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Quantum gravity is investigated in the limit of a large number of space-time dimensions d, using as an
ultraviolet regularization the simplicial lattice path integral formulation. In the weak field limit the
appropriate expansion parameter is determined to be 1=d. For the case of a simplicial lattice dual to a
hypercube, the critical point is found at kc=� � 1=d (with k � 1=8�G) separating a weak coupling from a
strong coupling phase, and with 2d2 degenerate zero modes at kc. The strong coupling, large G, phase is
then investigated by analyzing the general structure of the strong coupling expansion in the large d limit.
Dominant contributions to the curvature correlation functions are described by large closed random
polygonal surfaces, for which excluded volume effects can be neglected at large d, and whose geometry
we argue can be approximated by unconstrained random surfaces in this limit. In large dimensions the
gravitational correlation length is then found to behave as j log�kc � k�j

1=2, implying for the universal
gravitational critical exponent the value � � 0 at d � 1.
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I. INTRODUCTION

The lack of perturbative renormalizability for quantum
gravitation in physical dimensions [1–6] has brought to the
forefront the need to develop field theoretic approximation
schemes that do not rely on the assumption of weak
gravitational fields, and which are sophisticated enough
to deal with the rich physical structure of nonrenormaliz-
able theories [7–11]. The hope is that more powerful
covariant methods, better suited to the nonperturbative
regime, will eventually shed some light on the elusive
long-distance properties of quantum gravitation, which
could ultimately have a bearing on a number of long-
standing and fundamental issues, such as the short distance
nature of space-time, the emergence of the semiclassical
limit and the problem of large-scale quantum cosmology
[12–15].

Approaches based on the simplicial lattice formulation
for gravity [16–24], the 2� � expansion [8,25–28] and
approximate renormalization-group methods based on
Wilson’s momentum slicing technique [29,30] have sug-
gested the existence of a nontrivial ultraviolet fixed point in
and around four dimensions, separating a weakly coupled
(but physically unattractive) phase from a strongly coupled
one, the latter phase being characterized by a finite invari-
ant correlation length, and close to smooth geometries at
large distances. Substantial uncertainties remain in each of
the three approximation methods mentioned above, both
about the results themselves and their relationship to each
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other, but also regarding their ultimate physical signifi-
cance and how they might relate to physical gravitational
phenomena, and both early and late time cosmology. It
would be clearly desirable if one could find a limit in the
quantum gravity case where nonperturbative aspects of the
theory could be fully explored by covariant analytical
means. In the significantly simpler Yang-Mills case, the
evidence so far is that the lattice is the only reliable non-
perturbative method, capable of producing reasonably un-
ambiguous quantitative results, within a controlled
approximation based on the zero lattice spacing limit. It
will be this method that will be therefore the focus of our
work.

In this paper we study a set of approximation methods
based on an expansion in the inverse number of dimen-
sions. Increasing the number of space-time dimensions
above four only worsens the renormalizability problem,
which implies that the need for a nonperturbative ap-
proach, such as the lattice one, becomes even more acute.
The so-called 1=d expansion was originally developed for
statistical mechanics systems, and later extended to the
study of quantum field theory, where it has since met
with a number of considerable successes, including an
understanding of triviality for scalar field theories above
four dimensions (which, incidentally, are not perturba-
tively renormalizable for any d > 4). The above expansion
is known to be intimately tied up with the mean field theory
treatment of quantum mechanical systems, but not neces-
sarily equivalent to it (as was already noted in the gauge
theory case), and exploits the fact that in large dimensions
each point is typically surrounded by many neighbors,
whose action can then be either treated exactly, or included
-1 © 2006 The American Physical Society
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as some sort of local average. For classical spin systems at
finite temperature, the 1=d expansion was originally de-
veloped in [31–33] by examining the structure of the high
temperature expansion.

In many ways the 1=d expansion is similar to the very
successful 1=N expansion for statistical mechanics sys-
tems [the O�N� vector model being one thoroughly ex-
plored and well-understood example [34,35] ] and SU�N�
gauge theories, where it leads to the planar diagram ap-
proximation [36,37] and the many phenomenological suc-
cesses that follow from it. In the gravitational case it is less
obvious how to attach color degrees (or any other internal
degree) of freedom to the graviton, so this particular ave-
nue seems unfruitful at the moment.

In this paper we will study large-dimensional pure gravi-
tation, without any matter fields, which could then be
added at a later stage. We recall here that for pure gravity
in d dimensions there are d�d� 1�=2 independent compo-
nents of the metric, and the same number of algebraically
independent components of the Ricci tensor. The con-
tracted Bianchi identities then reduce the count by d, and
so does general coordinate invariance, leaving d�d�
1�=2� d� d � d�d� 3�=2 physical gravitational de-
grees of freedom in d dimensions. As a result, the number
of physical degrees of freedom of the gravitational field
grows rather rapidly (quadratically) with the number of
dimensions.

The paper is organized as follows. In Sec. II we discuss
the machinery of the 1=d expansion for the lattice theory of
gravity based on Regge’s simplicial construction. The
action simplifies considerably in the large d limit, and we
are able to exhibit the location of the critical point in the
variable k � 1=8�G, at least in the weak field limit, as well
as the nature of the excitation spectrum around it. In
Sec. III we follow a complementary route to the large d
limit, where we perform a simultaneous 1=d and strong
coupling (small k) expansion. Since the strong coupling
expansion for simplicial lattice gravity has not been dis-
cussed before in the literature, we will present here some
general aspects of it. We then show how the relevant (in the
long-distance limit) critical behavior can be extracted from
the strong coupling expansion by analyzing the geometric
structure of its dominant terms. In Sec. IV we provide some
contact with results obtained in the continuum in and above
d � 4, and compare and contrast with what has been found
in the previous two sections from the simplicial lattice
theory. Appendix A contains a brief summary of the large
d limit for scalar lattice field theories, while Appendix B
discusses some results relevant to non-Abelian gauge fields
on the lattice.
II. EXPANSION IN INVERSE POWERS OF THE
DIMENSION

Our first concern will be an approximate evaluation, in
the large d limit, of an appropriately discretized form of the
044031
continuum Euclidean functional integral for pure gravity
without matter, which we write here as

Zcont �
Z
�dg��� exp

�
��

Z
ddx

���
g
p
�

1

16�G

Z
ddx

���
g
p
R
�
:

(2.1)

In the following we will therefore first address the key issue
of precisely what type of terms in the discrete action, based
on the simplicial lattice formulation [16], become domi-
nant in this limit.

A. General formulas in d dimensions

We will consider here a general simplicial lattice in d
dimensions, made out of a collection of flat d-simplices
glued together at their common faces so as to constitute a
triangulation of a smooth continuum manifold, such as the
d-torus or the surface of a sphere. Each simplex is endowed
with d� 1 vertices, and its geometry is completely speci-
fied by assigning the lengths of its d�d� 1�=2 edges. We
will label the vertices by 1; 2; 3; . . . ; d� 1 and denote the
square edge lengths by l212 � l221; . . . ; l21;d�1. The vertices of
the simplex can be specified by a set of vectors v1 � 0, v2,
. . ., vd�1. The matrix

gij � hvi�1jvj�1i; (2.2)

with 1 � i; j � d, is positive definite, and, in terms of the
edge lengths lij � jvi � vjj, it is given by

gij �
1
2�l

2
1;i�1 � l

2
1;j�1 � l

2
i�1;j�1�: (2.3)

The volume of a d-simplex is then given by the
d-dimensional generalization of the well-known formula
for a tetrahedron

Vd �
1

d!

������������
detgij

q
: (2.4)

An equivalent form can be given in terms of a determinant
of a �d� 2� 	 �d� 2� matrix,

Vd �
��1��d�1�=2

d!2d=2

��������������������������

0 1 1 . . .
1 0 l212 . . .
1 l221 0 . . .
1 l231 l232 . . .

. . . . . . . . . . . .
1 l2d�1;1 l2d�1;2 . . .

��������������������������

1=2

: (2.5)

Then the dihedral angle in a d-dimensional simplex of
volume Vd, between faces of volume Vd�1 and V 0d�1, is
obtained from

sin�d �
d

d� 1

VdVd�2

Vd�1V0d�1

: (2.6)

In the equilateral case we record here the particularly
simple result for the volume of a simplex
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Vd �
1

d!

������������
d� 1

2d

s
; (2.7)

and for the dihedral angle

cos�d �
1

d
: (2.8)

The d-dimensional Euclidean lattice action, involving cos-
mological constant and scalar curvature terms, is then
given by

I�l2� � �
X
Vd � k

X
�dVd�2 (2.9)

(where �d is the d-dimensional deficit angle, �d � 2��P
simplices�d) and appears in the partition function as

Z��; k� �
Z
�dl2� exp��I�l2��: (2.10)
B. Weak field expansion

The above formulas for volumes and angles are quite
complicated in the general case, and therefore of limited
use in large dimensions. The next step consists in expand-
ing them out in terms of small edge length variations,

l2ij � l�0�2ij � �l
2
ij: (2.11)

We will set for convenience from now on �l2ij � �ij.
Unless stated otherwise, we will be considering the expan-
sion about the equilateral case, and set l�0�ij � 1 (we will
later relax this last restriction). Furthermore one has the
well-known expansion for determinants

det�1�M� � etr ln�1�M�

� 1� trM�
1

2!
��trM�2 � trM2� �

1

3!

	��trM�3 � 3 trM trM2 � 2 trM3� � 
 
 
 :

(2.12)

One can then rewrite the expression in Eq. (2.5) for the
volume of a d-simplex as

Vd �
��1��d�1�=2

d!2d=2

�������������
detMd

p
; (2.13)

and expanding out to quadratic order one finds

������������������
� detM2

p
�

���
3
p
�

1���
3
p �12 � 
 
 
 �

2

3
���
3
p �12�13 � 
 
 


�
2

3
���
3
p �2

12 � 
 
 
 ; (2.14)
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�������������
detM3
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�

���
4
p
�

1���
4
p �12 � 
 
 
 �

3

4
���
4
p �12�13 � 
 
 


�
1

4
���
4
p �12�34 � 
 
 
 �

9

2 
 4
���
4
p �2

12 � 
 
 


(2.15)

and for general d

1������������
d� 1
p

������������������
� detMd

p
� 1�

1

d� 1
�12 �

d

�d� 1�2
�12�13

�
1

�d� 1�2
�12�34 �

d2

2�d� 1�2
�2

12

� 
 
 
 �O��2�: (2.16)

For large d the last expression simplifies to

1������������
d� 1
p

������������������
� detMd

p
� 1�

1

d
��12 � 
 
 
� �

1

d
��12�13 � 
 
 
�

�
1

d2 ��12�34 � 
 
 
� �
1

2
��2

12 � 
 
 
�

�O��3�: (2.17)

Here the terms �12�13 refer to two edges sharing a common
vertex, whereas the terms �12�34 denote terms with oppo-
site edges, not sharing a common vertex.

As a result, the volume term appearing in the
d-dimensional Euclidean lattice action of Eq. (2.9) be-
comes

Vd �
d!1

���
d
p

d!2d=2

�
1�

1

d
��12 � 
 
 
� �

1

d
��12�13 � 
 
 
�

�
1

d2 ��12�34 � 
 
 
� �
1

2
��2

12 � 
 
 
� � 
 
 


�
; (2.18)

or, equivalently, ordering the terms in powers of 1=d,

Vd �
d!1

���
d
p

d!2d=2

�
1�

1

2
�2

12 � 
 
 


�
1

d
��12 � 
 
 
 � �12�13 � 
 
 
� �O

�
1

d2

��
: (2.19)

To leading order, it involves a lattice sum over all squared
edge length deviations. Note that the terms linear in � (the
so-called tadpole terms in the continuum), which would
have required a shift in the ground state value of � for a
nonvanishing cosmological constant �, vanish to leading
order in 1=d. The full volume term �

P
Vd appearing in the

action can then be easily written down using the above
expressions.

