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The weak-field expansion and the nonperturbative ground state of three-dimensional simplicial quan-
tum gravity are discussed. The correspondence between lattice and continuum operators is shown in the
context of the lattice weak-field expansion, around a simplicial network built of rigid hypercubes, and
the lattice translational zero modes are exhibited. A numerical evaluation of the discrete path integral
for pure lattice gravity (with and without higher-derivative terms) shows the existence of a well-behaved
ground state for sufficiently strong gravity (G > G,). At the critical point, separating the smooth from
the rough phase of gravity, the critical exponents are estimated using a variety of methods on lattices
with up to 7X 643=1835008 edges. As in four dimensions, the average curvature approaches zero at
the critical point. Curvature fluctuations diverge at this point, while the fluctuations in the local

volumes remain bounded.

PACS number(s): 04.60.+n, 11.15.Ha

I. INTRODUCTION

Three-dimensional quantum gravity is of interest since
it shares some common features with the four-
dimensional theory (lack of perturbative renormalizabili-
ty, unboundedness of the Euclidean gravitational action
[1-3]), while at the same time it appears less trivial than
the two-dimensional case, where the pure gravity action
is a topological invariant. As is the case for other field
theories, the lattice approach to gravity allows one to
define the path integral for quantum gravity nonperturba-
tively, and explore the nature of the ground state without
relying on an expansion in a small parameter [4-17]. In
addition, a number of interesting exact results have ap-
peared for pure Minkowski continuum gravity with van-
ishing cosmological constant [18]. These results have led
to renewed interest in lattice models for three-
dimensional (3D) gravity [19]. In particular, the state
sum model of Turaev and Viro for a triangulated three-
manifold, which was anticipated by Ponzano and Regge
in what was probably the earliest work on lattice quan-
tum gravity, has been shown to be equivalent to the ex-
actly soluble Chern-Simons continuem theory of 3D
gravity.

In this paper we concentrate on the simplicial formula-
tion of quantum gravity, also known as Regge calculus,
which was the version of lattice gravity considered by
Ponzano and Regge (for reviews and a more complete list
of earlier references, see Refs. [S—8]). One of the advan-
tages of the simplicial approach lies in the fact that it can
be formulated in any space-time dimension (including the

physically relevant case of four dimensions), and that it

can be shown to be classically completely equivalent to
general relativity. This correspondence is particularly
transparent in the usual weak-field expansion [9], with
the edge lengths on the lattice playing the role of the
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components of the metric field in the continuum. Fur-
thermore, the correspondence between lattice and contin-
uum quantities is clear, and the interpretation of the
terms in the action, as well as the identification and sepa-
ration of the measure contribution, is unambiguous. The
weak-field expansion has not been worked out yet for
dynamically triangulated models for random surfaces
[20-22], which lack classical reparametrization invari-
ance. On the other hand, reparametrization invariance
seems to be recovered in all models at the quantum level,
which represents a rather remarkable result. Of course,
since gravity is not well defined in the continuum, a num-
ber of difficulties, related for example to the gravitational
measure factor [1], the unboundedness of the Euclidean
gravitational action about two dimensions [2], and the
lack of perturbative renormalizability also above two di-
mensions [3], persist in the lattice formulation as well.

A detailed description of the construction of the action
for simplicial lattice gravity without and with matter
fields can be found in the literature [4—12]. In a number
of cases the correspondence with the continuum answer
can be established quite rigorously and in great generality
[10,11]. Given reasonable geometric and positivity prop-
erties, universality is expected to lead to the same results
for quantities such as physical observables, exponents,
anomalous dimensions, etc. in some continuum limit.
This is known to be the case in other lattice field theories,
where the physical particle spectrum is expected to be in-
dependent of specific details of the ultraviolet lattice
cutoff and the specific form of the lattice action, as long
as it preserves the basic symmetries; it has also been
verified explicitly to some extent in the case of two-
dimensional gravity [14,15], where good agreement is
found between the lattice gravity results and the confor-
mal field theory predictions. In the simplicial formula-
tion, as in the continuum, the local curvature is a con-
tinuous function of the relevant edge lengths; the
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straightforward geometric correspondence of lattice and
continuum quantities is one attractive feature of the
Regge calculus approach, and allows one, for example, to
distinguish between action and measure contributions,
and between various local higher-dimensional curvature
terms [12].

While simplicial quantum gravity can be formulated on
a random lattice with varying edge lengths [11], it ap-
pears advantageous at least initially to adopt a regular
lattice, which is much easier to work with from a compu-
tational point of view. The continuous diffeomorphism
invariance discussed in [4,9], as well as in [15], is of
course not lost by going to such a regular lattice. (The
random lattice might appear more satisfactory from a
conceptual point of view, since it incorporates, for
smooth manifolds, the invariance under “large” lattice
diffeomorphisms, whereas in the regular lattice only
“small” lattice diffeomorphisms are allowed; thus the two
different lattices induce quite different cutoff structures in
orbit space.) Eventually one hopes to redo all the calcu-
lations for such a random lattice, but so far most of the
numerical work on lattice gravity in four dimensions has
been done for regular lattices [12-17,23,5]. In the fol-
lowing we will discuss results for a simplicial complex to-
pologically equivalent to a torus in three dimensions,
mainly because it is easier to work with. In the end one
expects short-distance renormalization effects and critical
behavior (and therefore the continuum limit as well) to be
independent of the boundary conditions, and therefore of
the topology.

II. GRAVITATIONAL ACTION AND MEASURE
ON THE LATTICE

While the physically most interesting model of gravity
is that in four dimensions, it appears worthwhile to inves-
tigate the simpler, intermediate case of three dimensions.
It is less trivial than pure two-dimensional gravity, since
the Einstein action is no longer a topological invariant.
It is also far less complex (as far as the lattice interactions
are concerned) than the four-dimensional theory, but
shares some of the same problems, namely, the unbound-
edness of the pure gravitational action, as well as the lack
of perturbative renormalizability.

The pure gravity action on the lattice will be chosen in
three dimensions to be

1385
I= E ?\V,,—klhﬁh-i-a p— , (21)
edges h Vh

as discussed in Ref [12]. Here A denotes a hinge (=edge
in three dimensions), /, is the corresponding edge length,
V, the volume associated with that hinge in a baricentric
subdivision of the simplicial lattice [12], and §, is the cor-
responding deficit angle at the hinge k, a function of the
edge lengths belonging to the tetrahedra meeting on 4. A,
k, and @ are bare lattice coupling constants. Classically
the action of Eq. (2.1) is bounded from below if
4aA—k?>0. The lattice curvature-squared term (pro-
portional to 82) vanishes if and only if the curvature is
zero and was shown to converge to the continuum answer

for the regular tessellations of the three-sphere [12]. In
the following we will take the “fundamental lattice spac-
ing” to be equal to 1; the appropriate power of the lattice
spacing (which has dimensions of a length) can always be
restored at the end in the relevant formulas by invoking
dimensional arguments. This statement should not con-
fuse the fact that, since the edge lengths are dynamical
variables, the average physical separation between points
(the “‘effective lattice spacing”) will be some numeric fac-
tor (controlled by the bare couplings) times this “funda-
mental lattice spacing.” In other words, the ultraviolet
cutoff proportional to the inverse effective lattice spacing
is dynamical, and not fixed a priori. In the classical con-
tinnum limit the above action is then equivalent to the
continuum action

I=faxve [A\—Er+ 2R

ER+ER o RIP 4 - |

2.2)

with a cosmological constant term (proportional to A), an
Einstein-Hilbert term (k =1/8wG), and a higher-
derivative term [24,25]. Here the dots indicate higher-
order curvature corrections, as well as possible nonco-
variant corrections. One could consider the Regge-
Einstein action by itself (a =0), but then the Euclidean
action would be unbounded from below, and problems
might arise, depending on the choice of measure (this
point will be discussed further below). Some preliminary
results regarding the theory defined by the action of Eq.
(2.1) have also been discussed by Hamber [8]. Recently
there also has been some work on three-dimensional gen-
eralizations of the original dynamical triangulation model
[21,22], using equilateral tetrahedra and performing the
sum over triangulations using Alexander moves [26],
which are exactly what is used to prove the invariance of
the Turaev-Viro state sum model [19]. This development
represents an alternative and complementary approach to
what is being discussed here. '

An important issue which needs to be addressed is the
problem of the gravitational lattice measure. In the con-
tinuum the form of the measure for the g, ficlds appears
not to be unique [1,27-29]. The reason for the ambiguity
appears to be a lack of a clear definition of what is meant
by 1, in the gravitational functional measure. In spite
of some recurrent claims to the contrary, it would seem
that such an ambiguity persists in all known lattice for-
mulations of quantum gravity. However, the difference
between the various measures seems to be in the power of
V/g in the prefactor, which corresponds to some product
of volume factors on the lattice. These volume factors do
not give rise on the lattice to coupling terms (correspond-
ing to derivatives of the metric in the continuum), and
are therefore strictly local and involve the conformal de-
grees of freedom only.

Different measures in the continuum give rise to
different measures on the lattice [5]. DeWitt [27] has ar-
gued that the gravitational measure should be construct-
ed by first introducing a supermetric over metric defor-
mations, which in its simplest local form then leads to a
functional measure for pure gravity in d dimensions of

the type
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dp[g]— Hg(d 4¥d+1)/8 I-I dg,w . 2.3)

pZy

Another popular (pure) gravitational measure in the
continuum is the Misner scale-invariant measure [28]

Hg—(d+1)/2 H dgp,v .

pZv

dulgl= (2.4)

It is unique if the product over x is interpreted as one
over “physical” points and coordinate invariance is im-
posed at one and the same “physical” point. Other forms
of the measure for the gravitational field have also been
suggested, some inspired by the canonical quantization
approach to gravity [29]. If matter fields are present,
then the gravitational measure has to be further modified
[27] (see further discussion of this point below).

