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Quantum gravity in two dimensions is reviewed. Its formulation on simplicial lattices is 
described, with an action involving cosmological constant and higher derivative terms. Results are 
presented for the weak field approximation and for Monte Carlo calculations. 

!. Introduction 

Recently it has become fashionable to study two-dimensional  gravity as a toy 
model for the full four-dimensional  theory. Two-dimensional  Einstein gravity is 

trivial since, by the Gauss -Bonne t  theorem, the Einstein action is constant provided 

one studies systems with fixed topology. However,  if one generalizes t h e a c t i o n  to 
include a cosmological  constant  a n d / o r  a higher-derivative term, the theory may 

contain some features which will be of  interest for gravity in four dimensions. 

The success of  lattice-gauge theories in providing non-perturbative methods in 

quantum chromodynamics ,  through the introduction o f  a natural cutoff, the lattice 

spacing, had led to various formulations of  lattice gravity. The approach  described 
in this paper  relies on Regge's  approach  to gravity [1], a discrete description of  

general relativity in which space- t ime is tr iangulated by a simplicial lattice. The 
lattice thus becomes a dynamical  object, with the edge lengths of  the lattice describing 

the evolution of  space-t ime.  A formalism has been set up [2, 3] for representing 
higher derivative terms on such a lattice and this paper  is concerned with the results 
of  both analytic and numerical work on simplicial lattices with higher derivative 
actions. Before describing the present study some other work on two-dimensional  
gravity will be described briefly below. In sect. 2, higher derivative gravity in two 

dimensions will be formulated,  and in sect. 3 the weak field approximat ion for 
two-dimensional  latttice gravity will be discussed. This includes the expansion 
around fiat space and a round  a regular tessellation of  the two-sphere. In sect. 4 the 
results of  some numerical studies for quan tum gravity on a two-torus will be 

presented. Sect. 5 contains some concluding remarks. 
482 
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Recent work on two-dimensional gravity has proceeded along both analytic and 
numerical lines. Results from each of these approaches will now be mentioned 

briefly. As we have already remarked, two-dimensional Einstein gravity is trivial 
because the Einstein action is constant and the Einstein tensor vanishes identically. 
When a cosmological constant term and a curvature-squared term are included in 

the action 

I = I d2x x/-g[A - kR + aR 2] (1.1) 

the only classical solutions have constant curvature with R = ± x / A / a  (there being 
no real solutions for A < 0). Although the theory with the Einstein action and a 
cosmological constant is metrically trivial, having neither dynamical degrees of  
freedom nor field equations [4], it is not topologically trivial. It has been shown 
[5] that quantum gravity in 1 + 1 dimensions with A = 0, exists in a disordered phase, 
dominated by non-trivial topological configurations. This might suggest an interpre- 
tation in terms of "space- t ime foam" [6] which we shall discuss again in the 
concluding section. Also the functional measure can lead to a non-trivial effective 
action [7]. However, for a system with fixed topology, the only non-classical aspects 
of  1 + 1 dimensional gravity are fluctuations in volume [8]. 

Much of  the analytical and numerical work relevant to two-dimensional quantum 
gravity has involved the study of random surfaces, with an action depending on the 
area (i.e., a cosmological constant type action) [9-13]. Most of  these calculations 
have taken the random surface to be embedded in a higher-dimensional continuum 
space with a dimension-dependent  measure. It has been argued that the Hausdorff 
dimension of such surfaces is infinite [9, 10], and this feature does not seem to be 
affected by the inclusion of  a non-local curvature term in the action [10]. In the 
continuum limit, random planar surfaces seem to correspond to free field theories 
[ 11 ]. David has studied two-dimensional surfaces without reference to any embed- 
ding properties, and has shown that a universal continuum limit exists for open 
surfaces, which can be interpreted as a space with negative mean curvature [13]. 

Two-dimensional lattice gravity based on the simplicial method of Regge calculus 
has been used by Jevicki and Ninomiya [12] to exhibit a discrete version of the 
conformal trace anomaly. They discuss the relation between a mass term for the 
scalar fields and the discretization of an R 2 term, and also write down the lattice 
form for the action of the Polyakov string (see also ref. [11]). 

