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ABSTRACT

In the continuum the Bianchi identity implies a relationship between different components of the
curvature tensor, thus ensuring the internal consistency of the gravitational field equations. In this
paper the exact form for the Bianchi identity in Regge’s discrete formulation of gravity is derived,
by considering appropriate products of rotation matrices constructed around null-homotopic paths.
The discrete Bianchi identity implies an algebraic relationship between deficit angles belonging
to neighboring hinges. As in the continuum, the derived identity is valid for arbitrarily curved
manifolds without a restriction to the weak field small curvature limit, but is in general not linear

in the curvatures.
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1 Introduction

In this paper we investigate the form of the Bianchi identities in Regge’s [1] lattice formulation
of gravity [2, 3, 4, 5, 6, 7, 8, 9, 10]. The Bianchi identities play an important role in the contin-
uum formulation of gravity, both classical and quantum-mechanical, giving rise to a differential
relationship between different components of the curvature tensor. It is known that these simply
follow from the definition of the Riemann tensor in terms of the affine connection and the metric
components, and help ensure the consistency of the gravitational field equations in the presence
of matter. At the same time they can be regarded as a direct consequence of the local gauge
(diffeomorphism) invariance of the gravitational action, since they can be derived by invoking the
invariance of the action under infinitesimal gauge transformations (see for example [18, 19, 20, 21]).

In this paper we will show that the lattice formulation of gravity has an equivalent form of
the Bianchi identities, which are both exact, in the sense that they are valid for arbitrarily curved
lattices, and reduce to their continuum counterparts in the weak field limit. We will derive the
exact lattice Bianchi identities in three (Section 4) and four dimensions (Section 5) explicitly
by considering the product of rotation matrices along paths which are topologically trivial (i.e.
reducible to a point). By expressing the rotation matrices about each hinge in terms of the local
representatives of the curvatures, namely the deficit angles, we will obtain an algebraic relationship
between deficit angles, area and volumes pertaining to neighboring simplices.

For lattices which are close to flat, it will be shown that the derived set of identities is analogous
to the Bianchi identities in the continuum, once the edge lengths are identified with appropriate
components of the metric in the continuum (Sections 9 and 10). We will therefore extend and
complete previous results on the lattice Bianchi identities, which so far have been restricted to the
weak field limit [1, 3, 4, 22, 23]. The results presented in this paper should therefore be relevant for
both classical (see for example [24, 25, 26, 27] an references therein) and quantum (see for example
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38] and references therein) discrete gravity.

It is well known that in the continuum the Bianchi identity for the curvature tensor ensures the
consistency of the Einstein field equations. For the Riemann curvature tensor the un-contracted
Bianchi identities read

R

+R, s+ R =0, (1.1)
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3Recent reviews of Regge gravity can be found in [10, 12, 13, 14, 15, 16], while a comprehensive collection of up-to-
date references is assembled in [17]. Some further mathematical aspects of piecewise linear spaces, with some relevance
to lattice gravity, are discussed in the above cited references [5, 6], as well as in [39, 40, 41, 42, 43, 44, 45, 46, 47] and
references therein, and more recently in [48, 49, 50, 51, 52, 53] and references therein.



or more concisely

R =0, (1.2)
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where [- - -] denotes symmetrization. These identities are easily derived by inserting into the above
expression the explicit definition for the curvature tensor in terms of the metric g, ,
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It is then easy to see that in d dimensions there are

dd—1) [d d*(d—1)(d —2)
2 <3>: 12 (14)

un-contracted Bianchi identities, and thus 3 identities in d = 3 and 24 identities in d = 4. In their

contracted form, the Bianchi identities imply for the Ricci tensor
Rya;y — Ryy;a + RY .y = 0, (1.5)

and for the scalar curvature

R, —2R",, = 0. (1.6)

These relations in turn give the contracted Bianchi identity

R, — 6" R L 0, (1.7)
which always corresponds to d equations in d dimensions. We note here that a simple physical
interpretation for the Bianchi identity can be given in terms of a divergence of suitably defined

stresses [18]. Thus for example in three dimensions one has

[Z3%)

Pt =0 with P4 = epR', (1.8)

It is also well known that the Bianchi identities are required for ensuring the consistency of the
gravitational field equations. Consider the classical field equations with a cosmological constant
term,

R;w - %guuR + Ag;w = 8nG T;wa (1‘9)
with A = 87G )\ the cosmological constant. Applying a covariant derivative on both sides one has

R, — 10" R] = 8rGTH,, (1.10)
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which for a covariantly conserved energy-momentum tensor

™ , =0, (1.11)



is only consistent if the contracted Bianchi identity of Eq. (1.7) is identically satisfied.

In d dimensions one has d contracted Bianchi identities. Since there are in general d(d + 1)/2
equations of motion, as well as d harmonic gauge fixing conditions, one has for the number of
independent gravitational degrees of freedom in d dimensions

dd+1) _,_ ,_ dd=3)

5 5 (1.12)

which indeed reproduces correctly in four dimensions the two independent helicity states appropri-
ate for a massless spin two particle.

There exists also a close relationship between the Bianchi identity and the gauge invariance
of the gravitational action. We shall take note here of the fact that the Bianchi identity can be

derived from the requirement that the gravitational action

Iolg) =~ [ @' VI RG) | (1.13)

being a scalar, should be invariant under infinitesimal local gauge transformations at a space-time
point x,

39 (z) = =g () DX (@) — gan (@) Fux (@) — Orgpu (2) XM (&) - (1.14)

After substituting the above expression for a gauge deformation into the variation of the action

given in Eq. (1.13),

1 14 14
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one obtains again, after integrating by parts, the contracted Bianchi identity of Eq. (1.7).
Let us now turn to the lattice theory. In a d-dimensional piecewise linear space-time the

expression analogous to the Einstein-Hilbert action was given by Regge [1] as

Ip= Y A?g, (1.16)
hinges h
where A;ld_2) is the volume of the hinge and d;, is the deficit angle there. The above lattice action

is supposed to be equivalent to the continuum expression

1
Ip = E/ddx\/gR , (1.17)

and indeed it has been shown [3, 5, 11] that I tends to the continuum expression as the simplicial

block size (or some suitable average edge length) tends to zero in the appropriate way. The above



Regge form for the lattice action can be naturally extended to include cosmological and curvature

squared terms [7, 10]
1) = Y [AVi—kApdy+adi A3/ Vi + -] (1.18)
h

with k7! = 87G. In the limit of small fluctuations around a smooth background, I(I?) corresponds

to the continuum action

k
Ijg] = /d4x V[ - SR+ %RNVWRW’” +] (1.19)
In the following we will focus on the Regge term (proportional to k) only.
Variations of I in Eq. (1.16) with respect to the edge lengths then give the simplicial analogs
of Einstein’s equations, whose derivation is significantly simplified by the fact that the variation of

the deficit angle is known to be zero in any dimensions,
5lg = S 6(AY D)6, (1.20)
h

as happens in the continuum as well (where one finds that the variation of the curvature reduces
to a total derivative). In three dimensions the above action gives for the equation of motion 0, = 0
for every hinge in the lattice, whereas in four dimensions variation with respect to [, yields [1]
L l opcotf,, = 0 1.21
§p}§phcoph— (1.21)
where the sum is over hinges (triangles in four dimensions) labeled by h meeting on the common
edge p, and 6, is the angle in the hinge h opposite to the edge p. The above equation is the lattice
analog of the field equations of Eq. (1.9), for pure gravity and vanishing cosmological constant.
Numerical solutions to the lattice equations of motion can in general be found by appropriately
adjusting the edge lengths according to Eq. (1.21). Since the resulting equations are non-linear in
the edge lengths, slight complications can arise such as the existence of multiple solutions, although
for sufficiently weak fields one would expect the same level of degeneracies as in the continuum [3].
Several authors have discussed the application of the Regge equations to strong field problems in
classical general relativity, and some samples can be found in [24, 25, 26]. The relevance of the
Bianchi identities to a numerical solution to the lattice field equations - using for example a 3 + 1
time evolution scheme - resides in the fact that they are in principle a powerful tool to check the
overall accuracy and consistency of the numerical solutions.
The Bianchi identities also play an important role in the quantum formulation. In a quantum-

mechanical theory of gravity the starting point is a suitable definition of the discrete Feynman path



integral [8, 7, 10]. In the simplicial lattice approach one starts from the discretized Euclidean Feyn-
man path integral for pure gravity, with the squared edge lengths taken as fundamental variables,

7. = /000 T (Va(s)” [J @i 012 exp{—z (AVh —kéhAh+a5§A§/vh+...)} . (1.22)
S Zj

h

The above regularized lattice expression should be compared to the continuum Euclidean path

integral for pure gravity

k

Zo = /H (\/g(—a:))a H dguw(x) exp {—/d4x\/§ ()\ - §R+ %RW,MR“”W 4. )}

' = (1.23)
In the discrete case the integration over metrics is replaced by integrals over the elementary lattice
degrees of freedom, the squared edge lengths. The discrete gravitational measure in Z; can be
considered as the lattice analog of the DeWitt continuum functional measure [5, 6, 8, 9, 12, 38].
A cosmological constant term is needed for convergence of the path integral, while the curvature
squared term allows one to control the fluctuations in the curvature [7, 10]. In the end one is
mostly interested in the limit ¢ — 0, where the theory, in the absence of matter and after a suitable
rescaling of the metric, only depends on one bare parameter, the dimensionless coupling k% /.

In the quantum theory the Bianchi identities of Eq. (1.7) are still satisfied as operator equations,
and ensure the consistency of the quantum equations of motions. In ordinary lattice nonabelian
gauge theories an attempt has been made to entirely replace the functional integration over the
gauge fields by an integration over field strengths, but now subject to the Bianchi identity constraint
[54]. In the case of gravitation such an approach is more difficult, since the analog of the gauge

field is represented by the affine connection, and not the by the curvature tensor.