On the simplicial lattice it is clear that the edge lengths
are the elementary degrees of freedom which uniquely
specify the geometry for a given incidence matrix, and
over which one should perform the functional integration
[6,12,5]. Indeed, the induced metric at a simplex is
related to the edge lengths squared within that simplex,
via the expression for the invariant line element
dsz=gwdx"dx ¥; the correspondence between the in-
duced metric field defined within a simplex containing the
vertex s and the lengths of the edges of that simplex is
given explicitly by

gij(s)———(ls25+,+12,+] I.s'2+i,s+j) . (2.5)

Here the first two edges emanate from the given vertex,
and the remaining one is opposite to the same vertex.
One notices that in general each edge is shared between
several contiguous simplices, and that an integration over
the edges is not simply related to an integration over the
metric [even though there are d(d +1)/2 edges for each
simplex, just as there are d(d +1)/2 independent com-
ponents for the metric tensor in d dimensions]. Originally
the pure gravity measure

[dpdil= 11 f dIZI3°F [1]

edges ij

was suggested, where od =0, —1 for example, and F_[/]
is a function of the edge lengths, with the property that it
is nonvanishing and equal to 1 only whenever the triangle
inequalities and their higher-dimensional analogues are
satisfied. The value od =0 then corresponds to the
DeWitt measure in four dimensions, while od =—1 cor-
responds to a scale-invariant measure such as the contin-
uum Misner measure. The parameter € can be intro-
duced as an ultraviolet cutoff at small edge lengths: the
function F_[!] is zero if any of the edges are equal to or
less than €. The introduction of such a cutoff seems to be
necessary in four dimensions [12], but not in two [14,15].
This is a consequence of the fact that the higher-
derivative terms tend to suppress configurations with
small edge lengths below four dimensions; such a
suppression disappears in four dimensions where the
higher-derivative action contribution becomes dimension-
less. Indeed, a simple scaling argument, for an edge mea-
sure of the type discussed above, gives the following esti-
mate of the average volume per edge,

(2.6)

21+od)
A
if curvature terms in the action are neglected, and shows
that the volume tends to zero for a singular measure such
as the scale-invariant one (cd =—1). (In three and four
dimensions the numerical simulations agree to within a
few percent with the above formula; see Sec. IV below.)
The above measure is of course correct in the weak-
field limit, where all continuum measures agree as well,
and integrates over coordinate-independent quantities,
the invariant lengths of the edges. But since it has been
argued that it is not entirely clear what the continuum
measure should be, it would seem of interest to explore
the sensitivity of the results to the type of gravitational
measure employed. Eventually cne would expect on the
basis of universality of critical behavior that different
measures should lead to the same continuum limit.
Another class of pure gravity measures which can be
written down on the lattice is obtained by considering the
“volume associated with an edge” ¥; [which corresponds
to the quantity Vg (x) in the contmuum], and writing

(V)~ 2.7

[audll= 1 [Tvirahrn, 2.8)
edges ij
with 0 =—1/d for the lattice analogue of the Misner

measure and o =(d —4)/4d for the lattice analogue of
the DeWitt measure. If a D-component scalar field is
coupled to gravity, then, due to an additional factor of

I1.2°7% in the continuum gravitational measure, the
power o has to be changed to
D 1
= — sy (D —§
“T2dd+D) da= 324( > 29)
o=—2___4=d 15 9 ‘
2d(d +1) 4d d-324

for the two measures, respectively.

Eventually one would like to see how the results de-
pend on the form of the measure and on the measure pa-
rameter o. In the case of two-dimensional gravity exten-
sive studies were done and compared with exact results
known from conformal field theory. The numerical re-
sults appear to indicate that different measures, within a
certain universality class, will give the same results for
infrared-sensitive quantities, such as correlation functions
at large distances and critical exponents. The lattice path
integral might not be meaningful, though, for certain
values of o; in particular, if the measure parameter o is
too negative in two dimensions, then the measure factor
tends to favor configurations of triangles which are long
and thin, with a small area and a large perimeter. The
lattice tends to degenerate into a lower-dimensional man-
ifold, a situation far from the desired continuum limit,
and therefore to be avoided. In the following we will
consider the measure di? (0=0) in order to allow a
direct comparison with the results in four dimensions,
where the same measure was used [17,23]. In three di-
mensions this choice, therefore, does not correspond ex-
actly to the DeWitt measure. In order to explore the sen-
sitivity of our results to the choice of invariant measure,
we have also considered the scale-invariant measure d! /1.



In two dimensions the results obtained seem to be largely
insensitive to the choice of measure over the I’s [15]. We
will argue later that the same seems to be true in three di-
mensions. , :

Some useful identities can be obtained by examining
the scaling properties of the action and the measure. The
couplings in the above gravitational action are dimen-
sionful in three dimensions, but one can define two di-
mensionless coupling constants k /A'/* and aA!/? and re-
scale the edge lengths so as to eliminate the overall length
scale V'k/A. As a consequence, the path integral Z for
pure gravity obeys an equation of the type

1/2
|

N 172 1/2
alr
ot
(2.10)

where N, represents the number of edges in the lattice
and we have selected here the dI? measure (o =0). This
equation implies, in turn, a sum rule for local averages,
which (for the dI? measure) reads

k

A

k3
A

k3

Z(Ak,a)= X

z

b

3A(V)—k{8l)—al{8*/V)=2N,/Ny . (2.11)

Here N, represents the number of sites in the lattice, and
the averages are defined per site. The coefficients on the
left-hand side (LHS) of the equation reflect the scaling di-
mensions of the various terms, while the RHS term arises
from the scaling of the measure [in d dimensions the
coefficients become d, (d —2), and (d —4), respectively].
This last formula can be useful in checking the accuracy
of numerical calculations, since each term can be estimat-
ed independently.

1. WEAK-FIELD EXPANSION FOR SIMPLICIAL
3D GRAVITY

Here we will consider the expansion of the lattice ac-
tion of Eq. (2.1) around flat space, and will compare the
results with the weak-field expansion in the continuum.
In the absence of the cosmological term, flat space is a
solution for the higher-derivative lattice action. Follow-
ing Ref. [9], we therefore take as our background space a
network of unit cubes divided into tetrahedra by drawing
in parallel sets of face and body diagonals, as shown in
Fig. 1. With this choice, there are 2¢—1=7 edges per lat-
tice point emanating in the positive lattice directions:
three-body principals, three face diagonals, and one-body
diagonal, giving a total of seven components per lattice
point.

As in Ref. [9], it is convenient to use a binary notation
for edges, so that the edge index corresponds to the lat-
tice direction of the edge expressed as a binary number:

(0,0,1)—1, (0,1,1)—=3, (1,1,1})—>7,
(0,1,0)—2, (1,0,1)—5,
(1,0,0)—4, (1,1,0)—6.

(3.1

The edge lengths are then allowed to fluctuate around
their flat-space values I; =I%(1+¢;), and the second varia-

tion of the action is expressed as a quadratic form in €:
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FIG. 1. One rigid cube with body principals (labeled by
1,2,4), face diagonals (labeled by 3,5,6), and one body diagonal
(labeled by 7).

821__: ze(m)TM(m,n)e(n) , (3.2)

mn

where n,m label the sites on the lattice and M,,, is some
Hermitian matrix. The infinite-dimensional (but sparse)
matrix M™" is best studied by going to momentum
space. Assume that the fluctuation ¢; at the point that is
j steps from the origin in one coordinate direction, k
steps in another coordinate direction, and / steps in the
third coordinate direction, is related to the corresponding
fluctuation ¢; at the origin by

E§j+k+l)=w11'wl2cwl (0)

4€; " s (3.3)

with wi=e'k". In the smooth limit w;=1+ik; +0 (k}),
and only in this limit, are the lattice action and the con-
tinuum action expected to agree. Note also that it is con-
venient here to set the lattice spacing in the three princi-
pal directions equal to 1; it can always be restored at the
end by using dimensional arguments. We have generated
the lattice weak-field expansion coefficient both by hand
(in the case of the Regge and cosmological constant term)
and by computer, writing an appropriate FORTRAN code
that handles the analytic weak-field expansion around an
arbitrary hypercubic lattice in two, three, and four di-
mensions. (In four dimensions we have verified and ex-
tended to the cosmological and higher-derivative terms
the formulas of Ref. [9].)

In order to indicate the comparison with the continu-
um results, one would like to express the lattice action in
terms of variables which are closer to the continuum
ones, such as h,, or h,,=h,,—31,h,. Up to terms
that involve derivatives of the metric (and which reflect
the ambiguity of where precisely on the lattice the
continuum metric should be defined), this relationship
can be obtained by considering one tetrahedron and
using the expression for the invariant line elements
ds2=g’”’vdx”dx" and g, =1, +h,,, where 7, is the di-
agonal flat metric.

Comparing specific values for ds? obtained for special
choices of dx,dx, with the physical distance as obtained
from the values of the edge lengths, one finds for one
tetrahedron (for the labeling see Fig. 2) the well-known
simple result
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FIG. 2. Labeling of edges in two adjacent tetrahedra, as used
in the construction of the metric.

