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Gravitational scaling dimensions

Herbert W. Hamber*
Department of Physics and Astronomy, University of California, Irvine, California 92697-4575

~Received 1 December 1999; published 15 May 2000!

A model for quantized gravitation based on simplicial lattice discretization is studied in detail using a
comprehensive finite size scaling analysis combined with renormalization group methods. The results are
consistent with a value for the universal critical exponent for gravitation,n51/3, and suggest a simple
relationship between Newton’s constant, the gravitational correlation length and the observable average space-
time curvature. Some perhaps testable phenomenological implications of these results are discussed. To
achieve a high numerical accuracy in the evaluation of the lattice path integral a dedicated parallel machine
was assembled.

PACS number~s!: 04.60.Gw, 04.60.Kz, 04.62.1v, 11.10.Gh
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I. INTRODUCTION

One of the outstanding problems in theoretical physic
a determination of the quantum-mechanical properties
Einstein’s relativistic theory of gravitation. Approache
based on linearized perturbation methods have had mod
success so far, as the underlying theory is known not to
perturbatively renormalizable@1,2#. Because of the complex
ity of even such approximate calculations, a fundamen
coupling of the theory, the bare cosmological constant te
is usually set to zero, thus further restricting the poten
physical relevance of the results. In addition gravitatio
fields are themselves the source for gravitation already a
classical level, which leads to the problem of an intrinsica
non-linear theory where perturbative results are possibly
doubtful validity for sufficiently strong effective couplings
This is especially true in the quantum domain, where la
fluctuations in the gravitational field appear at short d
tances. In general nonperturbative effects can give rise
novel behavior in a quantum field theory and, in particul
to the emergence of non-trivial fixed points of the renorm
ization group~a phase transition in statistical mechanics la
guage!. It has been realized for some time that in general
universal low and high energy behavior of field theories
almost completely determined by the fixed point structure
the renormalization group trajectories@3#.

The situation described above bears some resemblan
the theory of strong interactions, quantum chromodynam
Non-linear effects are known here to play an important ro
and end up restricting the validity of perturbative calcu
tions to the high energy, short distance regime, where
effective gauge coupling can be considered weak due
asymptotic freedom@4#. For low energy properties Wilson’
discrete lattice formulation, combined with the renormaliz
tion group and computer simulations, has provided so far
only convincing evidence for quark confinement and ch
symmetry breaking, two phenomena which are invisible
any order in the weak coupling, perturbative expansion.

A discrete lattice formulation can be applied to the pro
lem of quantizing gravitation. Instead of continuous met
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fields, one deals with gravitational degrees of freedom wh
live only on discrete space-time points and interact loca
with each other. In Regge’s simplicial formulation of gravi
@5# one approximates the functional integration over contin
ous metrics by a discretized sum over piecewise linear s
plicial geometries@6–9#. In such a model, the role of th
continuum metric is played by the edge lengths of the s
plices, while curvature is described by a set of deficit ang
which can be computed via known formulas as functions
the given edge lengths. The simplicial lattice formulation
gravity is locally gauge invariant@10# and can be shown to
contain perturbative gravitons in the lattice weak field exp
sion @6#, making it an attractive and faithful lattice regula
ization of the continuum theory.

The discretized theory is restricted to a finite set of d
namical variables, once a set of suitable boundary conditi
are imposed such as periodic or with some assigned bo
ary manifold. In the end the original continuum theory
gravity is to be recovered as the space-time volume is m
large and the fundamental lattice spacing of the discr
theory is set to zero, possibly without having to rely, at le
in principle, on any further approximation to the origin
continuum theory.

Quantum fluctuations in the underlying geometry are r
resented in the discrete theory by fluctuations in the e
lengths, which can be modeled by a well-defined, and
merically exact, stochastic process. In analogy with ot
field theory models studied by computer, calculations
usually performed in the Euclidean imaginary time fram
work, which is the only formulation amenable to a controll
numerical study, at least for the immediate foreseeable
ture. The Monte Carlo method, based on the concept of
portance sampling, is well suited for evaluating the discr
path integral for gravity and for computing the required a
erages and correlation functions. By a careful and system
analysis of the lattice results, the critical exponents can
extracted and the scaling properties of invariant correlat
functions determined from first principles.

Studies on small lattices suggest a rich scenario for
ground state of quantum gravity@7,9,11,12#. The present evi-
dence indicates that simplicial quantum gravity in four d
mensions exhibits a phase transition~in the bare couplingG)
betweentwo phases: a strong coupling phase, in which th
©2000 The American Physical Society08-1
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HERBERT W. HAMBER PHYSICAL REVIEW D61 124008
geometry is smooth at large scales and quantum fluctuat
in the gravitational field eventually average out and
bounded, and a weak coupling phase, in which the geom
is degenerate and space-time collapses into a low
dimensional manifold, bearing some physical resemblanc
a branched polymer. Only the smooth, small negative cu
ture and thus anti–de Sitter-like phase appears to be ph
cally acceptable. Phrased in different terms, the two pha
of quantized gravity found in@12# can loosely be describe
as having, in one phase~with bare couplingG,Gc , the
rough branched polymer-like phase!,

^gmn&50, ~1!

while, in the other~with bare couplingG.Gc , the smooth
phase!,

^gmn&'chmn , ~2!

with a vanishingly small negative average curvature in
vicinity of the critical point atGc . The existence of a phas
transition at finite couplingG, usually associated in quantum
field theory with the appearance of an ultraviolet fixed po
of the renormalization group, implies in principle non-trivia
calculable non-perturbative scaling properties for corre
tions and effective coupling constants and, in particular
the case at hand for Newton’s gravitational constant. Si
only the smooth phase withG.Gc has acceptable physica
properties, one would conclude on the basis of fairly gene
renormalization group arguments that at least in this lat
model the gravitational coupling can onlyincreasewith dis-
tance. Furthermore, the rise of the gravitational coupling
the infrared region rules out the applicability of perturbati
theory to the low energy domain, to the same extent t
such an approach is deemed to be inapplicable to study
low-energy properties of asymptotically free gauge theor

It is a remarkable property of quantum field theories tha
wide variety of physical properties can be determined from
relatively small set of universal quantities@13#: namely, the
universal leading critical exponents, computed in the vicin
of some fixed point~or fixed line! of the renormalization
group equations. In the lattice theory the presence of a fi
point or phase transition is often inferred from the appe
ance of non-analytic terms in invariant local averages, s
as for example the average curvature

^ l 2&
K E d4xAgR~x!L

K E d4xAgL [R~k! ;
k→kc

2AR~kc2k!4n21,

~3!

wherek51/8pG. From such averages one can determine
value forn, the correlation length exponent,

j~k! ;
k→kc

Aj~kc2k!2n. ~4!

An equivalent result, relating the quantum expectation va
of the curvature to the physical correlation lengthj, is
12400
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R~j! ;
k→kc

j1/n24. ~5!

Matching of dimensionalities in these equations is resto
by supplying appropriate powers of the ultraviolet cutoff, t
Planck lengthl P5AG. The exponentn is known to be re-
lated to the derivative of the beta function forG in the vi-
cinity of the ultraviolet fixed point,

b8~Gc!521/n. ~6!

In addition, the correlation lengthj itself determines the
long-distance decay of the connected, invariant two-po
correlations at fixed geodesic distanced. For the curvature
correlation one has, for distances much larger compare
the correlation length,

^AgR~x!AgR~y!d~ ux2yu2d!&c ;
d@j

d2se2d/j , ~7!

while for shorter distances one expects a slower power
decay

^AgR~x!AgR~y!d~ ux2yu2d!&c ;
d!j

1

d2(421/n)
. ~8!

The possibility of non-trivial scaling dimensions in th
theory of gravitation is not new and was pointed out so
time ago in a series of interesting papers@14#. Moreover, it is
easy to see that the scale dependence of the effective Ne
constant is given by

G~r !5G~0!@11c~r /j!1/n1O~~r /j!2/n!#, ~9!

with c a calculable numerical constant. In this last express
the momentum scalej21 plays a role similar to the scaling
violation parameterLMS of QCD. It seems natural, althoug
paradoxical at first, to associatej with some macroscopic
cosmological length scale, such as the Hubble dista
cH0

21, with the lack of screening of gravitational interaction
ultimately accounting for such an unusual interpretat
@12,15#. Of course an increase of the gravitational coupli
at large distances signals a likely breakdown of perturba
theory for computing low energy properties of gravity.

It should be clear, even from this brief discussion, that
critical exponents by themselves already provide a sign
cant amount of useful information about the continuu
theory. In reality, the complexity of the lattice interaction
and the practical need to sample many statistically indep
dent field configurations contributing to the path integr
which is necessary for correctly incorporating into the mo
the effects of quantum-mechanical fluctuations, leads to
requirement of powerful computational resources. The
sults presented in this paper were obtained using a dedic
custom-built 20-GFlop 64-processor parallel computer,
scribed in detail in@16#.

Finally one should mention that recently there has bee
significant resurgence of interest in the classical applicati
of the Regge formulation to gravity. A description of th
methods as applied to several aspects of the initial va
8-2
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GRAVITATIONAL SCALING DIMENSIONS PHYSICAL REVIEW D 61 124008
problem in general relativity can be found in the recent r
erences in@17#. For a related approach to lattice gravi
based on dynamical triangulations see also@18#.