Next one needs to expand the dihedral angle. In the
equilateral case one has for the dihedral angle

�d � arcsin

��������������
d2 � 1
p

d
�
d!1

�
2
�

1

d
�

1

6d3 � 
 
 
 ; (2.20)

which will require four simplices to meet on a hinge, to
give a deficit angle of 2�� 4	 �

2  0 in large dimen-
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sions. One notes that in large dimensions the simplices
look locally (i.e. at a vertex) more like hypercubes.
Several d-dimensional simplices will meet on a �d�
2�-dimensional hinge, sharing a common face of dimen-
sion d� 1 between adjacent simplices. Each simplex has
�d� 2��d� 1�=2 edges ‘‘on’’ the hinge, some more edges
are then situated on the two ‘‘interfaces’’ between neigh-
boring simplices meeting at the hinge, and finally one edge
lies ‘‘opposite’’ to the hinge in question. In two dimen-
sions, one finds for the dihedral angle at vertex 1, to
044031
quadratic order,

�2 �
�
3
�

1

2
���
3
p ��12 � �13� �

1���
3
p �23 �

1

12
���
3
p ��2

12 � �
2
13�

�
2

3
���
3
p �12�13 �

1

3
���
3
p ��12 � �13��23 �

1

6
���
3
p �2

23;

(2.21)

whereas in three dimensions one has for the dihedral angle
at edge 12, to the same order,
�3 � arcsin
2
���
2
p

3
�

1

3
���
2
p �12 �

1

3
���
2
p ��13 � �14 � �23 � �24� �

1���
2
p �34 �

7

72
���
2
p �2

12 �
1

72
���
2
p ��2

13 � �
2
14 � �

2
23 � �

2
24�

�
7

36
���
2
p �12��13 � �14 � �23 � �24� �

1

4
���
2
p ��13�24 � �14�23� �

3

4
���
2
p ��13�14 � �23�24� �

11

36
���
2
p ��13�23 � �14�24�

�
1

4
���
2
p �12�34 �

1

4
���
2
p ��13 � �14 � �23 � �24��34 �

1

8
���
2
p �2

34: (2.22)

In the general d-dimensional case the expansion coefficients for the dihedral angle at the hinge labeled by 1; 2; . . . ; d� 1
are given by the following expressions (as well as their large d limit)

2

d
��������������
d2 � 1
p �12 !

2

d2 �12 �
d� 1

d
��������������
d2 � 1
p �1;d ! �

1

d
�1;d

d� 1��������������
d2 � 1
p �d;d�1 ! �d;d�1

2�d3 � 2d2 � d� 1�

d2�d2 � 1�3=2
�2

12 !
2

d2 �
2
12 �

�d2 � 2d� 2��d� 1�2

2d2�d2 � 1�3=2
�2

1;d ! �
1

2d
�2

1;d

�
�d� 1�2

2�d2 � 1�3=2
�2
d;d�1 ! �

1

2d
�2
d;d�1

2�d3 � 4d2 � d� 2�

d2�d2 � 1�3=2
�12�13 !

2

d2 �12�13

�
4�2d2 � 1�

d2�d2 � 1�3=2
�12�34 ! �

8

d3 �12�34 �
�d� 1��d3 � 2d2 � d� 2�

d2�d2 � 1�3=2
�12�1;d�1 ! �

1

d
�12�1;d�1

2�d2 � d� 1�

d2�d� 1�
��������������
d2 � 1
p �34�1;d�1 !

2

d2 �34�1;d�1
2

�d� 1�
��������������
d2 � 1
p �12�d;d�1 !

2

d2 �12�d;d�1

d�d� 1�

�d� 1�
��������������
d2 � 1
p �1;d�1;d�1 ! �1;d�1;d�1

�d� 1��3d� 2�

d2�d� 1�
��������������
d2 � 1
p �1;d�3;d !

3

d2 �1;d�3;d

�
�d� 1�

�d� 1�
��������������
d2 � 1
p �1;d�3;d�1 ! �

1

d
�1;d�3;d�1 �

�d� 1�

�d� 1�
��������������
d2 � 1
p �1;d�d;d�1 ! �

1

d
�1;d�d;d�1:

(2.23)
In the large d limit one then obtains, to leading order

�d �
d!1

arcsin

��������������
d2 � 1
p

d
� �d;d�1 � �1;d�1;d�1 � 
 
 


�
1

d

�
��1;d � 
 
 
 �

1

2
�2

1;d � 
 
 
 �
1

2
�2
d;d�1

� �12�1;d�1 � �1;d�3;d�1 � �1;d�d;d�1 � 
 
 


�

�O
�

1

d2

�
: (2.24)

To evaluate the curvature term �k
P
�dVd�2 appearing in

the gravitational lattice action, one needs the hinge volume
Vd�2, which is easily obtained from Eq. (2.19), by reducing
d! d� 2,

Vd�2 �
d!1

2d3=2�d� 1�

d!2d=2

�
1�

1

2
�2

12 � 
 
 


�
1

d
��12 � 
 
 
 � �12�13 � 
 
 
� �O

�
1

d2

��
;

(2.25)

whereas the deficit angle � is given by

�d � 2��
X

simplices

�d

� 2��
X

simplices

�
arcsin

��������������
d2 � 1
p

d
� 
 
 


�
; (2.26)
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1This result should be compared to the �d2=2 transverse-
traceless degrees of freedom of the continuum gravitational field
in d dimensions. The exponential growth for this particular
lattice implies the existence of many redundant degrees of free-
dom in the large d limit. Amusingly, it is reminiscent of the
Dirac spinor case, for which the number of degrees of freedom is
also exponential, �2d=2 for large d.
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with the expansion of the arcsin function given in
Eq. (2.20).

C. Evaluation of the lattice action

We now specialize to the case where four simplices meet
at a hinge. When expanded out in terms of the �’s, one
obtains for the deficit angle

�d � 2�� 4 

�
2
�

X
simplices

1

d
� �d;d�1 � 
 
 
 � �1;d�1;d�1

� 
 
 
 �
1

d

�
��1;d �

1

2
�2

1;d �
1

2
�2
d;d�1 � �12�1;d�1

� �1;d�3;d�1 � �1;d�d;d�1 � 
 
 


�
�O

�
1

d2

�
:

(2.27)

The action contribution involving the deficit angle is then,
for a single hinge,

�k�dVd�2 � ��k�
2d3=2�d� 1�

d!2d=2

�
1�

1

2
�2

12 � 
 
 


�

	

�
4

d
� 
 
 
 � �d;d�1 � 
 
 
 � �1;d�1;d�1

� 
 
 


�

� ��k�
2d3=2�d� 1�

d!2d=2
���d;d�1 � 
 
 


� �1;d�1;d�1 � 
 
 
�: (2.28)

It involves two types of terms: one linear in the (single)
edge opposite to the hinge, as well as a term involving a
product of two distinct edges, connecting any hinge vertex
to the two vertices opposite to the given hinge. Since there
are four simplices meeting on one hinge, one will have 4
terms of the first type, and 4�d� 1� terms of the second
type. Combining the cosmological constant and the curva-
ture contributions one then obtains���

d
p

d!2d=2

�
�
�

1�
1

2
�2

12 �
�
4
�4

12 � 
 
 


�

� k 
 2d�d� 1����d;d�1 � 
 
 
 � �1;d�1;d�1 � 
 
 
�

�
:

(2.29)

The first term in the above expression refers to a single
simplex, the second one to a single hinge. To obtain the
total action, a sum over all simplices, respectively hinges,
has still to be performed.

We have also added a term ��4 in order to impose a
cutoff at large edge lengths j�j. The justification for this
choice comes from the fact that numerical simulations
show convincingly that very large, as well as very small,
edge lengths are exponentially suppressed by the lattice
gravitational measure, and, in particular, by a nontrivial
044031
interplay between the � term and the generalized triangle
inequalities [20,21,24,38,39] (as such, � is not really a
parameter that one is allowed to vary, and should rather be
fixed to some suitable numeric value). Dropping the irrele-
vant constant term and summing over edges, one obtains
for the total action �

P
Vd � k

P
�dVd�2 in the large d

limit

�
�
�

1

2

X
�2
ij �

�
4

X
�4
ij

�
� 2kd2

�
�
X
�jk �

X
�ij�ik

�
;

(2.30)

up to an overall multiplicative factor
���
d
p
=d!2d=2, which

will play no essential role in the following. The �ij�ik
coupling terms in the expression above can always of
course be rewritten in terms of finite differences,

�ij�ik � �
1
2��ij � �ik�

2 � 1
2�

2
ij �

1
2�

2
ik; (2.31)

and for smooth enough fields the first term on the right-
hand side (r.h.s.) can be regarded as a discrete approxima-
tion to a derivative.

From the action in of Eq. (2.30), one notices that its form
leads naturally to a first rough estimate for the critical
point, defined as the point where the competing � and
curvature terms achieve comparable magnitudes, namely
kc � �=d2. This result will be further improved below
when we perform an explicit calculation, which takes
into account the actual number of neighbors for each point,
given a specific choice of lattice and its associated coordi-
nation number [see Eq. (2.40)].

D. Action for the surface of the cross polytope

The next step involves the choice of a specific lattice on
which the action is then evaluated. One possibility would
be the hypercubic lattice, divided into simplices as origi-
nally discussed in [18]. This type of lattice has 2d � 1
edges emanating from each site in d dimensions.1 Here
we will evaluate the above action for the cross polytope
	d�1. The cross polytope 	n is the regular polytope in n
dimensions corresponding to the convex hull of the points
formed by permuting the coordinates ��1; 0; 0; . . . ; 0�, and
has therefore 2n vertices. It is named so because its vertices
are located equidistant from the origin, along the Cartesian
axes in n-space. The cross polytope in n dimensions is
bounded by 2n �n� 1�-simplices, has 2n vertices and
2n�n� 1� edges. In three dimensions, it represents the
convex hull of the octahedron, while in four dimensions
the cross polytope is the 16-cell [40]. In the general case it
-5
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is dual to a hypercube in n dimensions, with the ‘‘dual‘‘ of
a regular polytope being another regular polytope having
one vertex in the center of each cell of the polytope one
started with.

When we consider the surface of the cross polytope in
d� 1 dimensions, we have an object of dimension n�
1 � d, which corresponds to a triangulated manifold with
no boundary, homeomorphic to the sphere (as an example,
see Fig. 1). From Eqs. (2.6), (2.26), and (2.27), the deficit
angle is then given to leading order by

�d � 0�
4

d
� ��d;d�1 � 3 terms� �1;d�1;d�1 � 
 
 
�

�O�1=d2; �=d; �2=d� (2.32)

and therefore close to flat in the large d limit (due to our
choice of an equilateral starting configuration). Indeed if
the choice of triangulation is such that the deficit angle is
not close to zero, then the discrete model leads to an
average curvature whose magnitude is comparable to the
lattice spacing or ultraviolet cutoff, which from a physical
point of view does not seem very attractive: one obtains a
space-time with curvature radius comparable to the Planck
length. In addition, the small fluctuation excitation spec-
trum for such strongly curved lattices looks disturbingly
different from what one would expect in the continuum for
transverse-traceless modes [21].