3 H3—13-13) tui-13—-13)
g;= |23 -11-13) 13 LUE-13-13)
$3—11-1p) LE-1i3-1) 1

(3.4)

Inserting I;=1(1+¢;), with I?=1,v2,V/3 for the body
principal (i =1,2,4), face diagonal (i =3,5,6), and body
diagonal (i =7), respectively, one gets

(1+e)=1+kh,, ,
(1+e&)=1+h,,,
(1+€)=1+h,; ,
(1+&)?=1+L Ay +hy)+hy, ,
(1+€5)2=1+’(h11+h33)+h13 ,
(1+€5)2= 1+‘(h22+h33)+h23,
(1t =1+ +hyy+thyy)+2hyy+hyy+hys)

(3.5

(note that we use the binary notation for edges, but main-
tain the usual index notation for the field h,,). These re-
lationships can then be inverted to give

El=r%hll —_S'h 11 +O(h11 ) ’
Ez=%h22_%h2 +0(h3 ) s
E4=%h33_'~é-h +0(h ),

€3=%(h11 +h22+2h12)—
€5=%(h11+h33 +2h13)_
€6=%(h22+h33 +2h23)_

+(hy +hy+28,7+0(RY),
(3.6)
(hy Fhyy+2h0:2+0 (B3,

Ly +hy+2h,)24+0 (k) ,
€7=-é—(h11 +h22+h33 +2h12+2h13 +2h23)
—7—1-(}111 +h22 +h33 +2h12+2h 13 +2h23 )2+0(h3) .

The correction terms of order h, 2, will be needed later for
the discussion of the cosmologlcal constant term. Note
that there are seven ¢; variables but only six h,,’s [in gen-
eral in d dlmensmns we have 29— 1g; vanables and
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d(d +1)/2 h,,’s which leads to a number of redundant
lattice variables for d >2]. [Perturbatively, the physical
degrees of freedom in the continuum are supposed to be
3d(d+1)—1—d —(d —1)=1d(d —3)=0ind =3 for a
traceless symmetric tensor, and after imposing the gauge
conditions [3]; this result in general might or might not
be true at the nonperturbatlve level.]

Thus, to lowest order in A uv» ONe can perform a rota-

tlon in order to go from ‘the ¢; variables to the h,,’s (or
R,’s):
M e=(TVI"HYyriM viv-le, 3.7
with
e=Vh, V=UU,, e=Uh, h=U,k , (3.8)

where V and U, are 7X6 matrices, while U,isa6X6
matrix,

[+ 00000
010000
001000
U=|+ Lo lool,
10%+0Lo
03 +00 3
1L 1.1 1 1
666.333J
L-_%_,._,%,,OO()
3 3 —}3000
¥ —% § 000
UZ—OOOIOO’ (3.9)
0° 0 0 010
0 0 0 001
[+ —1 —1 00 0]
s ¢ "3 000
3 T3 ¢ 000
UXxU=|=% —% —3 $ 00
% Tr ~% 010
3 % T 00 1
—L 1 1 11 1
6 6 6 3 3

A, Lattice Einstein term

The first term we will consider in the action of Eq. (2.1)
is the Einstein-Regge contribution

Ig= 3 1,3, .

edges h

(3.10)

In momentum space, the matrix M » describing the small
fluctuations around flat space is given by



(Mw)l,l-:'_z', - R

(M,),,= —00,— 0,0, ,
(M) ,=2+25,,

(M ,),6=20, 25,5, ,
(M) 7= —35,—35, ,

(M)44=—8,

(3.11)

(M,)y 5= —4w,— 40, , . Ag+Lbb" 0
(M), =6+6B, , Mo=SM.S.=| o  —13)> (3.13)
(M) 7=—18 with
J I e S
I, O
So=11pt 1 (3.14)
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
= 0 0 0 I 0 0 0 (3.15)
0 0 0 0 1 0 0
0 0 0] 0 0 . 1 0
—Hoy+o,) —Hoto,) —Hote,) Hil+o,) L+w,) Hl+te) 1
Explicitly, one has the following matrix elements for the matrix M, ‘
, _ 125} Wy , _1 o @ 1 @y
Mo =1t F ey M=yt ot o 10t 5
©, 1) ©
(M;)1,4=1+LTLT_4, (M;))l,6=2wl___l____1_i__‘+, 2 -
Wy Wy Wy Wy @y @y Wy W@y (3.16)
(My)17=0, (M})yy=—44—+20,,
4
, 2 26!)2 , R
(Mw)4,5=2_2(02'__—+_', (Mw )4,7=O, (M(D )7,7=_18 .
Wy Wy
For k going to zero it reduces to
, 0o o
ka:() 0 —18 1 - (3.17)
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{the remaining matrix elements can be obtained by per-

muting the appropriate indices). Because of its structure,
which is of the form

A¢ b

pt —18 > (3.12)

M, =

where A, is a 6 X6 matrix, a rotation can be done which
completely decouples the fluctuations in €;:

It is easy to see that the matrix M| has three exact zero eigenvalues, corresponding to the translational zero models for

M,:
'61 1"'601
€y 0
€4 0
€ |= | (l—ow,)
€s ';—( 1—-a,w,)
€s 0
| €7 F(l—www,) H1—ow,0,)

7(1—w,0,)

0
0
1""&)4
0
(1~w0,)

7{1—w,0,)

%( 1 ""‘CDICOzCU4)

X
X, (3.18)

X3
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In real space the above transformations become €,(n)=x,(n)—x,(n +fI,), etc., and to this order the measure d/? of Eq.
(2.6) is invariant under the gauge transformations. This is not expected to happen to higher order in A.

The remaining eigenvalues are — 18 (once) and O (k?) (three times). Notice that one mode, corresponding to the fluc-
tuations in the body diagonal €,, completely decouples. The eigenvalues which are of order k?* are in general given by
rather complicated expressions. For the special choice k; =k, =k, =k/ V'3 they are given by

Ays=—%k? (twice) ,

(3.19)
Ae=+12k? (once) .

The single positive eigenvalue reflects the presence of the unbounded, scalar conformal mode. One further rotation by
the 6 X 6 matrix T, defined by

+01 —lo, —~lo;, 0 0 O
—to, +0, —tw, 0 0 0
—lay —1ay to, 0 0O

T,= |—g00, —fHo0, —t00, + 0 0], (3.20)
—s00, —d0w, —How, 0 L 0
—low, —How, —Hwo, 0 0 1
| 0 0 0 0 0O

gives the new small fluctuation matrix
L,=TiM'. T, . 3.21)

The rotation by T, of course, preserves the three translational zero modes, and the three remaining eigenvalues are
still O (k?). If one then defines the matrix

L,=L,—iclc,, - R (3.22)

where C,, is introduced in order to give the lattice analogue of the harmonic gauge-fixing term, with
5(—1+w;) l1—a; 1—w,  6(1—1/w,) 6(1—1/w,) 0
Cﬁ% 1—w, 5(—14+w,) 11—, 6(1—1/w) 0 6(1—1/w,) | , (3.23)
1—a, l—w,  5(—1+w,) 0 6(1—1/0,) 6(1—1/w,)

one obtains

e 3 1 1 1 (24 1 WDy “k% k‘;' k% k‘% k% k§

L)y, =—>4+—F—+—F+—F+—F— ~ — — — = 6

(Lolr,s 4 8ml+8 8w2+8+8w4+8k—.0 5 9 8 9% 8_+96+0(k)’

. 3 1 @ | @ 1 oy kI kY K} ki kI ki

L)y, =0 — s W S 4 O(KS

Lol =7 8, 8 8w, 8 8, 8r.08 9 8 96 8 96 O™

(L)1,4=0, (L,),6=0, ' i | (3.24)

_ ) o ® —~k} kb k2 Kk K} K%

(Eaa=—3+——t+ 2y L P2, 1 5 Lyt By =2 B30k,

20, 2 20, 2 @ 20, 2 k-0 2. @ 24 2 24 2 ' 24
(Ew)4,5=0' |

Since on the lattice derivatives are approximated by finite differences, it is not surprising to find higher-order [0 (k*)]
lattice corrections. Indeed, if one defines 2 _,=w®;+w,+ @y, then

— 3 )
6—3,—3,=2 3 (1— cosky)=k%+k§+k§—l—12(k‘f+k§+k§)+0(k6) . (3.25)
p=1

Note the opposite sign of the higher-order contribution, which partially cures the unboundedness problem [thus, for ex-
ample, —}_‘,#kﬁ is unbounded from below, but —23 (1—cosk,) is not]. On the other hand, the higher-order lattice
corrections appear, for our choice of coordinates, to break Lorentz invariance, since they are not simply functions of
k2. These result will be true in general for higher-order (in k) corrections in simplicial gravity.

