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We discuss the strategy to remove the quenched approximation and to minimize systematical 
and Statistical errors occurring in the numerical simulation of lattice QCD. 

We suggest a way to compute the flavour singlet sector of the mass spectrum, and comment 
about the relation between the fluctuations of the mass values and the scattering amplitudes. 

1. Introduction 

Recently many efforts have been devoted to the analysis of the low-energy part  
of the hadronic spectrum and  of the pattern of chiral symmetry breaking in lattice 
QCD.  While most of the numerical work has been done using the so-called quenched 
approximation [9, 2-7] (i.e. neglecting the quark vacuum polarization diagrams), 
some recent results have been obtained for the full theory [1]. Although the results 
of these computations are affected by systematical errors (due for example to the 
small size of the lattice [8]) that are very difficult to control, they suggest (and make 
somehow concrete) the possibility of more  precise investigations, to be done on 
larger lattices, which would determine the hadronic mass spectrum in a picture 
where systematic errors are under control and statistical errors are reasonably small. 

In this paper  we discuss the strategy to remove the quenched approximation. The 
claim that these computat ions can be performed by using an amount  of CPU time 
comparable  with the time needed for a quenched computat ion is supported by the 
results of the numerical simulations [1] we mentioned above. 

In sect. 2 we review the general formalism [9-11, 2-4] for numerical simulations 
of lattice gauge theories with fermions. In sect. 3 we study the sources of systematic 
errors affecting the evaluation of the effects of quark loops, and we suggest the 
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computational methods to be preferred. In sect. 4 we outline how the computation 
can be organized. 

Three appendices focus on specific problems: in appendix A we show how to 
compute the flavour singlet (I  = 0) sector of the mass spectrum. In appendix B we 
discuss the relation between the fluctuation of the mass values and the scattering 
amplitudes, and about the formation of many quark bound states. In appendix C 
we give some details about our computer codes, and we suggest efficient 
computational methods. 

2. Dealing with fermionic theories: the general formalism 

2.1. THE LATI'ICE FERMIONIC THEORY: EFFECTIVE ACTION AND 
SECOND-ORDER FORMALISM 

Let us consider a lattice theory, characterized by the following euclidean action: 
n( 

S[A, ~, ~O] = SG[A] + Y~ U'i'i:'~f)a,~,kt~J~'kral""¢¢) , (2.1) 
/=1 

where A stands for the set of bosonic fields defined on the links of the lattice, qJ 
for the set of fermionic fields defined on sites, i and k denote the lattice sites, nf is 
the number of flavours. Although the action of eq. (2.1) has a quite general form, 
in the following discussion we will assume that the A fields are gauge fields and 
that the ~b fields are quarks. 

Using the Matthews-Salam formula [12] we can rewrite the mesonic and the 
baryonic propagator in the following way (for the sake of simplicity we will drop 
color, flavour and spinor indices): 

(qT(x)@(x)~(0) qJ(0)),~,0 = I d/zen[A] A~.~[A]Ao, I [ A ] ,  (2.2a) 

(~(x)O(x)~(O)qJ(O)),=o = f d/z~n[A] A~,~[A]Ao,~[A ] 

-- n~f  dp,¢t~[a] Ao, I[A]Ax,~[A], (2.2b) 

(~O(x)~(x)O(x)~b(O)qt(O)~b(O)) = f dp, eer[A] (A -~x,o [ a ] )  3, (2.2c) 
./ 

where 

d/.eef~[A] oc d[A] e -so.tAl = d[A] e -sofa] det",zl[A] 

= d i a l  exp { - [SG[A] -  nf Tr (In A[A])]}, 

f d/zefr[A] = 1. 

(2.3) 



H. W. H a m b e r  et al. / Numer i ca l  analys is  o f  Q C D  477 

By ! = 0 we denote the flavour singlet sector; we will assume that flavour symmetry 
is unbroken. 

Fermions on the lattice are usually described by the Wilson [13] or the Kogut-  
Susskind [14-16] (KS) formalism: in both schemes the determinant of A is a real 
number, and it is positive in the KS picture. In both cases the operator zl is not 
hermitian; however we can use the following relation* 

det (A) ~ R + ~  det (A) = [det (A) det (A *)]1/2 
~ d e t  (A) = det (AA*)  1/2 = det (~)1/2, 

in order to deal with a hermitian operator. Substituting z~ for A in (2.3) yields a 
theory with 2nf flavours; for the continuum this procedure corresponds to the use 
of a second-order formalism theory [17, 9], i.e. to quantize the action 

~ ( - D ~ , D  ~" + o-,~F ~ + m2) g~, 

where the ~ are parafermions of order 1. Substituting at the same time zl for a 
and lnf to nf we will get a theory with the same number of flavours as the original 
one. Now for KS fermions dgen[A] can be thought as a probability measure; the 
same holds for Wilson fermions if one is in conditions such to avoid a change in 
sign of det (A), or restricts oneself to even nf. 

The computational procedure we have in mind is the following: by using some 
probabilistic algorithm we produce configurations of the gauge fields thermalised 
with respect to the measure d/z~[A], and then we measure expectation values such 
as those considered in equations (2.2). The inverse operators needed for this last 
step (fermionic Green function) A~ 1 can be obtained, with the required high 
precision, for the given configuration of the gauge fields by using a fast algorithm, 
suitable to invert sparse matrices (relaxation, Gauss-Seidel, conjugate gradient). A 
difficult goal to achieve is to measure the mass differences between I = 0 and I # 0 
states; we will comment about this point in appendix A. 