2. Two-dimensional higher derivative gravity on a simplicial lattice 

We now turn to a study of quantum gravity on a two-dimensional surface consisting 
of a network of flat triangles. Such a lattice may be constructed in a number of  
ways. Points may be distributed randomly on the surface and then joined to form 
triangles according to some algorithm. However, because of their computational 
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complexity we shall not consider such random lattices here. Alternatively one can 
start with a regular lattice, like a regular tessellation of the two-sphere, or a lattice 
of squares divided into triangles by drawing in parallel sets of diagonals, and then 

allow the edge lengths to vary. 
The Einstein action for a two-dimensional simplicial lattice is given by [1] 

I d2x~R-~2 E ah. (2.1) 
hinges h 

The hinges, where the curvature is concentrated, correspond to vertices in two 
dimensions and ~h is the deficit angle at a hinge, defined by 

(~h = 27r-  ~ [vertex angle at h] .  (2.2) 
triangles 

meetingath 

According to the Gauss-Bonnet theorem, the Einstein action in two-dimensions is 
equal to 4~r times the Euler characteristic of the surface, and so is a constant 
provided we consider surfaces with fixed topology. 

A cosmological constant term can be included in the action in the form 

A f d2x v ~ A  E At, (2.3) 
d triangles t 

where A t is the area of triangle t. Equivalently we may divide the triangles into 
areas associated with each hinge Ah and use the expression 

A ~. Ah. (2.4) 
hingesh 

Methods of  constructing A h a r e  discussed in ref. [2]: the simplest method is the 

barycentric one for which 

Ah=~ E At. (2.5) 
trianglest 

meetingath 

Ah can also be taken to be the area of the cell surrounding h in the dual lattice. 
In constructing higher derivative terms for a simplicial lattice, we note that in 

two dimensions the Weyl tensor vanishes identically, and that the other curvature- 
squared terms are all proportional to each other 

R ~ , ~ R  ~p~  = ~R,,~R ~'~ = R 2 . (2.6) 

Thus we need to write down only one  term quadratic in the curvature for the lattice 
action. Using the requirements that it be a sum over hinges (the only places where 
the curvature is non-zero), that it be quadratic in the deficit angle, and that it have 
the correct dimension (length) -2, we are led to postulate that 

f d 2 x x / g R  2 ~ 4 ~ 8_~. (2.7) 
Ah 
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It has been shown [2, 3] that this formula is exact for all regular tessllations of the 
two-sphere. One might also wish to consider terms in the lattice action which involve 

cross-terms from different hinges, like 

S ~ +o. - 
trianglest t A h  hinges ~ +Oh' , ( 2 . 8 )  

hh'c- t 

which includes a weighting function +Oh for the different hinges. However we do 
not consider such a term necessary in two dimensions. 

Before discussing numerical studies of  the two-dimensional lattice gravity model 
described here, we shall next describe some analytic calculations. 

3. The weak-field limit for two-dimensional lattice gravity 

One of the simplest problems which can be studied analytically in simplicial 
quantum gravity is the analysis of  small fluctuations about some classical background 
solution. The second variation of the action is then related to the inverse of  the free 
propagator.  Such a calculation has been carried out in four dimensional flat back- 
ground space with the Einstein action, and it was found that the Regge calculus 
propagator  agreed exactly with the continuum result in the weak-field limit [14]. 

Let us now consider a two-dimensional lattice with a higher derivative action 

l=4a ~ +5~. (3.1) 
hinges h Ah 

Flat space is a classical solution for such an R: type action. We therefore take as 
our background space a network of unit squares divided into triangles by drawing 
in parallel sets of  diagonals (see fig. !). 