For small k the Einstein-Regge action contribution can be written as
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L,=—1ik%v, (3.26)
with k2=k? + k% -+k%, and the matrix ¥ is given by
L1 -4 -to0o00]
I
—+ -+ f 000
“lo o o 100} 327
0o 0 0 010
0 0 0 o001

0 —2 —2 0 0 0]
—2 0 —2 000

poi= |2 T2 0 000 (3.28)
0 0 0 100 :
0 0 0 010
0o 0o 0 00 1]

As will be shown below, the form of L, in Eq. (3.26) is precisely equivalent to the corresponding continuum expression.
Here we note that the combined S, and T, rotations correspond to a rotation to lattice trace-reversed variables, as dis-
cussed previously. Indeed, one has

2w 1 _'4(0i il 4601 0 0 0
- 4(1)4 - 4&)4 20 4 0 0 0
1
S, X TQ=E — w0, — 0, —4w,0, 6 0 0 , (3.29)
—CIJICO4 _40)1604 T W Wy 0 6 0
—4w,m, — 0y —w,wy 0 0 6
_2C01Cl)2604 _20)1@2&)4 _2(01602&)4 2+20)4 2+2w2 2+2601
I
and for k, ~0 one has S XT ~ U, XU, [see Eq. (3.9)]. R,...R pvio —4R, R*—3R 2=,
A (3.32)
. . - . C vAg C#v 7 =0 »
B. Continunm weak-field expansion for Einstein, #
cosmological constant, and curvature-squared term and therefore only two independent terms need to be con-
sidered. It is useful to introduce the trace-reversed vari-
As in four dimensions, the continuum weak-field ex- ables
pansion for the action of Eq. (2.2) is generated by defining - A
the small fluctuation 4 ,, about flat space: huy=hu, =304 - (3.33)
8y =Ty iy (3.30) Then one has

where 7, is the flat diagonal metric. One finds
\/ER=-I—h h Ak_lhi\, h;\x ’

sty 3 1 o= SR A A+ ORY)

+T=.‘hla,xhka',x_';_haa',xh/\.k,x+O(h ) H

VgR*=(h,, ;,+L1h S+ O(R?), (3.34)
VER?=(h o —Haeax 2T O(RY) (3.31) o ’;:"" }; T
o . gR ch Vo= VA, Khv K+hv Kh K, V. o 7
‘/‘ERA[L‘VKR xpm:%(hvl,ux+h;m,kv—hyv,lx_hxl,pv)2 e i A,.,: )w#_ # :‘k .
+0(h3) _Zhvk,,ulch,u.v,lx_%h,yxhyx,vv
+ h—,ykh—yv,vx_*-%il—,vvh_,m

For the curvature-squared terms one has in three dimen-
sions the identities -

Oles  wes

B B, tOR?) .
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A gauge-fixing term can be added to the Einstein term in
the form

+iCk, (3.35)

with
Cp=hm,,v—;h =k

v

—1p . (3.36)

v 6w

The the R term can be written in the more compact form
[30]

VER + %Cz =%hkcrr,xrh Aok : +hookchire O 3)
=1hopa Vagurhura TO (1), (.37
with
Y apuv = 1MauMpy ™~ s MMy - (3.38)

With the index correspondence between components of
h,, and row and/or column indices of V given by

11—»1, 222, 33—3, 12—4, 13—5, 236,

(3.39)

the matrix V is the same as the one defined in Eq. (3.27).
Because of the presence of the gauge-fixing term, there
are of course no zero eigenvalues. Also, the matrix V is
unchanged when going to trace-reversed variables. In the
form of Eq. (3.37), the Einstein action contribution is
identical to the lattice results, Eq. (3.26), after integrating
by parts and going to momentum space.

The continuum cosmological term can also be ex-
pressed in terms of the matrix V,

x/§=1+%h' —1h gV gy +O(R?)

giving for the combined Einstein and cosmological con-
stant terms

k1 24
A 1+2hlm —,7J?haﬁvaﬁuv A+ % ]hm,
+0(h3). (3.41)

Strictly speaking, the expansion about a flat-space back-
ground is no longer valid in the presence of a cosmologi-
cal term, since flat space is no longer a solution of the
classical equations of motion. Were it a reasonable pro-
cedure, one would obtain a contribution to the propaga-
tor involving in the denominator a “mass” u*=~2A/k.
On the other hand, it has been argued that if the tadpole
term is treated properly, by expanding around the correct
solution in the presence of the A term, this mass term
disappears classically, and its presence here should be
considered an artifact of the (incorrect) expansion [30].

Finally, let us give the continuum weak-field expansion
results for the two independent curvature-squared terms
in three dimensions. In momentum space the matrix ele-
ment contributions appearing in the quadratic form in
k,,(k) are given by

(VERY),,=13kI+k?)?,

(VgR? ),2=%(3k2+k2)(3k2+k2),
(VER?), =2k k,(3k3+E?), (3.42)
(VER?); ¢=2k k3 (3k3+K?),

(VER2), =4k},

(‘/ERZ)4,5=4k%kzk3 ’
and by
(VE R o RM%), =15k —6k2k] +9k1] ,
(VB R o RM¥), ,=1[9k3kF +2(k% ) — 6K K3 ],
(VE R o RM™) 4 =2k Kk, (3k1—K?) , (3.43)

(VER, e RM) s=2k,k3(3k1+2k?) ,
(VE R o RM), o =2k3k>+4KTT ,
(VER e RM¥), s=2k k3 (2K —K?) .

C. Lattice cosmological consfant term

Next we will consider the cosmological-constant con-
tribution in the lattice action of Eq. (2.1):

EVh!

edges h

(3.44)

where ¥V, is defined to be the volume associated with an
edge h. It is obtained by subdividing the volume of each
tetrahedron into contributions associated with each edge

. -~ -(here via a baricentric subdivision), and then adding up
(3.40)

the contributions from each tetrahedron touched by the
given edge [12]. In momentum space the matrix M,
describing the small fluctuations around flat space is then
given by

(Mm)1,1=_35' s

(M,)1,2= o104 +3,3,) 5

(M), =1+, ,

(M,),6=0,

(M) 1= — 4@, +3,) , (3.45)
(M,)4=—%,

(M) 5= =Ha+3,) ,

(M) ,=2+2a,,

(M,)77,=—9.

Next, the same set rotation is performed as in the
Einstein-term case, in order to go from the lattice vari-
ables € to the lattice trace-reversed variables A. After the
S ,-matrix rotation [see Eq. (3.14)] one obtains for M, the
matrix elements
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(M) _ 11 @y o4 _ For kﬂao the above matrix becomes
@bl 6 120, 120,°
(M;,)l,2=—-i%— 1620‘ 1;" - L. -2 0 0 2 2 0 2
@y 1504 D004 0o -2 0 2 0 2 2
)00, Wy
T 0 0 -2 0 2 2 2
X @2 M,~ 12 2 0 —4 0 0 -2, (347
(M) =1+ —, - 2 0 2 0 —4 0 —2
2
' 0 2 2 0 0 —4 —2
(M,);,6=0
1 1 (3.46) 2 2 2 -2 -2 -2 —9
ML) =—+—, :
( m)l,7 W, Wy
M), .= 14 14 1 + @q ~ which has six negative eigenvalues and one positive one,
(M4 0=~ 3 3w, 3° reminding us of the classical instability of flat space in the
1 @ 1 w, presence of the cosmological term (the eigenvalues are
(M:")"’S:?—-T—T EP approximately —13.029, —3.143, —0.764 and —5.236
D4 @4 twice, and 1.172).
(M, )47=_1__1_ . .. After the second rotation by the matrix T, of Eq.
’ 0y (3.20), one finds, for the matrix elements of the
(My)77=—9. transformed matrix L,
I
(L) 1 2 20 19 1 B0, oW,
@11 2 27w, 216w, 108w, 216 108
19 1 1 190, 4 W1y D04 ;
216604 108601(04 540)20)4 216 108 54
—5k?  kik 17k3  kk k,k 17k3
1 K1k 2 K | Fols S tokY
k—»o 54 54 216 54 27 216
(L), ,= 1 1o, 11 1 @y @@ 1 1 1 @4 01Dq D04
@’L27 546, 108 108w, 108ww, 54 108 27w, 2160, 27w,0, 27 27 216
i 37k3 kik, 37k} Tkk; Tk,k k}
1 __l_kl___l__i - 182 2 IRiky 273 3+O(k3),
k04 8 432 8 54 432 216 216 216
(L), .= 7 1 1 1 1 1 o4 B )
@14 72601 90)2 24(01&)2 72(01604 18601&)4 18&)10)2604 72(016!)2
i k3 ; ki \k k3 kk kyk k?
i 1 i 1% 2 1%3 283 | X5
~ ——k J— — —_———
o 6 TR TR T T T s 72_ +0(k) (3.48)
(L) I . | . 1 5 . 1 Y B
@’1,6 Nw, TNRow, Ro, Row, 20,0, 36000, 180,04
ki g kik, k3 kiky  kyks ks
~ by 2 A by e k3
o8 6T 2 e T T 3 2 TOUD,
7., 1 |, o4 k3
L ——+ —~ =1l 4
Lodas="7% 120, 12 k=0 1= HotD,
1 @y 1 @y k3
L = —= + ~ 3
Lodas=1, 715 1204 1204k—~0 12 Ok

In this form the matrix L,

“is almost identical to the matrix —y appearmg in the weak-field expansion of the

cosmological-constant term in the continuum [see Eq. (3.41)}:
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011 0 o0 0]
10 1 0 0
L Lo 0 0
Lk=0=15 0 0 —1 0o o (3.49)
000 0 —1 0
0 0Q O o -1

A discrepancy appears in the (1,1), (2,2), and (3,3) matrix elements, but it is easily seen that the cause lies in the fact that
there are additional contributions from the terms linear in e:

1
~ ()l()l()‘l-— (m)Tp r(m,n) (n)
IV nE (Eln €2n €4n ) nEijEi Mi,j " Gjn (3.50

[the factor of 1 in the second term on the RHS arises because a factor of 3 was omitted from the small fluctuation ma-
trix in (3.45)-(3.49) to simplify comparison with the continuum expression (3.41)]. Since the expansion of ¢; in terms of
h,,, contains also terms quadratic in A uv [se€ Eq. (3.6)], there are additional diagonal contributions to L,:

€1+€2+€4=%(h11+h22+h33)_%(h%1+h%2+h§3)+ e
=’—%(’711'+’722+’733)”‘%(E%1 'H;%z _7”733')_'_ e : (3.51)

These additional contributions make the lattice cosmological-constant term identical to the continuum one, for small
momenta and to quadratic order in the weak-field expansion. As in the case of the Regge-Einstein term, there are
higher-order lattice corrections to the cosmological-constant term of O (k) (which are completely absent in the continu-
um, since no derivatives are present there).