It should be noticed that in eq. (2.3) nf is not necessarily an integer number. This 
observation can be used to compensate for the species doubling of the KS fermions. 
The KS action gives rise, in the continuum limit, to 

n~ Ks) = 2d/2 

fermionic species (d is the number of space-time dimensions), and setting the 
parameter nf contained in the effective action to be equal to (wanted number of 
s p e c i e s ) / n ~  we will get the quark-loop corrections for the wanted number of 
flavours. 

* We denote by A* the adjoint of the operator A (hermitian conjugation) 

( A % k  = Re ( Ak~) -- i Im ( Aki )  . 
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2.2. G E N E R A T I N G  THE G A U G E  FIELD CONFIGURATIONS 

We discuss now the algorithm which can be used to generate configurations of 
the gauge fields A with the measure d/zea[A]. We will temporarily forget the unitarity 
constraint on A. These will be considered in sect. 4. 

Let us outline two possible computational methods. The first possibility consists 
in writing an equation "7t la Langevin" for the fields Ai(t) (t is in this case the 
Langevin time): 

dAi = -- (Se,) + n~(t) 
dt 6Ai 

8 (So)+nfTr{  A-~ 8 } = - 6A---7 ~ (a) + rh(t) 

8A (Sc)+~nrTr ~-~ (~1) +hi(t) 

where zl = AA*, and ~( t )  is a gaussian white noise with 

(2.4) 

rh( t) rlj( t') = 28~jS( t -  t') . (2.5) 

The other possibility would be to use the Metropolis algorithm [18]. One A field 
at once is updated each time: the new tentative field AT is given by 

T 0 Ai = Ai + pri, (2.6) 

where A ° is the old value of the field, r~ is a random 3 x 3 matrix, with elements 
such that 

(r7 b ) - -0 ,  (IrTb I 2) = 1, 

(a, b = 1, 2, 3), and p is a control parameter. We should remind the reader that in 
this analysis we are neglecting the constraint A~ ~ SU(3), that is implemented in the 
actual computation. Now we will select the new value for our field A~ (we call AN) 
by setting AN = AT with probability p (exchange is performed) and A N= A ° with 
probability ( 1 -  p) (no change). The probability p is given by 

p = min {exp {-(Sea[A T] - Sen[A°])}, 1} 

-~ min {Pr, 1}. (2.7) 

For small p we can write 

PT=exp{ - -~Pr~+O(p2)}  

8 
=exp{ - [ ( so[aT] - so[ao] ) - -~n~pr iTr{~ - l~ i i~} ] } ,  (2.8) 
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where terms of order /9 2 a r e  neglected. Here  p is a free parameter,  that we can 
choose small enough for O(p 2) in (2.8) to be negligible; we will have to however 
.pay the price in the time of approach to equilibrium which grows a s  /9 -2 . 

The two methods we have proposed can be related through a Kolmogorov result 
[19]: if we identify 

t=p2n ,  

n being the number of times we upgrade "~ la Metropolis" each of our link variables, 
in the limit where p goes to zero at fixed time t the Kolmogorov equation for the 
evolution of the transition probability for the A fields will tend to the Fokker-Planck 
equation associated to the Langevin eq. (2.4). In simpler words a Monte Carlo 
simulation with small up-dates is equivalent to a Langevin equation. The Monte 
Carlo procedure for continuous variables can be considered as a wise (the asymptotic 
equilibrium distribution is preserved) discretization in time (introducing a mesh for 
the time variable) of the Langevin equation. 

It seems to us that, if the lattice size is not too small to get sensible physical 
results, the only possibility of avoiding the need of enormous computer  time and /o r  
of an unacceptably large quantity of computer memory lies in performing small 
average up-dates of the gauge fields, independently of the upgrading method chosen. 

Using Pr  as in eq. (2.8) for a non-zero p we expect to find an error  of order  p 
on the equilibrium distribution d/~e~[A]. 

The limit p ~ 0 can be taken in different ways: we can compute the physical 
quantities we are interested in for a few different small values of p, and extrapolating 
the result to p -- 0 (after verifying that we are in a zone in which a linear extrapolation 
makes sense). The other possibility is setting p to such a small value ~ that 
(0)p_~ - (0)p=o is negligible. To this respect we want to remark that the contribution 
to the RHS of eqs. (2.4) and (2.8) due to the fermion fields should in principle 
be updated every time that a single link variable is substituted. In the p-~0  
limit updating this contribution, for example, just after one full sweep on all 
the gauge fields A, will induce on the equilibrium probab~ity an error  vanishing 
with p. 

2.3. THE FERMIONIC CONTRIBUTION TO THE ACTION 

We come now to the crucial point: how to compute Tr  (~-1(8/8A) ,~) ,  appearing 
in (2.4) and (2.8). The computation of ((8/SA),~)~k is straightforward: using the 
lattice equivalent of the second-order formalism only elements for which i and k 
are at most second-nearest-neighbour sites will be non-zero. So we are left with the 
computation of the elements of (Zl-1). Let  us analyze some efficient techniques. 

