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The possibility that the strength of gravitational interactions might slowly increase with
distance, is explored by formulating a set of effective field equations, which incorporate
the gravitational, vacuum-polarization induced, running of Newton’s constant G. The
resulting long distance (or large time) behavior depends on only one adjustable parame-
ter ξ, and the implications for the Robertson–Walker universe are calculated, predicting
an accelerated power-law expansion at later times t ∼ ξ ∼ 1/H.

In the Standard Model of particle interactions, all gauge couplings are known to

run with energy. Recent nonperturbative studies of quantum gravity have suggested

that the gravitational coupling may also depend on a scale related to curvature, and

therefore macroscopic in size. Here, we investigate the effects of a running gravita-

tional constant G at large distances. This scale dependence is assumed to be driven

by gravitational vacuum polarization effects, which produce an anti-screening ef-

fect some distance away from the primary source, and therefore tend to increase

the strength of the gravitational coupling. A power law running of G will be imple-

mented via manifestly covariant nonlocal terms in the effective gravitational action

and field equations.

We start by assuming1–7 that for Newton’s constant one has

G(r) = G(0)[1 + cξ(r/ξ)1/ν + O((r/ξ)2/ν )] , (1)

where the exponent ν is generally related to the derivative of the beta function for

pure gravity evaluated at the nontrivial ultraviolet fixed point. Recent studies have

ν−1 varying between 3.0 and 1.7.4,5,8–18 These estimates rely on three different,

735



March 15, 2006 14:33 WSPC/146-MPLA 01997

736 H. W. Hamber & R. M. Williams

and unrelated, nonperturbative approaches to quantum gravity, based on the lattice

path integral formulation, the two plus epsilon expansions of continuum gravity, and

a momentum slicing scheme combined with renormalization group methods in the

vicinity of flat space, respectively. In all three approaches a nonvanishing, positive

bare cosmological constant is required for the consistency of the renormalization

group procedure. The mass scale m = ξ−1 in Eq. (1) is supposed to determine

the magnitude of quantum deviations from the classical theory. It seems natural to

identify 1/ξ2 with either some very large average spatial curvature scale, or perhaps

more appropriately with the Hubble constant (as measured today) determining the

macroscopic expansion rate of the universe, via the correspondence

ξ =
1

H
, (2)

in a system of units for which the speed of light equals one. A possible concrete

scenario is one in which ξ−1 = H∞ = limt→∞ H(t) =
√

ΩΛ H0 with H2
∞

= Λ
3 ,

where Λ is the observed cosmological constant, and for which the horizon radius is

H−1
∞

.

As it stands, the formula for the running of G is coordinate dependent, and we

therefore replace it with a manifestly covariant expression involving the covariant

d’Alembertian operator

� = gµν∇µ∇ν , (3)

whose Green’s function in d spatial dimensions is known to behave as

〈x| 1

�
|y〉δ(r − d(x, y|g)) ∼ 1

rD−2
, (4)

where d is the minimum distance between points x and y in a background with

metric gµν . We therefore write, in four dimensions,

G → G(�) = G(0)

[

1 + c�

(

1

ξ2�

)1/2ν

+ O((ξ2
�)−1/ν)

]

. (5)

One way of incorporating this is to replace the gravitational action

I =
1

16πG

∫

dx
√

gR (6)

by

I =
1

16πG

∫

dx
√

g

(

1 − c�

(

1

ξ2�

)1/2ν

+ O((ξ2
�)−1/ν)

)

R . (7)

The above prescription has in fact been used successfully to systematically incor-

porate the effects of radiative corrections in an effective action formalism.19–25 It

should be noted that the coefficient cξ in Eq. (1) is expected to be a calculable

number of order one, not necessarily the same as the coefficient c�, as r and 1/
√

�

are clearly rather different entities to begin with. One should recall here that in
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general the form of the covariant d’Alembertian operator � depends on the specific

tensor nature of the object it is acting on.

The details of the incorporation of this modified G in the gravitational side of

the Einstein equations have been given elsewhere.1 Here we shall describe instead

its incorporation on the matter side of Einstein’s equations, giving the effective field

equations

Rµν − 1

2
gµνR + Λgµν = 8πG(1 + A(�))Tµν , (8)

where we have replaced G(r) by G(0)(1 + A(�)). These can be written in the form

Rµν − 1

2
gµνR + Λgµν = 8πGT̃µν , (9)

with T̃µν = (1+A(�))Tµν defined as an effective, or gravitationally dressed, energy–

momentum tensor. Just like the ordinary Einstein gravity case, in general T̃µν might

not be covariantly conserved a priori, ∇µT̃µν 6= 0, but ultimately the consistency of

the effective field equations demands that it be exactly conserved in consideration

of the Bianchi identity satisfied by the Riemann tensor.