A brief outline of the paper is as follows. Section II co
tains a discussion of general and finite size scaling and
lated issues as they apply to the lattice theory of grav
Section III touches on the issue of the unboundedness o
Euclidean gravitational action. Section IV defines local c
vature averages and their fluctuations, while Sec. V in
duces a set of exact sum rules for averages which fol
from the scaling properties of the partition function. Secti
VI defines a set of invariant correlations and discusses h
they relate to the local fluctuations defined previously. S
tion VII includes a general discussion of the expected pr
erties of the theory in the presence of an ultraviolet fix
point, including expectations based on the analytical 21e
expansion. In Sec. VIII the numerical results are presen
Section IX contains a discussion of the possible future ph
cal relevance of the results, while Sec. X contains the c
clusions.

II. FINITE SIZE SCALING

One of the most important quantities used in establish
the continuum limit of a lattice field theory are the critic
exponents. Reliable estimates for the exponents in a la
field theory require a comprehensive finite-size analysis
procedure by which accurate values for the critical expone
are obtained by taking into account the linear size dep
dence of the result computed in a finite volumeV. One starts
from the general Euclidean action~or statistical mechanics
Hamiltonian!

H5(
i

giOi ~10!

with gi the coupling associated with the operatorOi . In the
gravitational case the couplings would correspond to the b
cosmological constant, the Newtonian gravitational cons
and the higher derivative coupling. Close to a renormali
tion group fixed point denoted by$gi* % one chooses theOi ’s
to be eigenvectors of the linearized renormalization gro
transformation, such that

gi2gi* →byi~gi2gi* !, ~11!

whereb is the scale factor of the transformation. In the si
plest statistical mechanics systems, such as a ferromagn
the absence of an external magnetic field, one hasO;H as
the only relevant operator~in the sense thaty.0) and g
;t5T2Tc . As will be discussed below, in the gravitation
case the role ofT is played by the bare gravitational couplin
G. Additional operators appearing in the action are classi
as marginal (y50) or irrelevant. The relevance of the ener
operator reflects the fact that close to the critical pointt is the
only parameter that needs to be tuned to achieve critica
synonymous with long range correlations. Universality
critical behavior then accounts for the fact that many dive
12400
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physical systems exhibit the same scaling behavior in
vicinity of the critical point, as a consequence of a diverge
correlation length@13#.

In practice the renormalization group approach is brou
in via a slightly different route, involving a change in th
overall linear size of the system. The usual starting point
the derivation of the scaling properties of the theory is
renormalization group~RG! behavior of the free energyF
52 logZ/V:

F~ t,$uj%!5Freg~ t,$uj%!1b2dFsing~bytt,$byjuj%!,
~12!

whereFsing is the singular, non-analytic part of the free e
ergy, andFreg is the regular part.b is the block size in the
RG transformation, whileyt andyj ( j >2) are the relevant
eigenvalues of the RG transformation~for more details see
the review in@19#!. One denotes here byyt.0 the relevant
eigenvalue, while the remaining eigenvaluesyj<0 are asso-
ciated with either marginal or irrelevant operators. Usua
yt

21 is called n, while the next subleading exponenty2 is
denoted2v.

The correlation lengthj determines the asymptotic deca
of correlations, in the sense that one expects for example
the two-point function at large distances,

^O~x!O~y!& ;
ux2yu@j

e2ux2yu/j. ~13!

The scaling equation for the correlation length itself,

j~ t !5bj~bytt !, ~14!

implies for b5t21/yt that j;t2n with a correlation length
exponent

n51/yt . ~15!

Derivatives of the free energyF with respect tot then deter-
mine, after setting the scale factorb5t21/yt, the scaling
properties of physical observables, including corrections
scaling@20#. Thus for example, the second derivative of t
free energy with respect tot yields the specific heat exponen
a522d/yt522dn:

]2

]t2 F~ t,$uj%!;t2(22dn). ~16!

In the gravitational case one identifies the scaling fieldt with
kc2k, wherek51/16pG involves the bare Newton’s con
stant. The appearance of singularities in physical avera
obtained from appropriate derivatives ofF, is rooted in the
fact that close to the critical point att50 the correlation
length diverges.

The above results can be extended to the case of a fi
lattice of volume V and linear dimensionL5V1/d. The
volume-dependent free energy is then written as

F~ t,$uj%,L
21!5Freg~ t,$uj%!1b2dFsing~bytt,$byjuj%,b/L !.

~17!
8-3
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HERBERT W. HAMBER PHYSICAL REVIEW D61 124008
For b5L ~a lattice consisting of only one point! one obtains
the finite size scaling~FSS! form of the free energy~for a
detailed presentation of this procedure see@21#; see also
@22,23# for a field-theoretic justification!. After taking de-
rivatives with respect to the fieldst and$uj%, the FSS scaling
form for physical observables follows. For a quantityO di-
verging like t2xO in the infinite volume limit one has

O~L,t !5LxO /nF f̃ OS L

j~`,t ! D1O~j2v,L2v!G , ~18!

with f̃ O a smooth scaling function, andj(`,t) the infinite
volume correlation length. For sufficiently large volumes t
correction to scaling term involvingv can be neglected, bu
in general one needs to be aware of their presence if e
the volumes are not large enough or if the corrections
large due to a large amplitude or small exponent. Some p
erties of the scaling functionf̃ O(y) can be deduced on gen
eral grounds: it is expected to show a peak if the finite v
ume value forO is peaked; it is analytic atx50 since no
singularity can develop in a finite volume, andf̃ O(y)
; ỹ2xO for largey for a quantityO which diverges ast2xO in
the infinite volume limit.

The last expression is useful when the infinite-volum
correlation length is known. But since close to the critic
point j;t2n, one can deduce the equivalent scaling from

O~L,t !5LxO /n@ f̃ O~Ltn!1O~L2v!#, ~19!

which relies on knowledge oft and, thus, of the critica
point, instead. For a state of the art application of the ab
methods to the 3D Ising model see@24#.

The previous discussion applies to continuous, second
der phase transitions. First order phase transitions are dr
by instabilities and are in general not governed by any ren
malization group fixed point. The underlying reason is th
the correlation length does not diverge at the transition po
and thus the system never becomes scale invariant. E
nents for continuous, second order phase transition in gen
obey the rigorous bound

yt,d, or n.1/d. ~20!

A first order phase transition in renormalization gro
theory, on the other hand, can be associated with the so
what pathological casen51/d, for which the first derivative
of the free energy develops a step-function singularity. I
renormalization group framework the corresponding pseu
critical point is denoted as a discontinuity fixed point@25#.

In the simplest case, a first order transition develops as
system tunnels between two neighboring minima of the f
energy. In the metastable branch the free energy acquir
complex part with an essential singularity in the coupli
located at the first order transition point@26,27#. As a conse-
quence, such a singularity is not generally visible from
stable branch, in the sense that a power series expansi
the temperature is unaffected by such a singularity. Indee
the infinite volume limit the singularity associated with a fir
order transition atTc becomes infinitely sharp, like ad- or
12400
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u-function type singularity. The singularity in the free ener
at the endpoint of the metastable branch~at sayT* ) then
cannot be explored directly; it has to reached by an anal
continuation from the stable side of the free energy bran

III. UNBOUNDEDNESS OF THE EUCLIDEAN THEORY

Perturbation theory on a lattice and in the continuum s
gests the presence of an instability in the Euclidean form
lation for sufficiently smooth manifold. It is also known tha
the above instability is associated with the appearance
wrong sign for the conformal mode. On the lattice the ins
bility seems to persist close to the critical point@12#, which
suggests that the continuum limit has to be reached by s
sort of analytic continuation from the stable phase towa
the critical point, naturally defined as the point in couplin
constant space where the correlation length diverges.

In the weak-field expansion@28# the Einstein-Hilbert ac-
tion contains both spin-2~graviton! and spin-0~conformal
mode! contributions. In the continuum one can by a jud
cious choice of invariant correlation functions isolate phy
cal properties of the graviton from the conformal mode.
similar result holds on the lattice, as can be seen by expa
ing the Regge action about a regular lattice and using the
that the lattice and continuum actions are equivalent for s
ficiently smooth manifolds@6,29#. In general, after expand
ing the metric around flat space~which requiresl50),

gmn5hmn1A16pGhmn , ~21!

one can cast the lowest order quadratic contribution to
action in the form

I E@hmn#5
1

2E d4xhmnVmnlshls , ~22!

whereV is a matrix which can be expressed in terms of s
projection operators. In momentum space it can be written

V5@P(2)22P(0)#p2, ~23!

whereP(2) andP(0) are spin-2 and spin-0 projection oper
tors introduced in@30#. Physically, the two terms correspon
to the propagation of the graviton and of the conform
mode, respectively, with the latter one appearing with
‘‘wrong’’ sign. In the ‘‘Landau’’ gauge, with a gauge fixing
term a21(]mhmn)2 and a50, one obtains, for the graviton
propagator in momentum space,

Gmnls~p!5
Pmnls

(2)

p2
2

1

2
Pmnls

(0)

p2
. ~24!

The unboundedness of the Euclidean gravitational ac
shows up clearly in the weak field expansion, with the spin
8-4
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GRAVITATIONAL SCALING DIMENSIONS PHYSICAL REVIEW D 61 124008
mode acquiring a propagator term with the wrong sign.1 It
has been argued that in weak field perturbation theory an
order to avoid the unboundedness problem one should
form the functional integral over metrics by distorting th
integration contour so as to include complex conformal f
tors @31#. One drawback of this prescription is that it on
appears applicable within the framework of perturbat
theory. For a recent review of the Euclidean instability pro
lem see@32#.

In the presence of a cosmological constant, things
further complicated by the fact that since flat space is
longer a solution of the classical equations of motion, and
above expansion for the metric loses part of its meaning
to the presence of the tadpole term. But after shifting to
correct 0th order solution, a similar result is obtained. O
can further modify the action to include additional invaria
terms, but things do not get any better. In the presence
higher derivative terms in the gravitational action, the abo
result is modified by termsO(p4), and becomes@33#

Gmnls~p!5
Pmnls

(2)

p21
2a

k
p4

1

1

2
Pmnls

(0)

2p21
a

k
p4

. ~25!

