÞ � TvacÞii, one obtains
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þ 1

2�
a2

�GðtÞ
G0

�ðtÞ
�
wvac

11

3

�

!
hþ8

9

�
1�3

ki
k2

�
�

!
s

�
þOðk2Þ:

(4.21)

Finally for the tensor box ij matrix element, ð� 1
2�

1
hð0Þ �

hð1Þðh; sÞ � TvacÞij, one obtains

� kikj

k2
1

2�
a2

8

3

�GðtÞ
G0

�ðtÞ �
!
sþOðk2Þ: (4.22)

The above expressions are now inserted in the general
effective field equations of Eq. (2.4), and will give rise to
a set of effective field equations appropriate for this par-
ticular gauge, to first order in the field perturbation and
with the effects of GðhÞ included.

C. Field equations in the comoving, synchronous, and
conformal Newtonian gauges

As a result of the previous manipulations one obtains in
the comoving gauge with fields ðh; sÞ the following tt, ti, ii
(or xxþ yyþ zz), and ij field equations:

k2

3a2
ðhþ sÞ þ _a

a
_h ¼ 8	G0

�
1þ �G

G0

�
���

þ 8	G0

�G

G0

ch
2�

h ��þOðk2Þ; (4.23)

� 1

3
ð _hþ _sÞ ¼ 8	G0

�G

G0

�
� 1

2�

�
2

9

1

i!
ðh� 2sÞ ��þOðk2Þ;

(4.24)

�1

3

k2

a2
ðhþsÞ�3

_a

a
_h� €h

¼24	G0

�G

G0

wvac ���þ24	G0

�G

G0

wvac

ch
2�

h ��þOðk2Þ;
(4.25)

1

6

k2

a2
ðhþ sÞ � 3

2

_a

a
_s� 1

2
€s ¼ �8	G0

�G

G0

cs
2�

s ��þOðk2Þ:
(4.26)

As in Ref. [18], we have found it convenient here to set in
the above expressions

cs �
�
8

3

�
�

!
(4.27)

and

ch ¼� ð�1Þ
�
� 11

3

�
�

!
¼ 11

3

�

!
: (4.28)

In the field equations listed above the terms Oðk2Þ arise
because of terms Oðk2Þ in the expansion of the tensor box
operator.
The next step is to convert the left-hand sides of the

above field equations, namely, Eqs. (4.23), (4.24), (4.25),
and (4.26), which are all expressed in the comoving gauge
ðh; sÞ, to the synchronous gauge with fields ðhsync; �Þ. The
result of this change of gauge is the sequential replacement

k2

3a2
ðhþ sÞþ _a

a
_h!�2

k2

a2
�þ 1

a2
_a

a
_hsync;

�1

3
ð _hþ _sÞ ! 2 _�;

�1

3

k2

a2
ðhþ sÞ� 3

_a

a
_h� €h! 2

k2

a2
�� 1

a2
€hsync� 2

1

a2
_a

a
_hsync;

1

6

k2

a2
ðhþ sÞ� 3

2

_a

a
_s� 1

2
€s!� k2

a2
�þ 1

2

1

a2
ð €hsyncþ 6 €�Þþ 1

a2
_a

a
ð _hsyncþ 6 _�Þ:

(4.29)

The next step involves one more transformation, this time from the synchronous ðhsync; �Þ to the desired conformal
Newtonian ð�; c Þ gauge,

1

a2
½�2k2�þ _a

a
_hsync� ! � 2

a2

�
k2�þ 3

_a

a

�
_�þ _a

a
c

��
;

2 _� ! 2

�
_�þ _a

a
c

�
;

1

a2

�
2k2�� €hsync � 2

_a

a
_hsync

�
! 6

a2

�
€�þ _a

a
ð _c þ 2 _�Þ þ

�
2
€a

a
� _a2

a2

�
c þ k2

3
ð�� c Þ

�
;

1

a2

�
�k2�þ 1

2
ð €hsync þ 6 €�Þ þ _a

a
ð _hsync þ 6 _�Þ

�
! � k2

a2
ð�� c Þ:

(4.30)
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Equivalently, the above sequence of two transformations
can be described by a single transformation, from comov-
ing ðh; sÞ to conformal Newtonian ð�; c Þ gauge, which is
trivially obtained by combining the previous two. The final
outcome of all these manipulations is to achieve a rewrite
of the full set of four original field equations, given in Eqs.
(4.23), (4.24), (4.25), and (4.26), now with the left-hand
side given in the conformal Newtonian gauge and the right-
hand side left in the original comoving gauge. One obtains

k2�þ 3
_a

a

�
_�þ _a

a
c

�
¼ �4	G0a

2

�
1þ �G

G0

�
���

� 4	G0a
2 �G

G0

ch
2�

h ��þOðk2Þ;
(4.31)

�
_�þ _a

a
c

�
¼ 4	G0

�G

G0

�
� 1

2�

�
2

9

1

i!
ðh� 2sÞ ��þOðk2Þ;

(4.32)