When evaluated on such a manifold the lattice action
becomes
FIG. 1. Cross polytope 	n with n � 8 and 2n � 16 vertices,
whose surface can be used to define a simplicial manifold of
dimension d � n� 1 � 7. For general d, the cross polytope
	d�1 will have 2�d� 1� vertices, connected to each other by
2d�d� 1� edges.
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���
d
p

2d=2

d!
2��� kd3�

�
1�

1

8

X
�2
ij �

1

d

�
1

4

X
�ij

�
1

8

X
�ij�ik

�
�O�1=d2�

�
: (2.33)

Dropping the 1=d correction, one obtains therefore to
leading order���

d
p

2d=2

d!
2��� kd3�

�
1�

1

8

X
�2
ij � 
 
 


�
(2.34)

and, up to the irrelevant constant term and an overall
multiplicative factor (which can be absorbed into a rescal-
ing of the �’s), the action reduces to the simple form

�
1

2
��� kd3�

X
�2
ij: (2.35)

Since there are 2d�d� 1� edges in the cross polytope, one
finds therefore that, at the critical point kd3 � �, the
quadratic form in �, defined by the above action, develops
2d�d� 1� � 2d2 zero eigenvalues.2

It is worth noting here that the competing curvature (k)
and cosmological constant (�) terms will have comparable
magnitude when

kc �
�l40
d3l20

: (2.36)

Here we have further allowed for the possibility that the
average lattice spacing l0 � hl2i1=2 is not equal to one (in
other words, we have restored the appropriate overall scale
for the average edge length, which is in fact largely deter-
mined by the value of �). This then gives for � � 1 [using
the large-d expression for the average lattice spacing l0,
obtained later in this section in Eq. (2.38)], the estimate
kc �

���
3
p
=�16	 51=4� � 0:0724 in d � 4, to be compared

with kc � 0:0636�11� obtained in [24] by direct numerical
simulation in four dimensions. Even in d � 3 one finds for
� � 1, from Eqs. (2.36) and (2.38), kc � 25=3=27 � 0:118,
to be compared with kc � 0:112�5� obtained in [41] by
direct numerical simulation. Again, the dependence of kc
on inverse powers of d is not surprising, as fluctuations,
which are stronger in smaller dimensions, will require an
increasingly larger value of the coupling k to make the
transition happen in small dimensions.

The average lattice spacing l0 is easily estimated from
the following argument. The volume of a general equi-
2This result is quite close to the d2=2 zero eigenvalues ex-
pected in the continuum for large d, with the factor of 4
discrepancy presumably attributed to an underlying intrinsic
ambiguity that arises when trying to identify lattice points
with points in the continuum. It would therefore suggest that,
in this context, four lattice points should be identified with one
continuum point. It is quite possible that the value of the
numerical coefficient might depend on the specific lattice
structure.
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lateral simplex is given by Eq. (2.7), multiplied by an
additional factor of ld0 . In the limit of small k the average
volume of a simplex is largely determined by the cosmo-
logical term, and can therefore be computed from

hVi � �
@
@�

log
Z
�dl2�e��V�l

2�; (2.37)

with V�l2� � �
������������
d� 1
p

=d!2d=2�ld � cdl
d. Doing the single

surviving integral over l2,
R
1
0 dl

2 exp���cdld� �
�cd��

�2=d���d� 2�=d�, gives hVi � 2=d� � cdl
d
0 .

Solving this last expression for l20 then gives the desired
result

l20 �
1

�2=d

�
2

d
d!2d=2������������
d� 1
p

�
2=d

(2.38)

(which, for example, gives l0 � 2:153 for � � 1 in four
dimensions, in reasonable agreement with the actual value
l0  2:43 found in [24] near the transition point). The
result of Eq. (2.36), extended to d dimensions, should
then read

kc �
�ld0
d3ld�2

0

�
�l20
d3 ; (2.39)

which is in fact the same result as before in d � 4. Using
Eq. (2.38) inserted into Eq. (2.39) one then obtains in the
large d limit for the naturally dimensionless combination
k=��d�2�=d

kc
��d�2�=d

�
21��2=d�

d3

�
��d�������������
d� 1
p

�
2=d
�

2

e2

1

d
: (2.40)

This result would then lead us to conclude that the above
critical dimensionless ratio of couplings is given in the
large-d limit by kc=�� 1=d. One should be careful though
not to assign any deep physical significance to this result,
which is only meant to help determine the critical values
for the bare coupling constants.

In the following we will now revert back, for simplicity,
to the case of an expansion about l0 � 1. Returning to the
partition function (and averages derived from it) associated
with Eq. (2.34), we note that it can be formally computed
via

Z �
Z YN

i�1

d�ie
��M� �

�N=2�����������
detM
p �

�N=2����������������QN
i�1 �i

q ; (2.41)

withN � 2d�d� 1�. Convergence of the Gaussian integral
then requires kd3 > �. From

lnZ �
N
2

ln��
1

2

XN
i�1

ln�i �
N
2

ln��
1

2

Z 1
0
ds
�s� ln��s�;

(2.42)
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and using the fact that for the cross polytope to leading
order in 1=d all eigenvalues are equal, one has

logZ �

���
d
p

2�d=2��1

d!
�kd3 � �� � d�d� 1�

	 log
�

8�
	 ���

d
p

2�d=2��1

d!
�kd3 � ��

�
; (2.43)

with the first term arising from the constant term in the
action, and the second term from the �-field Gaussian
integral. Therefore the general structure, to leading order
in the weak field expansion at large d, is logZ � c1�kd

3 �
�� � d�d� 1� log�kd3 � �� � c2 with c1 and c2

d-dependent constants, and therefore @2 logZ=@k2 �
1=�kd3 � ��2 with divergent curvature fluctuations in the
vicinity of the critical point at kd3 � �.

E. Inclusion of higher order terms

It seems legitimate to ask what happens if the fluctua-
tions in the �’s are large enough so that the quadratic
approximation is no longer adequate. Then one has from
Eq. (2.34), to lowest order in 1=d,���
d
p

2d=2

d!
2
�
��� kd3�

�
1�

1

8

X
�2
ij � 
 
 


�
�
��
16

X
�4
ij

�
;

(2.44)

where we have again included a cutoff term, proportional
to�, for each edge. Then, again up to the constant term and
an overall multiplicative factor, the action reduces to

�
1

2
��� kd3�

X
�2
ij �

��
4

X
�4
ij: (2.45)

At strong coupling k! 0, the minimum lies at a non-
vanishing value of the �’s, namely �ij � �1=

����
�
p

. Since
we started out with equilateral simplices with unit edges,
this result is telling us that the edges have to be slightly
extended (or shortened) to reach the minimum. As k is
increased, the minimum eventually moves to the origin for
k � �=d3. Neglecting the effects of fluctuations in the �
fields, h� 
 �i � h�i2 � 0, which is similar to the Landau
treatment of ferromagnetic transitions, one then obtains

�
1

2
��� kd3��2 �

��
4
�4: (2.46)

For kd3 > � the minimum is at the origin, whereas for
kd3 < � it moves away from it. For � > kd3 one has a
shifted minimum at �0 � ��1� kd3=���1=2 and a total
action I��0� � ���1� kd3=��2=4�. As a result �0 van-
ishes at k � �=d3, and so does I��0�.

If we apply the ideas of mean field theory, we need to
keep the terms of order 1=d in Eq. (2.33). In the �ij�ik term,
we assume that the fluctuations are small and replace �ik by
its average ��. Each �ij has 4d� 2 neighbors (edges with
one vertex in common with it); this has to be divided by 2
-7
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to avoid double counting in the sum, so the contribution is
�2d� 1� ��. Then to lowest order in 1=d, the action is
proportional to

��� kd3�

�
1�

1

8

X
�2
ij �

1

4
��
X
�ij

�
: (2.47)

This gives rise to the same partition function as obtained
earlier, and using it to calculate the average value of �ij
gives ��, as required for consistency.

To summarize, in this section we have developed an
expansion in powers of 1=d, which relies on a combined
and simultaneous use of the weak field expansion. It can
therefore be regarded as a double expansion in 1=d and �,
valid wherever the fields are smooth enough and the ge-
ometry is close to flat, which presumably is the case to
some extent at large distances in the vicinity of the lattice
critical point at kc. In the next section we will develop a
different and complementary 1=d expansion, which will
not require weak fields, but will rely instead on the strong
coupling (small k � 1=8�G, or large G) limit. As such it
should now be considered as a double expansion in 1=d
and k. Its validity will be in a regime where the fields are
not smooth, and in fact will rely on considering lattice
gravitational field configurations which are very far from
smooth at short distances.
III. STRONG COUPLING EXPANSION IN LARGE
DIMENSIONS

In this section we discuss the strong coupling [small k �
1=�8�G�] expansion of the lattice gravitational partition
function, first in the general case, and subsequently for
large d. The resulting series is expected to be useful up to
some k � kc, where kc is the lattice critical point [as
determined, for example, from Eq. (2.40)], at which the
partition function develops a singularity. It appears that the
phase k > kc is of limited physical interest, since in that
phase space-time collapses into a two-dimensional mani-
fold [20,22,23] (in fact, one of the first examples of com-
pactification due to nonperturbative dynamics, as opposed
to a specific choice of boundary conditions).

There will be two main aspects to the following discus-
sion. The first aspect will be the development of a system-
atic expansion for the partition function and the correlation
functions in powers of k, and a number of rather general
considerations that follow from it. The second main aspect
will be a detailed analysis and interpretation of the indi-
vidual terms which appear order by order in the strong
coupling expansion. This second part will then lead to a
discussion of what happens for large d.

A. The measure

We will therefore first focus on the four-dimensional
case, and then later exhibit its more or less immediate
generalization to d > 4. The 4-dimensional Euclidean lat-
044031
tice action [16,20,21] contains the usual cosmological
constant and Regge scalar curvature terms

Ilatt � �
X
h

Vh�l2� � k
X
h

�h�l2�Ah�l2�; (3.1)

with k � 1=�8�G�, and possibly additional higher deriva-
tive terms as well. The action only couples edges which
belong either to the same simplex or to a set of neighboring
simplices, and can therefore be considered as local, just
like the continuum action. It leads to a lattice partition
function defined as

Zlatt �
Z
�dl2�e��

P
h
Vh�k

P
h
�hAh ; (3.2)

where, as customary, the lattice ultraviolet cutoff is set
equal to one (i.e. all length scales are measured in units
of the lattice cutoff). For definiteness the measure will be
of the form [20,21,38]

Z
�dl2� �

Z 1
0

Y
s

�Vd�s���
Y
ij

dl2ij��l
2
ij�: (3.3)

The lattice partition function Zlatt should be compared to
the continuum Euclidean Feynman path integral

Zcont �
Z
�dg���e

��
R
dx

��
g
p
��1=�16�G��

R
dx

��
g
p
R; (3.4)

which involves a functional integration over all metrics,
with functional measure [2,42]

Z
�dg��� �

Z Y
x

�g�x���d�4��d�1�=8
Y
���

dg���x�

!
d�4

Z Y
x

Y
���

dg���x�: (3.5)

Other popular measures would include an additional, local
factor involving the determinant of the metric, such asQ
xg
�5=2�x� in d � 4 [43].

Since we will be doing an expansion in the kinetic term
proportional to k, it will be convenient to include the
�-term in the measure. We will set therefore in this section

d��l2� � �dl2�e��
P

h
Vh : (3.6)

It should be clear that this last expression represents a
fairly nontrivial quantity, both in view of the relative com-
plexity of the expression for the volume of a simplex,
Eq. (2.5), and because of the generalized triangle inequality
constraints already implicit in �dl2�. But, like the contin-
uum functional measure, it is certainly local, to the extent
that each edge length appears only in the expression for the
volume of those simplices which explicitly contain it. Also,
we note that in general the integral

R
d� can only be
-8
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evaluated numerically; nevertheless this can be done, at
least in principle, to arbitrary precision. Furthermore, �
sets the overall scale and can therefore be set equal to one
without any loss of generality [one can also conveniently
normalize the integration measure, so that Z0 �R
d��l2� � 1, but this will not be necessary here].
To summarize, the effective strong coupling measure of

Eq. (3.6) has the properties that (i) it is local in the lattice
metric of Eq. (2.3), to the same extent that the continuum
measure is ultralocal, (ii) it restricts all edge lengths to be
positive, and (iii) it imposes a soft cutoff on large simplices
due to the �-term and the generalized triangle inequalities.
Apart from these constraints, it does not significantly re-
strict the fluctuations in the lattice metric field at short
distances. It will be the effect of the curvature term to
restrict such fluctuation, by coupling the metric field be-
tween simplices, in the same way as the derivatives appear-
ing in the continuum Einstein term couple the metric
between infinitesimally close space-time points.