The p4 terms improve the ultraviolet behavior of the theor
but do not remove the unboundedness problem, which
appears for sufficiently smallp2, in the low momentum or
long-distance limit. Moreover, the resulting theory is mo
likely not unitary unless the couplinga is vanishingly small.
The lack of positivity of physical correlations fora.0 can
be seen explicitly even in a non-perturbative treatment@34#,
and makes such a modified theory of gravitation in the e
somewhat unattractive.

IV. LOCAL AVERAGES AND FLUCTUATIONS

In the following the relevant definitions for gravitation
averages and correlations on the lattice will be briefly
called, in a form which will be used in later sections. T
starting point for a non-perturbative study of quantum gr
ity is a suitable definition of the discrete Feynman path in
gral. In the simplicial lattice approach one starts from t
discretized Euclidean path integral for pure gravity, with t
squared edge lengths taken as fundamental variables:

ZL5E
0

`

)
s

„Vd~s!…s)
i j

dl i j
2 Q@ l i j

2 #

3expH 2(
h

~lVh2kdhAh1adh
2Ah

2/Vh1••• !J .

~26!

1It should be noted that such an instability is not peculiar to gra
tation. Indeed the Euclidean path integral for the one-dimensio
Coulomb potential, an otherwise completely well-behaved quan
mechanical system, already exhibits such an instability. It would
premature to conclude from such a result that the problem is ph
cally ill posed.
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The above expression represents a lattice discretization o
continuum Euclidean path integral for pure quantum grav

ZC5E )
x

„Ag~x!…s )
m>n

dgmn~x!

3expH 2E d4xAgS l2
k

2
R1

a

4
RmnrsRmnrs1••• D J ,

~27!

with k2158pG, andG Newton’s constant, and reduces to
for smooth enough field configurations. In the discrete c
the integration over metrics is replaced by integrals over
elementary lattice degrees of freedom, the squared e
lengths. The discrete gravitational measure inZL can be con-
sidered as the lattice analogue of the DeWitt@35# continuum
functional measure@15#. ThedA term in the lattice action is
the well-known Regge term@5#, and reduces to the Einstein
Hilbert action in the lattice continuum limit@6,29#. A cosmo-
logical constant term is needed for convergence of the p
integral, while the curvature squared term allows one to c
trol the fluctuations in the curvature@7,9,11,12#. In practice,
and for obvious phenomenological reasons, one is only
terested in the limit when the higher derivative contributio
are small compared to the rest,a→0. In this limit the theory
depends, in the absence of matter and after a suitable re
ing of the metric, only on one bare parameter, the dimens
less couplingk2/l. Without loss of generality, one can ther
fore set the bare cosmological constantl51.

Some partial information about the behavior of physic
correlations can be obtained indirectly from local invaria
averages. In@7,12# gravitational observables such as the a
erage curvature and its fluctuation were introduced. The
propriate lattice analogues of these quantities are rea
written down by making use of the usual corresponden
*d4xAg→(hinges hVh , etc. On the lattice the natural choice
for invariant operators are

Ag~x!→ (
hinges h.x

Vh

AgR~x!→2 (
hinges h.x

dhAh

AgRmnlsRmnls~x!→4 (
hinges h.x

~dhAh!2/Vh

~28!

@we have omitted here on the right-hand side~RHS! an over-
all numeric coefficient, which will depend on how man
hinges are actually included in the summation; if the s
extends over all hinges within a single hypercube, then th
will be a total of 50 hinge contributions#. In this paper no
higher derivative terms will be considered, and thus only
first and second operators will be used in the following d
cussion.

On the lattice one prefers to define quantities in suc
way that variations in the average lattice spacingA^ l 2& are

i-
al
m
e
i-
8-5
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HERBERT W. HAMBER PHYSICAL REVIEW D61 124008
compensated by the appropriate factor as determined f
dimensional considerations. In the case of the average cu
ture one defines the lattice quantityR as

R~k![^ l 2&
K 2(

h
dhAhL

K (
h

VhL , ~29!

which in the continuum corresponds to

R~k!;
K E d4xAgR~x!L

K E d4xAgL , ~30!

and similarly for the curvature fluctuation,

xR~k![
K S (

h
dhAhD 2L 2K (

h
dhAhL 2

K (
h

VhL , ~31!

which in the continuum corresponds to

xR~k!;
K S E AgRD 2L 2 K E AgRL 2

.

K E AgL ~32!

The latter is related to the connected curvature correlatio
zero momentum:

xR;
E d4xE d4y^Ag~x!R~x!Ag~y!R~y!&c

K E d4xAg~x!L . ~33!

Both R andxR are related to derivatives ofZL with respect
to k:

R~k!;
1

V

]

]k
ln ZL ~34!

and

xR~k!;
1

V

]2

]k2
ln ZL . ~35!

One can contrast the behavior of the preceding quanti
associated strictly with the curvature, with the analogo
quantities involving the local volumes~and which corre-
spond to the square root of the determinant of the metri
the continuum!. Consider the average volume per site,

^V&[
1

N0
K (

h
VhL , ~36!
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and its fluctuation defined as

xV~k![
K S (

h
VhD 2L 2K (

h
VhL 2

K (
h

VhL , ~37!

where one denotes byVh the volume associated with th
hingeh. In the continuum it corresponds to the expressio

xV~k!;
K S E AgD 2L 2 K E AgL 2

K E AgL . ~38!

The latter is related to the connected volume correlato
zero momentum:

xV;
E d4xE d4y^Ag~x!Ag~y!&c

K E d4xAg~x!L . ~39!

The average volume per site,^V&, and its fluctuationxV are
simply related to derivatives ofZL with respect to the bare
cosmological constantl:

^V&;
]

]l
ln ZL ~40!

and

xV~k!;
]2

]l2
ln ZL. ~41!

One would expect the fluctuations in the curvature to
sensitive to the presence of a spin-2 massless particle, w
fluctuations in the volume would only probe the correlatio
in the conformal mode channel.

V. SUM RULES

In this section some useful sum rules will be derive
which follow from simple scaling properties of the discre
functional integral. These will be later used in the discuss
of the numerical results. A simple scaling argument, ba
on neglecting the effects of curvature terms entirely~which
vanish in the vicinity of the critical point!, gives first of all an
estimate of the average volume per edge:

^Vl&;
2~11sd!

ld ;
d54,s50

1
2l . ~42!

In four dimensions the numerical simulations withs50
agree quite well with the above formula.

Additional exact lattice identities can be obtained by e
amining the scaling properties of the action and meas
The bare couplingsk and l in the gravitational action are
dimensionful in four dimensions, but one can define the
8-6
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mensionless ratiok2/l and rescale the edge lengths so as
eliminate the overall length scaleAk/l. As a consequence
the path integral for pure gravity,

ZL~l,k,a!5E dm@ l 2#e2I [ l 2] , ~43!

obeys the simple scaling property

ZL~l,k,a!5S k

l D N1

ZLS k2

l
,
k2

l
,aD

5~l!2N1 /2ZLS 1,
k

Al
,aD 5~l!2N1ZLS l

k2 ,1,aD ,

~44!

whereN1 represents the number of edges in the lattice,
thedl2 measure (s50) has been selected@15#, which is the
lattice analog of the continuum DeWitt functional measu
This equation implies in turn a sum rule for local averag
which ~again for the specific case of thedl2 measure! reads

2lK (
h

VhL 2kK (
h

dhAhL 2N150, ~45!

and is easily derived from Eq.~44! and the definitions in Eqs
~34! and~40!. N0 represents the number of sites in the lattic
and the averages are defined per site~for the hypercubic
lattice used in this paper,N1515N0 , N2550N0 , N3
536N0 andN4524N0). The coefficients on the LHS of th
equation reflect the scaling dimensions of the various ter
with the last term on the LHS term arising from the scali
property of the functional measure. This last formula is ve
useful in checking the accuracy of numerical calculatio
and the convergence properties of the Monte Carlo samp
and is usually satisfied to high accuracyÕ(1024). It is easy
to see that a similar sum rule holds for the fluctuations:

4l2F K S (
h

VhD 2L 2K (
h

VhL 2G2k2F K S (
h

dhAhD 2L
2K (

h
dhAhL 2G22N150. ~46!

Further sum rules can be derived by considering even hig
derivatives of lnZL with respect ofl andk. The last equation
relates the fluctuation in the curvature to fluctuations in
volumes, and thus implies a relationship between their
gular parts as well. In particular, a divergence in the cur
ture fluctuation implies a divergence of the same nature
the volume fluctuation. In light of the previous discussio
from now on we shall consider without loss of general
only the case of bare couplingl51. As a consequence, a
lengths will be tacitly expressed in units of the fundamen
microscopic length scalel21/4.
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VI. INVARIANT CORRELATIONS

In quantized gravity complications arise due to the fa
that the physical distance between any two pointsx andy in
a fixed background geometry,

d~x,yug!5min
j
E

t(x)

t(y)

dtAgmn~j!
djm

dt

djn

dt
, ~47!

is a fluctuating quantity dependent on the choice of ba
ground metric. In addition, the Lorentz group used to class
spin states is meaningful only as a local concept. Since
simplicial formulation is completely coordinate independe
the introduction of the local Lorentz group requires the de
nition of a tetrad within each simplex, and the notion of
spin connection to describe the parallel transport of tens
between flat simplices. Some of these aspects have rec
been discussed from a continuum point of view in@36–39#.