We use the binary notation for vertices described in refs. [14]. The edge lengths 
are then allowed to fluctuate around their flat space values: I, = I~,)(1 + e,), and the 

I + E  ° 

i I+E~ 

0 
0 [ + E  2 

Fig. 1 

I + E ,  2 
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second var ia t ion  of  the ac t ion is expressed  as a quadra t i c  form in e 

¢52I = 4 a  ~ e,Moej. (3.2) 
q 

where M!; is the matr ix  which is related to the inverse of  the free p ropaga tor .  The 

f luctuat ion vector  e, has three  componen t s  per  lat t ice point .  The inf in i te -d imensional  

but  sparse  matr ix  M,j is best  s tudied  by going to m o m e n t u m  space.  We assume that  

the f luctuat ion e, at the point  i, j steps in one coord ina te  d i rec t ion  and k steps in 

the o ther  coord ina te  d i rec t ion  from the origin,  is re la ted to the co r r e spond ing  e., at 

the origin by 

~ ' k' = toJ, toke ~,°' , (3.3) 

where to, = e -~pyl and p, is the m o m e n t u m  in the d i rec t ion  i. The matr ix  M reduces 

to a 3 x 3 matr ix  M., with componen t s  given by 

(M..,),, = 2 + t o l -  2 to2-  2tolw2 + tolto~+ C.C. , 

(M,o),2 = 2 - w, - 032 - to,to2 - 03,032 - w~ - 03~+ ¢0 2to2 + 03,032 + 2tom032, 

( M,o),3 = 2 ( -  1 + 2to, - 03, + o)2 - 032 - totw2 + 203,032 + o32 - 03, ag~ - to, 032) , 

( M,o )33 = 4(2 - 2to, - 2t02 + o)1o)2 + 031to2 + c.c .) .  (3.4) 

(Other  componen t s  may be ob ta ined  by a p p r o p r i a t e  in terchanrge  of  to, and  to2-) In 

the weak-f ield l imit ,  where the momen tum p is small ,  M,~ takes the form 

[ P~(P'+P2) 2 
M,,, = 14 1 PlP2(Pl + P2) 2 

\ -2p,p2(p,  + P2) 

A simple  change  of  var iables  

PtP2(Pl + P2) 2 
2 

PI(Pl + P2) 

-2p~P2(pl + P2) 

-2p,p~(p, + P2)'~ 

) --2plP2(pl+P2) + O ( P  5). 

4p~p~ 
(3.5) 

(3.6) 

leads to the matr ix  M "  given by 

p~ p~p] - 2 p , p ~  
t 3 M,,  = 14 PlP~ p~ -2p,P21 + O(pS) ,  

\ _ 2 . , e  ~ 3 -2p,p2 4p~p~ / 
(3.7) 

which is exactly what  one obta ins  from the co r r e spond ing  weak-f ield l imit  in the 

con t inuum theory.  Define the small  f luctuat ion h~,. about  flat space by 

g.,. = ~.,. + h . . .  (3.8) 

The terms of  o rder  h 2 in l d 2 x  v'gR 2 then come from the terms of  o rde r  h in R. In 
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two dimensions  one has 

R = ht ,.22 + h22., t - 2 h , 2 . , 2  + O (  h 2) , 

x/g=  1 +~(h, ,  + h22)+O(h2) ,  

which lead to 
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(3.9) 

(3.10) 

-- 1 '+-4 '  
L,, ~ 1+oo2 l+~ot 

(3.15) 

from the cosmological  constant  term. In the weak field limit, and with the same 

change of  variables as described for the matrix M,,, this leads to 

i) L ;  = - 1  1 + O ( p ) .  (3.16) 

0 0 

Thus the typical behaviour  o f  the inverse p ropaga tor  in this case would be 

-~A + 4 a p  4 . (3.17) 

We now look briefly at the same procedure  for variations about  spaces with are 

classical solutions for the gravitational action with a cosmological  constant  term. 

variation o f  the action o f  

v / -gR  2 = (h11.22 + h22.11 - 2h12.12)2 + O ( h  3) . (3.1 1) 

In momen tum space, each derivative 0v produces  a factor o f  p,, and one may write 

~ / g R  2 = h . .V . . ,o , .ho , .  , (3.12) 

where V..., ,~ coincides with M '  above (when we have relabelled the components  
according to 11-~ 1, 22--*2, 12~3) .  

