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We generalize the action of Regge calculus to include the cquivalcnt to both a cosmological 
constant term and a higher derivative term involving the integral of R’. We compare our 
expression for these terms with the continuum values for the regular tessellations ol 2-, 3- and 
4-dimensional spheres, and describe how the formalism may bc applied to calculations in quantum 
gravity. 

1. Introduction 

A major difficulty with conventional formulations of euclidean quantum gravity is 
the fact that the Einstein action I, can become arbitrarily negative [l]. This means 
that the path integral of exp( -In) does not converge. The problem persists for 
lattice formulations of gravity [2] and provides an obstacle to progress for calcula- 
tions of anything other than the weak field limit [3]. 

A possible solution to the problem has been described by Hawking [l], who 
suggests performing the integration in a conformal gauge in which the Einstein 
action is non-negative, and then integrating over all conformal factors. A second 
possibility is to add to the Einstein action extra terms, including higher derivative 
ones [4] like R*, in a carefully chosen combination which makes the total action 
non-negative. 

This paper is based on the description of gravity known as Regge calculus [2,5] in 
which the Einstein theory is expressed in terms of simplicial decompositions of 
space-time manifolds. Its use in quantum gravity is prompted by the desire to make 
use of techniques developed in lattice gauge theories, but with a lattice which reflects 
the structure of space-time rather than just providing a flat passive background. The 
difficulty of defining conformal transformations for the simplicial lattice leads us to 
explore the second of the two possible solutions mentioned above. In particular, the 

l On leave from Girton College and Department of Applied Mathematics and Theoretical Physics, 
Cambridge, England. 
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replacement of the Einstein action 

(1.1) 

where R is the curvature scalar and g the modulus of the determinant of the metric 
tensor, by 

(1.2) 

leads to a non-negative action, provided the couplings a > 0, b and c> 0 satisfy 
4ac - b2 3 0. Of course the inclusion of a higher derivative term in the action has 
other effects, some desirable, some problematic. Stelle has shown [6] that the theory 
based on an action of the form (1.2) plus a term involving the square of the Weyl 
tensor, is renormalizable in four dimensions. Furthermore it has been demonstrated 
that the general fourth-order action leads to an asymptotically free theory [7]. 
Massless renormalizable asymptotically free theories appear to be at the present 
moment the only candidates for field theories in four dimensions that possess a 
non-trivial continuum limit. However in higher derivative gravity there appear to be 
difficulties with unitarity, at least in perturbation theory, and it is not clear at the 
present moment to what extent these problems arise because of the splitting of 
the weak field action into quadratic and non-quadratic parts, and if they persist in 
the full quantum theory. For reviews on the subject we refer the reader to refs. [8]. 
Other work on higher derivative gravity is described in refs. [9]. 

Most lattice formulations of gravity so far have been based on hypercubical 
lattices (see for example Das, Kaku and Townsend [lo], Smolin [ll], and Mannion 
and Taylor [12]). For such lattices, the formulation of R’ terms in four dimensions 
involves constraints between the connections and the tetrads, which are difficult to 
handle. Also there is no simple way of writing down topological invariants, which 
are either related to the Einstein action (in two dimensions), or are candidates for 
extra terms to be included in the action [13]. Tomboulis [14] has written down an R2 
action which is reflection positive but has a very cumbersome form. We shall see 
how these difficulties need not be present on a simplicial lattice (except that it is not 
known how to write the Hirzebruch signature in lattice terms [15]). 

It may be objected that since in Regge calculus where the curvature is restricted to 
the hinges which are subspaces of dimension 2 less than that of the space considered, 
then the curvature tensor involves Q-functions with support on the hinges [3,16], and 
so higher powers of the curvature tensor are not defined [17]. (This argument clearly 
does not apply to the Euler characteristic 
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and the Hirzebruch signature 

which are both integrals of 4-forms.) However it is a common procedure in lattice 
field theory to take powers of fields defined at the same point, and we see no reason 
why one should not consider similar terms in lattice gravity. Of course we would like 
our expressions to correspond to the continuum ones as the edge lengths of the 
simplicial lattice become smaller and smaller. 

In sect. 2 we shall describe our formalism for writing down extra terms in the 
Regge calculus action and their values for regular tessellations of Sz, S3 and S4 are 
given in sect. 3. The possibility of writing down other higher derivative terms is 
explored in sect. 4, and in the final section we discuss some possible applications and 
numerical work in progress. 