If the deficit angles are averaged over a number of c
tiguous hinges which share a common vertex, one is n
rally lead to the connected correlator

GR~d![K (
h.x

dhAh (
h8.y

dh8Ah8d~ ux2yu2d)L
c

, ~48!

which probes correlations in the scalar curvatures:

GR~d!;^AgR~x!AgR~y!d~ ux2yu2d!&c . ~49!

Similarly one can construct the connected correlator

GV~d![K (
h.x

Vh (
h8.y

Vh8d~ ux2yu2d)L
c

, ~50!

which probes correlations in the volume elements:

GV;^Ag~x!Ag~y!d~ ux2yu2d!&c . ~51!

The correlation lengthj is defined through the long-distanc
decay of the connected, invariant correlations at fixed g
desic distanced. For the curvature correlation one has,
large distances,

^AgR~x!AgR~y!d~ ux2yu2d!&c ;
d@j

e2d/j. ~52!

At shorter distances one expects a slower, power law de

^AgR~x!AgR~y!d~ ux2yu2d!&c ;
d!j

S 1
dD 2n

, ~53!

with a power characterized by the exponentn. In both cases,
the distances considered are much larger than the la
spacing,d,j@ l 0. From scaling considerations one can sho
~see below! n5421/n.

Simple scaling arguments allow one to determine the s
ing behavior of correlation functions from the critical exp
nents which characterize the singular behavior of local av
ages in the vicinity of the critical point. A divergence of th
correlation lengthj,
8-7
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HERBERT W. HAMBER PHYSICAL REVIEW D61 124008
j~k![m~k!21 ;
k→kc

Aj~kc2k!2n, ~54!

signals the presence of a phase transition, and leads to
appearance of a singularity in the free energyF(k). The
presence of a phase transition usually inferred from n
analytic terms in invariant averages, such as the average
vature. The curvature critical exponentd is introduced via

R~k! ;
k→kc

2AR~kc2k!d. ~55!

An additive constant could be added, but the evidence u
now points to this constant being zero. Similarly one sets,
the curvature fluctuation,

xR~k! ;
k→kc

2AR~kc2k!2(12d). ~56!

Scaling@Eqs.~15!# relates the exponentd to n:

n5
11d

d
. ~57!

From such averages one can determine the value forn, the
correlation length exponent. An equivalent result, relat
the quantum expectation value of the curvature to the ph
cal correlation lengthj , is

R~j! ;
k→kc

j1/n24, ~58!

which is obtained from Eqs.~54! and~55! using~57!. Match-
ing of dimensionalities in these equations is restored by s
plying appropriate powers of the Planck lengthl P5AG.

It is then easy to relate the critical exponentn to the
scaling behavior of correlations at large distances. The
vature fluctuation is related to the connected scalar curva
correlator at zero momentum:

xR~k!;
E d4xE d4y^AgR~x!AgR~y!&c

K E d4xAgL ;
k→kc

~kc2k!d21.

~59!

A divergence in the fluctuation is then indicative of lon
range correlations, corresponding to the presence of a m
less particle. Very close to the critical point one would e
pect for large separations a power law decay in the geod
distance:

^AgR~x!AgR~y!& ;
ux2yu→`

1

ux2yu2n
, ~60!

with the powern related to the exponentd via n5dd/(1
1d)5d21/n. A priori one cannot exclude to possibilit
that some states acquire a mass away from the critical p
in which case one would expect the following behavior
the correlation functions:
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^AgR~x!AgR~y!& ;
ux2yu@j

exp~2ux2yu/j!, ~61!

where j is the fundamental correlation length andm51/j
the associated mass. The above equation can in fact be
sidered as a definition for what is meant by the correlat
lengthj.

VII. BETA FUNCTION AND CONTINUUM LIMIT

The long distance behavior of quantum field theories
determined by scaling behavior of the coupling constant
der a change in the momentum scale. Asymptotically f
theories such as QCD lead to vanishing gauge coupling
short distances, while the opposite is true for QED. In g
eral the fixed point~s! of the renormalization group need no
be at zero coupling, but can be located at some finiteGc ,
leading to a non-trivial fixed point or limit cycle@3,4,40#.

In the 21e perturbative expansion for gravity@41# one
analytically continues in the spacetime dimension by us
dimensional regularization, and applies perturbation the
about d52, where Newton’s constant is dimensionless.
similar method is quite successful in determining the criti
properties of theO(n)-symmetric non-linear sigma mode
above two dimensions@42#. In this expansion the dimension
ful bare coupling is written asG05L22dG, whereL is an
ultraviolet cutoff ~corresponding on the lattice to a mome
tum cutoff of the order of the inverse average lattice spaci
L;1/l 0). There seem to be some technical difficulties w
this expansion due to the presence of kinematic singular
for the graviton propagator in two dimension~the Einstein
action is a topological invariant ind52), but which seem to
have been overcome recently. A double expansion inG and
e5d22 then leads in lowest order to a nontrivial fixed poi
in G above two dimensions:

b~G![
]G

] logL
5~d22!G2b0G21•••, ~62!

with b0.0 for pure gravity. To lowest order the ultraviole
fixed point is then atGc51/b0(d22). Integrating Eq.~62!
close to the non-trivial fixed point one obtains, forG.Gc ,

m5L expS 2EG dG8

b~G8!
D ;

G→Gc

LuG2Gcu21/b8(Gc),

~63!

wherem is an arbitrary integration constant, with the dime
sions of a mass, and which should be associated with s
physical scale. It would appear natural here to identify it w
the inverse of the gravitational correlation length (j5m21)
or some scale associated with the average curvature.
derivative of the beta function at the fixed point defines
critical exponentn, which to this order is independent ofb0 ,
b8(Gc)52(d22)521/n.

The previous results illustrate how the lattice continuu
limit should be taken. It corresponds toL→`, G→Gc with
8-8
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m held constant; for fixed lattice cutoff the continuum lim
is approached by tuningG to Gc . In four dimensions the
exponentn is defined by

m ;
G→Gc

CLuG2Gcun, ~64!

where m is proportional to the graviton mass, andC is a
calculable numerical coefficient. The value ofn determines
the running of the effective couplingG(m), wherem is an
arbitrary momentum scale. The renormalization group t
us that in general the effective coupling will grow or d
crease with length scaler 51/m, depending on whetherG
.Gc or G,Gc , respectively. The physical mass parame
m is itself scale independent, and obeys the Callan-Syma
renormalization group equation

m
]

]m
m5m

]

]m
$CmuG~m!2Gcun%50. ~65!

As a consequence, forG.Gc , corresponding to the smoot
phase, one expects, for the running, effective gravitatio
coupling @12,15#,

G~r !5G~0!@11c~r /j!1/n1O„~r /j!2/n
…#, ~66!

with c a calculable numerical constant. The physical m
m5j21 determines the magnitude of scaling corrections a
plays a role similar toLMS in QCD. It cannot be determine
perturbatively as it appears as an integration constant. Ph
cally it separates the short distance, ultraviolet regime w
characteristic momentum scalem,

l 0
21@m@m, ~67!

from the large distance, infrared region

m@m@L21, ~68!

whereL5^V&1/4 is the linear size of the system.
The exponentn is simply related to the derivative of th

beta function forG in the vicinity of the ultraviolet fixed
point:

b8~Gc!521/n. ~69!

Thus computingn is equivalent to computing the derivativ
of the beta function in the vicinity of the ultraviolet fixe
point. There are indications from the lattice theory that o
the smooth phase withG.Gc exists~in the sense that space
time collapses onto itself forG,Gc), which would suggest
that the gravitational coupling can onlyincreasewith dis-
tance.

One should also perhaps recall here the fact that a
cosmological constantl, which could appear in the origina
action@as indicated in Eq.~26!#, has been scaled out when
was set equal to one by rescaling all the edge lengths. If
puts it back in, then the effective Newton’s constant wou
have to be multiplied by that bare scale. As a result o
obtains for the running of Newton’s constant, valid f
‘‘short’’ distancesm@m,
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G~r ! ;
r !j

l 0
2l21/2FGc1S r

Cj D 1/n

1•••G , ~70!

whereGc is a pure number of order one, and below it will b
argued that 1/n53. The quantityl 0 is the average lattice
spacing, and the correct dimensions forG(m) ~length
squared! have been restored. In addition a bare cosmolog
constant l was re-introduced, which was previously s
equal to one in Eq.~26! ~it fixes the overall length scale in
the functional integral over edge lengths!.

VIII. NUMERICAL RESULTS

Next we come to a discussion of the numerical metho
employed in this work and the analysis of the results. As
previous work, the edge lengths are updated by a straigh
ward Monte Carlo algorithm, generating eventually an e
semble of configurations distributed according to the act
and measure of Eq.~26!. Further details of the method a
applied to pure gravity are discussed in@7,12#, and will not
be repeated here.

In this work lattices of size 4343434 ~with 256 sites,
3840 edges, 6144 simplices!, 8383838 ~with 4096 sites,
6144 edges, 98304 simplices!, 16316316316 ~with 65536
sites, 983040 edges, 1572864 simplices! were considered.
Even though these lattices are not very large, one sho
keep in mind that as a result of the simplicial nature of t
lattice there are many edges per hypercube with many in
action terms, and as a consequence the statistical fluctua
can be comparatively small, unless measurements are t
very close to a critical point and at rather large separation
the case of the potential. The results presented here are
preliminary, and in the future it should be possible to rep
such calculations with improved accuracy on much lar
lattices.

The topology is restricted to a four-torus~periodic bound-
ary conditions!. We have argued before that one could p
form similar calculations with lattices employing differen
boundary conditions or topology, but the universal infrar
scaling properties of the theory should be determined only
short-distance renormalization effects.