B. Expansion in powers of k

From now on we will discuss Zlatt only, and drop the
subscript latt. As a next step, Z is expanded in powers of k,

Z�k� �
Z
d��l2�ek

P
h
�hAh

�
X1
n�0

1

n!
kn
Z
d��l2�

�X
h

�hAh

�
n
: (3.7)

It is easy to show that Z�k� �
P
1
n�0 ank

n is analytic at k �
0, so this expansion is well defined, up to the nearest
singularity in the complex k plane. An estimate for the
expected location of such a singularity in the large-d limit
was given in Eq. (2.40) of the previous section. Beyond this
singularity Z�k� can sometimes be extended, for example,
via Padé or differential approximants [44,45].3 The above
expansion is of course analogous to the high temperature
expansion in statistical mechanics systems, where the on-
site terms are treated exactly and the kinetic or hopping
term is treated as a perturbation. Singularities in the free
energy or its derivatives can usually be pinned down with
the knowledge of a large enough number of terms in the
relevant expansion [44]. The often surprisingly rich struc-
ture of singularities in the complex coupling plane and
their volume dependence has been explored in detail for
3It is well known that a first order transition cannot affect the
singularity structure of Z�k� as viewed from the strong coupling
phase, as the free energy is C1 at a first order transition. Z�k�, as
defined from the strong coupling phase, will be nonanalytic only
at the second order, end point transition, modulo an exponen-
tially small imaginary part appearing in the metastable phase, if
one exists. Approaching the phase transition from the strong
coupling side detects the physically relevant end point singular-
ity, where the correlation length diverges and scale invariance is
presumably recovered [24].

044031
some simple exactly soluble models with a finite number of
degrees of freedom [46].

Next consider a fixed, arbitrary hinge on the lattice, and
call the corresponding curvature term in the action �A.
Such a contribution will be denoted in the following, as is
customary in lattice gauge theories, a plaquette contribu-
tion. For the average curvature on that hinge one has

h�Ai �

P
1
n�0

1
n! k

n
R
d��l2��A�

P
h �hAh�

nP
1
n�0

1
n! k

n
R
d��l2��

P
h �hAh�

n : (3.8)

After expanding out in k the resulting expression, one
obtains for the cumulants

h�Ai �
X1
n�0

cnk
n; (3.9)

with

c0 �

R
d��l2��AR
d��l2�

; (3.10)

whereas to first order in k one has

c1 �

R
d��l2��A�

P
h �hAh�R

d��l2�

�

R
d��l2��A 


R
d��l2�

P
h �hAh

�
R
d��l2��2

: (3.11)

This last expression clearly represents a measure of
the fluctuation in �A, namely �h�

P
h�hAh�

2i �
h
P
h�hAhi

2�=Nh, using the homogeneity properties of the
lattice �A!

P
h�hAh=Nh. Equivalently, it can be written

in an even more compact way as Nh�h��A�2i � h�Ai2�. To
second order in k one has

c2 �

R
d��l2��A�

P
h �hAh�

2

2
R
d��l2�

�

R
d��l2�

P
h �hAh 


R
d��l2��A

P
h �hAh

�
R
d��l2��2

�

R
d��l2��

P
h �hAh�

2
R
d��l2��A

2�
R
d��l2��2

�

R
d��l2��A 
 �

R
d��l2�

P
h �hAh�

2

�
R
d��l2��3

(3.12)

which now corresponds to c2 � N2
h�h��A�

3i � 3h�Ai	
h��A�2i � 2h�Ai3�=2. At the next order one has c3 �
N3
h�h��A�

4i � 4h�Aih��A�3i � 3h��A�2i2 � 12h��A�2i	
h�Ai2 � 6h�Ai4�=6, and so on. Note that the expressions in
square parentheses become rapidly quite small, O�1=Nn

h�
with increasing order n, as a result of large cancellations
that must arise eventually between individual terms inside
the square parentheses. In principle, a careful and system-
atic numerical evaluation of the above integrals (which is
quite feasible in practice) would allow the determination of
the expansion coefficients in k for the average curvature
-9
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h�Ai to rather high order, but we shall not pursue this line
of inquiry here.4

It is advantageous to isolate in the above expressions the
local fluctuation term, from those terms that involve cor-
relations between different hinges. To see this, one needs
to go back, for example, to the first order expression in
Eq. (3.11) and isolate in the sum

P
h the contribution which

contains the selected hinge with value �A, namely

X
h

�hAh � �A�
X
h

0�hAh; (3.15)
where the primed sum indicates that the term containing
�A is not included. The result is

c1 �

R
d��l2���A�2R
d��l2�

�
�
R
d��l2��A�2

�
R
d��l2��2

�

R
d��l2��A

P0
h�hAhR

d��l2�

�
�
R
d��l2��A��

R
d��l2�

P0
h�hAh�

�
R
d��l2��2

: (3.16)
One then observes the following: the first two terms de-
scribe the local fluctuation of �A on a given hinge; the third
and fourth terms describe correlations between �A terms
on different hinges. But because the action is local, the only
nonvanishing contribution to the last two terms comes from
edges and hinges which are in the immediate vicinity of the
hinge in question. For hinges located further apart (indi-
cated below by ‘‘not nn’’) one has that their fluctuations
remain uncorrelated, leading to a vanishing variance
4As an example, consider a nonanalyticity in the average
scalar curvature

R �k� �
h
R
dx

���������
g�x�

p
R�x�i

h
R
dx

���������
g�x�

p
i

; (3.13)

assumed to be of the form of an algebraic singularity at kc,
namely R�k� �k!kc AR�kc � k�

�. It will lead to a behavior, for
the general term in the series in k, of the type

��1�nAR

��� n� 1���� n� 2� . . .�

n!kn��c
kn: (3.14)

Given enough terms in the series, the singularity structure can
then be investigated using a variety of increasingly sophisticated
methods [44,47– 49]. In Ref. [24] the curvature R�k�
was computed numerically for various values of k, from
which one can extract an approximate value for the coefficients,
namely R�k� � �9:954� 62:11k� 195:94k2 � 1340:65k3 �
40 483:75k4 �O�k5�. A better and much more accurate way
would be a direct determination of the individual coefficients,
via the edge length integrals of Eqs. (3.11) and (3.12).
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R
d��l2��A

P
h not nn
0 �hAhR

d��l2�

�
�
R
d��l2��A��

R
d��l2�

P
h not nn
0

�hAh�

�
R
d��l2��2

� 0; (3.17)

since for uncorrelated random variables Xn’s, hXnXmi �
hXnihXmi � 0. Therefore the only nonvanishing contribu-
tions in the last two terms in Eq. (3.16) come from hinges
which are close to each other.

The above discussion makes it clear that a key quantity
is the correlation between different plaquettes,

h��A�h��A�h0 i �

R
d��l2���A�h��A�h0e

k
P

h
�hAhR

d��l2�ek
P

h
�hAh

; (3.18)

or, better, its connected part (denoted here by h
 
 
iC)

h��A�h��A�h0 iC � h��A�h��A�h0 i � h��A�hih��A�h0 i;

(3.19)

which subtracts out the trivial part of the correlation. Here
again the exponentials in the numerator and denominator
can be expanded out in powers of k, as in Eq. (3.8). The
lowest order term in k will involve the correlationZ

d��l2���A�h��A�h0 : (3.20)

But unless the two hinges are close to each other, they will
fluctuate in an uncorrelated manner, with h��A�h��A�h0 i �
h��A�hih��A�h0 i � 0. In order to achieve a nontrivial cor-
relation, the path between the two hinges h and h0 needs to
be tiled by at least as many terms from the product
�
P
h�hAh�

n inZ
d��l2���A�h��A�h0

�X
h

�hAh

�
n

(3.21)

as are needed to cover the distance l between the two
hinges. One then has

h��A�h��A�h0 iC � k
l � e�l=�; (3.22)

with the correlation length � � 1=j logkj ! 0 to lowest
order as k! 0 [here we have used the usual definition of
the correlation length �, namely, that a generic correlation
function is expected to decay as exp��distance=�� for
large separations].5 This last result is quite general, and
holds, for example, irrespective of the boundary conditions
(unless of course �� L, where L is the linear size of the
5This statement, taken literally, oversimplifies the situation a
bit, as depending on the spin (or tensor structure) of the operator
appearing in the correlation function, the large distance decay of
the corresponding correlator is determined by the lightest exci-
tation in that specific channel. But in the gravitational context
one is mostly concerned with correlators involving spin two
(transverse-traceless) objects, evaluated at fixed geodesic
distance.
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system, in which case a path can be found which wraps
around the lattice).

But further thought reveals that the above result is in fact
not completely correct, due to the fact that in order to
achieve a nonvanishing correlation one needs, at least to
lowest order, to connect the two hinges by a narrow tube.
The previous result should then read correctly as

h��A�h��A�h0 iC � �k
nd�l; (3.23)

where, as will be shown in more detail below, ndl repre-
sents (approximately) the minimal number of dual lattice
polygons that are needed to form a closed surface connect-
ing the hinges h and h0, with l the actual distance (in lattice
units) between the two hinges.

C. Rotation matrices, Voronoi loops and closed surfaces

Up to this point our considerations have been quite
general, and therefore do not take into account yet the
detailed nature of the local interaction expressed in the
action term

P
h�hAh. It is well known that the deficit angle

�h describes the rotation of a vector V� parallel trans-
ported around a closed loop encircling the hinge h. This
full rotation is best described in terms of a (Lorentz)
rotation matrix R, an element of SO�4� or SO�3; 1�, de-
pending on the signature of the metric, and whose matrix
elements will depend on the specific choice of coordinates
at the point in question. In d dimensions the corresponding
objects would be SO�d� or SO�d� 1; 1� rotations, in the
Riemannian and pseudo-Riemannian case, respectively.6

Just as in the continuum, where the affine connection
and therefore the infinitesimal rotation matrix is deter-
mined by the metric and its first derivatives, on the lattice
the elementary rotation matrix between simplices Rs;s�1 is
fixed by the difference between the gij’s of Eq. (2.3) within
neighboring simplices. Consider therefore a closed path �
encircling a hinge h and passing through each of the
simplices that meet at that hinge. In particular, one may
take � to be the boundary of the polyhedral dual (or
Voronoi) area surrounding the hinge [20]. We recall that
the Voronoi polyhedron dual to a vertex P is the set of all
points on the lattice which are closer to P than any other
vertex; the corresponding new vertices then represent the
sites on the dual lattice. A unique closed parallel transport
path can then be assigned to each hinge, by suitably con-
necting sites in the dual lattice.
6The preceding observations can in fact be developed into a
consistent first order (Palatini) formulation of Regge gravity,
with suitably chosen independent transformation matrices and
metrics, related to each other by a set of appropriate lattice
equations of motion [50]. One would expect the first and second
order formulations to ultimately describe the same quantum
theory, with common universal long-distance properties. How
to consistently define finite rotations, frames and connections in
Regge gravity was first discussed systematically in [51].
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With each neighboring pair of simplices s; s� 1 one
associates a Lorentz transformation R�

	, which describes
how a given vector V� transforms between the local coor-
dinate systems in these two simplices,

V0� � �Rs;s�1�
�
	V

	: (3.24)

The above Lorentz transformation is then directly related
to the continuum path-ordered (P) exponential of the in-
tegral of the local affine connection ���� via

R �
	 � �Pe

R
path

between simplices
��dx�

��	: (3.25)

Next consider moving a vector V once around a Voronoi
loop, i.e. a loop formed by Voronoi edges surrounding a
chosen hinge. The change in the vector V is given by