2. Formalism for R2 on the simplicial lattice 

In a d-dimensional Regge calculus space-time, the usual form of the action is 

(2.1) 

where the hinges are the (d - 2)-dimensional subspaces on which the curvature is 
distributed, A, is the area of the hinge and a,, is the deficit angle there, which is 
given by 

Bh=2n- c lYd, 
blocks 

meeting on b 

(2.2) 

where IY~ is the dihedral angle. The action is the equivalent for a simplicial 
decomposition of the continuum expression +/d“x&R, and indeed it has been 
shown [16-181 that I, tends to the continuum expression as the Regge block size (or 
the average edge length) tends to zero. Variation of I, with respect to the edge 
lengths of the blocks gives the simplicial analogue of Einstein’s equations. 

We now look at generalizations of the Regge calculus equivalent of the Einstein 
action. Firstly a cosmological constant term, which in the continuum theory takes 
the form A/d”x &, can clearly be represented on the simplicial lattice by a term in 
the action of the form 

IA = A X (total volume) . (2.3) 

Secondly, we wish to find a term equivalent to the continuum expression 
$jdJx &&‘, and the remainder of this section will be concerned with this problem. 



H. W. Humher, R.M. Williams / Qumtum gruoiy 395 

Since the curvature is restricted to the hinges, it is natural that expressions for 
curvature integrals should involve sums over hinges as in (2.1). The curvature tensor, 
which involves second derivatives of the metric, is of dimension L-‘. Therefore 
+/d”x &R” is of dimension Ldm2”. Thus if we postulate that an R2 term will 
involve the square of A$,,, which is of dimension L2(d-‘), then we shall need to 
divide by some d-dimensional volume to obtain the correct dimension for the extra 
term in the action. Now any hinge is surrounded by a number of d-dimensional 
simplices, so the procedure of dividing by a d-dimensional volume seems ambiguous. 
The crucial step is to realize that there is a unique d-dimensional volume associated 
with each hinge, and its construction will now be described. 

There is a well-established procedure for constructing a dual lattice for any given 
lattice [19]. This involves constructing polyhedral cells, known in the literature as 
Voronoi polyhedra, around each vertex, in such a way that the cell around each 
particular vertex contains all points which are nearer to that vertex than to any other 
vertex. Thus the cell is made up from (d - 1)-dimensional subspaces which are the 
perpendicular bisectors of the edges in the original lattice, (d - 2)-dimensional 
subspaces which are orthogonal to the 2-dimensional subspaces of the original 
lattice, and so on. 

It is not easy to visualize a dual lattice in an arbitrary dimension, so we shall now 
look specifically at the cases of interest to us, 2, 3 and 4 dimensions. Note that it is 
only in 2 dimensions that the hinges coincide with the vertices, and so the volume 
associated with the hinge is equal to the volume of the dual cell. In higher 
dimensions we shall need to define more carefully what we mean by the volume 
associated with each hinge. 



396 II. IV, Ma~ttber. R. M. MWcrors / Q~~mttmt g,uwil~ 

In two dimensions, we consider a network of triangles. (In Regge calculus it is 
conventional to use simplicial lattices. i.e. lattices based on triangles, tetrahedra, 
4-simplices, . . . , since the edge lengths then determine uniquely the shape of the 
block.) The dual lattice has been sketched in dashed lines in fig. 1. We see that the 
“volume” (area here) of the dual cell around the vertex or hinge A, consists of the 
sum of area contributions from 5 different triangles. The contribution from one 
triangle, say ABC, is determined as follows. Suppose that the sides are I,, I2 and I, 
(see fig. 2), and that F is equidistant from A, B, and C. 

The area of AFB is 2A, etc. Then the contribution of this triangle to the area of 
the polyhedron based on A is given by A, + A,, with 

I;‘%,, 
Al= 32A,,,’ (2.4) 

where A,,, is the area of the triangle ABC, and throughout this paper we define 

(2.5) 

The other areas may be found by permuting the indices. 
In 3 dimensions, the hinges are the edges of tetrahedra. Consider a number of 

tetrahedra meeting on an edge AB. There will be a polyhedral area in the dual lattice 
orthogonal to AB formed by joining the points at the centers of the tetrahedra. This 
is shown by the dashed line in fig. 3. 