€�þ _a

a
ð _c þ 2 _�Þ þ

�
2
€a

a
� _a2

a2

�
c þ k2

3
ð�� c Þ

¼ 4	G0a
2

�
wþ wvac

�G

G0

�
���

þ 4	G0a
2 �G

G0

wvac

ch
2�

h ��þOðk2Þ; (4.33)

k2ð�� c Þ ¼ þ8	G0a
2 �G

G0

cs
2�

s ��þOðk2Þ: (4.34)

Note that we have, for convenience, multiplied out the first,
third, and fourth equations by a factor of a2. The last
equation involves the quantity

� ¼ 2

3

�G

G0

cs
2�

� s: (4.35)

For the purpose of computing the gravitational slip func-
tion � � c =�� 1 it will be useful here to record the
following relationship between perturbations in the co-
moving and conformal Newtonian gauge. One has

c ¼ � 1

2k2
a2
�
€sþ 2

_a

a
_s

�
; (4.36)

� ¼ � 1

6
ðhþ sÞ þ 1

2

a2

k2
_a

a
_s: (4.37)

Use has been made here of the following relationship
between derivatives of an arbitrary function f in the syn-
chronous and comoving gauges:

_f sync ¼ a _fcom (4.38)

and

d

d�sync
¼ a

d

d�com
(4.39)

so that

€f sync ¼ a2
�
_acom

a
_fcom þ €fcom

�
: (4.40)

V. GRAVITATIONAL SLIP FUNCTION

The gravitational slip function is commonly defined as

� � c ��

�
: (5.1)

In classical GR one has � ¼ c so that � ¼ 0, which
makes the quantity � a useful parametrization for devia-
tions from classical GR, whatever their origin might be.
Using the ij field equation given in Eqs. (4.31), (4.32),
(4.33), and (4.34), and the relationship between the con-
formal Newtonian fluctuation � and the comoving gauge
fluctuations h and s, one finally obtains the rather simple
result

� � c ��

�
¼ �16	G0

�G

G0

cs
2�

a

_a

s

_s
��: (5.2)

The last expression contains the quantity

cs ¼
�
8

3

�
i�

i!s

(5.3)

where !s is the frequency associated with the s perturba-
tion, and we have made use of i� ! _a=a. An equivalent
form for the expression in Eq. (5.2) is

� ¼ �16	G0

�G

G0

1

2�

8

3

1

i!s

s

_s
��

¼ �16	G0

�G

G0

1

2�

8

3

R
sdt

_s
��: (5.4)

In the last expression we now can make use of the equation
of motion for the perturbation sðtÞ to the order we are
working, namely,

€sþ 3
_a

a
_s ¼ 0: (5.5)

Let us look here first at the very simple limit of � ’ 0; the
physically more relevant case of nonzero � will be dis-
cussed a bit later. Note that, in view of Eq. (2.2), this last
limit corresponds therefore to a very large �. Then for a
perfect fluid with equation of state p ¼ w� one has simply

aðtÞ ¼ a0ðt=t0Þ2=3ð1þwÞ and �ðtÞ ¼ 1=½6	Gt2ð1þ wÞ2�,
and from Eq. (5.4) or (5.17) one obtains for w ¼ 0

� ¼ 4 � 8
3
ct

�
t

�

�
3
ln

�
t

�

�
þOðt4Þ (5.6)

whereas for w � 0 one has
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� ¼ 2 � 8
3

ct
wð1� wÞ

�
t

�

�
3 þOðt6Þ: (5.7)

Another extreme, but nevertheless equally simple, case is a
pure cosmological constant term (no matter of any type),
which can be modeled by the choicew ¼ �1. In this case t
is related to the scale factor by

aðtÞ
a0

¼ exp

8<
:

ffiffiffiffi
�

3

s
ðt� t0Þ

9=
;: (5.8)

Then, using the relation in Eq. (2.2), one obtains

t

�
¼ 1þ ln

a

a�
; (5.9)

where the quantity a� is therefore related to the time t0
(’’today,’’ a0 ¼ 1) and the scale � by

t0
�

¼ 1þ ln
1

a�
: (5.10)

Since numerically t0 is close to, but smaller than, �, the
scale factor a� will be close to, but slightly larger than, one.

To actually come up with a definite number for � in
more realistic cases, one needs (apart from including the
effects of � � 0, which is done below) a value for the
coefficient ct appearing in Eq. (2.11) forGðtÞ, which in turn
is related to the original expression for the running
Newton’s constant GðhÞ in Eq. (2.1). This issue will be
discussed in some detail later, but here let us say the
following. In Ref. [15] it was estimated that the values of
ct in Eq. (2.11) and c0 in Eq. (2.11) are of the same order of
magnitude, ct 	 0:62c0. The most difficult part has been
therefore a reliable estimate of c0, which is obtained from a
lattice computation of invariant curvature correlations at
fixed geodesic distance [20], and which, after reexamina-
tion of various systematic uncertainties, leads to the recent
estimate used in [18] of c0 	 33:3. That would give ct 	
20:6 which, as we will see later, is still very large.
Nevertheless it is expected that c0 (or ct) enter all calcu-
lations with GðhÞ with the same magnitude and sign.