We may also consider  a lattice action which includes a cosmological  constant 

term, as well as the higher derivative term 

I= I2 [,~A.+4a'S~l 
hinges h A h J  (3.13) 

cor responding  to a cont inuum action 

I = I d2x x/g[A + a R 2 ] .  (3.14) 

Expansion about  a flat space background is no longer valid, strictly speaking, since 
fiat space is not a classical solution in the presence of  a cosmological  constant.  

Were it a reasonable procedure  we would obtain a contr ibut ion to the second 
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Fig. 2 

Consider first the regular tessellation of the two-sphere given by a tetrahedron, 
octahedron and icosahedron. Suppose that the triangles in these tesseilations have 
edge length /. One writes down the contributions from the two terms in the action 
and then varies the action to find the classical equations of motion. For each of the 
tesselations mentioned, the classical solution is of the form I~= azr2(4a/A) with 

16 4 16 a = 7, 3 and vs respectively. Let us consider fluctuations about the classical solution 
for just the tetrahedral tessellation of S 2, which is shown in fig. 2. 

We allow all the edge lengths to undergo small variations 

l, = Iv ~ l', =/o(1 + e,). (3.18) 

The contribution to ~ Ahwhich is quadratic in the e/s (the linear terms cancel later, 
after using the equations of motion) is 

x/31 - ~  ~ eT +~ e,ei-  ~ e,ej (3.19) 
i i i t ~ j  

\ J,j neighboring i , /opposi te  

and corresponding contribution from ~ 8~/Ah is 

4 [~(657r  2 87r ) e ~ + ~ ( 2 7 r 2  7r ) ] 
x/31~ \ ~-~ 3x/~-8 ~ \ ~ - + ~ - - ~ - 1  ~j  e,e s . (3.20) 

id opposite 

When one adds these contributions with appropriate coefficients and uses the value 
of Iv from the classical solution, one obtains from (3.13) 

I ~ 16¢r~/aA + ~  e~+2 ~'. e,q + 2 ( 2 - / z )  ~ e,ej] ,  
i / J  I~y 

i , j  neighboring i,j opposite 

(3.21) 

where /1 = 2(57r2-6v~7r +54)/97r 2~ 1.5919. Therefore the "'free propagator" will 
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depend on the inverse of the matrix 

943 

/z 1 1 1 1 21 /z  \ 
1 p, 1 2 - #  1 

1 1 # 1 2 - #  i )" 
1 2 - #  1 /z 1 
1 1 2 - #  1 # 

2 - #  1 1 1 1 At / 

(3.22) 

Note that the Z/a  dependence has disappeared. The couplings a and h only appear 
in the dimensionless combination x/-~. The matrix is singular and the zero modes 
have to be extracted before it can be inverted. The eigenvalues of the matrix 
(forgetting about the constants in front of  it) are 0 (with multiplicity 2), 2 ( # -  1) 
(with multiplicity 3) and 6 (with multiplicity one). The multiplicites are in agreement 
with the dimensions of the irreducible representations of the symmetry group of 
the tetrahedron. Thus remarkably two zero modes have survived the lattice transcrip- 
tion of the continuum action. This is presumably a consequence of a residual 
symmetry ("general coordinate invariance") of the higher derivative lattice action 
in two dimensions. 