G is the point equidistant from the vertices of the tetrahedron ABCD. The volume 
associated with the hinge AB will be the volume of the object formed by joining the 
vertices of the polyhedron to the points A and B. This will be the sum of volume 

Fig. 2. 
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contributions from all the tetrahedra meeting on AB. For example the contribution 
from the tetrahedron ABCD is determined as follows. Suppose that F” is the point 
in the triangle ABD equidistant from its vertices (see fig. 4). Then the volume in 
ABCD associated with AB is the sum of the volumes ABFG and ABF’G, which we 
denote by Vltz3) and VI,,,, respectively, with for example 

V 
C~213&23(456) 

‘(23) = 4608A ;23V123456 ’ 

Fig. 3. 

(2.6) 

Fig. 4. 



where b3456 is the volume of ABCD, and we define Zlapy(+) by 

2 +?7(XjLP) = - 21~1;1,2 + 1,21;2,,, + ls’l~~apy + l;Ip:,, . (2.7) 

In Four dimensions, we consider a number of 4-simplices meeting on a triangular 
hinge. Again there will be a polyhedral cell in the dual lattice, orthogonal to the 
triangle; its vertices will be the points like H which are equidistant from the vertices 
of each 4-simplex like ABCDE (see fig. 5). The volume associated with the hinge 
ABC is that of the object formed by joining the vertices of the polyhedron to those 
of the hinge. The contribution from the 4-simplex ABCDE will be as follows. 
Suppose that G’ is the point in the tetrahedron ABCE equidistant from its vertices 
(see fig. 6). 

Fig. 5. 

Fig. 6. 
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Then the volume in ABCDE associated with ABC is the sum of the volumes of 
ABCGH and ABCG’H which we denote by Vi/123(456j and Vi23(789j respectively, with, 
for example 

z 
V 

123(456) 
123(456) = 

1769472A;23V;3456V 

’ 12vA3456’123(789) - -?23(456, ( 

x [ hi3456 (2 123(789) + u123(789) ) - 2sSV’A$,] “‘], (2.8) 

where V is the volume of ABCDE, and we have defined u,PYcxay, by 

For completeness we list the area Aiz3 and the volumes VI23456 and V mentioned 
above: 

AIz3= f[-l~-l:-lj4+2(l~l;+1:l:+lfl;)]1’2, (2.10) 

‘123456 = h[l:l~(-l:-l~+l~+l:+l:+l3)+lil:(-l~-I:+l~+l~+l52+l~) 

+ lflf( - 1; - 15’ + 1; + lz’ + 1; + 1;) - 1;i;r; - lfl;l; - lflfl; - 1;-1:1;] l’?, 

(2.11) 

V= ~~{128[.'i;,,~~,,, +z'&'i;46 +&45&9] - 16l:ljl:l,2 

+ 2[ 1:E36421397214107 + ~;iz,54x187z4107 + ~fZ123~187~397 + f;2112321154’364] 

- [-%23z,54z397z4107 + =123z,87~364=4,07 + ‘154E187x364’3971’/2) . t2-12) 

Of course these may be written as determinants [5], but we have expanded them here 
to make the symmetries manifest in (2.10) and (2.11). 

Before writing our explicit formula for $ld”xR2, we should comment on one 
further point. If the integral of R is represented by C,,A,,S,,, then there is some 
ambiguity in deciding how to represent R2-should it involve Chh’AhA,,JI,~,,~, or 
merely C,A2,6: without any cross terms? Our claim is that to represent the square of 
the scalar curvature, we do not need the cross terms. (This point will be discussed 
further in sect. 4.) 
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Our expression for the cosmological constant term involves the total volume of the 
simplicial complex. This may be written as 

total volume = C (volume of d-simplices) , (2.13) 
c/-simpliccs 

or equivalently as 

total volume = C Y,, 
hinges 11 

(2.14) 

where Y,, is the volume associated with each hinge, as described above. Thus we may 
regard the invariant volume element fi d”x as being represented by Y,, when one 
performs the sum over hinges 

(2.15) 

This means that we must regard the scalar curvature R as being represented at each 
hinge by 2A$,,/Y,,, which is then consistent with eq. (2.1) 

(2.16) 

It is then straightforward to see that 

In particular, for n = 2, we have the equivalent form 

(2.17) 

(2.18) 

which is the main formula in this paper. Note that our definition for R is closely 
related to the conventional definition of sectional curvature [20]. 