�V� � �R� 1��	V
	; (3.26)

where R �
Q
sRs;s�1 is now the total rotation matrix

associated with the given hinge. Since in the continuum
�V is given by �V� � 1

2R
�
	��A

��
� V	, where A��� is the

antisymmetric bivector representing the loop area, one has
the identification

1
2R

�
	��A

��
� � �R� 1��	: (3.27)

To first order in the deficit angle �, one then recovers the
well-known result

R�	�� �
�
A�
U�

	U��; (3.28)

where U�	 represents the hinge bivector, U�	 �
1

2Ah
��	��l

�
1 l
�
2 , with l1 and l2 the two hinge vectors and

Ah the area of the hinge, and use has been made of the
relationship between the original volumes and their dual
counterparts, A�

�	U
�	 � 2A�. As a result, one can relate

the deficit angle directly to the effect of a complete rotation
of a vector around a hinge,

�Y
s

Rs;s�1

�
�

�
� �e�hU

�h�
... ���: (3.29)

In other words, the product of rotation matrices around the
closed elementary loop describes a rotation in a plane
perpendicular to the hinge, by an angle �h. Equivalently,
this last expression can be rewrittten in terms of a surface
integral of the Riemann tensor, projected along the surface
area element bivector A�	� associated with the loop,

�Y
s

Rs;s�1

�
�

�
 �e�1=2�

R
S
R


�	A

�	
� ���: (3.30)
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FIG. 2. Elementary closed surface tiled with parallel transport
polygons. For each link of the dual lattice, the parallel transport
matrices R are represented by an arrow. In spite of the fact that
the Lorentz matrices R fluctuate with the local geometry, two
contiguous, oppositely oriented arrows always give RR�1 � 1.
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Let us now return to the strong coupling expansion, and
it will be advantageous now to focus on general properties
of the parallel transport matrices R.7 For smooth enough
geometries, with small curvatures, the above rotation ma-
trices can be chosen to be close to the identity. Small
fluctuations in the geometry will then imply small devia-
tions in the R’s from the identity matrix. But for strong
coupling (k! 0) it was already emphasized before that the
measure

R
d��l2� does not significantly restrict fluctua-

tions in the lattice metric field. As a result these fields
can be regarded in this regime as basically unconstrained
random variables, only subject to the relatively mild con-
straints implicit in the measure d�. The geometry is gen-
erally far from smooth since there is no coupling term to
enforce long range order (the coefficient of the lattice
Einstein term is zero), and one has as a consequence large
local fluctuations in the geometry. The matrices R will
therefore fluctuate with the local geometry, and average out
to zero, or a value close to zero.8

This is quite similar of course to what happens in SU�N�
Yang-Mills theories, or even more simply in (compact)
QED, where the analogs of the SO�d� rotation matrices
R are phase factors U��x� � eiaA��x�. One has thereR dA�

2� U��x� � 0 and
R dA�

2� U��x�U
y
��x� � 1. In addition,

for two contiguous closed paths C1 and C2 sharing a
common side, one has

e
i
H
C1

A
dl
e
i
H
C2

A
dl
� ei

H
C

A
dl � ei
R
S

B
ndA; (3.31)

with C the slightly larger path encircling the two loops. For
a closed surface tiled with many contiguous infinitesimal
closed loops the last expression evaluates to 1, due to the
divergence theorem. In the lattice gravity case the discrete
analog of this last result is considerably more involved, and
ultimately represents the (exact) lattice analog of the con-
tracted Bianchi identities [53]. An example of a closed
surface tiled with parallel transport polygons (here chosen
for simplicity to be triangles) is shown in Fig. 2.
7The role of continuous rotation matrices in Regge gravity is
brought out in a particularly clear way by the first order approach
of Ref. [50].

8In the sense that, for example, the SO�4� rotation

R � �

cos� � sin� 0 0
sin� cos� 0 0

0 0 1 0
0 0 0 1

0
BBB@

1
CCCA

averages out to zero when integrated over �. In general an
element of SO�n� is described by n�n� 1�=2 independent
parameters, which in the case at hand can be conveniently
chosen as the six SO�4� Euler angles. The uniform (Haar)
measure over the group is then d�H�R� � 1

32�9	R
2�
0 d�1

R
�
0 d�2

R
�
0 d�3

R
�
0 d�4 sin�4

R
�
0 d�5 sin�5

R
�
0 d�6sin2�6.

This is just a special case of the general n result [52],
which reads d�H�R� � �

Qn
i�1 ��i=2�=2n�n�n�1�=2�	Qn�1

i�1

Qi
j�1 sinj�1�ijd�

i
j with 0 � �1

k < 2�, 0 � �jk < �.
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We can now reexamine the question, left open earlier in
this section, of the value for the quantity nd appearing in
Eq. (3.23). This last quantity counts the number of poly-
gons needed to obtain a closed surface around a hinge, in
the framework of the strong coupling expansion for the
curvature correlation function. For concreteness, we will
consider a simplicial lattice built up of d-dimensional
hypercubes divided up into simplices, as originally dis-
cussed in [18,20] in the four-dimensional case, although
similar considerations should equally apply to other semi-
regular d-dimensional lattices as well. Simply put the issue
is then: how many polygons does it take to form the
smallest closed surface attached to two hinges, separated
from each other by l lattice steps?

First let us consider a slightly simpler case, namely, the
smallest nontrivial closed surface made out of elementary
parallel transport loops, and built around a single given
hinge. In the four-dimensional hypercubic lattice the num-
ber of triangles per edge is either 14 (for the coordinate
edges and the hyperdiagonal) or 8 (for the body and face
diagonals). For a d-dimensional lattice, one needs the
number of �d� 2�-simplices on each �d� 3�-simplex.
This again is 14 for some �d� 3�-simplices, and somewhat
less for others. For example, using the binary notation for
the vertices as in [18], if the vertices of the �d� 3�-simplex
are taken to be �0; 0; 0; . . .�; �1; 0; 0; . . .�; �1; 1; 0; . . .�; . . . up
to the vertex with �d� 3� 1s followed by 3 0s, then the
number of �d� 2�-simplices hinging on this, in the for-
ward direction will be the same as the number of ways of
inserting 1s in the 3 remaining places with 0s, which is 7.
There will be the same number of �d� 2�-simplices in the
backward direction. Thus for a typical �d� 3�-simplex,
one needs 14 polygons to form a closed surface.
-12
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The next step then involves considering the minimal
closed surface connecting two hinges separated by l lattice
steps. If one is trying to connect two polygonal half-
spheres with what resembles a closed tube, one needs to
take a path through �d� 2�-simplices connecting the �d�
3�-simplices at the centers of the half-spheres. Suppose the
path goes through l �d� 2�-simplices, then the tube will
consist of 26 (from the ends) plus 12�l� 1� polygons �
12l� 14. One noteworthy aspect of this result is that it
gives a large power of k, namely nd � 12 in the notation of
Eq. (3.23), but note that at the same time the power does
not grow with d.

In the extreme strong coupling limit this then gives, from
Eqs. (3.22) and (3.23),

� �
k!0

l0
j logk12j

� 
 
 
 ; (3.32)

where the corrections (indicated here by the dots) arise
from surfaces which are not minimal, i.e. deformations of
the original minimal surface obtained by adding polygonal
outgrowths to it, and therefore involving additional powers
of k.

D. Random surfaces and the value of the universal
exponent �

In general for k not too small the random surface
spanned by the parallel transport polygons will have a
rather complex shape. The systematic counting of such
surfaces is a rather challenging task, say compared to a
regular hypercubic lattice, in view of the simplicial nature
of the underlying lattice geometry. When discussing the
average scalar curvature, given by the expectation value of
�dVd�2, such a surface will be anchored on a given poly-
hedral loop, whereas when considering the correlation
function of Eqs. (3.18) and (3.19) it will be anchored on
two such parallel transport polygons, separated from each
other by some fixed distance.9
9One might worry that the effects of large strong coupling
fluctuations in the R matrices might lead to a phenomenon
similar to confinement in non-Abelian lattice gauge theories
[54,55] . That this is most likely not the case can be seen from
the fact that the analog of the Wilson loop W��� (defined here as
a path-ordered exponential of the affine connection ���� around
a closed loop) does not give the static gravitational potential.
The potential is instead determined from the correlation of
(exponentials of) geodesic line segments, as in

exp���0

R
d�

������������������������������������������������������������������
g���x���dx

��=�d�����dx��=�d���
q

�, where �0 is
the mass of the heavy source, as discussed already in some
detail in [56,57]. The expected decay of near-planar Wilson
loops with area A, W��� � exp�

R
S R



��A

��
� � � exp��A=�2�

[58], where A is the minimal area spanned by the loop, gives
instead the magnitude of the large-scale, averaged curvature,
operationally determined by the process of parallel-transporting
test vectors around very large loops, and which therefore is of
order R� 1=�2.
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As one approaches the critical point, k! kc, one is
interested in random surfaces which are of very large
extent. Let np be the number of polygons in the surface,
and set np � T2 since after all one is describing a surface.
The critical point then naturally corresponds to the appear-
ance of surfaces of infinite extent,

np � T2 �
1

kc � k
! 1: (3.33)

A legitimate parallel is to the simpler case of scalar field
theories, where random walks of length T describing par-
ticle paths become of infinite extent at the critical point,
situated where the inverse of the (renormalized) mass � �
m�1, expressed in units of the ultraviolet cutoff, diverges
[59–63].

In the present case of polygonal random surfaces, one
can provide the following concise argument in support of
the identification in Eq. (3.33). First approximate the dis-
crete sums over n, as they appear, for example, in the
strong coupling expansion for the average curvature,
Eq. (3.8) or its correlation, Eq. (3.18), by continuous in-
tegrals over areas

X1
n�0

cn

�
k
kc

�
n
!

Z 1
0
dAA�1

�
k
kc

�
A
� ���

�
log
kc
k

�
�
;

(3.34)

where A � T2 is the area of a given surface. The A�1 term
can be regarded as counting the multiplicity of the surface
(its entropy, in statistical mechanics terms). The exponent
 depends on the specific quantity one is looking at. For the
average curvature one has  � ��, while for its deriva-
tive, the curvature fluctuation (the curvature correlation
function at zero momentum), one expects  � 1� �.
The same type of singularity is of course obtained from
the original series in Eq. (3.34), if one assumes for the
coefficients cn

cn �
�

n

 !
�
n!1

��1� � sin��n� �
�

	 n�1�1�
�1� �

2n
� 
 
 
�; (3.35)

which in retrospect explains the appearance of the factor
A�1 in Eq. (3.34). In the last step we have used the well-
known asymptotic expansion for the binomial coefficient
(�n ) for large n. Although we know its value exactly, the
integral in Eq. (3.34) can also be evaluated by standard
saddle point methods. The saddle point is located at

A �
�� 1�

logkck
�
k!kc

�� 1�kc
kc � k

: (3.36)

Carried further, the saddle point method then leads to an
approximation to the exact result for the quantity in
Eq. (3.34), namely
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10In four dimensions one finds for lattice quantum gravity � 
1=3 instead [24,64].
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e1��� 1��1
����������������������
2��� 1�

q �
log
kc
k

�
�
; (3.37)

which agrees with the answer given above, up to an irrele-
vant overall multiplicative factor. From this discussion one
then concludes that close to the critical point very large
areas dominate, as claimed in Eq. (3.33).