Let us now go back to the more physical case of � � 0.
The relevant expression for �ðtÞ is Eq. (5.4), where we use
the equation for sðtÞ, Eq. (5.5), to eliminate the latter. It is
also convenient at this stage to change variables from t to
aðtÞ, and use the equivalent equation for sðaÞ, namely,

s00ðaÞ þ
�
H0ðaÞ
HðaÞ þ

4

a

�
s0ðaÞ ¼ 0; (5.11)

where the prime denotes differentiation with respect to the
scale factor a. In the above equation one can use, for
nonrelativistic matter with equation of state such that
w ¼ 0, and to the order needed here, the first Friedmann
equation

HðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

3
þ 4

9a3

s
: (5.12)

We have also made use of the unperturbed result for the
background matter density valid for w ¼ 0 (which follows
from energy conservation), namely,

�� ¼ ��0

1

a3
: (5.13)

Note that the above expression for �� is valid to zeroth order
in �G, which is entirely adequate when substituted into
�ðaÞ, since the rest there is already first order in �G. This
finally gives an explicit solution for sðaÞ,

sðaÞ / 2

3a3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a3


p
; (5.14)

with parameter 
 � �=8	G0 ��0. The above solution for
sðaÞ can then be substituted directly in Eq. (5.4), provided
one changes variables from t to aðtÞ, and in the process uses
the following identities:Z

sðtÞdt ¼
Z

sðaÞ 1

aHðaÞda; (5.15)

as well as

_s ¼ aHðaÞ @s
@a

; (5.16)

with HðaÞ given a few lines above.
The resulting expression, which still involves an integral

over the scale factor aðtÞ, can now be readily evaluated,
and leads eventually to a rather simple expression for �.
The general result for nonrelativistic matter (w ¼ 0) but
� � 0 is

�ðaÞ ¼ 16

3�

�GðaÞ
G0

log

�
a

a�

�
: (5.17)

This is the main result of the paper. The integration con-
stant a� has been fixed following the requirement that the

scale factor a ! a� for t ! � [see Eqs. (2.1), (2.11), and

(3.8) for the definitions of �]. In other words, by switching
to the variable aðtÞ instead of t, the quantity � has been
traded for a�. In the next section we will show that in

practice the quantity a� is generally expected to be slightly
larger than the scale factor ‘‘today,’’ i.e., for t ¼ t0. As a
result the correction in Eq. (5.17) is expected to be negative
today.
The next section will be devoted to establishing the

general relationship between t and aðtÞ, for nonvanishing
cosmological constant �, so that a quantitative estimate
for the slip function � can be obtained from Eq. (5.17)
in a realistic cosmological context. Specifically we will be
interested in the value of � for a current matter fraction
� ’ 0:25, as suggested by current astrophysical
measurements.
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A. Relating the scale factor a to t, and vice versa

Let us now come back to the general problem of esti-
mating �ðaÞ, using the expression given in Eq. (5.17), for
� � 0 and a nonrelativistic fluid withw ¼ 0. To predict the
correct value for the slip function �ðaÞ one needs the
quantity �GðaÞ, which is obtained from the FLRW version
ofGðhÞ, namely,GðtÞ in Eq. (2.11), via the replacement, in
this last quantity, of t ! tðaÞ. The last step requires there-
fore that the correct relationship between t and aðtÞ be
established, for any value of �. In the following we will
first relate t to aðtÞ, and vice versa, to zeroth order in the

quantum correction �G [we will call them að0ÞðtÞ and

tð0ÞðaÞ], and then compute the first order correction in �G

to the above quantities [we will call those að1ÞðtÞ and

tð1ÞðaÞ].
Let us look first at the zeroth order result. The field

equations and the energy conservation equation for

að0ÞðtÞ, without a �G correction, but with the � term,
were already given in Eq. (2.17),

3
_að0Þ2ðtÞ
að0Þ2ðtÞ ¼ 8	G0 ��

ð0ÞðtÞ þ �;

_að0Þ2ðtÞ
að0Þ2ðtÞ þ 2

€að0ÞðtÞ
að0ÞðtÞ ¼ �8	G0w ��ð0ÞðtÞ þ �

(5.18)

for a spatially flat universe (k ¼ 0), and

_�� ð0ÞðtÞ þ 3ð1þ wÞ _að0ÞðtÞ
að0ÞðtÞ ��

ð0ÞðtÞ ¼ 0: (5.19)

From these one can obtain að0ÞðtÞ and then ��ð0ÞðtÞ. As a
result the scale factor is found to be related to time by

tð0ÞðaÞ ¼ 2Arcsinh ½a3=2
ð1=2Þ�ffiffiffiffiffiffi
3�

p ; (5.20)

where we have defined the parameter


 � �

8	G0 ��0

¼ 1��

�
(5.21)

with ��0 the current (t ¼ t0) matter density, and � the
current matter fraction. Note that in practice we will be
interested in a matter fraction which today is around 0.25,
giving 
 ’ 3:0, a number which is of course quite far from
the zero cosmological constant case of 
 ¼ 0.