5. Numerical studies of two-dimensional lattice gravity 

We now describe the results of some numerical calculations based on the theory 
described in sect. 2. The lattice consists of a network of squares divided into triangles 

by drawing in parallel sets of diagonals. Opposite edges of the network are identified 
so that the lattice has the topology of a torus. The lattice action is 

I=Y.. AAh-2k~h+4a  . (4.1) 
h 

In the limit of small fluctuations around a smooth background, this lattice action 
was shown above to correspond to the continuum action 

I = f d2x v~[A - kR + aR2]. (4.2) 

In two space-time dimensions the Einstein action is a topological invariant, both 
in the continuum (because of the Gauss-Bonnet theorem) and on the lattice, since 
~h ~5h = 27rx, where X is the Euler characteristic. Therefore for a manifold of fixed 
topology the term proportional to k can be dropped. An additional possible term 
is given by a long-range interaction of the type [7, 10, 12, 3] 

~ ~ t~h[ 1 ] ~h', (4.3) 
h,h' --A+m2 h,h' 

where A is the nearest-neighbor covariant latt ice laplacian, and m 2 is an infrared 
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mass regulator. A term of this type arises from the conformal anomaly in the 
continuum. It corresponds to the continuum contribution 

I ' d2x d2y R,,/-g(x)(x] _a2 + m2 ]y)Rx/-ff(y), (4.4) 

where a 2 is the continuum covariant laplacian, a 2--- 8,~(x/-gg~"',L,). This action was 

considered (for m 2 --0) by Polyakov [7] in the context of the problem of random 
surfaces embedded in higher dimensional space. It is required, at least in its 
ultra-local form (m2--, o c), which is proportional to 

b E tS~, (4.5) 
h 

with b a dimensionless coupling, to ensure the existence of a (naive) lattice con- 
tinuum limit. This limit requires that the curvature be small on the scale of the local 

volume [16] 

(Icurvaturel)h = • ~ (volume)h - Ah or [~Sh['~ 1 . (4.6) 
H ~ 

We are concerned with the evaluation of the path integral 

Z = I d/x,[/] e till (4.7) 

with the scale invariant measure 

. -75-  F , . ( I ) ,  (4.8) d# , [ / ]  = [l 

which integrates directly over the elementary coordinate invariant lattice degrees 
of freedom, the edge lengths squared. The function F, (1) vanishes if any of the edge 
lengths is less than e or if any of the triangle inequalities is violated; otherwise it 
is unity. Thus F,~(I) introduces an ultra-violet cut-ott, e, into the calculations and 
also ensures that the triangle areas are always real, which means that the space has 
euclidean signature. Other possible scale invariant measures would be less local, in 
the sense that they would involve a power of  some volume or volumes. 

One possible method of evaluating the path intgral is to use the Monte Carlo 
method, in which the edge lengths are varied individually or in small groups by a 
small random amount and the change in the action is calculated. If  the action is 
lowered, the new edge length is accepted; if the action is raised, the new edge length 
is accepted with a probability given by the exponential of the change in the action. 
The same procedure is then applied to another edge, and so on. After many edges 
have been changed, the probability distribution for the edges approaches the equili- 
brium one given by the exponential factor exp ( - I [ I ] ) .  (Alternatively, one could 
generate the edge length distribution by using the Langevin equation, as discussed 

in refs. [3, 16]). 
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The two couplings in the action have dimensions [ A ] - e  -2 and [ a ] - e  2. The 

cosmological  constant  in two dimensions has at most a quadrat ic  divergence 

An = Ao + C2 L2 + Co In L + • • • , (4.9) 

with L - e  ; the ultraviolet cutoff. 

Consider  now the path integral 

Z[A, a, b, e] = f d /z , [ I ]  e ,t~l (4.10) 

Because o f  the scale invariance of  the measure,  all the edge lengths can be rescaled 
l,--~ (a /A) l /n / i ,  and one obtains 

[ Z[ ,La ,  b , e ] = Z  ~ ' - ~ , , / - ~ , b ,  e . (4.11) 

| f  e can be sent to zero (in other words, if the functional integral exists with ~" = 0), 

then Z depends  only on ~ and b, once all lengths are expressed in units o f  the 

length scale lo=- (a/,~ ) ;/4. 
Here only a lattice with the topology of  the torus will be considered.  The square 

lattice divided into triangles was chosen of  size 32 x 32, with 3072 edge variables. 