Furthermore, one would expect that the universal geo-
metric scaling properties of such a (closed) surface would
not depend on its short distance details, such as whether it
is constructed out of say triangles or more complex poly-
gons. In general excluded volume effects at finite d will
provide constraints on the detailed geometry of the surface,
but as d! 1 these constraints can presumably be ne-
glected and one is dealing then with a more or less uncon-
strained random surface. This should be regarded as a
direct consequence of the fact that as d! 1 there are
infinitely many dimensions for the random surface to twist
and fold into, giving a negligible contribution from unal-
lowed (by interactions) directions. Appendices A and B
provide further specific examples for what is meant in this
context, for the simpler cases of random walks and random
polymers. In the following we will assume that this is
indeed the case, and that no special pathologies arise,
such as the collapse of the random surface into narrow
tubelike, lower dimensional geometric configurations.
Then in the large d limit the problem simplifies
considerably.

Following [62], one can define the partition function for
such an ensemble of unconstrained random surfaces as

ZRS �
Z YT

n;m�1

ddXn;m exp
�
�	

X
�

A��X�
�
; (3.38)

where the integral is over d-component vectors Xn;m de-
fined on two-dimensional triangular lattice sites, with sites
labeled here by integers n and m. Up to a multiplicative
constant, the term appearing in the exponent is just the total
area of the surface, written as a sum of individual triangle
areas. Introducing the induced two-dimensional metric
tensor on each triangle allows one to recast the above
partition function in the form of a two-dimensional mass-
less field theory, which in a more compact continuum
notation now reads

ZRS � const
Z
�d���dg��dX�

	 exp
�
i
Z
d2x

���
g
p
�ab�gab �Gab� � 	

Z
d2x

���
g
p

�
;

(3.39)

with Gab � @aX 
 @bX. The above action is now quadratic
in the free massless X-fields, whose propagator involves
�-dependent weights. We note that in the original gravita-
tional context, the introduction of the coordinate vectors
X�x� for describing the random surface spanned by poly-
044031
gons, originally embedded in a fluctuating curved geome-
try, would seem plausible in view of the fact that as one
approaches the critical point the expectation value of the
scalar curvature does indeed go to zero [24].

As shown in [62], the overall size of the random surface,
as embedded in the original d-dimensional space and
suitably defined in the discrete case as

hX2i �
1

T2

XT
n;m�1

X2
n;m; (3.40)

is then immediately obtained from the free field infrared
behavior of X as hX2i �

R
1=T d

2p=p2 � logT. Thus the
mean square size of the surface increases logarithmically
with the intrinsic area of the surface. This last result is
usually interpreted as the statement that an unconstrained
random surface has infinite fractal (or Hausdorff) dimen-
sion. Although made of very many triangles (or polygons),
the random surface remains quite compact in overall size,
as viewed from the original embedding space. In a sense,
an unconstrained random surface is a much more compact
object than an unconstrained random walk, for which
hX2i � T. Identifying the size of the random surface with
the gravitational correlation length � then gives

��
����������
logT

p
�
k!kc
j log�kc � k�j1=2: (3.41)

From the definition of the exponent �, namely �� �kc �
k���, the above result then implies � � 0 (i.e. a weak
logarithmic singularity).10 We note that the previous result
for � in Eq. (3.32) only applied to the extreme strong
coupling limit k! 0.

Let us discuss next what the implications of this last
result might be. As already outlined in Refs. [24,57,64], the
exponent � determines the universal renormalization-
group evolution of the dimensionless coupling ~G �
G��d�2�=d in the vicinity of the ultraviolet fixed point. In
particular, if one defines the dimensionless function F� ~G�
via m � ��1 � �F� ~G�, where � is the ultraviolet
cutoff (the inverse lattice spacing), then by differentiation
of the renormalization-group invariant quantity m,
� d

d�m��;
~G���� � 0, one immediately obtains the

Callan-Symanzik beta function 	� ~G� [55]. From the defi-
nition

�
d
d�

~G��� � 	� ~G����; (3.42)

one gets an equivalent form for the beta function in terms
of the function F� ~G� introduced above, namely

	� ~G� � �
F� ~G�

@F� ~G�=@ ~G
: (3.43)
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The generic beta function equation, determining the scale
evolution of the coupling [obtained from Eq. (3.42), and
identical in form to it],

�
d
d�

~G��� � 	� ~G����; (3.44)
can then be integrated in the vicinity of the fixed point. It
then leads to a definite relationship between the relevant
coupling ~G, the renormalization-group invariant (cutoff
independent) quantity m � 1=�, and an arbitrary sliding
scale � � 1=r. Up to scales of order �, it determines the
universal running of ~G, which will give rise to macroscopic
effects provided the nonperturbative scale � is very large.
In [15,64] this scale was naturally identified with the scaled
cosmological constant, which here would correspond to the
ratio �=G. The result of Eq. (3.41) then corresponds to the
limiting case �! 0. In the language of Refs. [15,64], it
leads in the vicinity of the fixed point to an exponentially
small (for r=�! 0) renormalization-group running of
~G��� or ~G�r�, namely, from Eqs. (3.41) and (3.44)

~G�r� � ~Gc �
~G! ~Gc

e�c��=r�
2
: (3.45)
The quantum correction on the r.h.s is therefore quite small
as long as r� �.

All of the above was in the limit of infinite dimension. In
Ref. [64] it was suggested, based on a simple geometric
argument, that � � 1=�d� 1� for large d. Moreover, for
the lattice theory in finite dimensions one finds no phase
transition in d � 2 [65], �  0:60 in d � 3 [41] and � 
0:33 in d � 4 [24,64], which then leads to the (almost
constant) sequence �d� 2�� � 1, 0:60 and 0:66 in the
three cases, respectively. After interpolating this last series
of values with a quadratic polynomial in 1=d, one obtains
�  1:9=d for large d. On the other hand, in Ref. [29] the
value � � 1=2d was obtained in the same limit with a
Wilson-type continuum renormalization-group approach,
in which a momentum space slicing technique is combined
with a truncation to the Einstein-Hilbert action and a
cosmological term. It seems that in either case our analyti-
cal results for the large d limit are consistent with, and to
some extent corroborate, these previous findings. For com-
pleteness let us mention here that in the extreme opposite
case, namely, close to 2 dimensions, one has the by
now well-established result � � 1=�d� 2� �O��d� 2�0�
[25,26].

It is of interest to contrast the result �� 0 for gravity in
large dimensions with what one finds for scalar [7,32] and
gauge [66] fields, in the same limit d � 1. Known results,
and what we have found here so far, can be combined and
summarized as follows:
044031
scalar field � � 1
2

lattice gauge field � � 1
4

lattice gravity � � 0:

(3.46)

The first rather well-known result is rederived in
Appendix A. The second one, obtained for non-Abelian
gauge theories at large d, is recalled in Appendix B. It
should be regarded as encouraging that the new value
obtained here, namely � � 0 for gravitation, appears to
some extent to be consistent with the general trend ob-
served for lower spin, at least at infinite dimension.

As far as 1=d corrections are concerned, the result
obtained previously in this section hinge on the crucial
assumption that the random surface is noninteracting, in
other words that any self-intersection or folding of the
surface does not carry additional statistical weights. This
is similar to an unconstrained random walk, where the
effects of path intersection and backtracking are neglected.
While these assumptions seem legitimate at infinite d
(since there are infinitely many orthogonal dimensions to
move into), they are no longer valid at finite d. As a result,
the problem becomes much more complex, and one ex-
pects that � will then no longer be equal to zero. Indeed in
four dimensions �  1=3 [24]. In the much simpler ran-
dom walk case, a systematic expansion can be developed,
leading for n intersections to an effective �2�n�1� interac-
tion for the scalar field associated with the random walk.
Unfortunately in the gravitational case it is much less clear
how to develop such a systematic expansion.
IV. THE CONTINUUM CASE

For quantum gravity formulated in dimensions greater
than four there are a number of natural questions that come
to mind. Are there any special dimensions for gravity?
How do the Feynman rules depend on d? What does
continuum gravity look like in large dimensions? Before
discussing the gravitational case, it might be useful to
examine and contrast the somewhat simpler cases of scalar
and vector (gauge) theories.

A. Special values of d in field theories

In scalar field theories the special role of dimension four
is easily brought out by writing the action, simply using
dimensional arguments, as

S �
1

2

Z
ddx��@���x��

2 �m2
0�

2�x�� �
�0

�d�4

	
Z
ddx��x�4; (4.1)

where � is the ultraviolet cutoff, �0 the bare self-coupling,
m0 the bare mass, and with the fields having canonical
dimension m�d�2�=2. The self-coupling is dimensionless
only in dimension four, and above that the model is de-
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11Adding curvature squared terms to the bare action cures the
perturbative nonrenormalizability problem, but raises new issues
related to unitarity [68]. Curvature squared terms are expected to
play important roles at very short distances, comparable to the
cutoff scale, where fluctuations in the curvature can become of
order ��2=G0.
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scribed in the long-distance, infrared limit by a free field
[63]. The interaction term is relevant for d < 4, and irrele-
vant above d � 4. In particular for any d > 4 one can
prove that the correlation length exponent � equals one-
half, the free field value [7,32]. The long-distance, infrared
behavior is the same as for a free field.

In the case of SU�N� non-Abelian gauge theories, one
has that the coupling is, again, dimensionless only in four
dimensions, a well-known signature of perturbative renor-
malizability. Above four dimensions purely dimensional
arguments indicate the appearance of a nontrivial ultravio-
let fixed point [a zero of the Callan-Symanzik 	�g� func-
tion] close to the origin,

	�g� � �d� 4�g� 	0g
3 � 
 
 
 ; (4.2)

with a nontrivial fixed point at g2
c � �d� 4�=	0 �O��d�

4�2� separating what is believed to be a Coulomb, non-
confining phase, from the confining phase known to exist
for sufficiently strong coupling [54]. Since the theory is not
perturbatively renormalizable above four dimensions, the
analysis of either phase is rather problematic in the con-
tinuum. The transition is characterized by nontrivial criti-
cal exponents, and the Green’s functions in the scaling
region correspond to an interacting theory, which can
only be reconstructed in the Coulomb phase g < gc as an
expansion in � � d� 4 [9].

One might wonder if anything special happens in di-
mensions d > 4, beyond what has just been discussed. In
SU�N� Yang-Mills with (Euclidean) classical action

Icl �
1

g2N

Z
ddx

1

4
trF2

��; (4.3)

one has to one loop for the divergent part of the effective
action

��1�div �
1

4� d
26� d

3

g2N

16�2 Icl; (4.4)

which vanishes in d � 26, and to two loops [67]

��2�div �
1

4� d
34

3

�
g2N

16�2

�
2
Icl: (4.5)

One would be hard pressed though to conclude that the
above results suggest anything dramatic might happen at
d � 26 in the Yang-Mills case, as the change of sign in the
one-loop divergence is still counteracted by the two-(and
higher-)loop terms for sufficiently large g2. It seems in
general that the structure of the continuum theory at large d
remains quite complicated and possibly still not amenable
to a perturbative treatment.

On the lattice on the other hand the presence of a phase
transition has been clearly established in the large d limit,
in fact largely irrespective of the specific choice of con-
tinuous symmetry group [66]. For the group SU�N� a
critical point in g appears at 2d�2N=g2�4 � const (with
the constant depending of the specific choice of N), and
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with an exponent at the transition given by � � 1=4 [66].
But it seems that finding such a transition critically hinges
on using nonperturbative methods, which allow one to
explore the strong coupling regime, and, in particular, the
existence of two physically distinct phases.

In the case of gravity, the expression analogous to
Eq. (4.1) is

�
Z
ddx

���
g
p
�

1

16�G

Z
ddx

���
g
p
R�

�0

�4�d

	
Z
ddx

���
g
p
R��R�� �

	0

�4�d

Z
ddx

���
g
p
R2 � 
 
 
 ;

(4.6)

which shows the suppression of the curvature squared
terms in the infrared region, by factors O�1=�2� when
compared to the Einstein term, whose coefficient also
involves a dimensionful quantity, namely �d�2=�16�G0�
(here �0 and 	0, as well as G0 � �d�2G, are taken to be
dimensionless couplings).11 It then seems legitimate to ask
if there are any special dimensions for gravity, in particular,
above d � 4. As already mentioned in the introduction,
one has d�d� 1�=2 independent components of the metric
in d dimensions, and the same number of algebraically
independent components of the Ricci tensor appearing in
the field equations. The contracted Bianchi identities re-
duce the count by d, and so does general coordinate
invariance, leaving d�d� 3�=2 physical gravitational de-
grees of freedom in d dimensions. As a result, the number
of physical degrees of freedom of the gravitational field
grows rather rapidly (quadratically) with the number of
dimensions.