One can express the time today (t0) in terms of cosmo-
logical constant �, and therefore in terms of 
, as follows:

tð0Þ0 ¼ 2Arcsinh ð ffiffiffi



p Þffiffiffiffiffiffi
3�

p (5.22)

with the normalization for tð0ÞðaÞ such that tð0Þða ¼ 0Þ ¼ 0

and tð0Þða ¼ 1Þ ¼ t0 ‘‘today.’’ So here we follow the cus-
tomary choice of having the scale factor equal to one
‘‘today.’’ Then one has

tð0ÞðaÞ
tð0Þ0

¼ Arcsinh½
ffiffiffiffiffiffiffiffi
a3


p
�

Arcsinhð ffiffiffi



p Þ : (5.23)

When expanded out in 
, the above result leads to some
perhaps more recognizable terms,

tð0ÞðaÞ
tð0Þ0

¼ a3=2
�
1� 1

6
ð�1þ a3Þ


þ 1

360
ð�17� 10a3 þ 27a6Þ
2 þ � � �

�
: (5.24)

Conversely, one has for the scale factor as a function of the
time

að0ÞðtÞ ¼
�
Sinh2½

ffiffiffiffi
3�

p
2 t�




�
1=3

; (5.25)

which, when expanded out in � or t, gives the more
recognizable result

½að0ÞðtÞ�3 ¼ 3�t2

4


�
1þ �t2

4
þ �2t4

40
þ � � �

�
: (5.26)

Similarly for the pressure one obtains

�� ð0ÞðtÞ ¼ �Csch2½
ffiffiffiffi
3�

p
2 t�

8	G0

; (5.27)

which when expanded out in � or t gives the more familiar
result

�� ð0ÞðtÞ ¼ 1

6	G0t
2ð1þ t2�

4 þ t4�2

40 þ 3t6�3

2240 þ � � �Þ : (5.28)

To be more specific, let us set 
 ¼ 3, which corresponds to
a matter fraction today of �� 0:25. In addition, we will
now make use of Eq. (2.2) and set � ! 3=�2. One then
obtains

tð0Þ0 ð
 ¼ 3Þ ¼ 0:878�; (5.29)

which shows that t0 and � are rather close to each other
(apparently a numerical coincidence).
Then, from the expression for GðtÞ in Eq. (2.11),

�GðtÞ
G0

¼ ct

�
t

�

�
1=�

; (5.30)

one can obtain GðaÞ in all generality, by the replacement
t ! tðaÞ according to the result of Eq. (5.20) or (5.23). For
the special case of pure nonrelativistic matter with equa-
tion of state w ¼ 0 and � ¼ 0 one obtains, using
Eq. (5.24),

�GðaÞ
G0

¼ ct

�
a

a�

�
��

; (5.31)

with exponent

�� ¼ 3

2�
: (5.32)
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The latter is largely the expression used earlier in the
matter density perturbation treatment of our earlier work
of Ref. [18].

More generally one can define a� as the value for the

scale factor a which corresponds to the scale �,

að0Þ� �
�
1




�
1=3

Sinh2=3
�
3

2

�
¼ 1:655

�
1




�
1=3

; (5.33)

so that in general a� � a0, where a0 ¼ 1 is the scale factor
‘‘today.’’ Then for the observationally favored case 
 ’ 3
one obtains

að0Þ� ð
 ¼ 3Þ ¼ 1:148; (5.34)

which clearly implies að0Þ� > a0 ¼ 1.2 The above expres-

sions will be used in the next section to obtain a quantita-
tive estimate for the slip function�ðaÞ, evaluated at today’s
time t ¼ t0.

The discussion above dealt with the case of �G ¼ 0. Let
us now consider briefly the corrections to aðtÞ and, con-
versely, tðaÞ that come about when the running of G is
included, in other words when a constant G is replaced by
GðtÞ or GðaÞ in the effective field equations. In Eq. (2.18)
the Friedmann equations were given in the presence of a
running G, namely,

3
_a2ðtÞ
a2ðtÞ ¼ 8	G0

�
1þ �GðtÞ

G0

�
��ðtÞ þ �;

_a2ðtÞ
a2ðtÞ þ 2

€aðtÞ
aðtÞ ¼ �8	G0

�
wþ wvac

�GðtÞ
G0

�
��ðtÞ þ �;

(5.35)

together with the energy conservation equation

3
_aðtÞ
aðtÞ

�
ð1þ wÞ þ ð1þ wvacÞ�GðtÞG0

�
��ðtÞ þ

_�GðtÞ
G0

��ðtÞ

þ
�
1þ �GðtÞ

G0

�
_��ðtÞ ¼ 0: (5.36)

To solve these equations to first order in �G we set

aðtÞ ¼ að0ÞðtÞ½1þ cta
ð1ÞðtÞ�; (5.37)

��ðtÞ ¼ ��ð0ÞðtÞ½1þ ct ��
ð1ÞðtÞ�; (5.38)

where að0ÞðtÞ and ��ð0ÞðtÞ here represent the solutions ob-
tained previously for �G ¼ 0. One then finds for the
correction to the matter density

�� ð1ÞðtÞ ¼ �
�
t

�

�
1=�

�
1þ wvac

�

ð1þ �Þ
ffiffiffiffiffiffi
3�

p
tCoth

� ffiffiffiffiffiffi
3�

p
2

t

��
(5.39)

and to lowest nontrivial order in t and for wvac ¼ 1=3

�� ð1ÞðtÞ ¼ � 3þ 5�

3ð1þ �Þ
�
t

�

�
1=� þ . . . : (5.40)

For the correction to the scale factor one finds

að1ÞðtÞ¼�wvac

�

ð1þ�Þ�
Z t

0

t0ðt0�Þ1=�
�1þCosh½ ffiffiffiffiffiffi

3�
p

t0�dt
0 (5.41)

and to lowest nontrivial order in t for wvac ¼ 1=3,

að1ÞðtÞ ¼ � 2�2

9ð1þ �Þ
�
t

�

�
1=� þ . . . : (5.42)

After having obtained the relevant formulas for aðtÞ and
tðaÞ in the general case, i.e., for nonzero �, we can return to
the problem of evaluating the slip function �.