2 Lattice Parallel Transport

To construct the lattice Bianchi identities we will follow a strategy similar to the one used in
the derivation of the exact lattice Bianchi identities in non-abelian lattice gauge theories. There
the Bianchi identities can be obtained by considering the path-ordered product of SU(n) gauge
group rotation matrices, taken along a suitable closed path encircling a cube. The path has to be
chosen topologically trivial, in the sense that it can be shrunk to a point without entangling any
plaquettes [54, 55].

Let us therefore first review the notion of parallel transport of a test vector around a small loop

embedded in the lattice. Consider a closed path I' encircling a hinge h and passing through each



of the simplices that meet at that hinge. In particular one may take I' to be the boundary of the
polyhedral dual area surrounding the hinge. For each neighboring pair of simplices 7,7 + 1, one
can write down a Lorentz transformation L, which describes how a given vector ¢, transforms

between the local coordinate systems in these two simplices,

O = [LGi+D] o0 - (21)

Now in general it is possible to choose coordinates so that L is the identity matrix for one pair
of simplices, but then it will not be unity for other pairs. The above Lorentz transformation
is directly related to the continuum path-ordered (P) exponential of the integral of the affine
connection (I'y)y =T\ by

L} =

Pe between simplices
n

[ / path dez*] MV (2.2)

The connection here is intended to only have support on the common interface between the two
simplices.

Next we will consider the product of rotation matrices along a closed loop I'. The path can
entangle several hinges, or just one, in which case it will be called a closed elementary loop. On
the lattice the effect of parallel transport around a closed elementary loop I' is obtained from the
matrix [7]

=[] (2.3)

I L6 +1)]

j77%
J

where Ul(j;) is a bivector orthogonal to the hinge h, defined in four dimensions by

1 o
U;(L}Ii) = m €uvpo lfa)l({;) ’ (24)

with 17
(a)
of the lattice parallel transport formula given above is not restricted to small deficit angles. For a

and lfb) two vectors forming two sides of the hinge h. We note that in general the validity

closed path I', the total change in a vector ¢, which undergoes parallel transport around the path
is given by

$u=tutity=[ Il  LGi+D] % (2.5)
pairs of
simplices on T’

For smooth enough manifolds, the product of Lorentz transformations around a closed elementary

loop I' can be deduced from the components of the Riemann tensor,

v

[ I1 L(j,j+1)]:z[eR3ww] : (2.6)

7

pairs of
simplices on I’



where (R n = RY,, is the curvature tensor and X is a bivector in the plane of I', with

..pa) upo

magnitude equal to 1/2 times the area of the loop I'. (For a parallelogram with edges a” and b,
2P0 = %(a“bp — a”b?)). The above result then reproduces to lowest order the parallel transport

formula

dpp = R X (2.7)

Comparison of Eq. (2.3) and Eq. (2.6) means that for one hinge one may make the identification
Runpo2” = UM . (2.8)

It is important to notice that this relation does not give complete information about the Riemann
tensor, but only about its projection in the plane of the loop I', orthogonal to the given hinge.
Indeed the deficit angle divided by the area of the loop can be taken as a definition of the local

sectional curvature Kp, [10]

On  _ K, = Ruvpo eacheacsy (2.9)
Arh (gupgua - g;wgup)egegegeg ’

which represents the projection of the Riemann curvature in the direction of the bivector e, A ep,.

The lattice Bianchi identities are derived by considering closed paths that can be shrunk to a
point without entangling any hinge. The product of rotation matrices associated with the path
then has to give the identity matrix [1, 3]. Thus, for example, the ordered product of rotation
matrices associated with the triangles meeting on a given edge has to give one, since a path can be
constructed which sequentially encircles all the triangles and is topologically trivial

II [e5hU-(-h)] =1. (2.10)

14
hinges h K

meeting on edge p

Other identities might be derived by considering paths that encircle hinges meeting on one point.

3 Geometric Setup

The discrete analogue of the Bianchi identity will be derived by considering a product of ro-
tation matrices along a homotypically trivial path. This section discusses the general geometric
setups needed to define correctly the product of rotation matrices entering the exact lattice Bianchi
identities derived later in the paper (Sections 4 and 5). For the 3-d case, consider a tetrahedron

with a point in its interior. Connect the vertices of the tetrahedron to the point in the center. We



now have formed 4 tetrahedra from the original tetrahedron. In three dimensions, hinges are edges,
so here we have enclosed four hinges: one connecting each vertex of the original tetrahedra to the

interi

Fig. 1. In three dimensions four tetrahedra meet on a point, labeled here by 0. Deficit angles o1, do2, do3
and &gy are associated with edges 0—1, 0—2, 0—3 and 0 —4 respectively. The Bianchi identities are obtained
by taking an ordered product of rotation matrices along a path which encircles all four hinges (edges here)

and is topologically trivial, in the sense that it can be shrunk to a point.

Referring to Fig. 1, for the moment only considering flat space, call the interior point 0 (zero)
and place it at the origin. Let us take our coordinate system so that vertex 1 lies on the positive
z axis (z1 > 0). Let us take vertex 2 to lie in the x-z plane with 22 < 0 and 22 > 0. Let us take
vertex 3 to have z3 < 0, 23 < 0 and y3 > 0. Finally, let us take vertex 4 to have z4 < 0, z4 < 0

and y4 < 0. So, to summarize:



Vertex: 1 2 3 4
z: o+ - = -

1

T 0o + — -— (3.1)
Y 0 0 + —

Now, the following argument will apply for all cases where we have the center point completely
surrounded; the aforementioned restrictions in Eq. (3.1) are mentioned only to give the reader a
nice picture of the situation.

Now, ”curve the space”. This is done by changing one of the edge lengths. Any 9 of the 10
edge lengths can be chosen arbitrarily (provided the center point is completely surrounded by the
constructed volumes and provided that real areas and real volumes are still formed) and the space
will still be flat. So curvature, in this setup, just amounts to adjusting one edge length (l34, the
edge between vertices 3 and 4, is the easiest one to adjust). For an arbitrary setup, one adds
more edges until the relative flat space locations of all vertices are specified, making sure not to
add any edges between points whose relative flat space location is already determined but rather
marking each such edge as an "unadded edge” (and making sure that all areas and volumes are
real); then, all remaining ("unadded”) edges are determined for flat space, and it is the varying of
those remaining edges which is the source of all curvature for that setup. This last comment applies
to d-dimensions and general lattices, not just d-simplices surrounding one point, and addresses the
question of curvature invariance under edge variation, i.e. curvature invariance under the edge
variation of the added edges (with the “unadded” edges still unadded).

Further, let us label the four tetrahedra by a point in each of them along the line const x (1; +

15 + 13) where 1, Iy and 13 are vectors based at the point 0, the interior point.
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Fig. 2. A topologically trivial path which encircles four hinges in three dimensions, and can be shrunk to a
point. The vertices A, B, C' and D reside in the dual lattice, and can conveniently be placed at the centers of
the tetrahedra shown in Fig. 1. It is then advantageous to label the deficit angles by the vertices in the dual
lattice. The path ordered product of rotation matrices around the shown path then reduces to the identity

matriz.

Referring to Fig. 1, and Fig. 2 which, with triangle BCD behind A, views Fig. 1 from
underneath, let us call the point in the center of the tetrahedra formed via vertices 0123, and not
4, point D; similarly call the point at the center of 0234, and not 1, point A, that at the center
of 0134, and not 2, point B and that at the center of 0124, and not 3, point C. We also have
tetrahedron A which is the tetrahedron containing point A, tetrahedron B containing point B, etc.
These four points, point A, point B, point C and point D form a Voronoi tetrahedra. Going from

A — B — C — A, for example, goes around hinge 04. In general

hinge gone around rotation Voronoi vertex not in path positive path negative path
01 R1 A B—-~C—-D—-B B—-D—-C—B
02 R2 B A-D—-C—-A A-C—-D—A
03 R3 C A-B—-D—-A A-D—-B—-A
04 R4 D A-C—-B—-A A—-B—-C—A

(3.2)
so that rotations which are clockwise when viewed from outside our setup, or counterclockwise
when viewed from the point in the middle, are associated with a ”-R”, and rotations which are
counter-clockwise when viewed from outside our setup, or clockwise when viewed from the point
in the middle, are associated with a 74+R”, as is traditional for a right handed coordinate system

inside the set-up.
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Fig. 3. Paths associated with different hinges in three dimensions are shown in different shades of gray. The
product of rotation matrices around a single hinge is simply elated to the deficit angle for that hinge. In

order to obtain a closed path, segment AB has to be transversed more than two times.

Now, let us try and compose a null path around all four hinges. Referring to Fig. 3, we write

our null path as
A—-B—-D—-AA—-D—-C—-AA—-C—-B—-AA—-BB—-C—D—B,B—~A (3.3)
or, noting that the path is a null path, we have
1= Ryt = I’ZLB Rlpl's,p R4 R2 R3 (3.4)

where I' 4, p is a rotation matrix representing the rotation that occurs when a vector is parallel
transported from tetrahedron A directly to tetrahedron B, Ry, means the total rotation matrix
after going through the whole path, and Rlp is R1 written in B’s coordinate system; the other
rotations, with no subscripts, are written in A’s coordinate system. Eq. (3.3) can be written

completely in A’s coordinate system as
1= Ryt = R1 R4 R2 R3 (3.5)

Also in reference to the I'’s, there is a subtlety to note. The I'’s are always ”direct” I'’s between
adjacent d-simplices. For example, I'4_,p is not I'y_,c_,p (the latter being starting at A, then go

directly to C, and then go directly to B); indeed, since
R1=Ta.8 405 (3.6)

12



both cannot simultaneously be set equal to the unit matrix.

In general, when setting up a d-dimensional global coordinate system, one specifies the coordi-
nate system in one d-simplex and Ny — 1 I'’s (N4 is the number of d-simplices in the lattice) such
that all d-simplices are linked directly or indirectly; to specify any more I’s would be to specify a
pre-determined (via edge lengths) loop rotation. One can, for e.g., choose all Ny — 1 I'’s equal to
the unit matrix, so that 'y, 5 in Eq. (3.4) would be one of three I'’s set equal to the unit matrix.