At this stage it is useful to interpret our formulae in terms of the parallel transport 
of a test vector round a small loop. Consider a closed path r encircling a hinge h 
and passing through each of the simplices that meet at that hinge. In particular we 
may take r to be the boundary of the polyhedral area surrounding the hinge in figs. 
1, 3 and 5.’ 

For each neighboring pair of simplices j, j + 1, we may write down a Lorentz 
transformation L;, which describes how a given vector q,, transforms between the 



local coordinate systems in these two simplices [19]: 

9J;= b4.N+ 1>11%. (2.19) 

(Note that it is possible to choose coordinates so that LL is the unit matrix for one 
pair of simphces, but it will not then be unity for other pairs.) The Lorentz 
transformation is related to the path-ordered (P) exponential of the integral of the 
connection (r,)t; = I$ by 

between simplices 

(2.20) 

The connection here has support only on the common interface between the two 
simplices. The product of these Lorentz transformations around a closed elementary 
Wilson loop r is then given, for smooth enough manifolds, by 

I 
Y I-I xl2+1) 3 [eRpJpo];, 

pairs of 
simplices on r P 

where (RI,,); = RLp,, is the curvature tensor and B’” is a bivector in the plane of r, 
with magnitude equal to & times the area of the loop r. (For a parallelogram with 
edges up and bP, P’ = i(a”bP - db”).) 

The total change in a vector q,, which undergoes parallel transport around r is 
then given by 

1 
I! 9); = 9Jp + “ql = I-I -xc+ 1) cp,? (2.22) 

pairs of 
simplices on r P 

which reproduces to lowest order the usual parallel transport formula 

“cpp = R;p,~Pocpv. (2.23) 

On the Regge skeleton the effect of parallel transport around r is described by 

nL(j,j+ 1) = [E?8hU’h’]PY, 1 (2.24) 
i P” 

where U$‘) is a bivector orthogonal to the hinge h, defined in 4 dimensions by 

#TJ(ll) = 1 
P” -E,vpolfzQ1;b) 9 

2Ah 
(2.25) 
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and I$, and I& are the vectors forming two sides of the hinge h. It is these parallel 
transporters around closed elementary loops that satisfy the lattice analogues of the 
Bianchi identities [2,3]. 

Comparison of eqs. (2.21) and (2.24) means that we may make the identification 

It is important to notice here that this relation does not give complete information 
about the Riemann tensor, but only about its projection in the plane of the loop r 
orthogonal to the hinge. Thus in going from (2.25) to Regge’s expression for the 
Riemann tensor at the hinge, 

(2.27) 

where p ,, is the “density of hinges”, we are possibly neglecting certain terms in Rp,,po 
which vanish when projected in the plane of I? (This is a reason why we meet 
problems if we try to use (2.27) as a formula giving full information about R,,,,PO. in 
Regge calculus. This point is further discussed in sect. 4.) Note however that (2.27) 
does have all the correct symmetries of the Riemann tensor. 

Using eq. (2.27) in (2.26), we find that p,, must satisfy 

p,~$YP” = 1. (2.28) 

Now U$‘) and P” are both in the plane orthogonal to the hinge and their product is 
proportional to the area of the loop IY Thus the factor p,, must be equal, up to a 
numerical factor, to the inverse of the area of the loop dual to the hinge h. This last 
quantity in turn is proportional to the area of the hinge A,, divided by the volume Vi, 
associated with it, which means that we may write (2.27) as 

R’h’ = 
PYPO 

(2.29) 

This leads to 

which agrees with the form we have used for R in eqs. (2.16) (2.17), and shows that 
we have chosen the numerical factor correctly in (2.29). 

Before applying the expressions (2.15)-(2.18) to particular simplicial decomposi- 
tions, we must discuss an important point. In theory it is possible for the volume Vi, 
to become zero or even negative. To see this in two dimensions note firstly that the 
point equidistant from the vertices of a triangle need not be inside the triangle (see 
fig. 7). 



In this case, the areas of the shaded triangles (each called A, in fig. 2) are actually 
negative. (This is essential to ensure that the total area 2( A, + A, + A,) equals the 
area of the original triangle.) Now consider a network of triangles, with two such 
“elongated” triangles at a particular vertex, as shown in fig. 8. The polyhedron 
associated with vertex A has a part which “crosses over” itself. This triangular part 
will give a negative contribution to the area. One can imagine constructions (with the 
elongated triangles becoming narrower and narrower) where the negative contribu- 
tion becomes larger than the positive one, and the V,, becomes negative. Similar 
effects can occur in higher dimensions. 