B. Quantitative estimate of the slip function �ðzÞ
The general expression for the gravitational slip function

�ðaÞ was given earlier in Eq. (5.17) for w ¼ 0 and � � 0,

�ðaÞ ¼ 16

3�

�GðaÞ
G0

log

�
a

a�

�
: (5.43)

To obtain �GðaÞ we now use, from Eq. (2.11),

�GðtÞ
G0

¼ ct

�
t

�

�
1=�

(5.44)

and substitute in the above expression for �GðtÞ the correct
relationship between t and a, namely, tðaÞ from Eq. (5.20),
which among other things contains the constant defined in
Eq. (5.33),

a� ¼
�
1




�
1=3

Sinh2=3
�
3

2

�
: (5.45)

It will be convenient, at this stage, to also make use of the
relationship in Eq. (2.2), namely,

� ! 3

�2
: (5.46)

The last step left is to make contact with observationally
accessible quantities, by expanding in the redshift z, re-
lated in the usual way to the scale factor a by a�1=ð1þzÞ.
Then for � ¼ 1=3 and 
 ¼ 3 (matter fraction � ¼ 0:25)
one finally obtains for the gravitational slip function

�ðzÞ ¼ �1:491ct � 6:418ctzþ 30:074ctz
2 þ � � � :

(5.47)

To obtain an actual number for �ðz ¼ 0Þ one needs to
address two more issues. They are (i) to provide a bound
on the theoretical uncertainties in the above expression and
(ii) to give an estimate for the coefficient ct, which is traced

2Let us give here a few more observational numbers for
present and future reference. From the present age of the
Universe t0 	 13:75Gyrs ’ 4216 Mpc, whereas from the ob-
served value of � (mostly extracted from distant supernovae
surveys) one has following Eq. (2.2) � ’ 4890 Mpc, which then
gives t0=� ’ 0:862 ¼ 1=1:160. This last ratio is similar to the
number we used in Eq. (5.29), by setting there� ¼ 0:25 exactly.
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back to Eq. (2.11) and therefore to the original expression
forGðhÞ in Eq. (2.1). The latter contains the coefficient c0,
but in Ref. [15] the estimate was given ct ¼ 0:450c0 for the
tensor box operator; thus ct and c0 can safely be assumed
to have the same sign, and comparable magnitudes.

To estimate the level of uncertainty in the magnitude of
the correction coefficient in Eq. (5.47) we will consider
here an infrared regulated version of GðhÞ, where an
infrared cutoff is supplied so that in Fourier space
k > ��1, and the spurious infrared divergence at small k
is removed. This is quite analogous to an infrared regulari-
zation used very successfully in phenomenological appli-
cations to QCD heavy quark bound states [21,22], and
which has recently found some limited justification in the
framework of infrared renormalons [23]. As shown already
in the first cited reference, it works much better than
expected; here a similar prescription will be used just as
a means to provide some estimate on the theoretical un-
certainty in the result of Eq. (5.47). Therefore, instead of
the GðhÞ in Eq. (2.1), which in momentum space corre-
sponds to

Gðk2Þ ’ G0

�
1þ c0

�
1

�2k2

�
1=2� þ . . .

�
; (5.48)

we will consider a corresponding infrared regulated ver-
sion,

Gðk2Þ ’ G0

�
1þ c0

�
��2

k2 þ ��2

�
1=2� þ . . .

�
: (5.49)

Of course the small distance, k � ��1 or r 
 �, behavior
is unchanged, whereas for large distances r � � the
gravitational coupling no longer exhibits the spurious in-
frared divergence; instead it approaches a finite value
G1 ’ ð1þ c0 þ . . .ÞG0. Now, in momentum space the
infrared regulated �GðkÞ reads

�Gðk2Þ
G0

¼ c0

�
m2

k2 þm2

�
1=2�

; (5.50)

with m ¼ 1=�, and in position space the corresponding
form is

�GðhÞ
G0

¼ c0

�
1

��2hþ 1

�
1=2�

: (5.51)

Following the results of Ref. [15], if the above differential
operator acts on functions of t only, then one obtains for
�GðtÞ

�GðtÞ
G0

¼ c0

�
1

ðc0ctÞ2�ð
�
tÞ2 þ 1

�
1=2�

(5.52)

with again ct=c0 	 0:62 [15]. Note that the expression in
Eq. (5.52) could also have been obtained directly from
Eq. (2.11), by a direct regularization.