If one only specifies I'’s between adjacent d-simplices, one can think of this coordinate system
in flat d-space as d-simplices which 1) are attached to each other only by the (d-1)-simplex “faces”
corresponding to the Ny — 1 I's, and 2) can go through each other (for e.g., consider a hinge with
greater than 27 radians around it) . Of course, when viewed in the actual curved space, the d-
simplices do not go though each other. Some sample coordinate systems would be obtained by 1)
specifying I'’s between one specific tetrahedron (or d-simplex) and every other one, such as I'4_, g,
I'4¢c and T4, p in our particular set up, and 2) specifying the I'’s in a chainlike fashion, such as

Tsn, I'Bo, and T, p in our set up.

13



Fig. 4. Similar to Fig. 1., but now in four dimensions. In four dimensions five simplices meet on a point,
labeled here by 0. Deficit angles §p12 etc. are associated with triangles 0—1—2 etc. respectively. The Bianchi
identities are obtained by taking an ordered product of rotation matrices along a path which encircles several

hinges (triangles here) and is topologically trivial, in the sense that it can be shrunk to a point.

Now, let us consider one four-dimensional set up in particular. Counsider a four simplex with a
point in the middle. This divides the original 4-simplex into 5 new 4-simplices. Then, readjust the
edge lengths and curve the space (see Fig. 4). We now consider parallel transporting the vector
around a null path within this simplicial complex. Label each of the new 4-simplices A, B, C, D

and E (see Fig. 5).

Fig. 5. Similar to Fig. 2., but now in four dimensions. The topologically trivial path which encircles all
shown hinges can be shrunk to a point. The vertices A, B, C, D and E reside in the dual lattice, and can
conveniently be placed at the centers of the simplices shown in Fig. 4.. As in the three-dimensional case, it
is advantageous to label the deficit angles by the vertices in the dual lattice. The ordered product of rotation

matrices around the shown path then reduces to the identity matrix.

We now make an important point for this particular set up: the number of 4-simplices around

14



a triangle hinge is 3. There are 3 vertices in the two dimensional space of the hinge and three
vertices in the remaining two dimensions. The three vertices in the hinge and any two of the three

vertices outside the hinge form a 4-simplex, so that three 4-simplices surround the hinge. *

Fig. 6. Similar to Fig. 3., but now in four dimensions. Paths associated with different hinges are shown
here in different shades of gray. The product of rotation matrices around a single hinge is simply related to
the deficit angle for that hinge. Again, in order to obtain a closed path segment AB has to be transversed
more than two times. In constructing a product of rotations, it is sufficient to consider only four of the five
vertices; here, vertex E is excluded. In higher dimensional analogues, one has vertices F, G, etc., which are

also not used.

So, we now consider a path which includes 4 of the 5 simplices which surround the ”point in

the middle”. Specifically, referring to Fig. 6, the path is
A—-B—-D—-AA—-D—-C—-AA—-C—-B—-AA—-BB—-C—-D-—B,B—A (3.7)

The same path works for 3-d, which then includes all 4 of the 4 tetrahedra surrounding the point
in the middle (see Eq. (3.3)).

4This three d-simplex result is now easily seen to be true in any number of dimensions for the point in the middle
set up.
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4 Product of Rotations in Three Dimensions

Having described the general geometric setup in the previous section, we now proceed to give
an explicit form for the rotation matrices in three dimensions, and derive an exact form of the
lattice Bianchi identity by considering a product of rotation matrices along a homotypically trivial
path. It turns out to be very convenient to be able to express a rotated vector in terms of the ”old”
vector and the hinge edge. One notes that the only rotation occurs to the portion of the vector
that is perpendicular to the hinge, so that (v Z)Z is part of the new vector. One proceeds to form an
orthogonal coordinate system with the old vector, ¥, and the hinge, [, using [, x 1 and i x (' x i)
So, since ¥ clearly has no component parallel to ¥ x lA, the component of v which is rotated in the

[17 X i]—[i x (U x Z)] plane is parallel to [ x (7 x [). So, one finds

7= (v )i+{ﬂ}{cosélml—siné[ﬁXlA]} (4.1)
I x (7 x 1) i x (7 x )] |7 x '

which simplifies to

>
S
=
—~ X

0 ~7 - .
7= [2 sin? 5(17 l)] [+ (cos 6)U + (sind)l x ¥ (4.2)
The total rotated vector (after all successive rotations) is most easily found using a recursive
application of Eq. (4.2) via standard dot/cross product rules, as well as being sure to set up one’s
coordinate system where the I'4y_,p in Eq. (3.4) equals 1. Then, one notes that the most general

form of a rotation can be written as
. . a+ cindi —bs + ciodin  bo + cizdin
R =ai +bx 5+ Y (&-9)d; = | bs+ cindip a+ciodip  —by +eidin | T (4.3)
i —by + cidiz b1 + ciadiz a+ cigdiz
where a, g, and the ¢; are easily found with the expression one had gotten for ’E'S%MI using Eq. (4.2).
Here, ¢; runs over all possible vectors in the rotation, which for the sample case we are considering,
is just ly,1s,13,14 and their 6 cross products. The d_; are then to be viewed as the vector coefficients
of the 446 = 10 &-©’s in Eq. (4.3) (look at the non-matrix expression). The a, the b and the d; are
extremely complicated expressions in terms of deficit angles, internal angles, normalized volumes
and normalized areas. Here, normalization means dividing by the product of the magnitudes of
the defining vectors. Do note that due to the vector nature of the cross product in 3-d, a does not
contain normalized areas.
From the matrix form of Eq. (4.3) one can find a scalar and vector identity. We find these
equations by noting

Rig—I = 0 (4.4)
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Taking the trace of both sides while using Eq. (4.3) gives the scalar equation
3a—1) + > &-d; =0 (4.5)
i
while taking the antisymmetric part of Eq. (4.3) gives the vector equation
U P
—b—izi:cixdi =0 (4.6)

and taking the symmetric part of Eq. (4.3) gives a tensor equation which is unnecessary to discuss.
So, here, we have found a vector and scalar analogy of the product of rotations for arbitrary
deficit angles. These (un-contracted) identities are in terms of deficit angles, internal triangle
angles, normalized areas and normalized volumes. The normalized areas, naturally vectors from a
geometric point of view, appear explicitly only in the vector identity. Again, it should be noted that
Eq. (4.4) is only valid for a product of rotations around hinges which gives no rotation. Permute
two of the rotation matrices making up the total rotation, and the new total rotation matrix will
not be the unit matrix.

The explicit form of Ry, in Eq. (4.3) can then be used, in combination with Eq. (4.6), to write

the 3-dimensional completely contracted Bianchi identities as

]- - ]_ - hnd
—W eaﬁyeaﬂp(—b — 5 ;Cz’ X dz)p =0 (47)
which simplifies to
1 - -
Vo) (2b + Z G xd)y =0 (4.8)

Let us now consider the small deficit angle limit to first order. This simplifies Eq. (4.2) dramatically

to

Tgmans = U + 6(1 x 7) (4.9)

which gives, after applying successive rotations,

a

b=>,0l; (4.10)
c

so that Eq. (4.6) becomes
95 =0 (4.11)

which, following a similar derivation to that of Eq. (4.8), allows the fully contracted Bianchi iden-

tities to be written as

b, =0 (4.12)



Eq. (4.5) is a trivial 0=0 to first order. To second order, it becomes
—b-b =0 (4.13)

where the b used is just the b in Eq. (4.10). This equation can clearly be seen as a consequence of
Eq. (4.11), a first order equation. Eqs. (4.11) and (4.12) (as well as Eq. (8.10), reduced to three
dimenions) have been verified to 1st order, and Eq. (4.13) has been verified to 2nd order. But for
higher orders, these equations have been shown to be violated in favor of, repectively, Eqs. (4.6),
(4.8), and (4.5) (as well as Eq. (8.11), again reduced to three dimensions) which are valid in all
cases. Additionally, all these equations are true for arbitrary set-ups, not just our point in the

middle set-up.

5 Product of Rotations in Four Dimensions

The four-dimensional case is quite similar to the three-dimensional case discussed in the previous
section, and no major additional complexities arise. We will give here again an explicit form for
the rotation matrices in four dimensions, and derive an exact form of the four-dimensional lattice
Bianchi identity by considering a product of rotation matrices along a homotypically trivial path. In
the four dimensional case, considering how a vector rotates when it is parallel transported around a
hinge, we can, as in the three dimensional case, form again an orthogonal coordinate system using
the (old) vector and the hinge, the additional edge in the hinge compensating for going up one
dimension. Taking l; and Iy as the two edges which form the hinge, one uses the following four

vectors to form the orthogonal coordinate system: Iy, I}, @ x Iy x Ib and I} x I} x (& x I} x I,) where

o = (-l —(lp- )l
- ‘2 (? Al)} _ b (? A1)1 (5.1)
llo — (Lo - 11) 11| 2A[ly, 1]

and where A[il, i2:| is the area of the triangle, not the parallelogram, formed by [, and Is.