One might be tempted to deal with this situation by imposing the condition that 
V,, should always be positive (in analogy with the requirement that the triangle 

Fig. I. 

Fig. 8. 
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inequalities and the higher-dimensional analogues be satisfied for the original 
lattice). However it turns out that this is not necessary. If one allows the edge lengths 
to vary by large discrete amounts, the volumes V,, for some. hinge could become 
negative, but if the edge lengths vary only smoothly, then as the volume V,, for some 
hinge tends toward zero (from above), the contribution from such a configuration to 
the path integral is exponentially suppressed by its small Boltzmann factor exp( -Z,). 
Thus the form of the R2 term provides an infinite barrier to prevent any volume V,, 
from becoming negative. 

3. Results for the regular tessellations of S*, S3 and S4 

We now study how the formulae (2.19, (2.16) and (2.18) compare with the 
continuum values for the regular tessellations of the two-sphere, the three-sphere and 
the four-sphere. (These correspond to the regular polyhedra in three, four and five 
dimensions [21].) Note that for regular tessellations, the volumes V,, take a very 
simple form since each d-dimensional simplex has its volume divided into p equal 
parts, where p is the number of hinges per simplex. If q d-simplices meet at each 
hinge, then V,, is just the sum of q of these contributions: 

vh= ;v, (3.1) 

where V is the volume of the d-simplex. Then in 2 dimensions, { p, q}, with p and q 
as defined here, is just the Schlafli symbol. In 3 dimensions, the Schlafli symbol is 
{a, b, q}, where (a, 6) is the Schlafli symbol of the 2-dimensional simplex used to 
build the 3-dimensional ones. (Thus {a, b} determines the value of p as defined 
above.) 

For regular tessellations, the dihedral angles +d also take particularly simple 
forms. For example, the dihedral angle *d at the (d - 2)-dimensional hinge in a 
d-dimensional simplex satisfies 

1 coslr&= -. 
d (34 

(More generally such a dihedral angle may be worked out from the formula [22] 

d 
sin *d = - vclv,-2 

d- 1 v,-,v;_, ’ 
(3.3) 

where Vc,:/-2 is the volume of the hinge, Vd is the volume of the d-simplex, and V;,- i, 
V&_, the volumes of the two (d - 1)-dimensional faces that meet on the hinge.) 

We now list the regular tessellations of S2, S3 and S4 (note again that a 
tessellation of S” corresponds in Coxeter [21] to a regular polyhedron in (n + 1) 
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dimensions). We give the Regge calculus formula for the total volume, i/d”x &R 
and $jd“x &R2 in each case, together with the numerical values, and compare 
them with the continuum value. We set the scale for each tessellation by requiring 
the edge lengths I to give the same total volume as a sphere in that dimension, of 
radius r. (A list of the Regge calculus values for the Einstein action for the regular 
tessellations of S3 is given by Warner [23]. We include our predictions of this 
quantity here both for the sake of completeness, and to correct some misprints in 
Warner’s formulae.) The scalar curvature for S” is n(n - 1)/r’ [24]. 

Table 1 shows the simplicial lattice predictions for the various tessellations of S’. 
In two dimensions the number of hinges is equal to the number of sites NO. The 
second expression in the last column is the form taken by the first expression there 
when the length scale is set in the way described above. We see that for S*, the 
Regge calculus equivalent of the Einstein action is exact, as indeed it must be by the 
Gauss-Bonnet theorem. Note that our Regge calculus expression for $ld”x &R' is 
also exact in this case! 

In table 2a we have listed the expressions for the regular tessellations of S3. The 
length scale has been set in columns 4 and 5 by comparing volumes with those in the 
continuum case. The numerical values are shown in table 2b, and we see that as the 
number of vertices increases, the values of C,/,,6, and C,l$S~/V,, tend clearly 
towards the continuum expression +jd3x &R and i/d3x &R'. 