D. Lattice curvature-squared term

Finally, it remains to consider the curvature-squared contribution to the action of Eq. (2.1):

1:8;

Te= 2 - . T 651

edges h
In momentum space the matrix elements of M «»» describing the small fluctuations around flat space, are given by
(M,)1,1=744+ 120, 7204+ 720,0,0,+ 120,030, + 120,0,03
728, + 108w,@, + 720, + 1080,@4 1 726,3,5, + 126,550, + 126,8,2 ,
(M,)1,2=192+2160, 1920 04+ 120700, +2166,+ 1920,5, + 10803, + 1080,8,+ 1928,8, + 126,035, ,
(M)1,3=192+ 2160, +1920,0, + 1200,0, + 1080,8, +2165,+ 1920,@,+ 1080,5, + 1928, + 128,@,; ,
(M,,)1,4=—864—168w,— 168w ,0,—240,0,0,— 8648, —2160,5, — 2165, — 1685,8,— 1685 ,5,5,— 245,525, ,
(M,); 6= —6T20, 24010, = 240,04, — 3608, —3600,5, — 3608, — 36003, — 6726,5, — 24525, — 240,57 , (3.53)
(M,)1,7= 648+ 2880, + 36w, +36w,+ 11525, + 11525, + 6480,3, + 2885 ,,0, + 36035, + 365,02 ,

(M), 4=3456+48w, +48w,+4320,+288w 04+ 288w,0, + 48w 0,0,
+485, + 48w, 14325, 1 288w @, + 288m,5, + 485, 3,5, ,
(M,)4,5=768+1728w,+ 384w,0,+ + 1728@,+768w,,+384@ @, ,
(M,,)4,7="—3168—5040, — 504w, — 72®, — 72&, — 31688, — T2, — 120,85, — 504 &, —5045,3, ,

After a rotation by the matrix S, of Eq. (3.14), one obtains for the matrix M - the matrix elements
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9 Yo 12 12
(M), =450+ 38 4360, — 1220 96 | g4, + 2 —960,0,— 1205~ 5 +—
’ (23] w; @y w W, wy [oF} Wy W W04
180, 3w, 305 90 96 9o 12 4 T2 36w, 18w,
— . —2 ,
0)42, CO% CL)% 04 W11y Dy wlw%a)4 Wy 010,04 Wy W Wy
18w 1803 33 % 18w 3w, 36w 18w 18w @
192 2 2 —9Ow4+—i—96w1w4+ 24 12 4 4 4 194
ay @y W0y @ w5 w3 oF] 010 @,
\ ,, 30 180 30} 5
—24w,04F T2010y04 120,050, — 1205+ —5+ +120,0,0% ,
_ w3 125] @10y
, 18 s4 18w 307 54 Slo 18w? 3w
(M,)12=51+ =+ 540, — 540t — = +—= + 5+ = —540,0,+ —— -+ 18wy + —
@1 S w3 @) w; @ @y @y @,
6 180, 3w} 6o, 300, 72 6 360, 180? 12 60,
—34wwy TSt 7 2 2 w. + T T
Wy 0 Wy D0 wy @q 010y D4 @4 0004 004
84 20 607 6w 18w w 6w 18w 60w 36w
— : 22— Te it — 4+ Bho0pF — b — e —
DyWy W)Wy Dy @y Wy (2] w3 w7y 124)
Bw, 7Mow 60l 30 180F 3w 6w w0}
t D 60,0t 120F0,0, — 60} — * L
0,0, Wy 7 Wy w5 W, @0 W,
- 6w 36w 6w 6w
(M%), 4=—27o—£+144w1+6—2— 120, 144 _ 2 4 600, ——2—38 2L, 12
' @y 0; 03 W, 0,0, @y 0 W 0 0,0F
_ 8w, 186 48 Ny 12 24 72 72 Ro; 300, 6o,
Cl)% Wy W@y @4 a)%a)‘; wlw%w4 Wty @104 Wty Wy @1Wy
@y Vv, 6w, 186w, 30w, 48w wy
FNRowy——— 720,04~ — 5+ — + + 120,04 — 24w 10,04
@y (25 y W) (231%)) @y
6wl 36wF 60F
20— — |
w3 @3 @10
, 12 4 0w, 6w? R, 36w
(M), =156~ = —2640,+ 9602+ L2 42 36 | T Ol 12w, — 1200,
), w3 w35 w3 W D10, @3 @y
48 30w, _ 6w? 12 12w, _ 6w, 6w w, 2 36 + 42w, _ 3602 12
wi ol 0} 0,07 0,0} o w3 w, 00, 04 Wy i,
120 264 96 156w 1207 30w 6w 48w w '
— — + f——t L 2 L D — 200,
a)za)4 CL)V20)4 w1w20)4 (020)4 0)20)4 w4 R @1@4 i a)4
. 6w, 6w, 30w, 60, 48w,w,
@) w3 Wy 010, wy -
18w 2 108 108w, 108 18w, 36
(M), =432— 28 4288 — 108 221270 08 _ L 456, — =7 i I
' ! @) @3 ®; G0 @ (o7 0y 0,04
180, 270 108 108w, 36 , 432 , 288 _ 360, _ ,
2 Wy @0y W, W, 00, @004 W0
108w 18w 18w 108w 18w,
_ 2 2 360, — 24_, 4 o e - (3.54)
oM 104 w3 ob) @30
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180 180 | 24w, 24w,

120 12w
(M, )y, 4= 1248 — == — 1800, ——— + ——L — 1800, + —24 T2 4 =01 | 202 600 , 24
o @ @) @y @ (571 wy or Wy D1y
48 120 48w 12w 48w 48w 2w
2y 24 BB O T T 000, b 4 2de o0 12019
Cl)4 0)2(04 w1w2w4 w204 0)4 0)104 Q)l (02 CUZ
12 202 1202
O | 48w wpyt T2~
Wy (] @y
' 120 48w 1203 120
(M)g5=—300—1%8 _ 1054, + 80 12 +3600, + —= +120co1w2—-96w%+——2—-2g+ s
Ll %)) (27 o L1 wy g
60w, 1200, 1202 48w 120, 3000, 1080, 108w
22 ;2+ 22+360+ 120+ L_ 96 + 12 2 193
@y oy o7 D4 Oy @4 W0y W04 0y @104 @y
6003 1202 Ro, 120 20,0
2 600w, + ——% Y 96w, —— 2%
Wy @1y [oF] @y @,
36w 36w 36w 36a
(M) 7= —144+ 13055, 1 180 4 2091 gy 42592 216 01 0% 144 288
@y @, @y @ @y ¥t oy By 0104
180w 36w, 180w, 360 360, 360
ot 288 T T 20 tbe o 369
@y Wy W90y Wy a)la)4 Q)l (2)2
, 48 3 108w 108w 108 108 108
(M), =8424+ %8y g4, 4 688 | 10801 | e 4 10892 | 648 | 1080, 1030, 64800+ — 2t
CL)I 602 a)z wl CU4 04 Cl)4 Cl)l

For k& i —0 all the matrix elements of M ., tend to zero except for the (7,7) entry, and the matrix reduces to

o o
M.~ 10 12960

From the form of the matrix M/, one notices that the mode associated with fluctua
decouple, as was the case for the Einstein-Regge action.
A;=12960+0(k?), and it therefore still effectively decouples.
(3.20), gives the matrix elements of the transformed matrix L
O (k*), due to cancellations:

88w 00, 730, 200, 4 40’
(L), =96— 88 L 4"2_ 73 42 + 4 1 2, 2 had 19
’ 3(01 3 3&)1602 3(02 3wla)2 3&)1&)2 3602 3 3(01 3 3
LAo0) | 4 L 73, 4 4 Vo | 10 |, 1o, 730,
3 3&)16()% 3&)2[()% 3(04 3&)%&)4 30)1(04 3C04 3@%&)4 30)2604 3&)4 3
doy0, dow, I4a)4_+ 0w,0, oo, 40,03 @,0%
3 3 3w, 3 3 3 3
8kt  8kik, 28k} 8k,k} S5k%  8kik, o i o B
k-0 3 3 3 3 3 3
N 2k3k,  28k2k%  16k2k3 8k ki | 2kyk}3 + 5k} ¢
3 3 3 3 3 3 TOWkD,

+ 24&)20)4

1080
+—=.

@

(3.55)

tions in €; does not completely
But its mass is enormous in lattice units, since
A second rotation by the matrix T, defined in Eq.
»» Whose matrix elements are now remarkably all of