Now, in four dimensions, the hinge we rotate about is a triangle, and the plane in which the
rotation occurs is perpendicular to that triangle. Since I, and i’2 span the space of the triangle,
the components of the rotated vector in those two perpendicular directions will not change. Now,
since the only remaining component of the vector is in the Z’Q x Iy x (U x Iy x i’2) direction, v clearly

being perpendicular to ¢’ X I1 X lo, we can write
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= (7! 7 =7 71 1 =7 1 -7 77
T = (T-11) 1+ (T-1)1 [UA[leAllx(valeM cos & ZAQXle(UXZAle?) +sind oxhxl
|l x 1 x (U x 1y x 1)) |l x 1y x (U x 1y x I
(5.2)
which simplifies to
J P oA A N
7' = 2sin? 5[(17 Il + (T 15)15] + [cos 8] T + [sind] ¥ X 11 x 1) (5.3)

Now, as in the three dimensional case, we consider null paths as being products of rotations as we
parallel transport a vector; only now we are going through 4-simplices as opposed to tetrahedra.
Recall that in the three dimensional case, the path could be written in terms of the four tetrahedra
it went through, and only depended on the fact that each tetrahedron was directly connected to
every other tetrahedron. We can follow the same procedure in the four dimensional case by choosing
four of the five 4-simplices and applying Eq. (3.7) (we could interchange 4-simplex E with any of
the other 4-simplices in Eq. (3.7)). We have
4

Riygot—1 =[] Rym—1 =0 (5.4)

m=1

where the /; is the same as in the previous equations. In general, the /; index can be taken to
represent the “hinge base” for the product of rotations, i.e. the edge contained in all hinges involved
in the product of rotations; the I}, of the previous equations, on the other hand, varies from hinge
to hinge. In our set-up, /1 is the edge “opposite” the excluded 4-simplex. (To be sure that one does
not have the order of rotations for rotating by +d4’s reversed, one can either project out along /; or
simply try both orders).

Following the 3-d case, we write the most general product of matrices, and hence of rotation

matrices, as

jk‘)maz

(
RllatOtU =av+ Z g_aﬂ’yb?nbgnv’y + Z(Ez : 6)d1 =av + Z
n i k

Jrk=1
a+ cjd; Sk (ks b2g)?t + cFd} 3 (big, b)) + df g (buk, boj)*® + ¢l d]
> g (b, boy)*® + ¢} d? a+cid; S (ks bo) "+ dd7 3 (bag, bay) + ¢fd?
S (b1ks b)) +cid} Y g (buk, boj)t + ¢l d} a+cld} >k b1k, boj) 2 + cid
S by b2g)?? 4+ cldl g (big, b)) + cdf Yoy (big, boj)?! + ¢} df a+ cld}
where
(b1, boj) ™ = b5, — b, b5; (5.6)
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The main difference between Eq. (5.5) and Eq. (4.3) is that in Eq. (4.3) there was only one b,
whereas here, we have a set of pairs of I;’s, ie. {(gln, an)} So, for these new g’s, the first lower
index indicates whether it comes 1st or 2nd in the cross product with ¥, the second lower index
indicates what term in the sum it belongs to, and the upper index indicates which component of it
is being taken. In our point in the middle set up, the ¢;’s consist of 5 edges and their 10 triple cross
products; there are 15 corresponding d;’s. The >_n form has a nicer appearance, but the },; form
is much better when doing computations. The k subscript in j; has been omitted in the matrix
form given.

Using Eq. (5.4) and taking the trace and the antisymmetric part of the equation give, respec-

tively, °

Ada=1)+ > &-di =0 (5.7)

and

Il
o

1
B~ 3C (5.8)

where B and C have matrix elements®

B =% e b1 b5, (5.9)
ik
and
C% =" (fd) — d2 ) (5.10)

i
These (un-contracted) identities are in terms of deficit angles, internal triangle angles, normal-
ized areas and normalized four-volumes. The normalized areas, naturally 2-index tensors, appear
explicitly only in the tensor identity, Eq. (5.8).
Using the explicit form of Ry, jo; in Eq. (5.5) and Eq. (5.8) the completely contracted Bianchi

identities can then be written as

11
——— N s 2B-0)1} = 0 (5.11)
21V (v) 1123:@ o !

To first order in deficit angles, Eqs. (5.7) and (5.8) reduce to, respectively, 0 = 0 and

B =3%"6¢*, 115 = 0 (5.12)
7

®In d dimensions, 4(1 — a) — d(1 — a).
In d dimensions, there are d — 2 b’s contracted with the Levi-Civita tensor.
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The above equation can be rewritten, using Eq. (2.4), to give
S50 =0 (5.13)
i

where we have substituted in for I} using Eq. (5.1). Following a similar derivation to that of
Eq. (5.11), the above equation allows the fully contracted Bianchi identities to be written for small

angles as

1
o O eapn QG UMY I = 0 (5.14)
V(U) [1Dv 7

Egs. (5.13), (5.14) (as well as the Eq. (8.10), reduced to four dimensions) have been verified to first
order. For higher order, these equations have been shown to be violated in favor of, respectively,
Egs. (5.8) and (5.11) (as well as Eq. (8.11), again reduced to four dimensions). Also, Eq. (5.7), a

trivial 0 = 0 to first order, has been shown to be true generally. 7

6 Discrete Riemann Tensor and its Dual

In the previous two sections an explicit, exact form of the lattice Bianchi identity was derived
by considering a product of rotation matrices (in three and four dimensions respectively) along
a homotypically trivial path. Curvature enters the above lattice Bianchi identities through the
deficit angle, but one interesting question left partially open is the relationship between the exact
lattice Bianchi identities (which involve products of rotation matrices) and the continuum Bianchi
identities (which involve derivatives of the Riemann tensor). In this and the following section an
expression of the Riemann tensor and its dual will be derived, which will eventually be used to
show that in four dimensions (Section 9), if one proceeds from the continuum Bianchi identities (in

integrated form) and inserts the expression for the discrete Riemann tensor discussed below one

"We note here that these results apply to the Lorentz case as well. One sets ¢t = —iz4, and finds the Z, ¢ rotations
equivalent to the &, z4 rotations. Since all the Bianchi products of rotations, when written out in terms such as the
T'a- B gauge transformation of Section 3, end up canceling to the unit matrix via products such as PA—>BFZI—>Bv and
as each such Euclidean gauge transformation has an equivalent Lorentz transformation, the Regge Calculus Bianchi
identities hold in the Lorentz case as well. In finding these equivalent transformations, it is important to note that
any rotation plane will have at least one spatial axis. If the other (perpendicular) axis is also spatial, one has the
standard rotation by the computed deficit angle. If the other axis is time-like, one first computes the deficit angle as
in the Euclidean case, multiplies it by ¢ to get the appropriate deficit angle to use in the sines and cosines,; and ends up
using hyperbolic sines and cosines. For this case, it is important not to subtract out any multiple 27 from the original
Euclidean deficit angle before it is multiplied by ¢. If the other axis is null, there is no rotation, no matter what
the deficit angle would be in the Euclidean case, as a null vector and a spatial vector cannot rotate into each other.
These three cases are, respectively, equivalent to AL” A}, > 0, AL AL, < 0 and AL” A}, = 0; alternatively, they are

also equivalent to, respectively, Azél"'6‘1_3141251___(50173 <0, Azél"'éd_3AZJI___5d73 > 0 and AZél”'éd_SAZJI___(SOF3 =0.
Lastly, it is important to note that, once one fixes a going around coordinate system, one needs Euler angles to write

a space-time rotation.
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obtains, after promoting infinitesimal rotations to finite rotations, the same exact lattice Bianchi
identity discussed previously in Section 4 (in Section 10 the same set of result is presented in three
dimension).

Having obtained the necessary ingredients to describe arbitrary lattice rotations of vectors,
we proceed next to derive a general form for the lattice Riemann curvature tensor. An explicit
form for the Riemmann tensor in term of rotations will be quite useful here, since it will allow us
to establish a relationship (known to exist in the continuum) between the Regge field equations
and the lattice Bianchi identities derived in the previous sections in three and four dimensions.
Furthermore it will allow us to check the overall consistency of our results, since later in the paper
we will re-derive the lattice Bianchi identities by starting from their continuum expression in terms
of the Riemann tensor, and by promoting infinitesimal rotations to finite rotations will be able
to show that the resulting lattice Bianchi identities are in fact identical (in d=3 and d=4) to the
expressions previously derived in the preceding sections.

Counsider moving a vector V once around a Voronoi loop, i.e. a loop formed by Voronoi edges

surrounding a hinge. The change in V', denoted here by 0V, is then given by

V= (R—1)%V"’ (6.1)

where R is the is the rotation matrix associated with the hinge. Now, §V in the continuum is given
by
V=1L R%,, A VP (6.2)

where Aﬁ” is the antisymmetric bivector representing the loop area. So we make the tentative
identification

1

3 B°

ﬂ#UAgV - (R— l)aﬂ (63)

Now, because of the sums on p and v, it is not immediately clear how one can divide by A
to solve for the Riemann curvature tensor. Let us, then, simply take a frame where there are only
two components of AR”, namely A{? and A%!. In that frame, using the antisymmetry of Riemann

in p and v, one can divide, and one finds

(R —1)%

R%9 = ——45—
B A%Q

(6.4)
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Multiplying by unity in the form of A}, (the ;5 component of the index-lowered version of Al?)

over itself, one finds

(R —1)%4],

R® 12 —
B A12“

(6.5)

where the area of the loop is an invariant satisfying A% = AEKA{:“ /2. Of course, all values of the
Riemann curvature tensor with « or 3 neither 1 or 2 are zero in this coordinate system.
Now, the above equation can be rewritten in this coordinate system as
R%,, = (R_;#AEV (6.6)
r

However, this is now a tensor equation, and hence valid in all coordinate systems. Still, there
is a basic problem with this, and that is that (R —1),4 is only antisymmetric to first order (for
example, (R —1);; = 0 only to first order), so that this identification of the right hand side of
Eq. (6.6) with the Riemann curvature tensor and all of its symmetries can only be valid to first

order. So, let us write Eq. (6.6) to first order in the deficit angle §:

5 . AL
R%; = —U%—H 6.7
Buv Al" B AI‘ ( )
where, in our coordinate system, which we now take to be orthonormal,®
0 -1 00
1 000
Uaﬂ - 0 0 0 0 (6 8)
0 000
The general form of U,g, in an arbitrary coordinate system, is
Uap = €apuli'l5 /24 (6.9)

where /1 and I, are the two hinge vectors and A;, = /A%,_A}</2 with A, the area of the hinge and
Aﬁ“ the associated bivector.’ Note that J is invariant because it is formed from angles which are
arc cosines of ratios of invariant dot products to invariant lengths, and furthermore that .., =
V9 [1234] with [1234] = +1. So Eq. (6.9) is a tensor, and hence so is Eq. (6.7). Since the expression
in Eq. (6.7), after lowering the first index, also has the appropriate antisymmetry in the first two

indices, we can see it as a Riemann tensor candidate.