TABLE 1 
Regular tessellations of S” 

Tessellation N,, Volume (= @‘r&R) (E +‘.y&R2) 

tetrahedron a3 4 61' 4r 
167~' 497 

GE7 

octahedron & 6 201' 4n 
877' 4n --- 

Al2 r2 

cube 
87r' 4n 

yJ 8 61' 46 -z- 
31’ r2 

icosahedron 12 5JsI’ 4n 
1671' 477 -s- 

561” rz 
dodecahedron 20 3.53/4 73/2(1 + Js)V 4a 342fin' 477 =- 

353/4(1+ fi)-‘/“I2 r’ 

continuum 4972 477 
417 
,z 
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TABLE 2a 
Regular tessellations of S-’ 

Tessellatiqn NO Volume 

5-cell a4 5 

16-cell fi,, 8 

tessaract y4 

24-cell 

16 

24 

600~cell 120 

120-cell 600 

continuum 

81’ 

8fi1’ 

5ofi13 

?A(1 + Js)?” 

217’r’ 

1oq $‘I”‘, 

X(2n- 3cosC’f) 

12fi[3n2]““, 

x(2r-4cos-‘;) 

164 &‘]“‘, 

[ 1 l/3 
120 A- r-’ 

67~’ 
X(2r- 3cos-‘:)’ 

x(2n - 4cos-‘i)’ 

32n” [ 4 
,2 
1 l/3 

yl 

67~‘) 18G 
I 

TABLE 2b 
Numerical results for the tessellations of S’ 

Tessellation 
Sites 

No 
Hinges 

4 

5-cell 
16-cell 
tessaract 
24-cell 
600~cell 
120-cell 
continuum 

5 10 
8 24 

16 32 
24 96 

120 720 
600 1200 

8.4611r’t 
7.231s’r 
6.88os*f 
6.455~~1 
6.121n’r 
6.077~~1 

6n2r 

35.789a2r-’ 
26.144r’r-’ 
23.681r’F’ 
20.836r”F’ 
18.735n2r-’ 
18.467a’r-’ 

18nZr-’ 
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TABLE 3a 

401 

Regular tessellations of S4 

A# 

;T 
Tessellation N, Volume (= :/d4x&R) (= +i4s&R’) 

regular simplex as 6 &I614 53/48fiwr2(2n- 3~0s~‘f) 2406(2~- 3cos-‘i)’ 
cross polytope & 10 f JSI” 53/48firr’(2n - 4~0s~‘i) 720Ji;(2n - 4cos-I$)” 
measure polytope ys 32 1014 16gn’r’ 160n’ 
continuum R 2.4 j?7 I 16n’r’ 96~’ 

TABLE 3b 
Numerical results for the tessellations of S4 

Tessellation 
Sites 
No 

Hinges 
N, (= tjd4x&R) (= $/d4s\l;;R’) 

a5 
Ps 
Ys 
continuum 

6 20 
10 80 
32 80 

28.04n’r” 
21.08n’r’ 
20.7n’r2 

16s’r’ 

294.9~’ 
166.6n’ 
160n’ 
96~’ 

We have also found that for both operators the approach to the continuum is very 
close to an N;2/3 (or N;*13) behavior. These results are further evidence that our 
formula (2.18) is indeed the appropriate representation for an R* term in the lattice 
action. 

The Regge calculus expressions for the regular tessellations of S4 are shown in 
table 3a, again with the length scales set in column 4 by equating the volumes with 
those in the continuum. The convergence of the numerical results in table 3b is not 
as impressive as for S3. The problem lies in the fact that there are no other regular 
tessellations of S4, and ones with 6, 10 or even 32 vertices are certainly very crude 
approximations to the continuum. Hence we cannot expect in this case strong 
evidence from the regular tessellations on the convergence to the continuum of our 
simplicial lattice expressions. 

4. Other higher derivative terms in the lattice gravity action 

So far we have discussed the inclusion of only one of many possible higher 
derivative terms in the Regge calculus action. The others usually considered are 
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ld”x &R,,Rp’, jddx &R,,YD(rR~“P* and jddx ~C,,,&?‘VPO where C,,,, is the 
Weyl ‘tensor, and finally the Euler characteristic and the Hirzebruch signature 
(defined in eqs. (1.3) and (1.4)). Let us consider these last two quantities first. 