The first possibility (defermionization) consists in building an auxiliary Monte 
Carlo procedure for some auxiliary bosonic fields ~i (lying on sites) that we call 
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pseudofermions [10, 9]. We start from the identity 

= ] d#z[919*9k, 

f d/.L[~] = 1, 

d#~[9]ocd[9] exp [ - Y~ 9":1,,,9,,) , (2.9) 
t Im J 

which suggests to us that we compute the two-point function of the 9 field (with 
measure d~[~]) by a Monte Carlo procedure consisting of neF sweeps on all the 9 
fields. We can now precisely expose the full recipe for constructing a configuration 
of A fields in equilibrium with dlze~[A]. Each complete cycle will consist of two 
phases. First one does npF Monte Carlo sweeps for the 9 fields (using the probability 
measure of eq. (2.9)), and afterward updates once the A fields (on the whole lattice) 
using, in (2.4) or (2.8), 

8 

8A~ 

= 2 Re [ A*k s--~{Ak,}9*9, ] , (2.10) 

where the bar denotes the average over the last (ripE--riD) iterations over the 
pseudofermions, where no stands for the number of iterations used at the beginning 
of any pseudofermionic cycle for bringing the pseudofermions to equilibrium, and 
not used in computing average values (discarded). The error intrinsic to this approxi- 
mation vanishes in the limit 1/naF~ O. It should be noticed that the limit of small 
p implements the limit of small 1/neE: when the dynamics of the gauge fields slows 
down, the relative speed of the pseudofermionic one becomes greater. 

It is clear that the second-order pseudofermionic formalism we have built up can 
be used independently from the probabilistic algorithm we choose to update the 
pseudofermions: a good choice to construct the equilibrium probability d/z[9] may 
be to use the heat bath method [20]. The main reason which makes this procedure 
very convenient for the upgrading of pseudofermions is that the 9 equilibrium 
probability is gaussian. Other advantages can be seen in the heat bath formulation: 
first there are no free parameters to be adjusted by hand (like 892 in the Metropolis 
algorithm), the procedure being optimized by itself. This is a very nice feature, 
because tuning parameters and trying to reach the maximum efficiency is always 
very demanding timewise. Secondly the heat bath is slightly faster (of a factor of 
order 2) than the Monte Carlo procedure, even if in the latter multiple hitting is 
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used [21]. Finally the computer code does not contain in this case "logical IF"  
statements; in other words there are no discontinuities in the evolution of the ~0i 
fields with respect to the variables Aik[A]. This fact will be shown to be useful when 
computing the splitting between I = 0 and I ~ 0 masses (see appendix A). 

In both methods (Metropolis and heat bath) the use of the second-order formalism 
is compulsory: the pseudofermion action has to contain the hermitian operator 
,~ = AA*. On the contrary if we want to perform a direct evaluation of (A-1)ij using 
the first-order formalism we can consider the following set of Langevin-type 
equations: 

where 

~l =-a,j~{ + n,(t), 
~ =-(AT),j~o~ + n,(t), (2.11) 

~7i(t)~k(t') = 28,kS(t-- t ' ) ,  

A T is the transposed A and in the two equations (2.11) the stochastic noise is the 
same. Assuming that Aq is a positive operator, in the sense that 

l ime -at = 0 ,  
t~c t3  

we get 

(2.12) 

o r  

lim ~0] ( t ) ~  (t) = (a-1)ik, (2.13) 
t ---~ oo 

where the bar denotes the average over the noise '1. We can easily prove eq. (2.13): 
let us formally integrate eq. (2.11) by writing 

~ol (t) = (e-a ')/?Tj(t-  ~') dz,  

Io ~,~(t)= (e-~')kln~(t - r )  dr 

fo ; n~(t--r)(e-a')lk dr .  

f ' f '  lim ~o~ (t)~og (t) = lim (e-a"')ij(e-a"')lk2Bjt6('r"-- "r')&r'&r" 
t~-oo t ~  dO dO 

= lim 2 I '  (e-2a')ik dz = (A-1)ik, 
t-~OO J 0  

(2.14) 

(2.15) 

Now 

and eq. (2.13) is proved. 
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Practically we will estimate (A-~)ik from eq. (2.13) using finite time: we will 
integrate our equation not for an infinite time but up to t = tpF (here tpF plays the 
role of npF in the second-order algorithms), with a tpF long enough for the error to 
be negligible. 

Now we want to study numerically the Langevin system (2.11): so we will have 
to discretize the time. The most naive expression is 

~o(n + 1) = ~o(n) + cOco(n) +x/~er(n), (2.16) 

where we omitted the euclidean space-time indices, and where O is ( - A )  for ~o~ 
and ( - / IT)  for ~o2, n labels the discretized Langevin time, and the r(n) are random 
numbers with 

<r(n)) = O, (r(n) 25 = 1. 

This naive transcription has been tested on a variety of different physical systems; 
it turns out that it succeeds in being a good approximation of the corresponding 
continuous equation only for very small integration steps e, such that the computer 
time needed for the integration is prohibitively long. The way out is to consider a 
more accurate discrete transcription (that will ensure realistic computing time): 

~01(n + 1) = ~ ( n )  - eAton(n) + 18e2A2tpl(n) + x/~e{( 1 +½8A)r(n) + s(n)} ,  (2.17) 

and the same for ~02, with A - , / l  v. Here  r(n) and s(n) are two independent random 
variables. The case in which 8 = 1 corresponds to a second-order Runge-Kut ta  
approximation (for the deterministic part): this is the only case we have considered 
[1], although it is not clear whether a value of 8 slightly larger than 1 could be better. 

To end this section we note that, in the same way that we proved eq. (2.13), one 
can show from eq. (2.11) that, if the operator A is normal ([It, A*] )=0) ,  

lim ~i  (t)~0 k (t)* = 2[(A + / i* ) - ' ] , , .  (2.18) 
t-~OO 

We will use this relation in sect. 3 in order to estimate the error  implied from 
considering a finite tp~. 

3. Minimizing the errors 

We have seen in sect. 2 that in the method we are proposing for simulating the 
feedback of quark loops over the gauge field dynamics there is an intrinsic systematic 
error  of order p (or order t 1/2 in the Langevin formulation, (2.4)). Assuming that 
p is small we want to estimate the error induced by the fact that npF (or h,F, in the 
Langevin pseudofermionic formalism) is finite. 