8 A minus sign appears above in the Lorentz case of a x-t loop.
“In the Lorentzian case of a space-time hinge, A, = \/—A} A} /2.
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Now, by going back to our special coordinate system, it can be easily verified that the dual of

the normalized loop area is the normalized hinge area, i.e.

r J
Aaﬂ €apyé ﬂ

= 1
Ar 2 Ay (6.10)
This allows us to rewrite Eq. (6.7) simply as
o 5 o
R Buv — A_I‘ ﬂU;w (611)

This expression has been discussed by the authors of Ref.[7, 10], and is known to possess all
requisite symmetry properties of the Riemann tensor. However, as these authors note, it implies
that the square of the Ricci scalar, the square of the Ricci tensor and the square of the Riemann
tensor are all directly proportional, with constants of proportionality independent of the edge

lengths. We now define
R%,, = R%,,(bv) => R%,,(h) (6.12)

hCb
hDw
for a formulation of Regge Calculus which breaks up space-time into d-boxes. Here, one chooses
one particular vertex v to be the origin for the g,, of d-box b. Then the metric can, for example,
be defined via dot products of the box’s non-diagonal edges containing v, or, equivalently, can be
defined via edges in the box containing v which are in one of the box’s d-simplices. Other vertices
v for other d-boxes are chosen to be in the same relative location within the d-boxes, so that each
hinge curvature term R% (k) is included once.
Two other definitions of the Riemann tensor are possible in principle, but as we will be show

below, fail to pass a crucial test. Noting that each rotation plane has four hinges for a d-box, one

could have alternately defined

o 1
R Buv = Z § :Raﬂuu(h) (6.13)
hCs

This could be useful in a situation with large curvatures where the increased computation due to

averaging and, as we will see, more complex Einstein tensors Gﬁ"s, is more than canceled out by

being able to use fewer d-boxes due to the relaxing of the origin vertex location constraint.
Alternatively, if one uses only d-simplices and does not require them to form d-boxes, then one

can define
1

Raﬂw = Raﬂw(s,v) = Z
hCs = 5k
where Ny, is the number of d-simplices containing hinge h.

R%,,,(h) (6.14)

Now, one objection to these definitions is that the number of independent curvature components

used per d-volume, for these three cases respectively (Egs. (6.12), (6.13) and (6.14)), is d(d —1)/2,
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2d(d—1) and d(d+1)/2, none of which is the expected d?(d? —1)/12, the number of components of
Riemann in the continuum. However, let us now calculate the number of components of Riemann
about a vertex in the d-box case where consistent labeling of the origins are possible, i.e. where 2¢
d-boxes surround each vertex. The number of m-boxes surrounding a given vertex is 27”(7511) where
we choose m of the d axis directions, and note that there are two choices per direction. Setting

m =d — 2 gives

Npy=23d(d-1) =d*d®-1)/12 d=2,3 (6.15)
>d*(d?—1)/12 d>4 (6.16)

So, if one sets up a going around coordinate system at a vertex, and defines the curvature via

R% 5= R%;(h) (6.17)
hDv

the symmetries of the form of the hinge curvatures keep the number of independent components
of the curvature equal to d?(d? — 1)/12 in any dimension. This equation, then, having along with
the natural form for the Riemann curvature tensor, all the symmetry properties of the continuum
Riemann curvature tensor as well as the correct number of independent components, is the Regge
10

analog of the Riemann curvature tensor.

We are now in a position to calculate the dual Riemann tensor via

Robrs — %euméRaﬂW =1 euw&UaﬁAllzy/A% (6.18)

where the loop now used is one of the aforementioned inner-d-box loops.!! We can interpret the
above result in the following way. Here U corresponds to the “effective” U of the loop, and ¢
is the “effective” deficit angle of the loop. The “effective” Riemann curvature tensor is the sum
of all the “old” Riemann curvature tensors corresponding to the areas that the 2¢ — 1 = 15 edges
form, so that the effective § and U®? are determined for each standard square loop (which can only

encircle areas formed by the 15 edges). Note that, since our “old” Riemann curvature tensors had

1Were we to use d-simplices which need not form d-boxes, then the consistent choice of origin vertices may be
either impossible or very difficult. One might also make this choice for a d-box situation with high curvatures where
the increased computation due to averaging is more than canceled out by being able to use fewer d-boxes. But this
is more complicated and our results for G,ﬂl will also show a distinct preference for the first option. Still; in cases
where curvature is sufficiently high and computing power will not allow for a sufficient breakdown of space-time into
d-boxes such that a consistent choice of origin vertices is possible, this definition may be useful. Indeed, for this
reason, were one to break down space-time into d-simplices without forming d-boxes, this definition would likely be
necessary. Still, in such a case where either a quick estimate is needed or where computing power is insufficient to
use the first definition, this definition would then be useful.

"In the Lorentzian case, there is a minus sign in this definition of R*%7%.
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all the symmetry properties of the continuum Riemann curvature tensor, and because our “new”
(i.e. actual) Riemann curvature tensor is the sum of these old tensors, it too has all the symmetry
properties of the continuum Riemann curvature tensor. And, further, it has the advantage of
allowing us to consider, in the case of small deficit angles, only perpendicular loops (more precisely,
perpendicular loop areas), as we do in the continuum. Now, using Eq. (6.10), Eq. (6.18) can be

written as

Y0
Resns — O papAn

Ar Ay,

which, incidentally, holds in any number of dimensions simply by adding d — 4 extra indices after

(6.19)

the § indices. As the action will involve an integration, it will now be helpful to find out the total
four-volume enclosed by the hinge and its loop in terms of the product of the loop area and the
hinge area.

In the 4-d case the denominator, Ar Ay, is six times the four-volume enclosed by the hinge and
the path, here denoted by 4V (h,T'), this latter four-volume being formed via the Voronoi vertices
surrounding the hinge and the hinge vertices. To see this fact, note that, in the 3-d case, as one
approaches a vertex, the area perpendicular to the hinge is similar to the loop area, but gets smaller
proportionally to the square of the perpendicular distance from the point, labeled p, which marks
the intersection of the loop area and the hinge. (In particular, all lengths defining the area are
proportional to this distance, and hence areas, as functions of products of pairs of lengths, must be
proportional to the square of this distance.) By letting /1, be the distance from one of [;’s vertices
to p, and letting [, be the distance from [;’s other vertex to p, one finds the total 3-d volume

formed by the loop and [y to be

lia L1y
v :/0 (AF)(S/lla)2d3+/0 (Ar)(s/lp)*ds = Arl1/3 (6.20)

In 4-d, the total four-volume formed by the loop and the hinge is obtained by noting that the three
volume shrinks proportionally to the cube of the perpendicular distance from the three volume to
the remaining vertex, so that, letting 15 be the component of the remaining hinge edge which is

perpendicular to the tetrahedron,

l6
4y = /0 (Arly/3)(s/19)%ds = €urs AL IS /24 = €,,,5 ALY AT /24 = Ap A, /6 (6.21)

where the next to last term is found by taking our special coordinate system, with two axes along

Ar and two axes along Aj,. In d-dimensions, one has 1V = ew,,ygmAﬁVV,?&'"/d! = 2ArV;/d(d —1).
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Incidentally, the only counstraint on the loop here is that it be perpendicular to the hinge. One has

therefore

J

Resw 1 O
4y,

Ul A)° (6.22)

S| =

Using Eq. (6.11), we find

/ !
A’Yl ~~~’Yd—2€o¢,871 "'7d72Ah
h R )

- S5 €aBriva—o _ 6.23
= A ([ = 242 = (6.23)

R=R,;"
so that the Einstein-Hilbert action becomes

2
I:—/)(R\/Eddx:—;/hA—r\/gddx (6.24)

where X is all space and [ is defined as the integral over 4V (h,T}), the d-volume formed by the
hinge and the loop area. As the integrand is constant over the hinge, we do the integral by simply

calculating this aforementioned d-volume. One can now can write the action as
I= 4 > 6V (6.25)
T odd—1 & ‘

where V3, /d(d—1) is the (d-2)-volume of the hinge, reducing to an area Aj in 4-d. (The sign in the

above equation becomes positive in the Lorentz case.)

7 Action Variation and Einstein Tensor

This section will be devoted to discussing the relationship between the expression for the dual
of the Riemann tensor, as given in the previos section, and the Regge field equations. We will show
that the above construction is indeed counsistent, by deriving from it the Regge field equations.
While this does not constitute a general proof of correctness of the proposed expression, it does
provide one rather significant test.

Next one would like to vary the action with respect to g,,. In the continuum each g,, is an
independent variable upon which the geometry is based, which is why one varies the action with
respect to them. Since, in Regge Calculus, the geometry is completely based on edge lengths, only
edge lengths can be used in computing g,,. In particular, any g,, for the loop plane is not a true
9uv, since these quantities can be defined independent of edge lengths. Furthermore, one can see

that if one did vary the above action with respect to such a quantity, one would get zero because
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the hinge areas are independent of any quantity which is independent of the edge lengths. So, one
is led to consider the metric g,, as being defined as a function of hinge edge lengths. Here, we take
one (d —2) x (d — 2) g,, matrix per hinge. Using the invariance of § in any dimension[1], 4V}, as
the Voronoi d-volume surrounding the hinge and Vj, = [, v/[g[d? 2z /(d — 2)!, we now compute, for
an individual hinge,

, 4 oV
v d,. _ h
I / Gy \lol ' = — aa—1) 9 99,y
- / -

- _Wé "5V (7.1)

To validate this result,'?