20w,
3&)1
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523
31 3l 90, 3lo, 20, 4o, 4ol
(L), =6— 3t _ Ly 4 —— 31 2 L 4 i 1 2 2 192 )
3 1 3 .3mla)2 3&)2 3&)1&)2 3(010)2 361)2 . 3 3601 3 3
o3 2 2 53 2 11 100, 5 11 3 _ 100, S3a,
3 300F 3w,wt 3w, 30iw, 3w, 3o, 3win, 30,0, 000, 3o, 3
10604 1 1(01&)4 20)%(04 10&)4 1 1&)20)4 +3 20)%0)4 20)10)2 2(1)2(0‘%>
30, 3 3 3o, 3 P12 T 3 3
2kt 8k3k, 3Tk} 8k.k3  2k%  4kik, ak3k,  14k3K3
o3 3 T3 3t %3k%k2k3+3k1k§k3f 3 3 F3kikyk]
14k3k3 4k k3 4k,k3 4k}
_ 2%3  ThiB3 PR3 34105,
3 3 3 3
20 ® 2 1 1
(L) 4=7——2§-+—1—3—+2w1+—1—+ 2 3 ~ 13, 22 R Rl +2w2+~2——————+—2—————~»
’ o? o 0: 0w 0, ole, 00, o @ 0w Oy D4
» 2 2w Te
_ 2 + 13 C"1+ 21 _ 22 7 24 12 2—12m4+ 4
wlo, ©@4 O 0o, o, 00 ojww, @0, O 1
20, oy 2w ) 200 00, ©F 2%
+ 40,0, — 42+ 4 24 I el 4-*2a)2w4+ We | D1 04
0107 @2 0w, 019 1073 1041 ®

k:04k{k2—2k1k§'+4k?k3+sk%k2‘k3—klk§k3+kgk3~8k1k2k§—3k§k§—3klk§+3k2k§~k§+0(k6) ,

e 207 | (3.56)
2 2 74 2 23 ) d )
(L) ¢=—80-+>2 o S R e T e
w3 W ®5 [)) W1W, Wy [0F) Wy (23]
® 74 2 23 230, 20
tiow—2——2 L, 4 = 7 2 2 T ]
Wf 0] O 000 00y @i 0wy 1Dy D4 Dy w304
@ 2w 20 200 2w 20
4 0 80 2 N T TOR gttt b0t 2
[T 510y W04 W04 D 1Wy Wy Wy Wy @y (00 Wy

k:ﬂ——4k‘;+3k%k§+k1k3+40k%k2k3+5k1k§k3+4k§k3+3k§k§+5k1k2k§+k k3+4k,k3+0(k®),

6 60 3o, 30
(L(,,)44=312—£—£+——1—45a)2+—-+£+ D 2 10 L
’ 0, W, Wy a)4 g wy Wy

12w 3w 120 3w,
R T oo BRSO P el
@@y @y (25107 0100y m2w4 [OF) w1m4

12&)4
—150w4+ -
oy

120)4 3&);&)4 3&)4 3(04
+ 60,04+ + +6w2w4+ +12a)1co2co4+18co +—+— R e e
@3 ; @y @y 1S/ .

~ 12k3k3 + 12k, by + 12k  k 3k + 24k 2k % + 6k k k3 +24k 3k — 6k k3 — 6k, k3 +24k5+0(kS) ,
&k —0 )

_ 27 15 | 3o 120 303
(Lyls, 5——75——~—27w1+——+——-+90w2+———+30w1m2—24m2+—
@) @, oy

(24

3@ 150, 300, 303 120 3w

__2%_{_ 21+ 221'" 122+ 22+9_O+ 30, 124 | ™
Wy Wy Wy Wy Wy @y (231007 Wy W04

Wy
75&)2 27(02 27601(()2 + 15[!)% 3602

2 150, + 304 ) 3
0)4 [53] 1&)4 @y @y @ W4

3(020)4

a)z _24w2(04+ wl
kzosk%k§—6k1k3+z4k{k2k3 24k 3k +6k2k2+6k2k2 6k1k§—24k2k§+0(k6).
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After the T, rotation one finds that the matrix L, also
has three exact zero modes, as suggested by gauge invari-
ance; the remaining three eigenvalues are of O (k*). The
nonvanishing eigenvalues of O (k*) are in general given
by rather complicated expressions. For the special choice
k =k,=ky=k/V3 they are given by

Ay s=+150k* (twice) ,

(3.57)
As=+132k* (once) .

Now also the eigenvalue associated with the conformal
mode is positive. Indeed, the continuum weak-field ex-
pansion for wap‘, [see Eq. (3.43)] also leads to three zero
modes, and to the additional three positive eigenvalues
(again for the above-mentioned special case)

K4,5=+%k4 (tWiCe) N
(3.58)
Ag=-+%4k* (once) .

Still, the eigenvalues of the lattice and continuum opera-
tors are different, and so are their individual matrix ele-
ments. In particular, the lattice operator still contains
apparently noncovariant contributions such as k,k3, but
this should not be surprising since already the Regge-
Einstein term contains such contributions. By varying
the coefficient of the higher-derivative term one is there-
fore also modifying the strength of the higher-order lat-
tice corrections to the Regge-Einstein action.

IV. NUMERICAL STUDIES OF SIMPLICIAL
3D GRAVITY

In order to explore the ground state of three-
dimensional gravity beyond perturbation theory one has
to resort to numerical methods. General aspects of the
method as applied to simplicial quantum gravity are dis-
cussed in Refs. [12,13,23] and will not be repeated here.
In the numerical simulations presented below the simple
cubic lattice was employed, with three face diagonals and
a body diagonal introduced to make the cube rigid, as in
the discussion of the lattice weak-field expansion of the
previous section. One could perform the numerical stud-
ies with lattices of different topologies, but one expects
that universal infrared scaling properties of the theory
should be determined by short-distance renormalization
effects, and should therefore in general be independent of
the specific choice of boundary conditions. Lattices of
size between 4° (with 448 edges) and 32° (with 229376
edges) were considered; some shorter runs with lattices of
size 64% (with 1835008 edges) were also done. The mea-
sure was chosen to be d/?, in order to compare directly
with results with the same measure in d =2 [15] and
d =4 [17]. As mentioned previously, in order to explore
the sensitivity of our results to the choice of measure, we
have also done a comparison with the scale-invariant
measure di /1.

The edge lengths were updated by a standard Metropo-
lis algorithm, generating eventually an ensemble of
configurations distributed according to the action of Eq.
(2.1), and with the inclusion of the appropriate general-
ized triangle inequality constraints. The lengths of the

runs typically varied between 100k Monte Carlo itera-
tions on the 43 lattice, 40k on the 83 lattice, 10k on the
16° lattice, and 1—2k iterations on the 32 lattice. One
notices that in all runs the scaling relation of Eq. (2.11) is
very well verified, as one would expect if the edge proba-
bility distribution is sampled correctly. Figures 3-5
show the local distribution of edge lengths, volumes, and
curvatures throughout the lattice, as obtained for a sys-
tem of size 64° (in this particular case with action param-
eters A=1, k£ =0.163, and g =0.005). As can be seen,
the distributions are rather smooth and well behaved, at
lIeast not too close to the critical point (to be discussed
below). On the larger lattices duplicated copies of the
smaller lattices are used as starting configurations for
each k, allowing for additional equilibration sweeps after
duplicating the lattice in all directions. One should em-
phasize that at this point the nature of the results is still
rather preliminary, even though some effort has been
made to control the systematic errors by computing the
critical exponents for 3D gravity for different values of
the (irrelevant) coupling @, and by a number of different
methods which presumably have different (and hopefully
small) systematic biases. Some of the results presented in
this section were presented previously by Hamber [8].

Quantities of physical interest which have been com-
puted include the total average curvature 7,
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FIG. 3. Histogram of the distribution of edge lengths P(I) on
a 647 lattice for A=1,k =0.163, and ¢ =0.005 (dI? measure).
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FIG. 4. Histogram of the distribution of local volumes P(V;)
for the same parameters as in Fig. 3.

and the average curvature squares 72 2,
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measured in units of the squared link length {/2), and
the sum over hinges 4 is here simply a sum over the edges
in the simplicial lattice. In four dimensions it has been
shown that for a sufficiently large higher-derivative cou-
pling there is a continuous transition between a “smooth”
(small negative average curvature) and a ‘“‘rough” (very
large positive average curvature) phase of space-time
{12,13,17]. In three dimensions the method of analysis
for the phase transition is rather similar. Besides & and
922, one can also estimate the lattice analogues of the fluc-
tuations in the local curvatures,

xﬂ(x,k,a)=z§y [( [2%8,,1,‘ ]2>
h

_<2% 5,,1,,)2} , (4.3)

and of the fluctuations in the local volumes,

xV(x,k,a)=W [< bic ]2>—<§ V,,>2] .

(4.4)
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FIG. 5. Histogram of the distribution of local curvatures
P (13,) for the same parameters as in Fig. 3.

These definitions are completely analogous to the ones
previously used in four dimensions; a divergence in the
fluctuation is indicative of long-range correlations (a

_massless particle), since the fluctuations are as usual re-

lated to the zero-momentum component of the propaga-
tor. (See also the discussion in Ref. [31].)

The derivative of the average curvature is related to
the fluctuations in the curvature, since one has, from the
definition of & in Eq. 4.1),

AR _ 2(81) a1*) | 2(I%) a(8l) I
ok (V) ok (V) 3k '
2Aeny vy

(v)? 3k

o (4.5)

Only the second term on the RHS is divergent as k ap-
proaches k, from below, and this is due to a divergence in
3(581) /3k (the other derivatives remain quite small in
comparison). Similarly, the fluctuations in the total aver-
age action

(IY=MV)—k(8])+a(84*/V}) 4.6)
are dominated by the fluctuations in the curvature as
well,

It is useful at this point to recall some general features
and predictions of the 2+ ¢ expansion of Einstein’s gravi-
ty (see the penultimate reference in [24], and references
therein). If one sets k ~!=8#G, then the physical dimen-
sionful bare coupling is G,=A%"%G, where A is an ultra-
violet cutoff (for example, of the order of the inverse aver-
age lattice spacing, A~ /{(12)1/?), and G is a dimension-
less bare coupling constant. Then the 8 function close to
two dimensions has been computed to be

20
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B(G)—g?—GX— G-——(25 D)G*+0(G3,G%,Ge?) ,

4.7

where D is the number of massless scalar field (here

D =0). The (nonuniversal) ultraviolet fixed point is, to
lowest order, located at
* — 3 62
= 4,
G ) 5 D —+0(&Y), 4.8)
with the derivative of the B function given by
B(G*)=—e=~1/v. 4.9)

Integrating close to the nontrivial fixed point one then
gets

¢ dG' e ke
po=Aexp | = [Ty | TG G T

~AlG—G*|'<, 4.10)
where pg is an arbitrary integration constant with the di-
mension of a mass. Note that the coefficient of the one-
loop term has disappeared from the final results (to this
order), reflecting the fact that the leading term in the ex-
ponent depends only on d =2+e€.