Consider the complete Monte Carlo cycle for constructing d/~en[A] that we 
described in sect. 2: although not compulsory when one begins a new cycle it is 
convenient to use as a starting point (initial conditions for the ~0-fields) the npFth 
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value of the pseudofermionic variables one computed in the previous cycle. Indeed 
they will be off-equilibrium by a quantity proportional to p. For  npF large enough 
we can write [10]. 

1 np~ .̂ ~n~* ̂ ~n~ __ ( z ~ - l ) i k  + Si k dr Rik, (3.1) 
- -  ~ ~/"k vr ' i  
n p F  n = l  

where Sik is a systematic effect proportional to 1/npF and Rik is a noise proportional 
t o  (1/npF) 1/2. The Sik term would eventually be exponentially small in npr if one 
could approximate (A -1) with 

tip F 

r ipe(1 _ X) E ¢P (kn)* tP I n) , ( 3 . 2 )  
n ~ XtlpF 

where x (0 ~< x < 1) is such that (XnpF) is an integer ((XnpF) is called nD in sect. 2). 
But one should be aware that this requires very large values of npF. 

In the Langevin framework (and, by using the equivalence of the small-step 
Monte Carlo procedure with a Langevin-like procedure, also for the Metropolis 
updating scheme) it is very easy to see that the global systematical error  done in 
computing expectation values, over d~e,[A] will be of the form (nf is the number 
of fermionic species) 

(Anf+Bn2)+ 0 1 , (3.3) 
npF 

where the term proportional to n 2 comes from the noise contribution (Rik) and 
the nf part originates from the systematic effects (Sik). It follows that the choice of 
the algorithm to be used depends on the number of fermionic species one wants to 
consider: if we recall that in our formulation nf is not necessarily an integer number, 
and that the x parameter of eq. (3.2) has the role of making small the systematic 
error  term appearing in eq. (3.1), S~k, it becomes clear that x should be chosen 
close to one for a small nf (n f~  0), while a small x value is convenient for large nf. 

The last point we want to discuss here concerns the advantages presented by a 
heat bath (or Monte Carlo) defermionization with respect to a Langevin one, and 
vice versa. Let  us assume we are using Kogut-Susskind fermions. We have seen 
that the Monte Carlo approach is based on the second-order formalism: so we 
expect that the time for equilibrating the pseudofermionic system, teq, will be 
proportional,  when the bare quark mass mq goes to zero, to m (  2. On the other 
hand the noise contribution to the error  should not be too big. On the contrary the 
Langevin-like algorithm is based on a first-order formalism. In this case the diagonal 
term of the operator  we want to equilibrate will be mq, and teq ~ mq 1. One pays 
for this nice feature by the fact that 

i~0~12 1 
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as can be seen from the relation (2.18), and from the fact that in the 
KS approach [16] 

A +A* = 2 m q ,  (3.5) 

This means that there is a noise on ¢~¢2 proportional to mql;  it is a stronger 
effect than the one found in the Monte Carlo approach (numerical experiments 
show that the noise on the equivalent quantity stays quite small for small mq). 

We can now formulate our conclusions, by using the expression (3.3). The use 
of the Langevin equation is suitable for small number of flavours, while the Monte 
Carlo and heat bath are to be preferred for large nf. Moreover,  the value n~ for 
which it is convenient to flip from the first-order formalism to the second-order 
one, is a function of mq. 

As a last remark we note that in the expression (3.3) there is an overall p2 factor, 
and that the global error is given by this expression p lu s th e  effect due to the 
finiteness of p. So it seems to us to be convenient to fix npF to a value reasonably 
large (for the values of the coupling constant, of the lattice size and of mq used in 
ref. [1] npF ~-50 appeared to be an acceptable choice), and to extrapolate p to zero. 
This procedure is, as we noticed in subsects. 2.2, 2.3, a suitable way of avoiding an 
extrapolation in a two-variables space. 

4. The structure of the numerical experiment 

In the previous sections we have enumerated a frightening quantity of possible 
options, ways of extrapolating, practical differences in implementing the suggested 
algorithms: we have now to be clear about which are the optimal ones. 

Let  us start by discussing which lattice formulation we have to choose for the 
fermionic contribution to the effective action. In our opinion the job is best done 
by the KS fermions. Several advantages over Wilson fermions can be easily seen: 
there is manifest chiral symmetry (see the last of the references in [16] and [9]), 
the fermionic determinent is positive, the bare quark mass is defined on an absolute 
scale (due to chiral invariance the critical point of the theory has to stay at mq = 0; 
there is not yet a value as the Wilson Kc, critical K, to be found). Moreover  the 
corrections to the continuum limit are proportional to a 2 (where a is the lattice 
spacing), while on the contrary they are proportional to a in the Wilson action (in 
this case, due to the presence of an explicit chiral invariance breaking term, operators 
of dimension-5 like ~ D , D ~ b  or f f t r~F~t~ are allowed. These operators are not 
present in KS formulation, which preserves chiral symmetry). Last but not least in 
the KS formulation just one variable for the lattice site is present ("staggered 
fermions"),  in contrast with the four spin components in the Wilson formulation; 
so the computer KS program turns out to be faster by a factor of order 4 than the 
Wilson fermion program, and occupies much less memory. On the other hand the 
identification of quantum numbers (spin, isospin) is straightforward for Wilson 
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fermions, and less simple (in particular for the baryonic sector) for KS fermions 
[16]. So a possibility could be to represent the external  quark lines (A -1 in eq. (2.2)) 
in the Wilson picture. For  the mesons, however, it costs only a slight increase of 
CPU time to perform the computation also using KS external lines. A separate 
discussion is needed for the I = 0 part of the spectrum, and we will present it in 
appendix A. 