-2,
[01 0d-2] 911G/ _ 17— 150,90 Y 1oy sd-2d

which confirms the correctness of using (d — 2) x (d — 2) hinge metrics,

we compute the above quantity in a different manner via'3

’ 1 01...0g—
9y 7’7 - / Gh’y | ddw - _W/ €afy'd1...0q— 3Ra/67 e \ |91 d'x

v, 2

B 5 Uaﬂv761---6d—3 — _
(d ) Ap Y, CoPY 0dash Y d(d—1)

8,7 6V (7.2)

Now, noting that this final result is independent of the metric, and noting that the 577/ indicates

that the components of g,ﬂ' are most naturally taken along edges, we find

2

r_ 4
G = PTCE) WE S Vi, (7.3)

hCd—box
In a given d-box of our global coordinate system, where these [’s are the box’s (non-diagonal) axis
[, the integrated Einstein tensor is defined via hinges within that d-box, so that there is no global
over-counting of each contribution to G, !, We now easily see that, using our d-box’s 9w defined by

the axes’ edges,

2

Gy = —m

! 2 !
SpVagw and G = —— 8, Vol (7.4)
h)lZ d(d - 1) hjlZ

hCd—box hCd—box
The cosmological constant term is derived in each d-box from the d-box’s g,, via the variation of

2 [ A\/g d%z exactly as it is in the continuum to get

Mg and hence A§, N and Mgy (7.5)

12The sign is opposite for a space-time loop, because Eq. (6.25) changes sign for the reason given in the footnote
for Eq. (6.7). Also, letting /g — /—g for space-time hinges has no effect on the sign.

3Once again, the sign of the result changes for a space-time loop for the reason given in the footnote to Eq. (6.7).
For any Lorentzian hinge, the minus sign referenced in the footnote to Eq.(6.18) is canceled by the minus sign in the
inverse to Eq. (6.10).
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This is the most natural result for the left hand side of Einstein’s equations for Regge Calculus
because of its metric independence. A computation of G or G, for edges would have been
counter-intuitive because one would be using a different metric for each hinge in the sum. Also,
using G, ﬂ’ would have explicitly involved the areas of the hinges’ loops, which are not uniquely
defined. Now, the standard result for the field equations in four dimensions

! Z dp cot Oy (7.6)

2 hDl
is derived by varying the integrated action with respect to the edge lengths, and hence is most
similar to G#¥, which is found by varying with respect to g,,, which is a function of squares of
edge lengths. Hence this standard result is not metric independent. However, as long as one has
TH = 0, there is no problem with it as Regge Calculus then only involves edge lengths. However,
if one wishes to include 7", and if this T*” is not derivable from an action, then one must use
Eq. (7.3). Also, Eq. (7.3) seems more natural, and, except for having a more limited sum, has the
same form as the action. Lastly, we note that the individual terms in Eqs.(7.3) and (7.6) can be
related via the transformations g1 = I3, goo = (3 and g12 = (I? + 15 — L?)/2 so that the variation
of the integral of the action can be transformed, for any one fixed term, between the two sets of
variables via a Jacobian.

Ideally, one wants a one-to-one mapping between the (independent) edge length variables and
the independent g, variables. This is easily achieved by choosing as the independent g,,’s the
Guu’S, 1.e. the metric components equal to the square of a given edge length. Of course, we can
always switch global metric variables by replacing some g,,,’s with an equal number of g,,’s (while
being sure to maintain the relative independence of the new set of metric components). We do this
now, choosing gi1 = [? for all (d — 2) x (d — 2) metrics for the hinges bordering /1; we let all such
metrics be based at one of [;’s vertices. All other lattice g,,’s are then chosen such that the set of
all g,,,’s are independent. A simple way to make such a choice is to choose the metric components
equal to the edge length squared of each edge not in a simplex bordering /1. Now, replacing [; with
L and varying with respect to g, = L? gives, for 4-d

b Z Op, cot By, (7.7)
12 hDL
which is easily related to the standard result by multiplying by —6L.

As an exercise we show next the equivalence of our Einstein tensor to the variation of the action

with respect to the edge lengths in the case of four dimensions. For a hinge with edges l; and Is,

taking g11 = (2, goo = 12 and g19 = [y -lo = (I3 +13 — L?)/2 where L is the third edge of the triangle
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formed by [, and Iy, we have

1
A= 3 V911922 — 12921 (7.8)

where, for variation purposes, we take g19 and go; to be independent. This implies

0A g2 0A  gu

dg11  8A dg2r  8A )
A 921 0A 912
Z- 2 — = _Z= 1
0g12 8A 9921 84 o
and therefore
0A _ 0A dgu _ g _ L Oop (7.11)

AL ~ g, OL ~ 4A 2
where we have used 19 = l1l2 €08 0,p, A = l1l25i00,,/2, g12 = (12 +13—L?)/2, g11 = 13 and g9 = I3.
This is consistent with the standard Regge Calculus result for the field side of the Einstein field
equations. Also, similar results apply for either of the other two edges if we change the metric so

that its diagonal components do not have that edge. If we do not change the metric, we find, for

e.g., for [y,
0A 1
o Z(lg cSC lop — 1 cOt Opp) (7.12)
where 6,, is still the angle opposite edge L. Also, one can “go the other way”, and calculate %
via
0A  OA OL oL? L 1 cot 6
e 7= (2ot — ] (=1) =" 7.13
dg12  OL OL? dgr» <2 € 0p> <2L> (=1 4 (7.13)

which is consistent with Eq. (7.10), where we have used L? = g11+ go2 — g12 — g21 as well as l% =g
and I3 = go9. So, for each edge corresponding to a G%,, it is easiest to vary each of the attached
hinges with respect to the metric none of whose diagonal elements corresponds to that edge.

Next we show that G%, is proportional to Ad for v = 4/, and zero otherwise, independently
of which edges were chosen to form the diagonal elements of the metric. So, the contribution from
each hinge to the Einstein tensor for an edge is independent of the form of the metric ¢f one is
considering the one index up and one index down form of the Einstein tensor. So, Regge Calculus, to
be “metric independent”, would choose this form of the Einstein tensor to work with. In particular,
this metric independence does not hold when considering G, or G*”. With a metric independent
form one can have some sense of justification when one adds the various hinge contributions to edge
L’s Gf; G and Gy, not having metric independence, are undefined, or, at least, non-unique.
Interestingly, the variation of L contributes only to Gt and G®%2, but not GIL; GLL receives
contributions from varying /; and ly. In terms of the number of G#,’s, we are consistent: there
would be three g,,’s per triangle, giving three G#,’s per triangle, which we take to be Gllll, Cr'l2l2

and GLL.
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A crucial question at this point is whether the form of the Einstein tensor, L cot 6,,/2, is metric
independent. This form is obtained by varying with respect to edge length L, which is similar to
varying with respect to edge length L? or 1 -I3. Hence, this form most closely corresponds to either
GLL or G2, and therefore is not metric independent. This can also be seen by noting our previous
result of Eq. (7.12).

Next we calculate Glll1 and obtain

2 (gﬂ> + (Ihl cos O,p) (M)] 25 = Aj (7.14)

ho_ 1 12 _
G =guG +g12G " = oA <A

which shows that our procedure is consistent.

8 General Form of the Bianchi Identity

In the previous sections on three-dimensional (Section 4) and four-dimensional (Section 5)
rotations an exact and explicit form of the lattice Bianchi identity was given in terms of product of
rotations along homotopically trivial paths. Later on in the paper an expression for the Riemann
tensor and its dual were proposed, which among other properties, correctly reproduce the Regge
field equations. In this section we will show that if one proceeds from the continuum Bianchi
identities and uses the above given expression for the lattice Riemann tensor then the following
is true. Firstly, the resulting lattice Bianchi identities coincide with their weak field counterparts
discussed in the sections on 3-d and 4-d rotations. Secondly, when the infinitesimal form of the
rotation matrix is promoted to the correct finite rotation expression (of Sections 4 and 5), the
same exact identities derived previously are obtained. These result presented here are therefore
intended to bring out one more time the close relationship between the Riemann tensor (in terms of
which the continuum identities are naturally formulated) and the finite rotation matrices (in terms
of which the exact lattice identities are formulated). A lattice expression for the Riemann tensor
provides a natural bridge between these two different realms.

We will start here by considering the lattice Einstein tensor. Since the Einstein tensor’s com-
ponents live on edges, derivatives of the Einstein tensor must occur at vertices. Since the Einstein
tensor is discontinuous at vertices, the easiest procedure is to integrate the Bianchi identities over
a d-volume around a vertex and divide by that d-volume, at least in the case of small deficit

angles.'* Then, the result is generalized to arbitrary deficit angles. So, we begin by deriving the

!4The assumption of a flat coordinate system, so that edges have definite directions and so that we will be able to
use Gauss’ theorem, introduces errors of O(5?).
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un-contracted, the partially contracted, and the completely contracted Bianchi identities in terms
of the dual Riemann tensor, which will be the dual of the local Riemann curvature tensor as op-
posed to the global form, for reasons discussed earlier. In the continuum the un-contracted Bianchi

identities read

’

B;e

/

061/8, 061/6 061/6
R +R +RY7

The partially contracted and completely contracted Bianchi identities are obtained via contraction
of a with ¢/ or/and § with . Using the d-dimensional dual Riemann tensor, one can write the

un-contracted Bianchi identities into a divergence form via

]. ~ '3 ~ 13l ~ 1.2l
o aca B e B 0 g BT ) = 0
(8.2)
1 ~ 131 ~ 11 ~ a1
(d - 3)' [(eaﬂvél...éd,gRa B 751"'50!_3);7'1‘(6/371161...6d73Ra B a51"'6d_3);o¢+(67aﬁ61...64,3Ra B /351...601—3);/3] =0
(8.3)
1 B! B/ AG1 .0
g Casatr g o BT = 0 (8.4)