One can then repeat the whole calculation for �ðaÞ with
the regulated version of �GðtÞ given in Eq. (5.52). The
result is

�ðzÞ ¼ �0:766ct � 4:109ctzþ 12:188ctz
2 þ . . . :

(5.53)

It seems that the effect of the infrared regularization has
been to reduce the magnitude of the effect (at z ¼ 0) by
about a factor of 2. It is encouraging that, at this stage of the
calculation, the negative trend in �ðzÞ due to the running of
G appears unchanged. Furthermore, in all cases we have
looked so far, the value �ðz ¼ 0Þ is found to be negative.

C. Slip function �ðzÞ for stress perturbation s ¼ 0

In Ref. [18] a preliminary estimate of the magnitude of
the slip function � was given. The calculation there ne-
glected the stress field s in Eq. (4.4) and only included the
metric perturbation h in the comoving gauge. The main
reason was that nonrelativistic matter density perturba-
tions, and therefore the growth exponents, are unaffected
by the stress field contribution. We will show here that in
this case one still obtains a nonvanishing �, whose value
we will discuss below. The results will be useful, since now
a direct comparison can be done with the full answer
(including the stress field) for �ðzÞ given in the previous
section.
In the absence of stress (s ¼ 0) and finite k, the tt and

xxþ yyþ zz field equations read

� 2
k2

a2
�� 8	G0

ch
2�

�G

G0

��

�
� 2

1þ w

�

¼ 8	G0

�
1þ �G

G0

�
��; (5.54)

2
k2

a2
ðc ��Þþ 24	G0

ch
2�

wvac

�G

G0

��

�
� 2

1þw

�

¼�24	G0

�
wþwvac

�G

G0

�
��: (5.55)

In both equations we have made use of zeroth order (in
�G=G0) energy conservation, which leads to h ¼
� 2

ð1þwÞ�, where � is the matter fraction. One can then

take the ratio of the two equations given above, and obtain
again an expression for the slip function � ¼ ðc ��Þ=�.
For w ¼ 0 (nonrelativistic matter), after expanding in
�G=G0, one finds the rather simple result

� ¼ c ��

�
¼ 3wvac

�
1� ch

�

�
�G

G0

: (5.56)

Here the quantity ch is the same as in Eq. (4.28), and
depends on the choices detailed below. In the following
we will continue to use wvac ¼ 1=3 [see Eqs. (2.15) and
(2.16)] [15,18], which is the correct value associated with
GðhÞ in the FLRW background metric.
In Ref. [18] we used the scalar box value ch ¼ 1=2,

which then gives

SCALE-DEPENDENT NEWTON’s CONSTANT G IN THE . . . PHYSICAL REVIEW D 84, 103507 (2011)

103507-13



� ¼
�
1� 1

2�

�
�G

G0

¼
�
1� 1

2�

�
ct

�
t

�

�
1=� þ . . . : (5.57)

In this last case it is then easy to recompute the slip
function in terms of the redshift, just as was done in the
previous section, and one finds, under the same conditions
as before [� ¼ 1=3, 
 ¼ 3, and t0=� as given in Eq. (5.29)
], the following result:

� ’ �0:338ct þOðzÞ: (5.58)

For the infrared regulated version of �G=G0 given in
Eq. (5.52) one obtains instead the slightly smaller value

� ’ �0:174ct þOðzÞ: (5.59)

For the tensor box case (also discussed extensively in [18],
where it was shown that this is in fact the correct way of
doing the calculation) one finds a significantly larger value
ch ’ 7:927, so that in this case the slip function � becomes

�’
�
1�7:927

�

�
�G

G0

¼
�
1�7:927

�

�
ct

�
t

�

�
1=�þ . . . : (5.60)

Also in this case one can recompute the slip function in
terms of the redshift, and one finds, under the same con-
ditions as before,

� ’ �15:42ct þOðzÞ: (5.61)

For the infrared regulated �G=G0 given in Eq. (5.52) one
finds instead

� ’ �7:919ct þOðzÞ; (5.62)

which is again about a factor of 2 smaller than the unregu-
lated value.

We conclude from the above exercise of calculating �
with vanishing stress field s ¼ 0 three things. The first is
that using the scalar box result on the trace of the energy-
momentum tensor (which ultimately is not an entirely
correct, or at least an incomplete, procedure, given the
tensor nature of the matter energy-momentum tensor)
underestimates the effects of GðhÞ on the slip function
�ðz ¼ 0Þ by a factor that can be as large as an order of
magnitude.

The second lesson is that the stress field (s) contribution
is indeed important, since it reduces the size of the quan-
tum correction significantly [Eqs. (5.47) and (5.53)], com-
pared to the s ¼ 0 result [Eqs. (5.60) and (5.61)], again by
almost an order of magnitude, which would imply some
degree of cancellation between the s and h contributions.

The third observation is that in all cases we have looked
at so far the quantum correction to the slip function is
negative at z ¼ 0.