Let  us turn now to the practical way in which the mass spectrum computation 
(of a theory with nf = 2 or 3) should be performed. For  obtaining reasonably accurate 
results one may have to analyze to the order  of 102 statistically independent gauge 
field configurations (on a lattice with something like 103. 20 sites, at squared coupling 
constant g 2  1). The number of Metropolis time steps (with optimized efficiency) 
needed to destroy the correlation between the estimated masses associated with 
two gauge field configurations is unclear. In ref. [4] masses were found to be 
correlated up to ~1000  steps; this effect is however mainly due to the influence of 
the boundary conditions on the fermionic Green functions in the Wilson formulation 
[8]. Anyhow if in a quenched computation one computes the Wilson quark correla- 
tion functions on one configuration over one hundred, the pure gauge Metropolis 
upgrading only takes an order  of 10% of the total computer time [4, 5]; therefore 
if we loose a factor 10 for generating the gauge field configurations using d / ~ [ A ] ,  
instead of the pure gauge measure d/~[A], we just need a factor 2 more of total 
computer  time. 

We can go further by using the following strategy: we upgrade the whole system 
(gauge fields and pseudofermions) one hundred times, using a large value of p, we 
call JOE (let us assume PL is such that the pure gauge Metropolis procedure is 
optimized). This way we will produce a configuration which is slightly off-equilibrium 
(with respect to the measure d/.~H[A]): now we will equilibrate it by performing 
another hundred sweeps at a small p value, Ps. We will compute the Green functions 
only on the last configuration (of the 200 we have produced in the way we have 
described). 

This was just a very naive sketch of  a possible efficient scheme, but we can try 
now to improve it. Our defermionization algorithm can be thought as characterized 
by the three parameters p, fl = 6 / g  2 and mq" so let us suppose our final configurations 
to have been obtained with the choice of  the parameters ~, fl and t~q (where ~ is 
small enough to make negligible the error induced by its finiteness, r~q goes as close 
to zero as the size of  our lattice allows it and fl is in the scaling region). We can 

F think now of performing our 100 "fast" steps using the parameters PF, fie and mq 
chosen such that 

E(pF, #F, mE) = E(p, fl, ,~q), 

(d~tP)(Pv, flF, mq v) = (6~)(,6,/~, r~q). (4.1) 

In this way the configuration we get at the end of  our 100 fast sweeps (done with 
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PF, flF and mq F) will be as close as possible to the thermal equilibrium with dlzen[A] 
(~,/~, rhq). We should however stress that the number 100 + 100 we are quoting here 
is arbitrary enough; the optimal number of sweeps needed between two configur- 
ations on which the averages are done is at the moment quite unclear, and will 
depend on the size of the lattice. 

What will be the effect of  internal quark-loops on the masses? One plausible 
possibility is that, for the I ~ 0 particles and the lowest-lying baryons, it is negligible, 
while for the heavier states it could produce some large widths (small widths have 
the nice feature of simplifying the analysis of the correlation functions). Let us 
consider the hypothetical situation in which there already exists a very accurate 
computation done in the quenched approximation. This computation has been done 
on a large lattice, using an improved action [22] (in order to minimize the effects 
of  the non-zero lattice spacing), and the masses have been computed with high 
precision (of a few percent). Now if we consider a typical mass ratio, for example 

mp 

/1% 

it is possible to expand it in powers of nf: 

R(nr) = Ro + nrR1 + n2R2 +O(n~).  

Phenomenological arguments suggest that Rl is much smaller than Ro, and that the 
R2 term is negligible for n f=2 ;  in this situation a computation of Ri with a 
not-so-high accuracy (and on a not-so-large lattice) would be by fair enough. It 
would be very convenient to compute R~ in a direct way by comparing the results 
obtained for nf= 0 and nf = 0.1. We should recall now what we explicitly claimed 
in sect. 2: our approach to the simulation of fermionic internal loops is valid also 
for non-integer nf. Of course this cannot be done by comparing the results of two 
different Monte Carlo simulations: the statistical error would overcome the mass 
difference. It seems to us that what is needed is an algorithm ~t (thermalizing 
according to the measure d/xe~[A]) such that the gauge field configuration obtained 
by applying T times M to the system is a smooth function of nr. This situation can 
be realized by avoiding the MC procedure, i.e. by upgrading the gauge field in the 
Langevin approach, and the pseudofermions by the heat bath or Langevin methods. 
Working at small nf also presents the advantage that the noise contribution to the 

2 2 --1 error (the Rik term in eq. (3.1)), which is proportional to p nf npF (eq. (3.3)), is in 
this limit negligible, and one can concentrate one's efforts in minimizing the system- 
atic contributions to the error. 

These arguments suggest that we exploit in a more systematic way the possibility 
of upgrading the gauge fields with a Langevin-like equation. We see two different 
possibilities: the first one is based on relaxing the condition that the gauge fields A 
are unitary, and adding to the action a term 

Tr {(AA* - 1) 2 + [det (A) - 112}, 
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which enforces on average the unitarity constraint. The second consists in writing 
a Langevin equation directly on the group manifold. In short, all we need is an 
upgrading algorithm producing in the phase space a trajectory that is a smooth 
function of  the force, and satisfying the detailed balance (at least in an approximate 
way). We can write 

A~, = exp {ie l /2flaA a + ePA[FA*o]}Ao, (4.2) 

with 

8 
F = ~-d (&~)" 

where the p~ are gaussian random numbers, the A~ are the SU(3) Oel l -Mann matrices 
and Pa is the projector onto the SU(3) algebra, (i.e. it picks up the traceless 
antihermitian part of FA*). For practical purposes it is convenient to truncate the 
Taylor expansion of  the exponential and to renormalize the new matrix to SU(3). 
Eq. (4.2) satisfies the detailed balance condition: 

P(Ao, AN)= P(AN, Ao) exp {-(S~tr[AN]- S~[Ao])}, (4.3) 

(where P(A, B) is the probability of  transition from A to B) with an accuracy of  
order e 2, Since the number of  iterations grows as e -j,  the effective deviations from 
the detailed balance turn out to be of order e. In the limit of small e eq. (4.2) 
provides an algorithm for which the trajectories are smooth functions of  the para- 
meters which appear in Sell. Multiple hitting, (updating a link more than once any 
time we touch it) can be used to increase the efficiency of  the algorithm. 