Let us first consider the case of small deficit angles. The next step is (1) to integrate over and
divide by ?V'(v), the d-volume surrounding vertex v, (2) to use Gauss’ theorem, and (3) break
up the (d-1)-dimensional surface integral into (d-1)-dimensional surfaces composed of (a) the 2-d
Voronoi rotation areas and (b) the (d-3)-dimensional portions of the hinges’ surface volumes (the
4=317,’s). One finds

1
u—3ﬁﬂqm;:

v

pa’ ' Ad1...04—3 d—1
Jo ot s B0y flgl @t = 0 (55

Rewriting R using Eq. (6.7) and a generalized form of Eq. (6.10), letting the index A — Ao, and

defining the volume tensor

V}fopl---ﬂd—s = ] Z (—1)P lZ?iolZTil'"lZ?i;ig (8.6)
" (40481 seeeria—3)=P(0,1,...,d—3)

where (—1)7 is the sign of the permutation, we find the integrand to be

S UOé'ﬂ'01*21/'}?‘061""S‘J‘—3 eltV)\O)\lm)\d—BA#V(lhwl - lh,U))‘l...(lh,d—S - lh,U))\d_B 7
604[3761...64,3 AI‘ diZVh Al“ d,th (8 )

Note that for each hinge the above expression is independent of the choice of assignment of the
labels Iy 0, lp 15 .-y 43 to particular edges of the hinge. Furthermore when Eq. (8.6) is substituted

into the above equation, each term in Eq. (8.6)’s sum can be replaced with +l{)\°lf1...lfﬂ’33, so that
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the contraction of edges with the 2-nd Levi-Civita tensor always gives £Ar?¢=2V}, where (4) we
define A?ﬂ such that the minus sign is always chosen (so as to be consistent with counter-clockwise

rotations in 3-d). After canceling the integration with Ap?=3V}, Eq. (8.5) can then be rewritten as

€afBydr...0q— ' [~
rEEEEnPIR. U3 bl liiay = 0 (8.8)
»C

where hy, refers to a “hinge base”, and is a (d-3)-simplex, and hence necessarily a “base” to the

hinges containing it. One can then invert the sums to find

Cafyo ..o AN Sa_
oy 2 (2 O Uiiny) i = 0 (5.9)
hbD’U hjhb

where a unique labeling assignment has been chosen for each hinge base, Here U} ’hﬁbl = +UY%  the
plus or minus sign chosen when {lp1,...,ln, 43} is, respectively, an even or odd permutation of

{lh1, - lha—3}. Le., the sign of U,f‘:,i’ is chosen such that €ngys, .. U,fﬁblgl l6d 5 < 0 for

043
one, and hence for all via projection to 3-d, h D hy. °

Og_s

Using as the equation for V,il' a (d-3)-dimensional version of Eq. (8.6), the above equation

can then be rewritten as

_% S (S ULy vt = g (8.10)
('U) hyDv hDhy

which for the special cases of three and four dimensions reduces to the approximate small deficit
angle expressions discussed previously in the sections on 3d (Section 4) and 4d (Section 5) rotations.
Using Y0, UY? =~ Y (Rot — 1)*% = {T][1 + (Rot —1)] — 1}*'%" = [[1(Rot) — 1]*'#, where “x”
symbolizes equalities to first order in deficit angles, the above equation generalizes to, for arbitrary

deficit angles, '
- 60“’7‘51 ‘Sd 5T (Rota,) — 107 2o = 0 (8.11)
hpDv hDhy
where the product of rotations is over a null path, and where 8’ and o' refer to, respectively, the
first index of the first rotation matrix and the last index of the last rotation matrix. In the special
case of three and four dimensions the above result is equivalent to the exact expressions discussed

previously in the sections on 3d (Section 4) and 4d (Section 5) rotations. 7

'“Here, we replace Af: A" with Al‘f hy +U,’j‘hﬂb

"“Here, [[(Rot) is a product of mlxed tenors with the first index up and the second down; however the first index
of the last rotation matrix (on the left), ', and the 2nd index of the first rotation matrix, ', can be either up or
down.

'"In the Lorentzian case, the above equations have a plus sign; each term of the above equation gets an additional
minus sign either because of the reason noted in the footnote to Eq. (6.7) or because the presence of the time
component in a hinge would otherwise cause a reversal of the direction (and sign) of Al‘i‘lflz due to the change in sign

a Y01-0a— 3
of 505751---5d—3UhibV
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Let us add a few comments regarding the result just obtained. The coordinate system in which
this equation is written is one of the possible global coordinate systems described in the section on
Geometric Setups (Section 3). By taking the Levi-Civita tensor out of the 3°, -, we are taking
the Levi-Civita tensor to be defined at vertices such as v.1® Now, one can ask how we can use a
d-dimensional Levi-Civita tensor when in our derivation of G, ! we only used (d—2) x (d—2) metrics;
the answer is that there we were considering Voronoi volumes which had two dimensions not set
by edge lengths, whereas here all dimensions of every volume emanating from vertex v involve edge
lengths.

Also, the partially and fully contracted Bianchi identities, now for arbitrary deficit angles, are
easily obtained via contractions. The above Bianchi identities can be converted to scalar form
via dot products with d d-vectors which form a d-volume in our going around coordinate system
discussed in Section 3. Do note that, when one changes going around coordinate systems, dot
products do change, so that even here, what is a Bianchi identity for one going around coordinate
system may not be for another going around coordinate system. Another (going around) coordinate
system difference would be that I'’s such as that in Eq. (3.4) would be unity for some coordinate
systems, and not for others, so that a different order of rotations, utilizing the I'(s) which are
unity, would be appropriate for these other coordinate systems. Still, once the dot products are
taken, the Bianchi identities are in terms of edge lengths, which are independent of coordinate
system; hence, once dot products are taken, any Bianchi identity is true independent of the going
around coordinate system. In summary, each going around coordinate system has its own Bianchi
identities, which themselves can be projected into coordinate system independent equalities. Of
course, once one substitutes in for the deficit angles their explicit expression in terms of edge
lengths, one attains zero identically. However, if one does not do this, these identities give relations

between the deficit angles and squared edge lengths.

9 Bianchi Identities in Four Dimensions

The discussion of the previous section was for a general dimension d. In this section we will
focus on the four-dimensional case, and proceed from the continuum Bianchi identities to derive the
weak field expression for the lattice Bianchi identities. Once the resulting infinitesimal rotations

are promoted to finite lattice rotations, the resulting identities coincide with the exact form given

18 5 el . . . . .
We needn’t have done this; however, taking it out of Zhjhb or HhDhb avoids unnecessary complications.
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previously (Section 5). At the end of this section we will then collect the explicit formulae for the
exact un-contracted, partially contracted, and fully contracted lattice Bianchi identity, valid for
arbitrary manifolds.

In the four-dimensional case the un-contracted identity in the continuum reads
1 o' pw o' py sal B pw
5[(6045W/R )iy + (€gyu R )ia + (eyau B )8l =0 (9.1)

Now, defining the index ¢ such that [af7vd] # 0 (for d > 4, we choose one set of indices, an ordered
set, 5= 0169...04_3, which satisfies [aﬂ’yg] # 0), we find

(€aprs RYP 1) + (€8705 RV 90) 0 + (€1ags REPP)5 = 0 (9.2)

3

where, as we have stated, a, 8, v and § are not summed anywhere in the equation. We can now
rewrite the above equation as

(eaﬁvéRa’ﬂ’/\(s);/\ =0 (9'3)

where A is summed over, and J is not. Actually, in 4-d, the above equation does not change even if
J is summed over all directions; for d > 4, one simply multiplies by a factor of 1/(d — 3)! to get the
exact correspondence to the un-contracted Bianchi identities if one decides to sum on § (which, for
d > 4, becomes S, and the “sum on §” is the sum over all the §’s of S; which has non-zero terms
only when none of the §’s are equal to «, [ or 7).

To get the partially contracted Bianchi identites, one simply either sets @« = o’ or 8 = 3, and

then sums over either « or 3. Setting 5 = ' gives
(capa R0 = 0 (9.4)

Here, we use the Einstein summation convention for all indices, so that for d > 4, we would need
a factor of 1/(d — 3)! from Eq. (9.3). In particular, we note that ¢ must be summed over, because
we are summing over two values of 3, and therefore § must run over different indices (or, for d > 4,
different 3’s implies that not all &’s which give non-zero terms will be comprised of the same set
of indices). To get the fully contracted Bianchi identities, we set @ = o' and sum over « in the

partially contracted Bianchi identities to find
(eaﬁvééaﬂ/\(s);/\ =0 (9'5)

where, once again, we would have the factor of 1/(d — 3)! for d > 4.
The next step is to interpret the un-contracted Bianchi identities, Eq. (9.3) in Regge Calculus.

Using the lattice expression for the dual of the Riemann curvature tensor, Eq. (6.22), we have
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1 y
h

We now integrate this over a vertex v, and divide by the sum of all Voronoi four-volumes surrounding

that vertex, V.

11 faﬁvé o f Aé / 4,

One can rewrite this in terms of edges, as the components of the Einstein tensor live on edges,
and because the completely contracted Bianchi identities are written in terms of components of the

Einstein tensor.