VI. CONCLUSIONS

In the previous sections we computed corrections to the
gravitational slip function � ¼ c =�� 1 arising from the

renormalization-group motivated running GðhÞ, as given
in Eq. (2.1). The relevant result was presented in
Eqs. (5.47) and (5.53), the first expression representing
the answer for an unregulated GðhÞ, and the second an-
swer found for an infrared regulated version of the same. It
should be noted that, so far, in the treatment of metric and
matter perturbations we have considered only the
k ! 0 limit [see Eq. (3.2)]. Let us focus here for definite-
ness on the first of the two results [Eq. (5.47)], which is

�ðzÞ ’ �1:491ct þOðzÞ (6.1)

at z ’ 0. We now come to the last issue, namely, an
estimate for the magnitude of the constant ct. As already
discussed previously in Sec. VB, to get an actual number
for �ðz ¼ 0Þ one needs a number for ct, whose appearance
is traced back to Eq. (2.11), and therefore to the original
expression for GðhÞ in Eq. (2.1), with ct 	 0:450� c0 for
the relevant tensor box operator [15].
The value of the constant c0 has to be extracted from a

nonperturbative lattice computation of invariant curvature
correlations at fixed geodesic distance [20]; it relates the
physical correlation length � to the bare lattice couplingG,
and is therefore a genuinely nonperturbative amplitude.
After a reexamination of various systematic uncertainties,
these lead to the recent estimate used in [18] of c0 	 33:3.
That would give for the amplitude ct 	 20:6 which still
seems rather large. Nevertheless, based on experience with
other field-theoretic models which also exhibit nontrivial
fixed points such as the nonlinear sigma model, as well as
QCD and non-Abelian gauge theories, one would expect
this amplitude to be of order unity; very small or very large
numbers would seem rather atypical and un-natural.
As far as astrophysical observations are concerned, cur-

rent estimates for �ðz ¼ 0Þ obtained from CMB measure-
ments give values around 0:09� 0:7 [24,25], which would
then imply an observational bound ct & 0:3.
Indeed a similar problem of magnitudes for the theoreti-

cal amplitudes was found in our recent calculation of
matter density perturbations with GðhÞ, where again the
corrections seemed rather large [18] in view of the above
quoted value of ct. Let us briefly summarize those results
here. Specifically, in Ref. [18] a value for the density
perturbation growth index � was obtained in the presence
of GðhÞ. The quantity � is in general obtained from the
growth index fðaÞ [26],

fðaÞ � @ ln�ðaÞ
@ lna

; (6.2)

where �ðaÞ is the matter density contrast. One is mainly
interested in the neighborhood of the present era, aðtÞ ’
a0 ’ 1, which leads to the definition of the growth index
parameter � via

� � lnf

ln�

��������a¼a0

: (6.3)
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The latter has been the subject of increasingly accurate
cosmological observations; for some recent references see
[27–29].3

On the theoretical side, for the tensor box one finds [18],
for a matter fraction � ¼ 0:25,

� ¼ 0:556� 106:4ct þOðc2t Þ; (6.4)

where the first contribution is the classical GR value from
the relativistic treatment of matter density perturbations
[26]. The result presented above is in fact a slight improve-
ment over the answer quoted in our earlier work [18], since
now the improved relationship between t and a given in
Eq. (5.20) has been used, which reduces the magnitude of
the correction proportional to ct. Nevertheless, it should be
emphasized that the above result has been obtained in the
k ! 0 limit of the perturbation Fourier modes in Eq. (3.2).

Recent observational bounds on x-ray studies of large
galactic clusters at distance scales of up to about 1.4 to
8:5 Mpc (comoving radii of �8:5 Mpc and viral radii of
�1:4 Mpc) [28] favor values for � ¼ 0:50� 0:08, and
more recently � ¼ 0:55þ 0:13� 0:10 [29]. This would
then constrain the amplitude ct in Eq. (6.4) at that scale to
ct & 5� 10�4. The latter bound from density perturba-
tions seems a much more stringent bound than the one
coming from the observed slip function. Indeed with the
bound on ct coming from the observed density perturbation
exponents one would conclude that, according to Eq. (6.1),
the correction to the slip function at z ’ 0 must indeed be
very small, � ’ Oð10�3Þ, which is a few orders of magni-
tude below the observational limit quoted above, � ’
0:09� 0:7.

It is of course possible that the galactic clusters in
question are not large enough yet to see the quantum effect
of GðhÞ, since after all the relevant scale in Eq. (2.1) is
related to � and is supposed therefore to be very large,
� ’ 4890 Mpc.4 But most likely the theoretical uncertain-

ties in the value of ct have also been underestimated in
[20], and new, high precision lattice calculation will be
required to significantly reduce the systematic errors.
Nevertheless it seems clear that the nonperturbative

coefficient c0 (or ct) enters all calculations involving
GðhÞ with the same magnitude and sign. This is simply a
consequence of c0 being part of the renormalization group
GðhÞ which enters the covariant effective field equations
of Eq. (2.4). Consequently, one should be able to relate one
set of physical results to another, such as the value of the
slip function�ðz ¼ 0Þ in Eq. (5.47) to the corrections to the
density perturbation growth exponent � computed in [18],
and given here in Eq. (6.4). Then the amplitude ct can be
made to conveniently drop out when computing the ratio of
GðhÞ corrections to two different physical processes. The
resulting predictions are then entirely independent of the
theoretical uncertainty in the amplitude c0, and remain
sensitive only to the uncertainties in the two other quantum
parameters � and �, which are expected to be significantly
smaller. One then obtains for the ratio of the corrections to
the growth exponent � to the slip function �ðz ¼ 0Þ at
z ’ 0