The following expectat ion values are o f  interest 

(A) = ~-'~h ( ~  A" / , 

4 (R~-)=-~h (~ 8:~'a.l (4.12) 

where Nh --- N 2 is the number  of  hinges. For the formulat ion o f  higher derivative 

terms dual lattice volumes [2] were used in the following. A numerical evaluation 

o f  expectat ion values by the Monte Carlo method leads to the following results. 
Consider  first the case b = 0. For a = 0 the results are trivial 

f0 ,  ifA > 0  
(A)= ~ ,  ifA<~0 (4.13) 

and ( R  2) = oC for both signs o f  A. These results are valid as the cutoff F is sent to 

zero. For strictly positive a the path integral exists for positive A, while for negative 
A one has results similar to a = 0 (no nontrivial equilibrium distribution o f  edge 
lengths). In fig. 3 we show the behavior  o f  the average edge length as a function o f  
the Monte  Carlo iterations for 4a = I. The top curve corresponds to A = 0 and the 
bot tom curve to A = 0.4. 

Other  results for the case 4a = 1 some results are displayed in table I. (They were 

obtained by averaging over 1000 passes through the lattice, after discarding an initial 
1000.) There ~/(F) denotes  the square root  o f  the average edge length squared,  and 
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400 600 
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Fig. 3 

I I I i I 

800 
I 

1000  

TABI.E 1 

Results for the 2-dimensional model with 4a = I and b = 0 

1 <A> 4,(R~> 1 (R2) 
4(I 2) (A) 2 <~}~ 4 (A) 

0.4 1.28 (3) 0.96 (5) 0.292 (5) 0.408 (3) 0.42 (3) 
0.3 1.52 (3) 1.34 (5) 0.289 (5) 0.396 (3) 0.30 ( I ) 
0.2 1.78 (3) 1.82 (5) 0.287 (5) 0.371 (3) 0.20 ( I ) 
0.1 2.34 (3) 3.12 (5) I).285 (5) 0.324 (3) 0.10 (I) 
0.0 cc, co 0.288 0 0 

<A) a n d  (R2) are  d e f i n e d  a b o v e ,  x/(12) he re  p l ays  t he  ro le  o f  t he  l a t t i ce  s p a c i n g ,  the  

f u n d a m e n t a l  un i t  o f  l e n g t h .  A typ ica l  e q u i l i b r i u m  d i s t r i b u t i o n  o f  e d g e  l e n g t h s  is 

s h o w n  in fig. 4 for  4 a  = 1 a n d  A = 0.2. It is i n s e n s i t i v e  to  a s m a l l  e d g e  l e n g t h  cu tof f  

e, u n l e s s  A is ve ry  large .  

F o r  ~: = 0 o n e  ha s  f r o m  sca le  i n v a r i a n c e  t he  e x a c t  i d e n t i t y  

(R2) A 
- , 1 4 . 1 4 )  

(A> a 

w h i c h  is wel l  sa t i s f ied ,  as c a n  b e  s een  f r o m  the  t ab l e .  A l so ,  t he  a v e r a g e  a r e a  o f  a 
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tr iangle divided by the average  edge length squared is independen t  o f  A. One finds 

=0.288 ~ - -  (4.15) 
2(I 2) 6 ' 

which shows that  the triangles on the average are not equilateral.  (For  equilateral  
triangles the ratio is , f3 /4  = 0.433). In the region of  A and a considered the space- t ime 
volume and the integrated curvature squared can be reasonably  well fitted (in the 
region 4aA =0.1 - 0 . 4 )  by s imple functions of  the form 

2 
A(A) = 

B +  C In (1 /4Aa)  ' 

2 
a ( R  2) = (4 .16)  