It seems reasonable that based on physical considera
one needs to impose the constraint that the scale of the
vature be much smaller than the average lattice spacing
still much larger than the overall size of the system, in oth
words,

^ l 2&!^ l 2&uRu21!^V&1/2, ~71!

or that in momentum space the physical scales should
much smaller that the ultraviolet cutoff, but much larger th
the infrared cutoff. An equivalent requirement is then

L21&m& l 0
21 , ~72!

whereL is the linear size of the system,m51/j, and l 0 the
lattice spacing. It should be kept in mind that in this mod
and contrary to ordinary gauge theories on a lattice, the
tice spacing is a dynamical quantity. Even close to the cr
8-9
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HERBERT W. HAMBER PHYSICAL REVIEW D61 124008
cal point where the curvature vanishes the lattice is by
means regular, and the quantityl 05A^ l 2& only represents an
‘‘average’’ cutoff parameter.

The bare cosmological constantl appearing in the gravi-
tational action of Eq.~26! was fixed at 1~since this coupling
sets the overall length scale in the problem!, and the higher
derivative couplinga was set to 0~pure Regge-Einstein ac
tion!. For the measure in Eq.~26! this choice of parameters
leads to a well-behaved ground state fork,kc'0.053 for
a50 @12,11#. The system then resides in the ‘‘smooth
phase, with a fractal dimension close to 4; on the other ha
for k.kc the curvature becomes very large~‘‘rough’’
phase!, and the lattice tends to collapse into degenerate c
figurations with very long, elongated simplices@7,9,11,12#.
For a50 we investigated 22 values ofk.

On the 164 lattice 36000 consecutive configurations we
generated for each value ofk and 22 different values fork
were chosen. The results for different values ofk can be
considered as completely statistically uncorrelated, si
they originated from unrelated configurations. On the sma
84 lattice 100000 consecutive configurations were genera
for each value ofk. On the 44 lattice 500000 consecutive
configurations were generated for each value ofk. To accu-
mulate the results, the machine ran continuously for abou
months.

The results obtained for the average curvatureR @defined
in Eq. ~29!# as a function of the bare couplingk are shown in
Fig. 1, on lattices of increasing size with 44, 84 and 164

sites. Figure 2 shows the 164 data by itself. The errors in are
quite small, of the order of a tenth of 1% or less, and a
therefore not visible in the graph.

In @12# it was found that ask is varied, the curvature is
negative for sufficiently smallk ~‘‘smooth’’ phase!, and ap-
pears to go to zero continuously at some finite valuekc . For
k>kc the curvature becomes very large, and the simpli

FIG. 1. Average curvatureR as a function ofk, on lattices with
44 (h), 84 (n) and 164 (s) sites. Statistical errors
@;O(1023)# are much smaller than the size of the symbols. T
thin-dotted, dotted and solid lines represent best fits of the fo
R(k)5A(kc2k)d.
12400
o

d,

n-

e
r
d

4

e

s

tend to collapse into degenerate configurations with ve
small volumes (̂V&/^ l 2&2;0) ~a similar two-phase structure
has been found recently also in the dynamical triangulati
approach@18#, with the smooth phase replaced by a co
lapsed unphysical phase!. This ‘‘rough’’ or ‘‘collapsed’’
phase is the region of the usual weak field expansionG
→0); in the continuum it is characterized by the unbound
fluctuations in the conformal mode. But there appears to
more structure to the data.

Accurate and reproducible curvature data can only be o
tained fork below the instability pointku since, as already
pointed out in@12#, for k.ku'0.053 an instability develops,
presumably associated with the unbounded conformal mo
Its signature is typical of a sharp first order transition, b
yond which the system tunnels into the rough, elongat
phase which is two dimensional in nature and has no phy
cally acceptable continuum limit. The instability is caused b
the appearance of one or more localized singular configu
tion, with a spike-like curvature singularity. It is not assoc
ated with any sort of coherent effect or the appearance
long-range order, and remains localized around a few latt
points. In other words, the correlation lengthj remains finite
at ku . At strong coupling such singular configurations a
suppressed by a lack of phase space due to the functio
measure, which imposes non-trivial constraints due to t
triangle inequalities and their higher dimensional analogu
In other language, the measure regulates the conformal in
bility at sufficiently strong coupling.

It is characteristic of first order transitions that the fre
energy develops only a delta-function singularity atku , with
the metastable branch developing no non-analytic contrib
tion at ku . Indeed it is well known from the theory of first
order transitions that tunneling effects will lead to a pure
imaginary contribution to the free energy, with an essent
singularity fork.ku @26#. In the following we shall clearly
distinguish the instability pointku from the true critical point
kc .

e

FIG. 2. Average curvatureR as a function ofk, on the 164 (s)
lattice only. Statistical errors@;O(1023)# are much smaller than
the size of the symbols. The solid line represents a best fit of
form A(kc2k)d for k>0.02, withd54n21.
8-10
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GRAVITATIONAL SCALING DIMENSIONS PHYSICAL REVIEW D 61 124008
As a consequence, the non-analytic behavior of the
energy ~and its derivatives which include for example th
average curvature! has to be obtained byanalytic continua-
tion of the Euclidean theory into the metastable branch. T
procedure, while unusual, is formally equivalent to the co
struction of the continuum theory exclusively from its stro
coupling ~small k, largeG) expansion:

ZL~k!5 (
n50

`

ankn, ~73!

R~k!5 (
n50

`

bnkn. ~74!

Given a large enough number of terms in this expansion,
nonanalytic behavior in the vicinity of the true critical poi
at kc can then be determined using differential or Pade
proximants@43#, for appropriate combinations of thermod
namic functions which are expected to be meromorphic
the vicinity of the true critical point@44#. In the present case
instead of the analytic strong coupling expansion, one ha
one’s disposal a set of~in principle, arbitrarily! accurate data
points to which the expected functional form can equally
fitted. And what is assumed is the kind of regularity which
always assumed in extrapolating finite series~whether con-
vergent or asymptotic as in the case of QED orlf4 in d
,4 @45#! to the boundary of their radius of convergence.

Ultimately it should be kept in mind that one is real
only interested in thepseudo-Riemanniancase, and not the
Euclidean one for which an instability due to the conform
mode is to be expected. Indeed, had such an instability
occurred, one might wonder if the resulting theory still h
any relationship to the original continuum theory. Argume
based on effective actions suggest that if the Euclidean~or,
more appropriately, Riemannian! lattice theory eventually
approaches the classical continuum theory at large dista
and in the vicinity of the critical point, then an instability i
the quantum lattice theorymustdevelop, since the continuum
classical theory is known to be unstable.

In the following only data fork<ku will be considered; in
fact to add a margin of safety onlyk<0.051 will be consid-
ered throughout the rest of the paper. This choice will av
the inclusion in the fits of any data affected by the sh
turnover which appears, for large lattices, atk5ku'0.053.

To extract the critical exponentd, one fits the computed
values for the average curvature to the form@see Eq.~55!#

R~k! ;
k→kc

2AR~kc2k!d. ~75!

It would seem unreasonable to expect that the computed
ues forR are accurately described by this function even
small k. Instead the data are fitted to the above functio
form for eitherk>0.02 ork>0.03 and the difference in th
fit parameters can be used as one more measure for the
Additionally, one can include a subleading correction

R~k! ;
k→kc

2AR@kc2k1B~kc2k!2#d, ~76!
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and use the results to further constraint the errors onAR , kc
andd54n21.

Using this set of procedures one obtains on the lat
with 44 sites,

kc50.0676~20!, n50.343~8!, ~77!

and on the lattice with 84 sites one finds

kc50.0614~27!, n50.322~16!, ~78!

while on the lattice with 164 sites one finds

kc50.0630~11!, n50.330~6!. ~79!

These results suggest thatn is very close to 1/3, and can b
compared to the older low-accuracy estimate on an 84 lattice
obtained in@12# for a50, n50.33(3).

Figure 3 shows a graph of the average curvatureR(k)
raised to the third power. One would expect to get a strai
line close to the critical point if the exponent forR(k) is
exactly 1/3. The numerical data indeed support this assu
tion, and in fact the linearity of the results close tokc is quite
striking. The computed data are quite close to a straight
over a wide range ofk values, providing further support fo
the assumption of an algebraic singularity forR(k) itself,
with exponent close to 1/3. Using this procedure one fin
on the 164-site lattice,

kc50.0639~10!. ~80!

Since the critical exponents play such a central role
determining the existence and nature of the continuum lim
it appears desirable to have an independent way of estim
ing them, which either does not depend on any fitting pro
dure or at least analyzes a different and complementary s
data. By studying the dependence of averages on the ph
cal size of the system, one can independently estimate
critical exponents.

FIG. 3. Average curvature on the 164 lattice, raised to the third
power. If d5n51/3, the data should fall on a straight line. Th
solid line represents a linear fit of the formA(kc2k). The small
deviation from linearity of the transformed data is quite striking
8-11
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Figure 4 shows a graph of the scaled curvat
R(k)L421/n for different values ofL54,8,16, versus the
scaled coupling (kc2k)L1/n. If scaling involving k and L
holds according to Eq.~19!, with xO5124n the scaling
dimension for the curvature, then all points should lie on
same universal curve. From Eq.~19!, with t;kc2k andxO
52d5124n, one has

R~k,L !5L2(421/n)@R̃„~kc2k!L1/n
…1O~L2v!# ~81!

where v.0 is a correction-to-scaling exponent. The da
support well such scaling behavior, and provide a furt
stringent test on the value forn, which appears to be consis
tent, within errors, with 1/3.

Figure 5 shows explicitly the size dependence of the
erage curvature. For smallk the volume dependence is sma
and gradually increases towards the critical point. Suc
trend is in agreement with the expectation that the correla
lengthj is growing as one approaches the critical point, le
ing to a more marked volume dependence. For fixedkÞkc
one expects, on the four-torus,

RL~k! ;
L@1/m~k!