The first step is naturally to examine tree level gravity,
where all loop (quantum) effects are neglected [1,69,70].
Then in the nonrelativistic, static limit gravitational inter-
actions are described by

I2�T� ��
�2

2

Z
ddx�T����1T����d�2��1T����1T���

!�
d�3

d�2

�2

2

Z
dd�1xT00GT00; (4.7)

where the Green’s function G is the static limit of 1=�, and
�2 � 16�G. The above result then incorporates at least
two well-known facts, namely, that there are no Newtonian
forces in d � 2� 1 dimensions, and that the Einstein
tensor vanishes identically in d � 1� 1 dimensions. But
nothing particularly noteworthy seems to happen, at least
at tree level, above d � 3. At the same time, four space-
time dimensions is known to be the lowest dimension for
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which Ricci flatness does not imply the vanishing of the
gravitational field, R���� � 0, and therefore the first di-
mension to allow for gravitational waves and their quan-
tum counterparts, gravitons. The tree level static
gravitational potential above d > 3 is simply obtained by
Fourier transform using

Z
ddx

1

k2 e
ik
x �

��d�2
2 �

4�d=2�x2�d=2�1
(4.8)

and therefore implies
R
dd�1xeik
x=k2 � 1=rd�3.

When quantum loop effects are turned on [3,4], one finds
that the one-loop divergence, proportional to curvature
squared terms, vanishes on shell,

��1�div �
1

4� d
@

16�2

Z
d4x

���
g
p

�
7

20
R��R

�� �
1

120
R2

�
;

(4.9)

using the well-known result R��
�R��
� � �R2 �

4R��R
�� � total derivative to eliminate Riemann squared

terms. The complete set of one-loop divergences, com-
puted using the heat kernel expansion and zeta function
regularization close to 4 dimensions, can be found in the
comprehensive review cited in [12], and further references
therein. At two loops it was shown some time ago [5,6] that
there is a nonremovable on-shell two-loop R3-type diver-
gence

��2�div �
1

4� d
209

2880

@
2G

�16�2�2

Z
d4x

���
g
p
R��
�R
���R��

��:

(4.10)

In the last quoted reference it is argued that in the above
expression the 209 arises from 11	 19, with the factor of
11 coming from �26� d�=2, as expected from closed
string theory [6]. Thus the latter divergence might vanish
again at d � 26, but it is not expected that the same will
happen at higher loops.

Recent two-loop results based on the 2� � expansion
for gravity with a cosmological constant [25], inspired by
the 2� � of other, simpler field theory models [8,71,72],
show the appearance of a nontrivial ultraviolet fixed point
in the G beta function above two dimensions,

	�G� � �d� 2�G�
2

3
�25� nf�G

2

�
20

3
�25� nf�G3 � 
 
 
 (4.11)

(for nf massless real scalar fields minimally coupled to
gravity). They could be possibly relevant as a first crude
approximation to the four-dimensional theory (to the ex-
tent that they represent a manifestly gauge-invariant re-
summation of those diagrams which can be regarded as
dominant close to 2 dimensions). But unfortunately they
can hardly be thought as useful in the limit d! 1, espe-
cially in view of the fact that the Borel summability in � �
044031
d� 2 [73,74] of such an expansion still remains a largely
open question.

B. Feynman rules in d dimensions

A direct examination of the Feynman rules for contin-
uum gravity at large d indeed reveals the occurrence of
some degree of simplification. But first we should clarify
our conventions and notation for this section, which are
taken from [75], and where one expands around the flat
Minkowski space-time metric, with signature given by
��� � diag�1;�1;�1;�1; . . .�. The Einstein-Hilbert ac-
tion in d dimensions is then given by

SE � �
1

16�G

Z
ddx

�������������
�g�x�

q
R�x�; (4.12)

with g�x� � det�g��� and R the scalar curvature (it will
also be assumed in the following that the bare cosmologi-
cal constant is zero). Furthermore the coupling of gravity
to scalar particles of mass m is described by the action

Sm �
1

2

Z
ddx

�������������
�g�x�

q
�g���x�@���x�@���x�

�m2�2�x��: (4.13)

Usually in perturbation theory the metric g���x� is ex-
panded around the flat metric ��� [3], by writing

g���x� � ��� � �~h���x�; (4.14)

with �2 � 32�G. In the de Donder gauge the graviton
propagator is then given by

D��
��p� �
i
2

��
��� � �����
 �
2

d�2����
�
p2 � i�

;

(4.15)

which suggests that the conformal mode contribution
might go away as d! 1. But further thought reveals
that this conclusion might perhaps be fallacious, as a
different type of expansions seem to lead to slightly differ-
ent conclusions.

If one follows the method of Refs. [76,77], then one
defines the small fluctuation graviton field h���x� instead
via

g���x�
�������������
�g�x�

q
� ��� � �h���x�: (4.16)

One advantage of this expansion over the previous one is
that it leads to considerably simpler Feynman rules, both
for the graviton vertices and for the scalar-graviton verti-
ces. A gauge fixing term can then be added [78,79], for
example, of the form

1

�2
�@�

�������������
�g�x�

q
g���2; (4.17)

as again used in [77]. The bare graviton propagator is then
given simply by
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D��
��p� �
i
2

��
��� � �����
 � ����
�
p2 � i�

; (4.18)

whose structure is now unaffected by the limit d! 1.
Thus with the latter definition for the gravitational field,
there are no factors of 1=�d� 2� for the graviton propa-
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gator in d dimensions; such factors appear instead in the
expressions for the Feynman rules for the vertices. For the
three-graviton and two ghost-graviton vertex the relevant
expressions are quite complicated. The three-graviton ver-
tex can be written as
U�q1; q2; q3��1	1;�2	2;�3	3
� �i
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2
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�
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�
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(4.19)
Again one notes that some terms become negligible as
d! 1, but the remaining ones can have either sign, giving
rise to nontrivial cancellations even for large d. The ghost-
graviton vertex is given by

V�k1; k2; k3��	;�� � i�������k1	�k2� � ���k2���k3	��;

(4.20)

and the two scalar-one graviton vertex is given by

i�
2

�
p1�p2� � p1�p2� �

2

d� 2
m2���

�
; (4.21)

where the p1; p2 denote the four-momenta of the incoming
and outgoing scalar field, respectively. Finally the two
scalar-two graviton vertex is given by

i�2m2

2�d� 2�

�
������ � ������ �

2

d� 2
������

�
;

(4.22)

where one pair of indices ��; �� is associated with one
graviton line, and the other pair ��;�� is associated with
the other graviton line. Again one notices some simplifi-
cation in the limit d! 1. These rules follow readily from
the expansion of the gravitational action to orderG3=2 (�3),
and of the scalar field action to order G (�2).

The next step would involve a careful analysis of what
the dominant diagrams are in the large d limit (still keeping
in mind the serious shortcoming of assuming a vanishing
bare cosmological constant), assuming that such a proce-
dure remains reliable in this limit, in the sense that a
complete resummation can be performed, and that there
are no large nonperturbative, nonanalytic contributions.
But it seems so far that in the case of gravity there are
conflicting claims in the literature [80–82] as to what
exactly happens in the continuum as d! 1.

In Refs. [80,81] a gauge-invariant expansion in 1=d was
developed for vanishing bare cosmological constant, con-
sidering both the case where the extra dimensions are
noncompact and the case where they are highly compacti-
fied. The observation was made that there are order by
order (in 1=d) cancellations of large numbers of graphs, but
the origin of such cancellation remained a puzzle. How-
ever, it was found that the leading term of any Green’s
function was given by a set of disjoint bubble graphs. It was
then determined that the graviton propagator acquires a
physical pole near the Planck mass, unfortunately in a
region where the validity of the expansion appears ques-
tionable. Finally it was claimed that at d � 1 phase-space
factors suppress the Feynman integrations and the theory is
therefore finite.

In the recent work of [82] it is also claimed that a
consistent leading large-d limit exists for the Einstein
theory without cosmological term, and that it can be con-
structed using a subclass of planar diagrams, which seems
somewhat in disagreement with the class of diagrams
identified in the previous references. It is then found that
the large-d quantum gravity limit is well defined and
renormalizable, provided the space-time integrations are
not extended to the full d-dimensional space-time, in other
words if the full space-time allows for compactified di-
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mensions (the last result does not seem entirely surprising,
as compactifying and shrinking extra dimensions leads to
an effectively lower dimensional theory, with possibly
convergent momentum integrations, depending on how
the limits are taken).

But it seems difficult to reconcile the above quoted
results with the fact that (a) the perturbative nonrenorma-
lizabilty issue only gets worse in the continuum as one
increases the dimension, and (b) that at least close to 2
dimensions an ultraviolet fixed point is known to exist, and
somehow completely fails to show up in the large d dia-
grammatic treatment. The more likely scenario is perhaps
that the theory remains perturbatively nonrenormalizable
even in the large d case, and therefore just as intractable in
the continuum as the equally difficult large-d Yang-Mills
case. So far the continuum perturbative diagrammatic
treatment has not led yet to any conclusive predictions
about the behavior of physical gravitational observables
(such as scale dependence and renormalization of cou-
plings, nontrivial fixed points, anomalous scaling dimen-
sions etc.), which makes it difficult to compare with recent
nonperturbative lattice [24,64] and continuum [25,29] re-
sults in low dimensions, both of which project a rather
different picture.
V. CONCLUSIONS

In this paper we have examined the lattice formulation
of quantum gravity in the large d limit. Such a line of
inquiry was stimulated by the fact that statistical systems
based on local interactions generally tend to simplify con-
siderably in this limit, where each point is found to be
surrounded by a large number of neighbors, and mean field
theory methods apply. Even when mean field theory does
not apply, the hope was that the theory would simplify
significantly, to a point where it could be solved exactly. In
view of the general lack of analytical results, aside from
perturbation theory and some other investigations re-
stricted to low and somewhat unphysical dimensions, one
would expect such results would help shed new light on the
true nonperturbative ground state of quantum gravity in
four dimensions.

While d � 1 at first seems rather remote from the
physical case d � 4, one can make the case that the well-
known 1=N expansion of statistical mechanics system and
SU�N� gauge theories (the planar limit) has lead to some
remarkable insights into the finite N structure of these
theories, and in some cases even to quantitatively accurate
answers for critical exponents (in the statistical mechanics
context) and specific phenomenological predictions (for
example in low energy QCD applications). Indeed more
than once it has been argued that in the case of QCD, based
on both theoretical and phenomenolgical arguments, that
1=N � 0 is not too remote from the physical case 1=N �
1=3. In the same spirit, 1=d � 0 might not be as remote as
044031
it seems at first from the real world case of 1=d � 1=4
theory.

In pursuing the 1=d expansion for gravity we have
followed two somewhat complementary approaches. In
the first approach, various terms which appear in the lattice
gravitational (Regge) action were expanded in powers of
1=d. Since the resulting expressions are still rather cum-
bersome, we resorted to a combined weak field expansion,
perturbing arbitrarily coordinated lattices built out of
nearly equilateral simplices. The resulting expressions
were then evaluated for the cross polytope, a triangulation
of the d-dimensional sphere based on the dual of a
d-dimensional hypercube. These were then shown to lead
to a second order phase transition at a critical point kc �
�=d, summarized in the result of Eq. (2.40). Near this
critical point it was found that all �d2 lattice degrees of
freedom become massless (in the sense that all eigenvalues
of the quadratic fluctuation matrix have the same sign and
approach zero), suggesting a complete disappearance of
the conformal mode instability in the Euclidean theory at
d � 1, in agreement with the naive conclusion from
Eq. (4.15).