€ ) @
6 4V > / iy o U A3 \flgl ' = 0 (9:8)

Y how

Since each hinge appears on two edges, we find

€ 5 /
9. 64V EZ/ e UaﬂAM) A/ 19l d'z = 0 (9.9)

Y 15w kDl

which implies that the dual Riemann tensor for an edge is one half of the sum of the dual Riemann

tensor for all hinges containing that edge. Using Gauss’ theorem, one then finds

G 23 [ v ) iyl da = 0 (9.10)

Y 1ow hDI

Noting that the radial direction is contained within the hinge, one can integrate over the loop area,
leaving the only integration variable to be the direction +(L — 1), where L is the other edge of the
hinge which also contains (and is directed outward from) the vertex v. L — [ here is the unique
direction, up to a sign, perpendicular to the surface normal without any component contained
within the loop area. We choose +(L — [) to ensure consistency throughout the sums. One has

therefore

/Areo“”‘S S5p UYP AN 7y /gl ds = 0 (9.11)

Noting that Aﬁ‘s = LM% —I’L° (where we have chosen a sign convention for Ay), one can write the

”ljvhjl

dot product L -7 as

[G#V)\OA?V(Z - L)O]L)\ o G#UAUA#VZOL)\ o :lZZAh

neL = = =
" Ap[L —1] ArlL—1] ~L—1

(9.12)

Then using this result and a similar one for [ - 72 one obtains
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]. ]. 606,6’)/(5 Oé’ﬂ/ 5
S Y Y 0 U ApA, (1-L)° =0 (9.13)
6%V S hor “Va
which is equivalent to
]. iyl
7 2 e () 200 U (1= 1) = 0 (9.14)
Yo hDl

where the + sign will indicate whether the hinges, for each particular hinge base, are gone around
in a counter-clockwise or clockwise fashion. This is then further simplified when one considers that
the contribution for each edge is the same whether it be in its L (non-hinge base) contribution, or
its [ (hinge base) contribution, noting that [ <+ L leads to £ — F. Indeed, given that we started
with a sum over hinges, Eq. (9.8), and broke that down into a sum over edges, Eq. (9.9), each edge’s
contribution to the hinge must be identical. So, we can take each edge’s [ contribution, double it,
and omit its L contribution to find for small deficit angle

%geaw(i)% SLUYP P =0 (9.15)
The partially contracted and completely contracted forms are then easy to obtain. The partially

contracted form can be written for small deficit angle as either

1

T 2 D apo 01 UMP(L =) = 0 (9.16)
Y 1ow hDl
or
1 /
T 20 2 faps 0 U (L =1 = 0 (9.17)
Y 1ow hDl

and the fully contracted form for small deficit angle is

% %;hzjleaw Sp USP(L=1)° =0 (9.18)
We note that each fixed [ term in }°; can be taken to correspond to one term in (what was) the
divergence, because each edge length corresponds to one component of the Einstein tensor G)‘v.

Next we note that these small deficit angle forms can all be rewritten in terms of rotation
matrices. For example, the un-contracted form can be written as

% S S capna(Roty — ¥ (L —1)° = 0 (9.19)
I1Dv hDl

and for arbitrary deficit angles, this generalizes to

]. 1
7 2 amnsl [ (Botn) =117 (L= 1) = 0 (9.20)
Y ow hDl
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where ' refers to the second index of the first rotation matrix, and o' refers to the first index of
the last rotation matrix. The above expression coincides with the exact result obtained previously
in the section on finite rotations in four dimensions (Section 5). The partially contracted Bianchi

identities can then be written for arbitrary deficit angles as either

1 o
17 2 Comal [ (Rotn) = 12 (L —1)° = 0 (9.21)
Y iow hDl
or
1 of’
17 2 amal [ (Rotn) = 17 (L —1)° = 0 (9.22)
Y iow hDl

depending on the choice of indices. Finally the completely contracted Bianchi identities can be
written for arbitrary deficit angle as

% > caprol [[ (Rotn) = 1*HL —1)° = 0 (9.23)
Y 1o hol

We can see that this has the correct units, 1/(*V'), by taking the metric, and hence the Levi=Civita

tensor, to be dimensionless.

10 Bianchi Identities in Three Dimensions

Let us repeat the above construction in three dimensions, without going through the details
which very much parallel what was done in the four dimensional case just discussed. For d = 3,
since the hinges are the edges, we get for the completely un-contracted Bianchi identities, valid for

arbitrary deficit angles,
1

57 ot [H(Rotl) —1)¥" =0 (10.1)
Then the 3-d partially contracted Bianchi ideuntites for arbitrary deficit angles can be written as
either

% €apr [H(Rotl) —1]¥% =0 (10.2)
or

% asy [[J(Roty) — 179 = 0 (10.3)

l
and finally the 3-d completely contracted Bianchi identities for arbitrary deficit angles read

% capy [[[(Rotr) — 1% = 0 (10.4)
v l
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These expressions coincide with the exact result obtained previously in the section on finite rotations
in three dimensions (Section 4). In three dimensions and for small deficit angles these results reduce

to
3% lzeam sUYY =0 (10.5)
v

The 3-d partially contracted Bianchi identites can be then be written, again for small deficit angles,

as either
Zeam §UYE =0 (10.6)
v [Dv
or
Zeam § U =0 (10.7)
Vo Dw

depending on the choice of indices. Finally for small deficit angles the 3-d completely contracted

Bianchi identities are

1
o €apy D WU =0 (10.8)
Dv

11 Bianchi Identities in Dimensions Greater than Four

For dimensions d > 4, our 4 — d results are generalized after recalling that, in the original
integration, each hinge appears once, so that each hinge should appear once in our results as well.

For each hinge, all of its (d — 2) edges bordering vertex v appear in ), once, so we need to divide
d—3
d—4
bases ((d-3)-dimensional simplexes which are labeled by hj), which are summed over which that

by (d — 2). Also, for a fixed edge contained within a hinge, there are = d — 3 hinge
hinge contains. So, we must also divide by (d — 3). For convenience, the order of Lj, Ly, ..., Ly_3
can be chosen such that €, » Rotzﬂ I"(L— l)g > 0. Therefore for d > 4 the un-contracted Bianchi

identities for small deficit angles read

1

(d2—dv 2D ¢ “api | > U =0l =)™ (laa = P4 (= L)'2] = 0

Y 1D hyDI =(hy,L)

(11.1)
where the last sum can be viewed either as over h D hy or over edges L which, along with hy, form
a hinge. Taking the latter view, we can note that, for a fixed term in this triple sum, we should

get the same term when [ <» L. This, indeed, is the reason we were able to divide by (d — 2) in

Eq. (11.1). So one can simply double the above result and let (I—L)%-3 — 12_3, which dramatically
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simplifies the answer to

2 1
2@ 3TV, 2= 2 Capri s

Y 1D hyDI

S 6 U G = 0 (11.2)
=(hs,L)
Now, as opposed to m 215w 2oh,o1 We could have written just d%2 >_h,ov: but this would
not explicitly involve the edge lengths. And, a sum over edge lengths is most directly related to
a divergence because, as mentioned earlier, each fixed [ term in ), can be taken to correspond to
one term in (what was) the divergence, because each edge length corresponds to one component of
the Einstein tensor. Additionally, the identities would not look as neat, as there would not be a
natural edge to subtract from the other hinge edges to get a hinge’s (d — 3)-surface volume.
The above formulas were for small deficit angles. For arbitrary deficit angles, we find the

un-contracted Bianchi identities to be

]. ]. 13l g
-_ o' B 0 _
— e > > e s [T Rotn) =¥ (L-1),, = 0 (11.3)
(d—2)(d—3) V“Dvhpz o h2hy ’

The partially contracted Bianchi identities can be written as either

1 1

_ o' i _
—v v 2 2 s [T Rotn) =1 P(L—1);,, = 0 (11.4)
(d—2)(d—3) 1V, iy afy Koy b
or
1 1 , )
— ap ;o
a2 O €aprs [T Rotn) = (L —1)h, = 0 (11.5)
(d—2)(d—3) 1V, iy afy Koy b

depending on the choice of indices, and finally the completely contracted Bianchi identities can be

written as
1 1 )
1 oBp_ i
g O O €apys [T Rotn) =1L =15, , = 0 (11.6)
(d=2)(d=3) Vo ;55 75, o hohy ’

12 Conclusions

In this paper we have derived an exact form for the Bianchi identities in simplicial gravity. In
four dimensions these are given by Eqgs. (9.20), (9.21) and (9.23) for the un-contracted, partially
contracted and fully contracted form respectively. In three dimensions the corresponding expres-
sions are given by Eqs. (10.1), (10.2) and (10.4), while above four dimension the corresponding
general results are in Egs. (11.3), (11.4) and (11.6), with an alternative but equivalent form of

the un-contracted Bianchi identity given in Eq. (8.11). The explicit form of the rotation matrices
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appearing in the above-quoted exact Bianchi identities was constructed explicitly and presented in
Sections 4 (three dimensional case) and 5 (four dimensional case).

While fairly unwieldy in their explicit form, these identities can be shown to reduce to their
known weak field expression in the limit of small curvatures. They provide an explicit, local
relationship between deficit angles belonging to neighboring simplices. Their existence can be
viewed as a consequence of the local invariance of the Regge action under small gauge deformations
of edge lengths emanating from a vertex, just as the continuum Bianchi identity can be derived
from the local gauge invariance of the gravitational action.

The relationship between the lattice Bianchi identities and the Regge lattice equations of mo-
tion has been investigated as well. In the continuum the contracted Bianchi identities ensure the
counsistency of the gravitational field equations. One would expect that the same should be true
on the lattice, in the sense that a lattice “covariant divergence” of the lattice field equations would
identically yield zero, as a consequence of the lattice Bianchi identity. We have shown that that is
indeed the case in the lattice theory.

When in the Regge lattice case we go from the discrete Einstein-Hilbert action and its equations
of motion to the fully contracted Bianchi identities, and then write down an explicit form for the
partially contracted and un-contracted Bianchi identities as well, we find that the relation between
the three types of Bianchi identities in the Regge theory is basically simply the contraction of
indices, as in the continuum. Also, as the product of rotation matrices around a null path is
critical in understanding the form of all three types of Bianchi identities, we have provided both
a quick way to calculate this product and an understanding of, in particular, its antisymimetric
components. Finally by appropriately projecting the lattice Bianchi identities, we have derived
explicit expressions depending on edge lengths squared only.

All of this is exact, valid for arbitrary deficit angles, though we have provided first order
approximations to our results for the product of rotation matrices. An exact form for the lattice
Bianchi identity should be useful in a variety of context, including numerical schemes for classical
and quantum gravity. In the classical case, the accuracy of four-dimensional time evolution codes

could be checked by evaluating the Bianchi identity along a time evolved trajectory.
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