The Euler characteristic x for a simplicial decomposition may be obtained from a 
particular case of the general formula for the analogue of the Lipschitz-Killing 
curvatures of smooth riemannian manifolds for piecewise flat spaces [18]. In two 
dimensions, the formula of Cheeger, Miiller and Schrader reduces of course to 

which is the exact equivalent of the Gauss-Bonnet theorem 

x= &/d2x&R (4.2) 

In four dimensions the formula becomes 

c (0,2)-- c (0,4)+ c (W)(W) , 1 (4.3) 
02300 04300 043L72300 

where ui denotes an i-dimensional simplex and (i, j) denotes the (internal) dihedral 
angle at an i-dimensional face of a j-dimensional simplex. Thus, for example, (0,2) 
is the angle at the vertex of a triangle and (2,4) is the dihedral angle at a triangle in a 
4-simplex (Cheeger, Miller and Schrader normalize the angles so that the volume of 
a sphere in any dimension is one; thus planar angles are divided by 2m, 3-dimen- 
sional solid angles by 4n and so on). 

Of course there is a much simpler formula for the Euler characteristic of a 
simplicial complex 

x=N,-N,+N,-N,+N,, (4.4) 

where Ni is the number of simplices of dimension i; this is equivalent, by the 
Dehn-Sommerville equations [25], to 

x=~o- +N,+N,. (4.5) 

However, it may turn out to be useful in quantum gravity calculations to have a 
formula for x in terms of the angles (and hence of the edge lengths) of the simplicial 
decomposition. In practice, an obstacle to the use of (4.3) is that, as far as we know, 
there is no simple formula for (0,4), the solid angle at the vertex of a general 
4-simplex. (This is equivalent to the long-standing problem of the volume of a 
spherical tetrahedron [26].) (For a regular 4-simplex, it can be shown that (0,4) = 
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- i + (1/2n)cos-1’ 4.) Furthermore, there seems to be no equivalent formula for the 
Hirzebruch signature for a simplicial decomposition. 

Before leaving the Euler characteristic let us remark that formula (4.3) does not 
appear to be bilinear in the deficit angles, as one would have expected from our 
general arguments about R2 type terms. However this may be due to the fact that 
the Euler characteristic is a total divergence, and so this formula is probably 
equivalent in some sense to evaluating the surface integral of the curvature two-form 
times the connection one-forms. 

Let us now look in more detail at the other possible higher derivative terms listed 
at the beginning of this section. In 2 and 3 dimensions the Weyl tensor vanishes. In 
fact in 2 dimensions the Riemann and Ricci tensors satisfy 

R 
W’PO 

RPvP” = +R 
P 

R”” = R2, (4.6) 

so the R’ term, which we have already written down, is the only possible term of 
dimension four. In 3 dimensions one has 

R 
P”PO 

RP”PO = 4R,,,R”” + 3R2, (4.7) 

and so we need also to find an expression for /d3x&RpyRP”. In 4 dimensions the 
Riemann tensor satisfies 

R ,,,,pmRPYp*= C~vpOC”ypO+ 2R,,,R”“- $R2, (4.8) 

which means that we need a lattice expression also for the integral of CPyp,,C~“pa and 
R,,,R”“. Moreover the Euler characteristic may be written in the form [l] 

x= -&jd4x~C,,,,,C”‘““+ &]d4x&(RZ-3RJP’). (4.9) 

Combined with (4.3) and (2.18) this means that we need to write a Regge calculus 
formula for only one of jd4x~CPypOCPYpo and jd4x &R,,,R”“. A term of this 
form involves information about the curvature in different directions, so we would 
expect there to be cross-terms in the lattice formula, involving contributions from 
different neighboring hinges (in analogy with the situation for FPypPy in lattice 
gauge theories where one needs contributions from orthogonal plaquettes). In 
practice we could write down expressions of the form 

(4.10) 

where (h, h’) means a sum over hinges h and h’ such that the corresponding 
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Fig. 9. 

elementary parallel transport loops touch at one point on the dual lattice and do not 
have any edges in common (see fig. 9). 

Another possibility is to construct suitable quantities based on Regge’s approxi- 
mate expression [2] in eq. (2.27) for the Riemann tensor at the hinge h, with the 
“density of hinges” P,, chosen suitably, as in eq. (2.29) say. 

The naive use of (2.27) as an exact formula for the Riemann tensor can lead to 
problems. For example, if one uses it to evaluate the contribution to the Euler 
characteristic on each hinge one obtains zero, and it is therefore clear that one needs 
cross-terms involving contributions from different hinges. Even then it seems impos- 
sible to obtain the correct integer value for a particular simplicial decomposition by 
this method, and formula (4.3) has to be used. In spite of these difficulties, it may be 
possible to represent the R,,R”” and C,,,,P,, CPypO terms by expressions involving 
(2.27), with contributions from hinges meeting at a vertex but no edges in common. 
Note that since the value of (2.27) depends on the coordinate system used, we shall 
be able to consider, in this formulation, cross-terms only from those hinges which 
can be covered by the same coordinate system. We hope to return to this question in 
a future publication. 