R`~k!1Am~k!1/2L23/2e2m(k)L1•••,

~82!

whereL5V1/4 is the linear size of the system andm5j21 is
the lightest mass in the theory. Combining and averaging
estimates from correlations@34#, potential@12# and finite size
corrections to the average curvature one can in fact estim
the magnitude of this mass directly. One obtainsm
;0.81(kc2k)1/3, giving a correlation length of about tw
lattice spacings atk50.050.

The value ofkc itself should depend on the size of th
system. Indeed such a dependence is found when comp

FIG. 4. Finite size scaling behavior of the scaled curvature v
sus the scaled coupling. HereL54 for the lattice with 44 sites (h),
L58 for a lattice with 84 sites (n), andL516 for the lattice with
164 sites (s). Statistical errors are comparable to the size of
dots. The solid line represents a best fit of the forma1bxc. Finite
size scaling predicts that all points should lie on the same unive
curve. Atkc50.0637 the scaling plot gives the valuen50.333.
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kc ~as obtained from the algebraic singularity fits discusse
previously! on different lattice sizes. One writes

kc~L ! ;
L→`

kc~`!1cL21/n1•••. ~83!

Figure 6 shows the size dependence of critical couplingkc as
obtained on different size lattices. In all three caseskc(L) is
first obtained from a fit to the average curvature of the form
R(k)5A(kc2k)d for k>0.02. Furthermore, if one assumes
n51/3 and extractskc from a linear fit to R 3, then the
variations inkc for different size lattices are substantially
reduced~points labeled by circles in Fig. 6.!. Because of the
few values ofL, it is not possible at this point to extract an

r-

e

al

FIG. 5. Volume dependence of the average curvature, forL
54,8,16, and~from top to bottom! k50.040, 0.045, 0.050 and
0.055.

FIG. 6. Volume dependence of the critical couplingkc , as de-
termined from the singularity in the average curvature, for lattice
with L54,8,16. The points labelled bys are obtained assuming
n51/3; in both cases the lines represent simple fits of the typekc

5a1b/L3.
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GRAVITATIONAL SCALING DIMENSIONS PHYSICAL REVIEW D 61 124008
estimate forn from this particular set of data. But sincen is
close to 1/3, it makes sense to use this value in Eq.~83! at
least as a first approximation.

Figure 7 shows a plot of the average curvatureR(k) ver-
sus reduced couplingkc2k, for several values ofa, the
higher derivative coupling of Eq.~26!. a50 corresponds to
the pure Regge action with no explicit higher derivative la
tice contribution, for which the path integral is still well de
fined ~at least for sufficiently smalluku), since the deficit
angles are bounded, and the edge lengths fluctuate aro
some average value, which is determined by the interplay
the measure and the cosmological constant term. Alter
tively, one can think of the fluctuations in the conforma
mode as becoming bounded~again at least for sufficiently
small uku) when a momentum cutoff of orderp/A^ l 2& is
dynamically generated.

The slope of each straight lines determines the critic
exponentd54n21, and it seems clear from the graph th
the slope is noticeably smaller fora50, suggesting that the
higher derivative terms mask the true critical behavior up
very small kc2k ~it was already noted in@12# that for a
50 the assumption of an algebraic singularity for the ave
age curvature leads to a value for the curvature expon
which is much smaller than the estimate fora.0, namely
d'0.30(4)).

Indeed it seems that one of the effects of the higher d
rivative terms is to push the region of instability toward
smaller and smaller values ofkc2k, until it becomes nu-
merically undetectable. But we would argue that it is on
close to this region that the correct continuum behavior
recovered. The situation is similar to what happens in t
weak field expansion and perturbation theory: higher deriv
tive terms do not cure the instability problems in the phys
cally relevant region of small momenta and large correlati
lengths.

FIG. 7. Average curvatureR versus reduced couplingkc-k, on
a log-log scale. From top to bottom,a50, 0.0005, 0.005, 0.02, 0.1,
with a the higher derivative coupling. Statistical error bars are co
parable to the size of the dots. The slope of each straight lin
determines the critical exponentd54n21. The slope is noticeably
smaller fora50, suggesting that the higher derivative terms ma
the true critical behavior up to very smallkc2k.
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Figure 8 shows a plot of the curvature amplitudeAR ver-
sus the higher derivative couplinga. The rapid growth close
to a50 is consistent with an expected catastrophic instab
ity for a,0 ~wrong sign for higher derivative terms!.

A compilation of previous estimates forn, together with
the new value ata50, is shown in Fig. 9. There seems to b
a clear trend toward smaller values asa approaches zero, the
Einstein-Regge limit. While the Einstein action contributio
becomes the dominant one at large distances, this is
longer the case at intermediate distances in the presenc
the higher derivative terms. One concludes that fora.0 the
higher derivative terms tend to mask the true critical beha
ior, which requireskc2k!a21.

Figure 10 shows a plot of the average volume per si
^V&, in units of the average edge lengthA^ l 2&. The curve is
a fit of the forma1b(kc2k)c, and suggests a rather sudde

-
s

k

FIG. 8. Curvature amplitudeAR versus the higher derivative
couplinga. The amplitude increases rapidly asa approaches zero,
the pure Einstein-Regge limit.

FIG. 9. Critical exponentn computed from the average curva
ture versus the higher derivative couplinga. Note the small errorbar
on the recent value forn at a50. For a.0 the higher derivative
terms tend to mask the true critical behavior, which requireskc

2k!a21.
8-13
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HERBERT W. HAMBER PHYSICAL REVIEW D61 124008
drop of the average volume in the vicinity of the critic
point. A non-analiticity in̂ V& at kc is in fact consistent with
the sum rule of Eq.~45!, which suggest that the singula
behavior in the average curvatureR(k) and the average vol-
ume ^V&(k) are simply related. Typically, the sum rule o
Eq. ~45! is satisfied to one part in 103 or better.

As can be seen from Fig. 10, close to the transition atkc
the average volume per site expressed in units of the ave
lattice spacing,̂ V&/^ l 2&2, shows only a weak singularity
when the critical point is approached from the smooth ph
(k,kc), and tends to a finite value. On the other hand, in
rough phase (k.kc) the volume per site seems to approa
smaller and smaller values as the lengths of the runs
extended. In fact it would seem that in the rough phase
volume per site can be made to approach zero, at leas
some simplices. One refers therefore alternatively to t
phase as the collapsed or polymer-like phase, since its e
tive dimension is 2.2 Furthermore, the relaxation times in th
rough phase become exceedingly long, with the system
ting stuck in some degenerate, spike-like configuratio
without being able to get out of it again.

It seems difficult to see how the collapse of the simplic
could be averted by choosing a different lattice structure~for
example a random lattice!, since its properties seem to b
unaffected by changes in the measure or the action, at lea
the extent they have been investigated. Indeed the collap
polymer-like phase appears even in the simplest mod

2An elementary argument can be given to explain the fact that
collapsed phase fork.kc has an effective dimension of 2, as wa
found in @12#. The instability is driven by the Euclidean Einstei
term in the action and, in particular, its unbounded conformal mo
contribution. As the manifold during collapse reaches an effec
dimension of 2 this term turns into a topological invariant, unable
drive the instability further to a still lower dimension.

FIG. 10. Average volume per site,^V&, in units of the average
edge length. Statistical errors are much smaller than the size o
dot. The curve is a fit of the forma1b(kc2k)c. Note the resolution
on the vertical scale.
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based on a regular tessellation of the four-sphere@7,8#. From
a continuum point of view, the existence of such a patholo
cal phase is not unexpected, and is interpreted as a refle
of the unbounded fluctuations in the conformal mode
pected for sufficiently largek. Indeed unbounded fluctuation
in the conformal mode in the continuum correspond to ra
fluctuations in the simplicial volumes, and this is precise
what is observed on the lattice fork.kc , namely a rapid
variation of simplicial volumes when going from one sim
plex to a neighboring one.

Figure 11 shows a plot of the average edge lengthA^ l 2&.
The curve is a fit of the forma1b(kc2k)c, and suggests a
rapid increase in this quantity towards the critical point
kc . Indeed as the critical point is approached the numbe
fairly small and fairly large edge lengths proliferate, leadi
to an increasingly wide edge length distribution.

Figure 12 shows a plot of the average curvature fluct
tion xR(k) defined in Eq.~31!. At the critical point the cur-
vature fluctuation diverges, by definition. As in the case
the average curvatureR(k) analyzed previously, one ca
extract the critical exponentd andkc by fitting the computed
values for the curvature fluctuation to the form@see Eq.~56!#

xR~k! ;
k→kc

AxR~kc2k!2(12d). ~84!

As for the curvature itself, it would seem unreasonable
expect that the computed values forR are accurately de-
scribed by this function even for smallk. Instead the data are
fitted to the above functional form for eitherk>0.02 or k
>0.03 and the difference in the fit parameters can be use
one more measure for the error. Additionally, one can
clude a subleading correction

xR~k! ;
k→kc

2AxR@kc2k1B~kc2k!2#2(12d), ~85!

and use the results to further constraint the errors onAxR, kc

andd54n21.

e

e
e
o

he

FIG. 11. Average edge length as a function of the bare coup
k. The curve is a fit of the forma1b(kc2k)c for k>0.02. Statis-
tical errors are much smaller than the symbol size.
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GRAVITATIONAL SCALING DIMENSIONS PHYSICAL REVIEW D 61 124008
The values ford andkc obtained in this fashion are con-
sistent with the ones obtained from the average curvatu
R(k), but with somewhat larger errors, since fluctuations a
more difficult to compute accurately than local averages, a
require much higher statistics. Using these procedures o
obtains, on the lattice with 164 sites,

kc50.0636~30!, n50.317~38!. ~86!