The ensuing new covariant conservation law

∇µT̃µν ≡ ∇µ[(1 + A(�))Tµν ] = 0 (10)

can then be viewed as a constraint on T̃µν (or Tµν) which, for example, in the

specific case of a perfect fluid, will imply again a definite relationship between the

density ρ(t), the pressure p(t) and the Robertson–Walker scale factor R(t), just as

it does in the standard case.

For simplicity we set the cosmological constant Λ to zero from now on and

consider first the trace of the effective field equations

R = 8πG(1 + A(�))Tµ
µ . (11)

The advantage of this is that, initially, we need to consider the action of � only on

a scalar function, S(x) say, which is given by

1√
g
∂µgµν√g∂νS(x) . (12)

For the Robertson–Walker metric,

ds2 = −dt2 + R2(t)

{

dr2

1 − kr2
+ r2(dθ2 + sin2 θ dϕ2)

}

, (13)

� acting on a scalar function of t only, is

− 1

R3(t)

∂

∂t

[

R3(t)
∂

∂t

]

. (14)

The energy–momentum tensor for a perfect fluid is given by

Tµν = (p(t) + ρ(t))uµuν + gµνp(t) . (15)
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We consider a pressureless fluid p(t) = 0 and assume the density and scale factor

are given by powers of t, as in the classical solution for the RW metric: ρ(t) = ρ0t
β ,

R(t) = R0t
α. Then

�
n(Tµ

µ) = �
n(−ρ(t)) → 4n(−1)n+1

Γ(
(

β
2 + 1

)

Γ
(

β+3α+1
2

)

Γ
(

β
2 + 1 − n

)

Γ
(

β+3α+1
2 − n

)ρ0t
β−2n . (16)

We may analytically continue the exponent to negative fractional n,26–28 and obtain

with n = −1/(2ν), an expression for (1 + A(�)) acting on the trace of Tµν , given

by

−
(

1 + cξ

(

t

ξ

)1/ν
)

ρ0t
β , (17)

with

cν = 4−1/2ν(−1)1−1/2ν
Γ
(

β
2 + 1

)

Γ
(

β+3α+1
2

)

Γ
(

β
2 + 1 + 1

2ν

)

Γ
(

β+3α+1
2 + 1

2ν

) . (18)

Using the value of the scalar curvature for the Robertson–Walker metric in the

k = 0 case,

R = 6(Ṙ2(t) + R(t)R̈(t))/R2(t) , (19)

gives

6α(2α − 1)

t2
= −

(

1 + cξ

(

t

ξ

)1/ν
)

ρ0t
β . (20)

For large t, when the correction term starts to take over, we see from the powers of

t that

β = −2 − 1/ν . (21)

Next we will examine the full effective field equations (as opposed to just their trace

part) of Eq. (8) with Λ = 0,

Rµν − 1

2
gµνR = 8πG(1 + A(�))Tµν . (22)

Here the d’Alembertian operator

� = gµν∇µ∇ν (23)

acts on a second rank tensor,

∇νTαβ = ∂νTαβ − Γλ
ανTλβ − Γλ

βνTαλ ≡ Iναβ ,

∇µ(∇νTαβ) = ∂µIναβ − Γλ
νµIλαβ − Γλ

αµIνλβ − Γλ
βµIναλ ,

(24)
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and would thus seem to require the calculation of 1920 terms, of which fortunately

many vanish by symmetry. Assuming that Tµν describes a pressureless perfect fluid,

we obtain

(�Tµν)tt = 6ρ(t)

(

Ṙ(t)

R(t)

)2

− 3ρ̇(t)
Ṙ(t)

R(t)
− ρ̈(t) ,

(�Tµν)rr =
1

1 − kr2
(2ρ(t)Ṙ(t)2) ,

(�Tµν)θθ = r2(1 − kr2)(�Tµν)rr ,

(�Tµν)ϕϕ = r2(1 − kr2) sin2 θ(�Tµν)rr ,

(25)

with the remaining components equal to zero. Note that a nonvanishing pressure

contribution is generated in the effective field equations, even if one assumes initially

a pressureless fluid. As before, repeated applications of the d’Alembertian � to the

above expressions leads to rapidly escalating complexity (for example, eighteen

distinct terms are generated by �
2 for each of the above contributions), which can

only be tamed by introducing some further simplifying assumptions. In the following

we will therefore assume as before that k = 0, ρ(t) = ρ0t
β and R(t) = R0t

α. We

obtain

(�Tµν)tt = (6α2 − β2 − 3αβ + β)ρ0t
β−2 ,

(�Tµν)rr = 2R2
0t

2αα2ρ0t
β−2 ,

(26)

which again shows that the tt and rr components get mixed by the action of the

� operator, and that a nonvanishing rr component gets generated, even though it

was not originally present.