The method we are suggesting is sensible if two nearby trajectories do not separate 
exponentially in time. In order to see under which conditions this happens let us 
consider the one-variable case 

OU 
~(t) = - - -  + ~7(t). (4.4) 

Ox 

We are interested in understanding what happens to two nearby trajectories x~(t) 
and x2(t), which evolve under the same noise ~(t). If we set 8 = x2 - x~ we get 

= -O2U 8 +0(8 2) (4.5) 
i)X2 [ x=xl(t) 

and in the limit of  small 8 we see that if 02U/Ox2> 0 the two trajectories converge, 
and they diverge if 02 U/Ox2< O. It is, most of the time, in the region where 02 U/Ox 2 
is positive (as suggested by naive arguments) the trajectories should not diverge. 

The situation is completely analogous in the many-variable case: 

OS 
~i(t) = - - -  + ~Ti(t), (4.6) 

OXl 
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where now the crucial condition is that the average in time of the hessian matrix 

O2S 
H =  

OxiOxj ' 

should be positive. 
A serious difficulty arises if, by the symmetry of the problem, the hessian has a 

zero eigenvalue; in this case 8 may start growing up in the direction of the 
correspondant eigenvector, and this could result in trajectories exponentially 
separating in time. Due to gauge invariance this condition is realized in gauge 
theories. We see three possible remedies: one is to add to the action a small term 
which violates gauge invariance. The second one is to fix the gauge (axial gauge) 
without producing ghosts. The third one consists in making after every few iterations 
an explicit gauge transformation over the gauge fields, in such a way as to bring 
them as close as possible to the identity. It seems to us that the third method should 
be preferred; adding a gauge breaking term to the action could badly modify the 
expectation value of large-distance correlation functions, and the simulation in the 
axial gauge converges too slowly towards thermal equilibrium. This procedure also 
affects the pseudofermionic sector of our cycle: we think that using the third option, 
also the systematic contribution in (3.1), will be diminished. 

This is the computational procedure we think to be the more suitable; we obtain 
in this way two slightly different configurations of the gauge fields (in the sense that 
the trajectory in time of the values of the interesting operators stay close), respec- 
tively, let's say, with nf = 0 and nf = 0.1. The splitting of the masses due to the quark 
loops will be now free from most of the statistical errors. 

We wish to thank O. Napoly for a critical reading of the manuscript and interesting 
discussions, and Mrs. S. Zaffanella for the very careful typing of a very tricky 
manuscript. The work of H.W.H. was supported by the US Department  of Energy 
under grant no. DE-AC02-76ER02220.  

Appendix A 

THE I =0 SECTOR 

One of the goals one can try to reach by computer simulations is to obtain results 
about the masses of the I = 0 mesons; this is clearly a problem of great physical 
interest. It is, unluckily enough, also rather hard: one has to evaluate in this case 

G , , ( A ) G k k ( A )  , 

(where G are the fermionic Green functions) and that is very difficult. In fact to 
estimate the correlations one has to do an explicit average over the A field configur- 
ations, and also if i is kept fixed one has to do the computation for all k. 
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The simplest possibility is to use the Metropolis or Langevin to compute Gkk(A) 
for all k in the quenched limit; if we set 

Mt=I = rn1=o + Amn~+ O(n2) , 

for nf small we get 

G.[A]Gkk[A] 
lim '- Amnt . (A.1) 

nt'li-k[-'*°° Gik[ A ]Gki[ A ] 

This object is very difficult to evaluate for all channels except the pseudoscalar one, 
where the signal is rather high. A second possible way out would be to compute 
Gkk[A] by means of the hopping-parameter expansion [6]. The common bottle-neck 
of these methods is that in practice they do not allow us to measure the signal at 
a distance larger than n t -  3: this is due to the presence of a large statistical error. 

Let  us describe now the method we think could be applied to solve this problem*. 
We introduce two different pseudofermionic fields ~1 and ~2 (splitting the nf 
fermionic species contribution to the action into two lnf equal parts), and consider 
the operator  

O~(t) =~ ~o*(x, t)~o~(x, t ) ,  a = 1, 2 ,  (A.2) 
x 

where the sum over the spatial part x is done over the tth hyperplane of dimension 
3. We add now to the action a term eOl(t=O), setting e to a small value eo, and 
measuring the quantities 

R~(t) =l{(o~(t))~=~o-(O~(t))~=o}. (A.3) 
e 

We get in this way 

Rl( t )  ~ e-m'~°q=°+ e -M'-lt'=l 

R2(t) - e -m'-° '=°-  e -M'=I'- '  . (A.4) 

If the mass splitting is large enough we can measure in this way ml=o and 3//i=1. 
But the most important remark (and we built all this machinary just for this goal) 
is that if the splitting is small we get 

R2(t) Amt. (A.5) 
R~(t) 

In this way i t  should be possible to measure also a very small splitting. The price 
we will have to pay is that we will have to perform a separate computation for 
every choice of the particle quantum numbers; but this seems to us to be the only 
realistic possibility. 