The lattice continuum limit then corresponds to
A— »,G—G* with g held constant. It is not entirely
clear what the mass scale pu; should correspond to in
gravity; it presumably should be interpreted as a physical,
renormalization-group invariant mass (or inverse length)
scale. Some physical quantity such as the average curva-
ture is then expected to be proportional to this funda-
mental mass scale, raised to some power determined by
the mass scaling dimension (plus 2 for the average scalar
curvature). The assumption of an algebraic singularity in
the curvature (and its derivatives) close to the fixed point
is then a natural one, at least from the point of view of
the 2+ € expansion. )

The numerical results obtained for the average curva-
ture (k) are shown for the case a =0.005 in Fig. 6. Up
to now two values of a, 0.0 and 0.005, have been studied,
and A=1 was held fixed (A sets the overall scale in the ac-
tion). The statistical errors in 72 (k) are estimated by the
usual binning procedure and represent one standard devi-
ation. As in four dimensions, one notices that as k is
varied the curvature is negative for sufficiently small &,
and appears to go to zero continuously at some finite
value k.. For k 2k, the curvature is really infinite (or
very large on a large lattice), and the simplices tend to
collapse into degenerate configurations with very small
volumes ({ ¥, ) /{12)2~0) (this is the region of the usual
weak-field expansion as G—0). For k close to, but less
than, k. (and A=1) one can write

~ — 1\8
Rk, = Anlke—k?,

@.11)
ﬁ(k) ~ Ak, —kP7!,

c

where 8 is a universal exponent characteristic of the tran-
sition. After performing a simultaneous fit to 7Z(k) in

~R(k)

-0.3 ~0.2 -0.1 0 0.1 0.2

FIG. 6. Average curvature /% as a function of k for A=1 and
a =0.005 (dI? measure). The squares refer to L =4, the circles
to L =8, the diamonds to L =16, and the stars to L =32,

Ag, k., and the exponent 8, and using the data close to
k. on the largest lattice available, one finds the results
summarized in Table I (where we also include some re-
sults for the dI /I measure on a small lattice). Further-
more, one would expect that the results for [ —%(k)]'/®
should lie close to a siraight line. This appears indeed to
be the case, as shown in Fig. 7. A similar analysis for the
case of a higher-derivative coupling a =0 leads to a simi-
lar conclusions (see Figs. 8 and 9 and the results in Table
I). A weighted average of all the lattice results then gives
the preliminary estimate 8=0.80{6). Finally, in Fig. 10
the average curvatures are shown on a log-log plot. As
can be seen from the graph, the assumption of a universal
curvature critical exponent 8 describing a universal type
of phase transition is well supported by the results.

For different values of a the curvature vanishes along
some line in the (k,a) plane, and for some small negative
a =a, the ground state ceases to exist. This is not unex-
pected, since for sufficiently negative a the higher-
derivative term can completely cancel some of the
higher-order lattice corrections present in the Regge ac-
tion (which in turn is only an approximation to the pure
Einstein action for small curvatures). This phenomenon
is already seen in the weak-field expansion discussed in
the previous section, and it gives the correct sign and or-

TABLE I. Estimates, for different values of @, of the critical
amplitude Ay, the critical point k_, and the cntlcal exponent 8.

X’/Noe

a L Aﬂ . kc 76M )
0.005 7 4-64 —5.10(16) 0.162(3) 0.80(2) 0.7
0 4-16 —14.1(12) 0.112(5) 0.78(9) 2.6

0.005 (d1/I) 4 _ —0.98(11) 0.512(9) 0.80(5) 438




(=R

FIG. 7. Average curvaturée R raised to the power
1/6~1/0.81, using the data on the largest lattice available
(L =8-32); other parameters are the same as in Fig. 6. The
computed points lie close to a straight line.

der of magnitude of @, [the leading higher-order correc-
tions O (k*) have small coefficients in the Regge-Einstein
action, while the corresponding terms have a relatively
large coefficient in the higher-derivative action, leading to
a rough estimate a,~ —|k|/64]. On the other hand, the
higher-order lattice and radiative corrections to the pure
Regge-Einstein action {(a =0) seem to stabilize the
theory, at least for the d/? measure.

From the analysis of the curvature fluctuation yz(k)

~R()

FIG. 8. Same as Fig. 6, but for a =0.
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FIG. 9. Same as Fig. 7, but for a =0.

one obtains similar values for 8 and k., but with
significantly larger errors. In Fig. 11 the curvature sus-
ceptibility is shown, again for @ =0.005. If, on the other
hand, one computes the volume susceptibility Y, (see
Fig. 12), one finds that it approaches a finite value at &,
suggesting the absence of critical volume fluctuations.
This situation should be contrasted to the two-
dimensional case, where the volume fluctuations (corre-
sponding to the Liouville mode) are found to be massless,
as expected from continuum arguments [15], and is some-

tot

100

~R(k)

10-1 |

102 3 s NP L L P S S oY L
0.01 0.05 0.1 0.5 1

- ke—k

FIG. 10. Average curvatire & as a function of k,—k on a
log-log scale, for A=1 and a =0.005 (circles) and a =0 (squares)

(dI? measure), and for @ =0 (d! /] measure) (diamonds).
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FIG. 11. Inverse.of the curvature fluctuation Yy as a func-
tion of k for the same parameters as in Fig. 6. Note that the
curvature fluctuations seem to diverge at the critical point.
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what similar to the four-dimensional case, as discussed in
Ref. [17]. A more careful analysis shows that the curva-
ture fluctuation at the critical point grows with the size of
the system, as expected from finite-size scaling arguments
at a continuous phase transition:

1nxj§|kCL:wc +E L, (4.12)
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FIG. 12. Inverse of the volume fluctuation Y, as a function
of k for the same parameters as in Fig. 6. The volume fluctua-
tions approach a constant at the critical point.

with a/v=d (1—8)/(1+8). The estimate for & obtained
from finite-size scaling [0.81(5)] is in good agreement with
the results quoted above from the fits to (k). On the
other hand, the finite-size scaling estimate fails to be
more accurate than the fit results, since there is some cur-
vature in the data of Fig. 13 (ideally one would hope to
get a straight line; the curvature is presumably an indica-
tion of the presence of transients and corrections to scal-
ing). Table II summarizes the results for the critical ex-
ponents obtained so far. Note that the estimates for the
critical exponents rule out a first-order phase transition
by several standard deviations. At a first-order phase
transition one expects that the leading thermal exponent
equals the dimensionality of space, and consequently one
should have =0, v=1, and a/v=3. In Fig. 14 we
show our impression for the phase diagram of 3D gravi-
ty, with a phase transition line separating the “smooth”
from the “rough’” phase. Figures 15 and 16 show our es-
timates for the critical point (for the dI? measure and
a =0) and the exponent § as a function of the dimension
of space. The straight line in Fig. 16 is the results from

_the 2+ € expansion (Kawai and Ninomiya [24]).

In general it is difficult to entirely exclude the presence
of a first-order phase transition if it has a very small la-
tent heat. Indeed, for kK ~0 and a ~ —a, a sharp discon-
tinuity in the average curvature develops in our model (it
jumps from zero to infinity). Several scenarios are there-
fore possible. One possibility is that the average curva-
ture is discontinuous only at that point; on a finite lattice
one then should see some rounding off of a sharp transi-
tion, but for sufficiently large systems universal critical
exponents should emerge away from the singular point.

10.0 T T

-r-l T L

™11 TT

“s.0

X‘R(L)Ik,

o1 R e | . ,

PR
2 3 4 5 6 7 8910 20 30 40

L=vt

FIG. 13. Size dependence of the curvature fluctuation at the
critical point yz(k.) for a=0 (upper curve) and @ =0.005
(lower curve), both for the d/? measure. The lines indicate the
expected slope corresponding to §=0.81, as obtained from the
previous curvature fits (see Figs. 6 and 8).
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TABLE II. Summary of the results for the critical exponents of the pure three-dimensional simpli-

cial quantum gravity.

Measure 8 v a/v

Method Observable a.
Fit R(k) 0.005 (di?) 0.80(2) 0.60(1) 0.33(5)
- Rk) 0.0 (di?) 0.78(9) 0.59(3) 0.39(16)
R(k) 0.005 Adl/I(L =4) 0.80(5) 0.60(2) 0.33(10)
Finite size Xr 0.005 di? 0.84(5) 0.61(2) 0.26(5)
Yi 0.0 di?) 0.77(5) 0.59(2) 0.40(4)
Average 0.80(6) 0.60(2) 0.34(9)
1st order

1
o 3 3

A second possibility is that one finds some sort of mul-
ticritical behavior, with a line of first-order transitions
(leading to no lattice continuum limit, since the correla-
tion length is finite at the critical point) separated from a
line of second-order transitions by a tricritical point, with
universal tricritical exponents. The criterion of Ref. [32]
then suggests that the leading thermal exponent should
be proportional to the dimensionality of space-time (or
v=1/d) along the fluctuation-induced first-order transi-
tion line. Furthermore, close to this critical line the cur-
vature histogram should exhibit a double-peak structure
(indicative of a two-phase coexistence at the critical
point), and the relaxation times should grow faster than
any power of the linear system size [r~exp(L?4™1)] be-
cause of the barrier separating the two phases. Our re-
sults for now seem to indicate that the exponents are in-
dependent of a, and inconsistent with a first-order transi-
tion for the values we explored and for the chosen mea-
sure.
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k= 1/(87G)

FIG. 14. Phase diagram for pure three-dimensional simpli-
cial gravity with a higher-derivative coupling a (for fixed A=1).
The curve represents an estimate for the phase transition line
alk.), where the curvature fluctuations diverge, and which
separates the “smooth” from the “rough” phase of gravity.