5. Prospects for calculations in quantum gravity 

The formalism we have developed enables us to perform quantum gravity calcula- 
tions based on the lattice lagrangian 

(5.0 
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which is equivalent, for smooth enough manifolds, to the continuum lagrangian 

I= /d4x&[n+ +bR+ +cR’]. (5.2) 

We should remark that it is not clear to us at the present moment that the action of 
eq. (5.1) is not reflection positive [27] about some set of appropriate (d - l)- 
dimensional hyperplanes (appropriate in the sense that they have to contain the 
hyper-body-diagonals and satisfy other constraints). This in turn would lead to the 
possibility of constructing a positive self-adjoint transfer matrix of norm less than 
one (and hence a positive self-adjoint hamiltonian), and defining a unitary theory for 
finite lattice spacing. 

Using a lattice which starts either as a regular tessellation of S” or as a 
hypercubical lattice, divided into simplices [3] by introducing the appropriate body 
and face diagonals in order to make the lattice rigid (see fig. 10 for the three-dimen- 
sional case), we allow the edge lengths to make small arbitrary variations. The new 
edge lengths are then accepted or rejected according to the probability distribution 
exp( -Ia). Such numerical work is in progress and the results will be presented in a 
forthcoming paper [28]. 

Some of the basic questions in higher derivative quantum gravity are the non-per- 
turbative renormalization of the coupling constants such as a, b, c.. . , the structure 
of the phase diagram, the domain of attraction of the fixed points and the amount of 
necessary fine tuning of the bare couplings to get agreement with phenomenology. 
The technique known in the context of lattice gauge theories as block-spinning may 
be applied to study the renormalization of the different operators that arise on the 
lattice [29,30]. The general idea is to look at the large scale behavior of the system by 
grouping together sets of neighboring simplices into larger block simplices. Expecta- 
tion values of block quantities then provide information about the block correla- 
tions, and therefore, indirectly, about the block action, on a larger scale than the 
original action defined on the original lattice. 

Fig. 10. 
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For a two-dimensional network of triangles topologically equivalent to a square 
lattice, with periodic boundary condition and divided up into triangles, we may 
replace groups of 4 triangles by the larger triangle shown in fig. 11. Among the 
possible block edge length definitions we have used, we mention the one that has the 
more direct physical interpretation as the geodesic distance 

L, = 1; -I- 1; -I- 21,l,cos+6, (5.3) 

where 6 is the deficit angle at B. This is equivalent to replacing ABC by the geodesic 
distance between A and C. The construction of block spins in higher dimensions 
proceeds in analogous fashion. 

In general one cannot have the luxury of restricting oneself to a small set of 
operators, and follow only the renormalization of those, since at each blocking new 
interaction can, at least temporarily, be generated. In principle one would have to 
add to the action terms that are more complicated than the ones we have written 
down (which always involve the parallel transport around an elementary closed 
Wilson loop) and contain information about the parallel transport around a loop 
entangling more than one hinge. (The simplest case is a loop in two dimensions 
encircling two sites and made out of ten dual links, for which again both a deficit 
angle and an area can be defined.) 

The hope is that Wilson loops of arbitrary shape and increasing size will have 
rapidly increasing coefficients at the non-trivial fixed point(s) [29]. Technically one 
will also have to face the problem of reconstructing the block probability distribu- 
tions from their moments (or cumulants), which are some appropriate functions of 
the block correlations. On the other hand some very accurate numerical results have 
been obtained for statistical mechanics systems using the real-space renormalization 

C 

Fig. 11. 
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group approach with a reasonably small set of operators, and it is clear that the type 
of questions that one would like to ask in quantum gravity (the value of the 
renormalized cosmological constant, for example) are of a more general and basic 
nature. 

We intend to use the methods described here to make predictions about the 
renormalization properties of the coupling constants in higher derivative gravity 
theories, as well as for the cosmological constant term. 

It is a pleasure to thank F. David, M. RoEek and A. Strominger for helpful 
discussions. One of the authors (R.M.W.) is grateful for the hospitality of the 
Institute for Advanced Study. This research was supported by the US Department of 
Energy under grant no. DE-AC02-76ER02220. 
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