* For the application of an analogous method to the evaluation of the glueball mass see ref. [23]. 
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Appendix B 

SCATTERING AMPLITUDES VIA MASSES FLUCTUATIONS 

The way in which the particles' masses are computed in a numerical simulation 
is quite straightforward. For the I ~ 0 mesons, for example, one first computes 

Gr(x, tlg) - (OF~O(x, t)~FqJ(O, O))A (B.1) 

and sets his operators to zero spatial momentum by defining 

Gr(t, A) = E Gr(x, tlA). (B.2) 
X 

This procedure is repeated for each configuration A ~n). Finally one computes 

Gr(t) = f dtzen[A]Gr(tlA), (B.3) 

and the interesting mass will be given from the large-time behavior 

lira{ 1 } , -~ - t l n G r ( t )  =m. (B.4) 

w e  can also think of defining a value of the mass for each A(")th configuration, by 
the relation 

lifn { - l  ln Gr( tla(n') } = mr[A'~']. (B.5) 

Now we ask ourselves if the following relation is true: 

f dlxe~[A]mr[A] =- r~r ~= mr. (B.6) 

The answer is easily given, and it is no [25]. We will now discuss this point in some 
detail. Let us consider the case of a fairly large box, so that the fluctuations induced 
in the masses by the boundary conditions can be neglected (these fluctuations should 
go to zero as a high power of L), and look at the behavior of 

(t) = f dl~en[A][Gr(tlA)]" (B.7) G(r-) 

in a finite large box of size L. Now we expect G(r")(t) to behave like 

lim G~r n) (t) = e -'~'~' , (B.8) 
t -->or5 

where m(r ") is the mass of the lightest state composed from n particles present in 
the box, in which each quark has different spin or flavor quantum numbers. If rn(r ") 
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is an analytic function of n we have 

dn 

491 

(B.9) 

The interaction between particles of different flavors can be expected to be attractive 
(van der Waals f___oorces are generally attractive); this also follows by convexity 
arguments (e.g. G : >  (~2). There are two possible scenarios: 

(a) particles do not form a bound state, and have an attractive scattering 
length L; 

(b) they do form a bound state with binding energy roB. 
A simple ansatz for m (n) is therefore for the two cases 

n ( n - 1 )  l 
rn~r ") = n m r  

2 V m r  

m(r '0 = n m r - l n (  n - 1 ) m B .  

(B.10a) 

(B.10b) 

These two equations follow from assuming the existence of two-body forces, and 
small I and Am; the constant can be computed in the framework of non-relativistic 
potential models [24]. We will just use them at a very qualitative level. Using 
eq. (B.9) we get 

1 1 
. . . .  , ( a . l l a )  rhr m r  ÷ 2 V m r  

rnr = m r  +½mB. (B.1 lb)  

This means that there is a non-zero well-defined difference between the most 
probable mass (i.e. the average mass) and the true mass. In the case (a) the difference 
disappears when the volume of the box grows to infinity, while in case (b) there is 
a finite gap also for large volumes, i.e. fluctuations in the mass values do not go to 
zero when V ~  oo. This last one is certainly the case of the proton; moreover  mB 
is corresponding to the binding energy of the -~ with a nucleon, which can be 
extracted from measurements on hypernuclei (hyperfragments). ma can be estimated 
to be in this case less than 100 MeV, so we expect an error  not greater than - 5 0  MeV 
(5 per cent) rising from computing rh~, instead of m~,. 

The situation can be further clarified if we write the probability distribution for 
the effective mass at distance t. Using the relation 

G r ( t )  = f dpt(/z) e -~t (B.12) 
3 

and (B.10) we get 

t exp - t  d/~, dPt (/'Q cc ~ "2-~m J (B.13) 
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p x p 

p = P 

Fig. 1. The diagram dominating the two-p propagator large time behavior. 

where for respectively the cases (a) and (b) 

1 
A m  = V m r  (B.14a) 

A m  = ma , (B.14b) 

It is easily seen that when t ~ oo the distribution of the mass becomes very sharply 
peaked around the wrong value. This phenomenum is very well-known [25]. The 
value of m which maximizes the integral has a probability of the order  e -tam. For  
the protons (and likely for the other hadrons) the effect does not seem to be very 
important; the time t needed to resolve different resonances having the same 
quantum numbers is of the order of (150-200 MeV) -~, so that in the useful region 
tzam is normally a smaU quantity (only for unnecessarily long lattices does this effect 
become important). This also means that the integral (B.12) is dominated by the 
contributions from the center of the distribution and not from the tail, implying 
that it is not necessary to consider too many configurations. 

Unfortunately the situation is not so nice in mesonic channels: two p have the 
same quantum numbers of two pions, so that the diagram of fig. 1 dominates the 
two-p propagator large-time behavior. This approximately means 

1 e_2m t +e-2mpt" 
G ~ ( t ) - V  (B.15) 

In other words in the p propagator there is a small component which behaves as 
V -1/2 e -"~t and not as e -rapt. This effect can also be expected from naive arguments: 
in the presence of a background field ~Y,,0 excites from the vacuum a p and also 
a zr with a random phase. Therefore  the total probability of creating a ~r from the 
vacuum by acting with Sv ~ Y ~  dD is proportional to V -~/2. This effect can be 
dangerous, but the diagrams of fig. 1 are likely to be small at the threshold. 