Figure 13 shows a graph of the inverse curvature fluctuati
xR(k) on the 164-site lattice, raised to power 3/2. One would
expect to get a straight line close to the critical point if th
exponent forxR(k) is exactly 22/3. The numerical data
indeed support this assumption. The computed data are c
sistent with linear behavior for smallk>0.02, providing fur-

FIG. 12. Curvature fluctuation on lattices with 44 (h), 84 (n)
and 164 (s) sites. The thin-dotted, dotted and solid lines represe
best fits of the formxR(k)5A(kc2k)2(12d) for k>0.02.

FIG. 13. Inverse curvature fluctuation raised to the power 3/
on the 164 (s) lattice; data are scaled by a factor of3100. The
straight line represents a linear fit of the formA(kc2k). The loca-
tion of the critical point ink is consistent with the estimate obtained
from the average curvature, but with a somewhat larger error.
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ther support for the assumption of an algebraic singula
for xR(k) itself, with exponent close to22/3. Using this
procedure one finds, on the 164-site lattice,

kc50.0641~17!, ~87!

which is completely consistent with the value obtained fro
R 3 ~see Fig. 3 and related discussion!, and suggests again
that the exponentn must be close to 1/3.

Figure 14 shows the results for the logarithmic derivati
of the average curvatureR(k), obtained from the data
shown in Figs. 3 and 12. From the definition of the avera
curvatureR and curvature fluctuation@Eqs. ~29! and ~31!#,
and the fact that both are proportional to derivatives of t
free energyF with respect tok @Eqs. ~34! and ~35!#, one
notices, for the ratio,

2^ l 2&xR~k!

R~k!
;S ]

]k
ln ZLD Y S ]2

]k2
ln ZLD

;
]

]k
lnS ]

]k
ln ZLD . ~88!

The assumption of an algebraic singularity ink for R andxR
@Eqs.~55! and~56!# then implies that the logarithmic deriva
tive as defined above has a simple pole atkc , with residue
d54n21:

2^ l 2&xR~k!
R~k! ;

k→kc

d
k2kc

, ~89!

with the critical amplitude dropping out of this particula
expression. The above result is general and does not rel
k being real. This suggests that in principle the method
Padérational approximants~which applies only to meromor-

t

,

FIG. 14. Inverse of the logarithmic derivative of the avera
curvatureR(k). The straight line represents a best fit of the for
A(kc2k) for k>0.02. The location of the critical point ink is
consistent with the estimate coming from the average curvatureR.
From the slope of the line one computes directly the exponentn.
8-15
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HERBERT W. HAMBER PHYSICAL REVIEW D61 124008
phic functions! can be employed to locate singularities
xR(k), even for complexk @43,44#. Using this method on the
164 lattice one finds

kc50.0635~11!, n50.339~9!. ~90!

It is encouraging that the above estimates are in good ag
ment with the values obtained previously using the ot
methods.

Figure 15 shows a graph of the scaled curvature fluc
tion xR(k)/L2/n24 for different values ofL54,8,16, versus
the scaled coupling (kc2k)L1/n. If scaling involvingk andL
holds according to Eq.~19!, with t;kc2k and xO512d
5224n, then all points should lie on the same univers
curve. From the general Eq.~19! one expects, in this particu
lar case,

xR~k,L !5L2/n24@ x̃R„~kc2k!L1/n
…1O~L2v!#, ~91!

where v.0 is again the correction-to-scaling expone
Again the data support such scaling behavior, and provid
further estimate on the value forn, close to 1/3.

Figure 16 shows a plot of the curvature fluctuationxR
versus the curvatureR. If the curvature approaches zero
the critical point where the curvature fluctuation diverg
one would expect the curvature fluctuation to diverge atR
50. One has

xR~R! ;
k→kc

AuRu(12d)/d;AuRu(4n22)/(4n21). ~92!

An advantage of this particular combination is that it do
not require knowledge ofkc in order to estimaten. Using all
points corresponding tok>0.02 one finds

n50.328~6!. ~93!

FIG. 15. Finite size scaling behavior of the scaled curvat
fluctuation versus the scaled coupling. HereL54 for the lattice
with 44 sites (h), L58 for the lattice with 84 sites (n), andL
516 for the lattice with 164 sites (s). The solid line represents
best fit of the form 1/(a1bxc). Finite size scaling predicts that a
points should lie on the same universal curve. Atkc50.0637 the
scaling plot gives the valuen50.318.
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The error inn can be estimated, for example, by using
more elaborate fit of the type

xR ;
R→0

AuR1BR 2u(4n22)/(4n21). ~94!

For n51/3 the exponent becomes equal to22, and one has
the simple result

xR ;
R→0

AuRu22. ~95!

One concludes that the evidence supports a vanishing cu
ture at the critical point, where the curvature fluctuationxR
and the correlation lengthj diverge. This result is further
supported by the consistency of the values forkc obtained
independently fromR(k) and xR(k) ~Figs. 2, 3, 4, 12, 13,
14, and 15!.

As an independent measure of the fluctuation one can
investigate the behavior of the edge length fluctuation
fined as

x l 2~k!5
1

N1
H K S (

i 51

N1

l i
2D 2L 2K (

i 51

N1

l i
2L 2J ;

k→kc

~kc2k!2g,

~96!

whereg is a critical exponent. Using an analysis similar
what is done for the curvature and curvature fluctuation,
the 164 lattice it is found to diverge at

kc50.0609~23! ~97!

in agreement within errors with the previous values quo
for kc . One would expect such a fluctuation to be related
the fluctuations in the local volumes, and, by the sum rule
Eq. ~45! which relates the fluctuations in the volume to flu
tuations in the curvature, one would expectg512d52
24n. The numerical results for gamma have larger err

e

FIG. 16. Inverse curvature fluctuation, 1/xR , versus the average
curvature,R (h), and 1/AxR versusR (s). Points shown are for
the largest, 164-site, lattice. Forn51/3, 1/AxR is expected to be
linear in R for small R.
8-16
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GRAVITATIONAL SCALING DIMENSIONS PHYSICAL REVIEW D 61 124008
but give values between 0.46 and 0.85, certainly consiste
with a value ofg52/3 for n51/3.

Finally Fig. 17 summarizes the known information abou
the phase diagram in thek-a plane. The solid line separates
the smooth phase with small negative curvature from t
rough, polymer-like phase.

Table I summarizes the results obtained for the critic
point kc51/8pGc and the critical exponentn. From the best
data~with the smallest statistical uncertainties and the lea
systematic effects! one concludes

FIG. 17. Phase diagram for the model in thek-a plane. A criti-
cal line separates the smooth, strong coupling, phase from
rough, weak coupling, phase. The dotted line denotes the pure E
stein theory, without higher derivative terms.

TABLE I. Summary table for the critical pointkc and the criti-
cal exponentn, as obtained from the largest lattice with 164 sites.
The last three entries assume a critical point atkc50.0636.

Method kc n

R vs k 0.0630~11! 0.330~6!

R 3 vs k 0.0639~10! -

xR vs k 0.0636~30! 0.317~38!

xR
3/2 vs k 0.0641~17! -

xR /(^ l 2&R) vs k 0.0635~11! 0.339~9!

xR vs R - 0.328~6!

x l 2 vs k 0.0609~23! g50.46(8)

x l 2 vs R - g50.54(7)

R FS scaling - 0.333~2!

xR FS scaling - 0.318~10!

x l 2 FS scaling - g50.85(6)
12400
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kc50.0636~11!, n50.335~9!, ~98!

which suggestsn51/3 for pure gravity.3

IX. CRITICAL EXPONENTS AND PHENOMENOLOGY

In this section some consequences of the results prese
above will be discussed, with ultimately an eye towards p
sible physical applications. Naively one would expect simp
on the basis of dimensional arguments that the curva
scale gets determined by the correlation length

R ;
R→0

1/j2, ~99!

but one cannot in general exclude the appearance of s
non-trivial exponent.

In the previous section arguments have been given in s
port of the valuen51/3 for pure gravity. From Eq.~58!
relating the average curvature to the correlation length
has

R~j! ;
k→kc

1

l P
22d11/njd21/n

, ~100!

and the correct dimension for the average curvatureR has
been restored by supplying appropriate powers of the ul
violet cutoff, the Planck lengthl P5AG. One notices that
close to two dimensions the exponent ofj indeed approache
2, sincen;1/(d22), and the classical result is recovered

For n51/3 in four dimensions4 one then obtains the re
markably simple result

R~j! ;
k→kc

1
l Pj . ~101!

An equivalent form can be given in terms of the curvatu
scaleH0, defined throughR5212H0

2, and which has di-
mensions of a mass squared. One has close to the cr
point

H0
25CHmPm, ~102!

wheremP51/AG is the Planck mass,m51/j is the inverse
gravitational correlation length, andCH'4.9 a numerical

3The valuen51/3 does not correspond to any known field theo
or statistical mechanics model in four dimensions. For dilu
branched polymers it is known thatn51/2 in three dimensions
@46#, andn51/4 at the upper critical dimensiond58 @47#, so one
would expect a value close to 1/3 somewhere in between. I th
John Cardy for a discussion on this point.

4For all scalar field theories~spin s50) in four dimensions it is
known that n51/2, while for the compact Abelian U~1! gauge
theory (s51) one hasn52/5 @49#. The valuen51/3 for pure
gravitation (s52) in four dimensions is then consistent with th
simple formulan51/(21s/2).

he
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8-17



u
th

n
ve
tic
, i
tio
th

e
e
o

en
t

n
re

on
th
-

th

it

u
-

la

f
te

ion

o-
can

un-
d
q.
t

p-
ty
cor-
ec-
ger

off
re-

tent
pa-

at
sily

an
re

an
ned

i-

l

rva-

e
fa
th

ivis-
lly

HERBERT W. HAMBER PHYSICAL REVIEW D61 124008
constant of order 1; the value forC is extracted from the
known numerical values forR and m close to the critical
point atkc .