B +  C In ( l / 4 A a )  ' 

with B = 4.0 and C = 1.0, but other  fits are equally possible at this point.  (It is 
difficult to dist inguish a logar i thm for a small power,  so another  possible fit is given 
by A(A)=  B ( 4 a A )  c with B = 0 . 4 6 ( 3 )  and C = 0 . 1 5 ( 5 ) . )  In fig. 5 we plot [A(A)] - '  
(circles) and [(~)(R2)] -~ (squares)  as a function of  In ( l / 4 A a )  for 4a  = 1, with the 
values given in table I. For compar i son  we also show the straight line fit of  eq. 
(4.16) and the power  law fit ment ioned  above.  There is no clear preference in the 
data,  which have errors of  about  five percent.  More  accurate  studies could clarify 
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. . . .  I ' ' ' ' l  . . . .  I . . . .  I . . . .  1 ' ' '  

4 a  = 1 A = 0 . 1 - 0 . 4  

.5 l 1.5 2 2 .5  3 
l o g  ( 1 / 4 a A )  

Fig. 5 

this point. In any case our  results suggest the presence o f  a non-analyt ic  behaviour  

for small x / ~ .  
It should also be stressed that, because o f  the scale invariance o f  the measure 

(for e = 0), only dimensionless quantities are o f  interest, like the aveage curvature 

squared in units o f  the average edge length: ~(12)2(R2>/(A) = 1.14, 1.58, 2.05, 3.11 

for ,~ = 0.4, 0.3, 0.2, 0.1, respectively. 
Physical correlation functions like the vo lume-vo lume  correlation at fixed geodesic 

separation D( hh') 

Gv(d)  = Y. ( V , V , , S ( D h ,  h ' ) -  d)> (4.17) 
h,h' 

can also be evaluated, but appear  not to be positive definite. This is a consequence 
of  the pure I / p  4 behavior  of  the " 'graviton" propagator  in two-dimensional  higher 

derivative gravity with action (3.13). 
In the case o f  finite coupl ing b the sum rule (3.22) can no longer be satisfied. It 

is known that for sufficiently large b the edge length configurations become smooth,  
but there is no solution on a torus to the classical field equations of  cont inuum 
higher derivative gravity with a ~ term. Still, a finite result is found for the average 

curvature squared in units o f  the average edge length: ~(12>2(R2)/(A) = 0.47, 0.56, 
0.64, 0.73 for )t =0.4,  0.3, 0.2, 0.1, respectively. Here 4a = 1 and b =2 ,  and the 

estimates were obtained again by averaging over 1000 passes. As can be seen, the 

surface has become significantly smoother  in this case. 
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5. Conclusions 

In spite of  the lack of dynamical content for two-dimensional gravity, it exhibits 
a number of  features which are instructive for future study of gravity in higher 

dimensions. In our numerical studies it appears  that the phase diagram of a model 
of  higher derivative gravity can be worked out with relative ease even though the 
detailed dependence on the bare parameters is more difficult to determine and would 
require further work. Scalar matter fields coupled to gravity by the lattice action 
discussed in ref. [3] could also be studied. 

The pure gravity theory studied here does not appear  to have unexpected phase 
transitions (which would correspond to coupling constant fixed points) or other 
unusual behavior except at Aa = 0 and Aa = oc. We have argued that without the 
higher derivative terms two-dimensional lattice gravity leads to trivial results and 
does not possess a continuum limit. This is not unexpected since with the Einstein 
action and a cosmological term there is no mechanism that prevents the curvature 
for becoming locally arbitrarily positive or negative. The restriction to a system with 
fixed topology requires only that the integrated curvature be finite, which can always 
be achieved by having arbitrarily large positive curvatures coexist with arbitrarily 
negative curvatures in different regions of  space-t ime. 

In the presence of higher derivative terms contact between the lattice and con- 
tinuum description of the quantum theory can be established. Unfortunately because 
of the lack of unitarity of  the pure higher derivative theory, and the fact that by the 
Gauss-Bonnet  theorem no R term is generated by radiative corrections, the resulting 
theory of two-dimensional quantum gravity is not very realistic. In this framework 
the question of the renormalization of the cosmologial constant cannot be addressed, 
since no newtonian potential, and therefore no renormalized Newton's constant, 
can be defined in two dimensions. The situation is of course very different in four 
dimensions, and will be discussed elsewhere [15, 16]. 
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for Advanced Study. 
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