It is clear then that a study of mass fluctuations can be seen as the analysis of the 
contributions of some diagrams to the scattering amplitude. Eqs. (B.11) are 



H. W. Hamber et al. / Numerical analysis of QCD 493 

particularly interesting in the case of the pion, from chiral symmetry arguments it 
turns out that the scattering length-squared of the pion is proportional to m 2 f ~  4 

so that we get 

1 
ra~-- m~ ~ v f ~  ' 

implying that the fluctuations of the pion mass do not increase when m~ goes to 
zero (on-shell pions at zero momentum are free when m~ goes to zero). This is not 
the case for Wilson fermions; in this formulation chiral symmetry is explicitly broken 
and the squared scattering length-squared is different from zero (proportional to 
a) for zero mass pions. Larger fluctuations are present in this case. 

While the pattern of small mass fluctuations has been "experimentally" observed 
in the KS scheme, the opposite situation seems to hold for the Wilson formulation 
on small lattices (for r = 1, see ref. [4]). The main cause can be found in the non-zero 
expectation value acquired from the space loops and in the effect of the boundary 
conditions on the Kc [8]. Although this effect asymptotically disappears for large 
L, it is dominating on medium size lattices (0.5-0.8 fm*). A drastic solution in the 
quenched approximation would be to choose zero boundary conditions (or to sum 
over different Z3 "gauge" transformations). This problem is likely to be alleviated 
by choosing a value of r (the Wilson chiral symmetry breaking parameter) less than 
one (e.g. r = 1), and by using an improved action for the quark fields. Moreover, if 
the vacuum polarization quarks satisfy antiperiodic boundary conditions in space 
and time, the configuration in which the space and time loops are close to the 
identity are likely to be preferred in the/~ ~ o0 limit. We can conclude that it could 
be possible in this way to reach together the two goals of reducing the mass 
fluctuations to their natural size and to have interesting information about low- 
energy scattering amplitudes. 

Appendix C 

THE PSEUDOFERMIONS: COMPUTER CODES 

In this appendix we want to give some details about our computer program for 
inserting in the Monte Carlo simulation the contribution of the fermionic deter- 
minant. We will treat here the numerical implementation of eqs. (2.9) and (2.10). 

Let us remind the reader of some general features. We have defined a cycle on 
our system to be composed by an updating of the full lattice of link variables (gauge 
fields), other than by npF (number of pseudofermionic steps) sweeps on the site 
variables ~0 (pseudofermions), using as a starting point the last {~o} configuration 
computed in the last cycle. This second part of our updating cycle has eventually 

* Lattices of ~ 1 fm show that Z3 effects are dramatically reduced [26]. 
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the duty of producing the contribution to the action of the fermionic fields. When 
starting the next cycle (and updating the gauge fields again) we will fetch this 
contribution in the action we will use to update the gauge fields. 

The part of the program used to update the gauge fields is different from the 

normal pure gauge program in one single line, in which the fermionic contribution 
is added to the pure gauge action: so we will describe here only the fundamental 
points of the computer code used to update the pseudofermions. 

Let  us start from a general description of our code, that is basically made up 
from three different phases. In the first phase, given the configuration of the gauge 
fields {A} (that is the output of the first part of our cycle), and the configuration 
of the pseudofermions {~} (we will use as the "initial condition" the last q-fields 
computed in the last cycle), we will compute the fields 

Hi - (D + m),j~j, (C. 1) 

the utility of which will become clearer in the following. 
The second phase has the r&le of updating the fermions, while in the third phase 

the contribution to the gauge action is computed (together with (ff~)). The second 
phase is repeated npF X/~ number of times, the third one is repeated ripe times (that 
means that the contribution of the ~ fields to the bosonic action is computed just 
from every rith step). 

The computer memory we need is basically twice the one needed for a pure gauge 
simulation. If we indicate with Nc the number of colors (3), with d the number of 
dimensions (4), with N the number of sites per dimension (6-8), we need to store 
the fields 

A ( 2 d N 4 N 2 )  , ~(2N4Nc),  

G ( E d N 4 N  2 ) ,  H ( 2 N 4 N c )  . (C.2) 

The value in parentheses is the amount of real numbers we need to store for every 
field (the 2 is just due to the fact that the fields are complex). The A's  are the gauge 
fields, the G's  are the contributions to be summed to the pure gauge action, the 
are the pseudofermions and the H ' s  have been defined in (C.1). 

The upgrading phase is very simple: one random increment 8~ a is chosen, where 

(8~a) = 0, ( ~ a 2 )  = ~, (C.3) 

and 8 is turned in such a way as to optimize the convergence toward equilibrium. 
We note that eq. (2.8) can be read as 

e - ~  = e an  . (C.4) 

So 

AS = (2 Re H + R e  (AH)) Re (AH) + (2 Im H + I m  (AH)) Im (AH) .  (C.5) 

A variation in the ~-field in one site will induce (2d + 1) variations in the H-field. 
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The computation of these contributions (and the knowledge of H V  the sites we 
have from the first phase) allows us to compute AS in a very straightforward way. 

Now if for example we apply the Metropolis procedure, given the random number 
r uniformly distributed in the interval (0, 1), if exp { - A S }  < r we do not change the 
~0, and try again on the same site (n times) or on the next site. Otherwise we set 

q~(n) -> ~(n) + 6q~(n) , 

H(n)  --) H(n)  + 8H(n) , 

H(n  + n,)  --> H(n  ± n~,) + 8H(n ± n , ) .  (C.6) 

where the fields H are changed in 2d + 1 locations. 
The last duty of the code is to compute the contribution to the bosonic action 

(that will be averaged over nov added terms). If we write 

So. = s~ +¼nf E OqUij, 

we will get 

G o = Re [Hi (n  + n~,)~J(n) ~ ¢i(n + n . )HJ(n)] ,  

where /z  is the direction of the link Uq. 
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