One can raise the legitimate concern of how these res
are changed by quantum fluctuations of matter fields. In

presence of matter fields coupled to gravity~scalars, spin-12
fermions, vector bosons, spin-3/2 fields, etc.! one expects the
value forn to change due to vacuum polarization loops co
taining these fields. A number of arguments can be gi
though for why these effects should not be too drama
unless the number of light matter fields is very large. First
the case of a single light scalar field the vacuum polariza
effects are so small that they are barely detectable in
numerical evaluations of the path integral@48#. Furthermore
one notices that to leading order in the 21e expansion the
exponentn only depends on the dimensionality of spac
time, irrespective of the number of matter fields and of th
type@41#. Finally one can compute for example the effects
scalar matter fields on the one-loop beta function in the
1e expansion for gravity, and findsb05(2/3)(252nf)
wherenf is the number of massless scalar fields@41#. Thus,
unlessnf is large, the matter contribution is quite small ev
to next-to-leading order in the 21e expansion. The presen
evidence would therefore suggest that the approximatio
which vacuum polarization effects of light matter fields a
neglected should not be too unreasonable.

It seems natural to identifyH0 with either some~negative!
average spatial curvature or possibly with the Hubble c
stant determining the macroscopic expansion rate of
present universe@12,15#. In the Friedmann-Robertson
Walker ~FRW! model of standard cosmology@50# one has,
for the Ricci scalar,

RRicci526H S Ṙ

R
D 2

1
k

R2 1
R̈

RJ , ~103!

whereR(t) is the FRW scale factor, andk50,61 for spa-
tially flat, open or closed universes respectively. Today
Hubble constant is given byH0

25(Ṙ/R) t0
2 , but it is eventu-

ally expected to show some slow variation in time, and
characteristic length scalecH0

21'1028 cm today is compa-
rable to the present extent of the visible universe. Under s
circumstances from Eq.~102! one would expect the gravita
tional correlationj to be significantly larger thancH0

21. A
potential problem arises though in trying to establish a re
tionship between quantities which are truly constants@such
as the ones appearing in Eq.~102!#, and H0 which most
likely depends on time.5 In any case it is clear that some o
these considerations are in fact quite general, to the ex
that they rely on general principles of the renormalizat
group and are not tied to any particular value ofn, although

5The only exception being the steady state cosmological mod
whereH0 is truly a constant of nature. These models are not
vored by present observations, including detailed features of
cosmic background radiation.
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n51/3 clearly has some aesthetic appeal. Additional cosm
logical and astrophysical arguments and proposed tests
be found in a recent paper@51#.

One further observation can be made regarding the r
ning of G. Assuming the existence of an ultraviolet fixe
point, the effective gravitational coupling is given by E
~66! for ‘‘short distances’’r !j, but now with an exponen
n51/3:

G~r !5G~0!@11c~r /j!31O„~r /j!6
…#, ~104!

with c a calculable numerical constant of order 1. The a
pearance ofj in this equation, which is a very large quanti
by Eq. ~102!, suggests that the leading scale-dependent
rection, which gradually increases the strength of the eff
tive gravitational interaction as one goes to larger and lar
length scales, should be extremely small.6

It is only for distances comparable to or larger thanj that
the gravitational potential should start to weaken and fall
exponentially, with a range given by the gravitational cor
lation lengthj:

V~r ! ;
r @j

2G~r !
m1m2e2r /j

r . ~105!

In many ways these results appear qualitatively consis
with the expected behavior of the tree-level graviton pro
gator in anti–de Sitter space@52,53#. In the real world the
rangej must be of course very large. From the fact th
super-clusters of galaxies apparently do form, one can ea
set an observational lower limitj.1025 cm.

It is unclear to what extent gravitational correlations c
be measured directly. From the definition of the curvatu
correlation function in Eq.~53! one has for ‘‘short dis-
tances’’ r !j and for the specific valuen51/3 the remark-
ably simple result

^AgR~x!AgR~y!d~ ux2yu2d!&c ;
d!j

A

d2 , ~106!

with A a calculable numerical constant of order 1. One c
contrast this behavior with the semiclassical result attai
close to two dimensions~and which incidentally coincides
with the lowest order weak field expansion result@38#!,
which gives instead for the power the value 2(d21/n)
;2@d2(d22)#;4, as expected on the basis of naive d
mensional arguments (R;]2h).

If one considers the curvatureR averaged over a spherica
volumeVr54pr 3/3,

AgR5
1

Vr
E

Vr

d3xWAg~xW ,t !R~xW ,t !, ~107!

one can compute the corresponding variance in the cu
ture:

ls,
-
e

6And suggests that the deviations from classical general relat
tic behavior for most physical quantities are in the end practica
negligible.
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@d~AgR!#25
1

Vr
2E

Vr

d3xWE
Vr

d3yW ^AgR~xW !AgR~yW !&c5
9A

4r 2 .

~108!

As a result the rms fluctuation ofAgR averaged over a
spherical region of sizer is given by

d~AgR!5
3AA

2

1

r
, ~109!

while the Fourier transform power spectrum at smallkW is

PkW5uAgRkWu25
4p2A

2V

1

k
. ~110!

One can use Einstein’s equations to relate the local curva
to the~primordial! mass density. From Einstein’s field equ
tions

Rmn2
1

2
gmnR58pTmn ~111!

for a perfect fluid

Tmn5pgmn1~p1r!umun ~112!

one obtains for the Ricci scalar, in the limit of negligib
pressure,

R~x!'8pGr~x!. ~113!

As a result one expects for the density fluctuations a po
law decay of the form

^r~x!r~y!&c ;
ux2yu!j

1

ux2yu2
. ~114!

Similar density correlations have been estimated from ob
vational data by analyzing known galaxy number dens
distributions, giving a value for the exponent of about 1.
60.04 for distances in the 10 kpc to 10 Mpc range@54#.

X. CONCLUDING REMARKS

Numerical simulation methods combined with mode
renormalization group arguments and finite size scaling
provide detailed information on non-perturbative aspects
lattice model of quantum gravity. It has been known f
some time that the lattice model has two phases, only on
which is physically acceptable. In this work we have d
scribed in some detail the properties of the latter smo
phase, and provided quantitative estimates for the crit
point, the scaling dimensions and the behavior of corre
tions at distances large compared to the cutoff. In spite of
fact that the Euclidean theory becomes unstable as one
proaches the critical point atkc , it is still possible to deter-
mine by a straightforward analytic continuation the physi
properties of the model in the vicinity of the true fixed poin
defined as the point where a non-analyticity develops in
strong coupling branch ofZL(k), and where scaling implies
12400
re

er
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-
e
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e

that the physical correlationj diverges.
If this prescription is followed, an estimate for the no

perturbative Callan-Symanzik beta function in the vicinity
the fixed point can be obtained, to leading order in the
viation of the bare coupling from its critical value. The r
sulting scale evolution for the gravitational constant is th
quantitatively quite small, if one assumes that the scal
violation parameter is related to an average curvature an
characteristic scaleH0. Its infrared growth, consistent with
the general idea that gravitational vacuum polarization
fects cannot exert any screening, suggests that low en
properties of quantum gravity are inaccessible by weak c
pling perturbation theory: low energy quantum gravity is
strongly coupled theory. On a more quantitative side,
pointed out in the discussion there are a number of attrac
features to the pure gravity resultn51/3, including a simple
form for the curvature correlations at short distances.

Compared to results found in dynamical triangulati
models, where the average curvature is of the same orde
the ultraviolet cutoff in the vicinity of the critical point, her
the strong coupling, smooth phase is found not to be c
lapsed. A likely explanation for the unphysical behavior
the dynamical triangulation model in the strong coupli
phase is the lack of perturbative gravitons in the weak fi
limit or equivalently, the absence of smooth deformations
the geometry~including gauge modes! and of classical gravi-
tational waves.

It seems legitimate to ask the question whether the pre
lattice model for quantum gravity provides any insight in
the problem of the cosmological constant. The answe
both yes and no. To the extent that a naive prediction
quantum gravity is that the curvature scale should be of
same order of the Planck length,R;1/G, the answer is defi-
nitely yes. Indeed it can be regarded as a non-trivial resul
the lattice models for gravity that a region in coupling co
stant space can be found where space-time is stiff and
curvature can be made much smaller than 1/G. In fact the
evidence indicates that the average curvatureR vanishes at
the critical pointkc . And this is achieved with a bare cos
mological constantl which is of order 1 in units of the
cutoff. Phrased differently, the dimensionless ratio betwe
the renormalized and the bare cosmological constant
comes arbitrarily small towards the critical point.

At the same time the effective long distance cosmologi
constant is non-vanishing and of order 1/j, and the value
zero is only obtained whenj is exactly zero, which happen
only at the critical pointkc . Thus to make the effective cos
mological constant small requires a fine-tuning, in the se
that the bare couplingkc-k has to be small. But since th
correlation length determines the corrections to the Newt
ian potential~and in particular its eventual decrease for lar
enough distances!, it would seem unnatural to have a sho
correlation lengthj: in such a world there would be no long
range gravitational forces, and separate space-time dom
would have decoupled fluctuations. From this perspect
long range forces and a small cosmological constant go h
in hand. Quantum fluctuation effects show that hyperbo
space-times with small curvature radii cannot sustain lo
range gravitational forces, at least in this model.
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