The second, and perhaps more ambitious, approach was
based on a combined strong coupling (small k � 1=8�G)
and large d expansion. First, in the strong coupling expan-
sion, it was found that the relevant diagrams for the curva-
ture correlation function to a given order in k can be
identified with closed surfaces, built out of parallel trans-
port polygons, with each polygon identified with the par-
allel transport of a test vector around an elementary loop
residing within the dual lattice. We then argued that in the
large d limit it should be possible to neglect surface self-
intersections. One then finds that such surfaces, based on
their equivalent description in terms of a two-dimensional
massless field theory, naturally give rise to a logarithmic
divergence of the correlation length at the critical point at
kc, leading in this limit to the exact (and presumably
universal) result of Eq. (3.41).

The natural question then arises, and which is difficult to
ignore, of whether these large d results have any relevance
for a physical four-dimensional world. To the extent that
the two cases are physically not too far apart, one would be
tempted to conclude that the dependence of the correlation
length � on the gravitational coupling, as expressed in
Eq. (3.41), and, conversely, the dependence of the running
gravitational coupling on �, as expressed in Eq. (3.45),
would suggest, for large d, finite but exponentially small
corrections to classical gravity, at least in a scaling regime
where the relevant distances involved are much smaller
than the macroscopic curvature scale, r� �� 1=

����
R
p

, but
still much larger than the Planck scale, r� lP �

����
G
p

. It is
noteworthy that the quantum corrections computed here
are nonanalytic at r � 0, in spite of the fact that at short
distances they become rather small, and thus provide to
some extent a justification for the semiclassical picture of
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quantum gravity. In terms of the parameters relevant for
vacuum structure, the above-mentioned nonperturbative
curvature scale then corresponds to a graviton vacuum
condensate of order ��1 � 10�30 eV, extraordinarily tiny
compared to the QCD color condensate (�QCD �

220 MeV) and the electroweak Higgs condensate (v �
250 GeV). Furthermore, as has been stressed before, the
quantum gravity theory, at least in its present framework,
does not and cannot provide a value for the nonperturbative
curvature scale �, which ultimately needs to be fixed by
phenomenological input. But, to the extent that this curva-
ture scale clearly does not coincide with the Planck scale
(the cutoff scale), there is some room left for it to take a
very large, even cosmological, value. The lattice gravity
model in fact provides a clear case where the naive iden-
tification of the curvature scale with the Planck scale can be
shown to be incorrect, due to the highly nontrivial renor-
malization effects of strongly fluctuating quantum gravita-
tional fields, which cleverly arrange for the two scales to
differ significantly in magnitude, the more so as one ap-
proaches the critical point.

Finally, in the last section, we have attempted to make
contact with known results for the continuum theory above
four dimensions, and, in particular, those which have some
degree of relevance for the limit d! 1. Generally, and in
analogy with the non-Abelian gauge theory case, it appears
that the continuum theory does not seem to lead to the same
level of simplification as the regularized lattice gravity
model discussed in Secs. II and III (and this in spite of
their purported, but so far proven only for d � 3; 4, equiva-
lence in the lattice continuum limit). Indeed in either case
(gravity and gauge), the issue of perturbative nonrenorma-
lizability only gets worse with increasing dimension.
Ultimately we would tend to ascribe this state of affairs
to the fact that it appears quite challenging to perform the
044031
needed resummation of the continuum theory with a bare
cosmological constant (as done explicitly only close to 2
dimensions), perhaps an essential ingredient required
to determine the true nonperturbative, long-distance be-
havior of quantum gravitation—even in infinitely many
dimensions.
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APPENDIX A: SCALAR CASE AND RANDOM
WALKS

The scalar field case is quite straightforward and is
therefore worth reproducing here. It relies on the well-
known equivalence between the ��4 scalar field theory
and the Ising model, as far as their critical or long-distance
behavior is concerned [83]. The Ising partition function is
given in any dimension by

Z�	� �
X

Si��1

exp
�
	
X
hiji

SiSj

�
; (A1)

where hiji denotes a sum over nearest neighbors (2d in d
dimensions, for a simple cubic lattice). The corresponding
scalar field theory is obtained by using a straightforward
Gaussian integral representation for the Ising statistical
weight, which reads
X
Si��1

e�	=2�
P

ij
SiMijSj � �2����N=2��det	M���1=2�

Z Y
i

d�ie
��1=�2	��

P
ij
�iM�1

ij �j�
P

i
log�2 cosh�i�; (A2)
and then expanding the exponent in powers of the field �
and its derivatives. In either case the critical point is
located where the renormalized mass of the lowest excita-
tion vanishes. Returning to the Ising case, the spin suscep-
tibility is then given by

��	� �
1

Z�	�

X
k

X
Si��1

S0Sk exp
�
	
X
hiji

SiSj

�
; (A3)

and coincides with the spin correlation function hS0Ski,
summed over sites k. Equivalently, it can be regarded as the
Fourier transform of the spin correlation function, eval-
uated at zero momentum. It is convenient to rewrite the
formula for the partition function as
Z�	� � �cosh	�N
X

Si��1

Y
hiji

�1� tSiSj�; (A4)

with t � tanh	, N the number of sites on the lattice, and
the product ranging over all links on the lattice. The
expansion in t has an obvious diagrammatic representation
[84], consisting in the case of ��	� of open paths linking
the site 0 to any site k, with each link appearing at most
once (but multiple times, if the expansion in 	 is used
instead). Write � �

P
n�nt

n, where �n is now the number
of open paths of length n with fixed origin. We obtain a
path of length n� 1 by adding a link at its end, which can
be done in 2d� 1 ways, giving �n�1 � 2d�n, and so for
large d one has [32]
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��	� /
X1
n�0

�2dt�n �
1

1� 2dt
: (A5)

Here use has been made of the fact that for large d excluded
volume effects can be neglected, so that the factor 2d� 1
can simply be replaced by 2d. Then from �� 1=�p2 �
m2�jp�0 � �2 (the spin correlation function evaluated at
zero momentum) one obtains �� 1=�tc � t�

� with tc �
1=2d and � � 1=2.

APPENDIX B: VECTOR CASE AND
q-COORDINATED CAYLEY TREES

In the large d limit dominant diagrams in the strong
coupling expansion of lattice gauge theories are repre-
sented not by surfaces, but by trees made out of three-
dimensional cubes [66,85]. In the case of the plaquette-
plaquette correlation function, these are all the trees which
can be constructed such that they are anchored on the two
given plaquettes.

The generating function for a q-coordinated Cayley tree
[86] (a Bethe lattice with q links emanating from each
vertex) is given by [66]

g�t� �
u�1� q

2 u�

�1� u�2
; (B1)

with parameters u and t related by

t � u�1� u�q�2; (B2)

q � 3 corresponds to a trivalent or binary tree. In the
SU�N� gauge case, one has t � 2d	4, with 	  2N=g2

at strong coupling, and then the above is essentially the
same as the free energy of the gauge theory (up to various
inessential constants). Also, in the gauge case q � 6 (since
a cube has six faces) and a new cube can be attached to any
of the six faces of the original cube (again ignoring ex-
cluded volume effects at large d), thus creating a continu-
ous tree made out of cubes. The free energy is then equal to
a sum over all possible trees of arbitrary length, giving rise
to hydralike configurations as viewed from the diagram-
matic perspective of the strong coupling expansion.

In particular, the plaquette-plaquette correlation func-
tion is obtained from the second derivative of the above
generating function g�t� with respect to the coupling 	. It

QUANTUM GRAVITY IN LARGE DIMENSIONS
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can be represented as the sum of all trees of arbitrary shape
(with coordination q � 6), but now with two fixed end
points. Extending the analysis to general q, one can show
that in fact the key result is in fact independent of q for
q > 2. The relevant singularity in the second derivative of
the free energy g�t� corresponds to uc � 1=�q� 1�.
Expanding Eq. (B2) in the vicinity of this point, one finds

t � tc �
1

2
�q� 1�4�q�q� 2�q�3

�
u�

1

q� 1

�
2
� 
 
 


(B3)

i.e. the linear term vanishes. In the above expression tc is
the critical point,

tc �
�q� 2�q�2

�q� 1�q�1 : (B4)

Thus tc � t� �u� uc�2 for any q > 2. First and second
derivatives of the free energy g�t�with respect to t can then
be calculated via

dg
du
�
�q� 1�u� 1

�u� 1�3
dg
dt
�
dg
du

du
dt
�

1

�1� u�q

d2g

dt2
�
q�1� u�2�2q

1� �1� q�u
;

(B5)

which for any q > 2 behaves in the limit t! tc as

d2g

dt2
�

q�q� 2��1�3q�=2���
2
p
�q� 1��2�3q�=2

1������������
tc � t
p � �2: (B6)

Here use has been made of the fact that the second deriva-
tive of the free energy brings down two plaquette terms,
giving the plaquette-plaquette correlation function,
summed over both plaquette coordinates, and which is
therefore equivalent to the Fourier transform of the
plaquette-plaquette correlation at zero momentum. Thus
one obtains the momentum space plaquette-plaquette cor-
relation at zero momentum, or 1=�p2 �m2�jp�0, withm �
��1, and this then gives �� 1=�tc � t�

1=4 and thus � �
1=4 for any q > 2. It is further observed in [66] that the
second order phase transition of the gauge theory described
by g�t� bears a striking similarity to the condensation of
branched polymers, with the polymer chain built out of
(trees of) three-dimensional cubes.
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[4] S. Deser and P. van Nieuwenhuizen, Phys. Rev. D 10, 401
(1974); S. Deser, H. S. Tsao, and P. van Nieuwenhuizen,
Phys. Rev. D 10, 3337 (1974); P. Van Nieuwenhuizen,
Ann. Phys. (Berlin) 104, 197 (1977).

[5] M. H. Goroff and A. Sagnotti, Phys. Lett. 160B, 81 (1985);
-21



HERBERT W. HAMBER AND RUTH M. WILLIAMS PHYSICAL REVIEW D 73, 044031 (2006)
Nucl. Phys. B266, 709 (1986).
[6] A. E. M. van de Ven, Nucl. Phys. B378, 309 (1992).
[7] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975); 55, 583

(1983); K. G. Wilson and M. Fisher, Phys. Rev. Lett. 28,
240 (1972).

[8] K. G. Wilson, Phys. Rev. D 7, 2911 (1973).
[9] G. Parisi, Nucl. Phys. B100, 368 (1975); B254, 58 (1985);

in New Development in Quantum Field Theory and
Statistical Mechanics, edited by M. Levy and P. Mitter
(Plenum Press, New York, 1977).

[10] K. Symanzik, Commun. Math. Phys. 45, 79 (1975).
[11] S. Weinberg, Phys. Rev. D 56, 2303 (1997).
[12] S. W. Hawking, in General Relativity–An Einstein

Centenary Survey, edited by S. W. Hawking and
W. Israel (Cambridge University Press, Cambridge,
England, 1979); S. W. Hawking and T. Hertog, Phys.
Rev. D 65, 103515 (2002).

[13] J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960
(1983).

[14] J. B. Hartle, lectures delivered at the Theoretical
Advanced Study Institute in Elementary Particle Physics,
Yale University, 1985, Vol. 2, pp. 471–566.

[15] H. W. Hamber and R. M. Williams, Phys. Rev. D 72,
044026 (2005); gr-qc/0506137.

[16] T. Regge, Nuovo Cimento 19, 558 (1961).
[17] J. A. Wheeler, in Relativity, Groups and Topology, Les

Houches 1963, edited by C. De Witt and B. S. De Witt
(Gordon and Breach, New York, 1964).
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