��

��
’ �106:4ct
�1:491ct

’ þ71:4 (6.5)

for the infrared unimproved case. One conclusion that one
can draw from the numerical value of the above ratio is that
it might be significantly harder to see the GðhÞ correction
in the slip function than in the matter density growth
exponent, by almost 2 orders of magnitude in relative
magnitude. Hopefully increasingly accurate astrophysical
measurements of the latter will be done in the not too
distant future. Of particular interest would be any trend
in the growth exponents as a function of the maximum
galactic cluster size.

ACKNOWLEDGMENTS

One of the authors (H.W.H.) wishes to thank Thibault
Damour and Gabriele Veneziano for inspiration and dis-
cussions leading to the present work, and Alexey Vikhlinin
for correspondence regarding astrophysical measurements
of structure growth indices. H.W.H. wishes to thank
Thibault Damour and the I. H. E. S. in Bur-sur-Yvette for
a very warm hospitality. The work of H.W.H. was sup-
ported in part by the I. H. E. S. and the University of
California. The work of R. T. was supported in part by
the DoE.

APPENDIX: SCALAR BOX IN THE
COMOVING GAUGE

In this section we will give a short sample calculation of
the effects of the covariant d’Alembertian operator h �
g��r�rnu acting on a coordinate scalar, such as the trace

of the energy-momentum tensor. The calculation

3For a recent detailed review on the many tests of general
relativity on astrophysical scales, and a much more complete set
of references, see for example [30,31].

4One might perhaps think that the running of G envisioned
here might lead to small observable consequences on much
shorter, galactic length scales. That this is not the case can be
seen, for example, from the following argument. For a typical
galaxy one has a size �30 kpc, giving for the quantum correc-
tion the estimate, from the potential obtained in the static
isotropic metric solution with GðhÞ [16] which gives �GðrÞ �
ðr=�Þ1=�, ð30 kpc=4890� 103 kpcÞ3 � 2:31� 10�16 which is
tiny given the large size of �. It is therefore unlikely that such
a correction will be detectable at these length scales, or that it
could account for large anomalies in the galactic rotation curves.
The above argument also implies a certain sensitivity of the
results to the value of the scale �; thus an increase in � by a
factor of 2 tends to reduce the effects of GðhÞ by roughly
23 ¼ 8, as can be seen already from Eq. (2.1) with � ¼ 1=3.
More specifically, the amplitude of the quantum correction is
proportional, in the noninfrared improved case, to the combina-
tion c0=�
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presented below will show that the result is unchanged
when the stress contribution s is included in the metric
for the comoving gauge. Specifically here we will be
interested in the correction of order hij that arises when

the operator in Eq. (4.12) acts on the scalar T�
� ¼ � ��.

Thus, for example, it will give the correction Oðh; sÞ to
��vac, namely, the second term in the expression

��vacðtÞ ¼ �Gðhð0ÞÞ
G0

��ðtÞ þ �GðhÞðh; sÞ
G0

��ðtÞ; (A1)

with the first term being simply given in the FLRW back-
ground by �GðtÞ=G0 � ��ðtÞ. Here theOðh; sÞ correction is
given explicitly by the expression

�GðhÞðh; sÞ
G0

��

¼ � 1

2�

c0

�1=�

1

hð0Þ �hð1Þðh; sÞ �
�

1

hð0Þ

�
1=2� � ��: (A2)

Now the covariant d’Alembertian h acting on general
scalar functions SðxÞ simplifies to

hSðxÞ � 1ffiffiffi
g

p @�g
�� ffiffiffi

g
p

@�SðxÞ: (A3)

In the absence of hij fluctuations this gives for the metric in

the comoving gauge

hð0ÞSðxÞ ¼ 1

a2
r2S� 3

_a

a
_S� €S: (A4)

To first order in the field fluctuation hij of the comoving

gauge one computes

hð1Þðh; sÞSðxÞ ¼ _S

�
� 1

2
_h

�
þ @xS

�
1

6a2
ikxðhþ 4sÞ

�

þ @2xS

�
� 1

3a2
ðhþ sÞ þ 1

a2
k2x
k2

s

�

þ @x@yS

�
2

a2
kxky

k2
s

�
; (A5)

where we have set as usual hðxÞ ¼ hðtÞeik�x. But, for a
function of time only, one obtains

hð1ÞðhÞ�ðtÞ ¼ � 1

2
_hðtÞ _SðtÞ: (A6)

Thus to first order in the fluctuations one has

1

hð0Þ �hð1ÞðhÞ � ð�G ��Þ

¼ 1

�@2t � 3 _a
a @t

� 1
2
_h

�
3
_a

a
�G� _�G

�
�� (A7)

and there is no change from the result quoted in [18]. There
we set s ¼ 0, since we were only interested in cosmologi-
cal density perturbations �, which couple only to the trace
part of the gravitational field fluctuations hij.
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