The results for the average curvature & are not incon-
sistent with known results within the weak-field expan-
sion in the continuum (at least for small a). Substituting
k _1=81rGO, where G is the dimensionful bare Newton’s
constant, and setting k, =cA? "2, where ¢ is a constant
independent of k and A the ultraviolet cutoff (here of the
order of the average inverse lattice spacing, ~ (I 2)y—iy
one obtains, from Eq. (4.11),

)

R(Gy)~ Ag S;Gl | (1—cA?"287G,)?
0
~ d—2 __
A |grg | 1 EeAT"H~8nGy)
+ 3D pa2p
2
X(—87wGy)+ - - - 4.13)

One can see that 77(G) is possibly not analytic at G,=0.
Furthermore, an expansion in powers of G involves (for
d >2) increasingly higher powers of the ultraviolet cutoff
A, as expected from a theory which is not perturbatively
renormalizable in G [24].
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FIG. 15. Critical point k,=1/87G,. as a function of the
space-time dimension d for the pure Regge action (@ =0) and
for A=1. The numerical lattice results for d =3 and d =4 are
shown, together with the result k.~ '=0 for d =2.
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FIG. 16. Critical exponent § as a function of the space-time
dimension d. The numerical lattice results for d =3 and 4 are
shown, together with the result in 2+ ¢ dimensions, § ~2 /€.

If we call the dynamically generated mass m, then we
have m ~(k,—k)*~R"/3, with v=(1+8)/d, and with a
calculable constant of proportionality close to k,. There-
fore, after restoring the correct dimensions for 72, which
has dimensions of an inverse length squared, one obtains

ﬁ~CA2—8/vm 8/v s 4.14)

where ¢ is a dimensionless constant dependent on the
higher-derivative coupling a. The dynamically generated
mass can be calculated in principle from the edge or cur-
vature correlation functions at fixed geodesic distance.
Alternatively, it can be extracted from the physical size
dependence of averages of local operators. For example,
one expects in the presence of a mass gap

R —R (k) ~

m (k)(d—3)/2L(1—d)/le—m(k)L
L>>1/mk) ’

(4.15)

where L =¥V1/? is the physical linear “size” of the system
and m (k) is a physical mass. The dimensionless ratio of
mass squared to curvature is then given simply in terms
of the average curvature and the ultraviolet cutoff, with
an exponent related to & and to the dimensionality of
space-time:

m? [Ji_

A2

[2—(d —2)5]/d3

7 (4.16)

Close to the fixed point, the ultraviolet cutoff can be trad-
ed for a renormalized, effective Newton’s constant
Gg~A2"? (which can be extracted, for example, from
the renormalized propagators at fixed geodesic distance
[17D).

Finally, let us mention that it is of some interest to ex-
plore correlations which are of a purely geometric nature.
In our investigations we have found that some of the
geometric properties of the discrete simplicial manifold
appear to be close to being Euclidean in the smooth
phase. As an example we have considered how the num-
ber of points within geodesic distances d and d +Ad
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~scales with the geodesic distance itself. This quantity is
equivalent, up to a constant dependent on the average lat-
tice spacing V' {/?), to the physical extent of the “sur-
face” within geodesic distances d and d +Ad. In prac-
tice, the geodesic distance between two arbitrary points
on the simplicial lattice can be determined from a fixed
configuration of edge lengths by selecting, among all the
possible random walks between the two points which are
less than some cutoff length (=~2L), the one with the
shortest length. A precise determination of the fractal di-
mension requires therefore the examination of a larger
number of configurations, and an accurate unbiased
determination of the asymptotic behavior of the above
correlation, which is outside the scope of the present

- ~work. Still, in our model one finds, for_the small dis-

tances considered in this work (d <8V (i%)=16), and
therefore for the correspondingly few lattice spacings,

N(d) ~ d% 4.17)

with d, finite and close to the flat-space value of 2 in the
smooth phase (k <k,), but closer to a value of 1 in the
rough phase (k>k_.). In this latter phase the lattice
tends to collapse into a degenerate configuration with
thin elongated tetrahedra of small volume, just as one
finds in four dimensions where a discontinuity in the local
volumes at the critical point is also found [13,17].

In conclusion, the results are consistent with the pic-
ture of a vanishing curvature and a divergent curvature
fluctuation at the same value of k., and with well-defined
critical exponents. The presence of a continuous phase
transition suggests the existence of a well-defined lattice
continuum limit in the neighborhood of the critical point
at k.. For sufficiently large k, or for small k& and
sufficiently small (negative) a, the path integral ceases to
exist. Since for positive or zero a the curvature ap-
proaches zero for some positive values of k, and ap-
proaches infinity for some negative value of k, and since
the curvature amplitude 44 increases as a is decreased,
one concludes that some rather sharp discontinuity in the
curvature appears for sufficiently small negative a. Close
to this point the average curvature must jump from zero
(or a small finite value) to an infinite value. This suggests
that one should be very careful in analyzing the results of
a simulation close to this point, since fluctuations and
finite-size effects will in general tend to round off sharp
discontinuities.

In closing let us say a few words on the issue of unitari-
ty in higher-derivative gravity (and in higher-derivative
theories in general). Based on the (unstable) zeroth-order
weak-field expansion it is often argued that the higher-
derivative theories contain ghosts and/or tachyons. In
our work we have made use of the higher-derivative
terms as regulators, to ensure the existence of the Eu-
clidean path integral. But the issue of unitarity in (lat-
tice) gravity is a rather delicate one, since it involves the
definition of a unitary time evolution operator as a func-
tion of physical time, again an essentially nonperturbative
problem that can only be clarified through the knowledge
of the nature of physical states. One can argue in general
that for @ =0 the lattice action and the local lattice mea-



sure are manifestly reflection positive, and are therefore
expected to lead to a unitary continuum limit, if it exists.
If the reflection positive theory and the extended higher-
derivative one have a common well-defined continuum
limit {(characterized by critical exponents and scaling laws
such as the ones we have indicated before), then this limit
must be unitary. In our work we have given arguments
that, at least in three dimensions, this seems to be the
case.

V. CONCLUSION

In the preceding sections we have discussed results
relevant for a model of simplicial quantum gravity based
on Regge calculus. It is characteristic of the model that
the variations in the geometry of space are described by
fluctuating edge lengths on a lattice with fixed coordina-
tion number.

The weak-field expansion for the gravitational action
around a regular cubic lattice divided into simplices
shows the correspondence between lattice and continuum
terms, and allows one to estimate the size of the lattice
corrections that appear when the momenta are not too
small. As in four dimensions, the computation clearly in-
dicates the correspondence between the degrees of free-
dom on the lattice (the invariant edge lengths) and the
continuum degrees of freedom (the metric field). In spite
of the fact that the number of degrees of freedom on the
lattice and in the continuum differ, the correct counting
emerges for low momenta.

Contrary to two dimensions, and in analogy with four
dimensions, in three dimensions the action leads to non-
trivial effects due to the influence of the Regge-Einstein
term. A higher-derivative term was included as a regula-
tor, together with a cosmological-constant term. A tran-
sition between a “‘smooth” and a “rough” phase of pure
gravity was found, as in four dimensions. The transition
is a continuous one, if it is approached from the smooth
phase (small k or large G) where the average curvature is
negative. The critical exponents were estimated, and it
appears that at the point where the average curvature
vanishes, the curvature fluctuations diverge, leading to a
well-defined lattice continuum limit. The results are very
different from two dimensions (where fluctuations in the
volume diverge instead) and resemble somewhat more the
four-dimensional case.

In addition there is also a close similarity between the
present results and results obtained with the dynamical
triangulation models [21,22]. In these models as well, a
phase transition separating a “smooth” from a “rough”
phase of space-time is found, similar in nature to the one
discussed in the present work. This is a very encouraging
result, since it would suggest that the two discrete lattice
models belong, as expected, to the same universality
class, and therefore have the same lattice continuum lim-
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it. On the other hand, the phase transition is found to be
perhaps of first order in the dynamical triangulation
model, which could suggest that the two lattice models
explore different regions of the same phase diagram, with
possible multicritical behavior. The discreteness of the
curvatures in the dynamical triangulation model (which
are continuous instead in the Regge model) could be the
reason for the appearance of a first-order freezing transi-
tion, at least in the simplest formulation of the model
with no continuum limit. Of course, the presence of hys-
teresis effects by itself is not a reliable indicator of a first-
order transition, and the critical exponents should be
measured in order to find or exclude a discontinuity fixed
point, as we have done here. It should be pointed out
that often a continuous phase transition is found when
the parameter space is extended, as we have done here by
considering the effect of a higher-derivative term, and
such a term was not included explicitly in the dynamical
triangulation work (we have mentioned before that our
work is suggestive of the presence of a complex phase di-
agram, possibly including a multicritical point). Thus,
the fact that the transition is first order at one point in
the phase diagram should not be taken yet as an indica-
tion that the model has no lattice continuum limit. The
connection between the absence of gravitons in the con-
tinuum in three dimensions and the lack of a lattice con-
tinuum limit for the discrete models is not clear at this
point, since the continuum considerations do not suggest
that the limit does not exist, but rather that it is trivial, at
least in perturbation theory.

Many questions have remained open. It would be of
interest to investigate further how the results depend on
the coupling @ and the choice of measure, and to com-
plete the picture for the phase diagram for pure gravity.
But universality of the lattice continuum limit would sug-
gest that the results for exponents and other infrared-
sensitive quantities should not be affected. It would also
be of interest to investigate these questions in the pres-
ence of matter fields, as well as for surfaces with boun-
daries.
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