The geometric side of the gravitational field equations, the Einstein tensor, has

the following components for the RW metric:

Gtt = 3Ṙ2(t)/R2(t) ,

Grr =
−1

1 − kr2
(Ṙ2(t) + 2R(t)R̈(t)) ,

Gθθ = r2(1 − kr2)Grr ,

Gϕϕ = sin2 θGθθ .

(27)

Then with k = 0 and R(t) = R0t
α, these will all behave like t−2 so in fact a solution

can only be achieved at order �
n provided the exponent β satisfies β = −2 + 2n,

or since n = −1/(2ν),

β = −2− 1/ν , (28)

as was found previously from the trace equation, Eqs. (11) and (21).
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We must now determine α. By repeated application of �, for general n one can

then write

(�nTµν)tt → ctt(α, ν)ρ0t
−2 (29)

and similarly for the rr component

(�nTµν)rr → crr(α, ν)R2
0t

2αρ0t
−2 . (30)

But remarkably (see also Eq. (25)) one finds for the two coefficients the simple

identity

crr(α, ν) =
1

3
ctt(α, ν) (31)

as well as cθθ = r2crr and cϕϕ = r2 sin2 θcrr. Then for large times, when the

quantum correction starts to become important, the tt and rr field equations reduce

to

3α2t−2 = 8πGctt(α, ν)ρ0t
−2 (32)

and

−α(3α − 2)R2
0t

2α−2 = 8πGcrr(α, ν)R2
0t

2αρ0t
−2 (33)

respectively. But the identity crr = 1
3ctt implies, simply from the consistency of the

tt and rr effective field equations at large times,

crr(α, ν)

ctt(α, ν)
≡ 1

3
= −3α − 2

3α
, (34)

whose only possible solution finally gives the second sought-for result, namely

α =
1

2
. (35)

We still need to check whether the above solution is consistent with covariant

energy conservation. With the assumed form for Tµν it is easy to check that energy

conservation yields for the t component

(∇µ(�nTµν))t → −((3α + β + 1/ν)ctt + 3αcrr)ρ0t
β+1/ν−1 = 0 (36)

when evaluated for n = −1/2ν, and zero for the remaining three spatial components.

But from the solution for the matter density ρ(t) at large times one has β =

−2− 1/ν, so the above zero condition again gives crr/ctt = −(3α − 2)/3α, exactly

the same relationship previously implied by the consistency of the tt and rr field

equations.

Let us emphasize that the values for α = 1/2 of Eq. (35) and β = −2 − 1/ν of

Eq. (28), determined from the effective field equations at large times, are found to

be consistent with both the field equations and covariant energy conservation. More

importantly, the above solution is also consistent with what was found previously

by looking at the trace of the effective field equations, Eq. (11), which also implied

the result β = −2− 1/ν, Eq. (21).
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The classical unmodified matter-dominated RW equations have solutions α =

2/3, β = −2, which mean that the scale factor behaves as

R(t) ∼ tα ∼ t2/3 (37)

and the density as

ρ(t) ∼ tβ ∼ t−2 ∼ (R(t))−3 . (38)

This will also be the behavior for our model at early times, but at later times,

when the effect of the gravitational vacuum-polarization modification dominates,

the behavior is rather different: for the scale factor, we have

R(t) ∼ tα ∼ t1/2 (39)

and for the density

ρ(t) ∼ tβ ∼ t−2−1/ν ∼ (R(t))−2(2+1/ν) . (40)

Thus the density decreases significantly faster in time than the classical value

(ρ(t) ∼ t−2), a signature of an accelerating expansion at later times.

Within the Friedmann–Robertson–Walker (FRW) framework the gravitational

vacuum polarization term behaves in many ways like a positive pressure term. The

value α = 1/2 corresponds to ω = 1/3 in

α =
2

3(1 + ω)
, (41)

(this follows from the consistency of the rr and tt equations in the general case)

where we have taken the pressure and density to be related by p(t) = ωρ(t), which

is therefore characteristic of radiation. One can therefore visualize the gravitational

vacuum polarization contribution as behaving like ordinary radiation, in the form of

a dilute virtual graviton gas. It should be emphasized though that the relationship

between density ρ(t) and scale factor R(t) is very different from the classical case.
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