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Gravitational scaling dimensions
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A model for quantized gravitation based on simplicial lattice discretization is studied in detail using a
comprehensive finite size scaling analysis combined with renormalization group methods. The results are
consistent with a value for the universal critical exponent for gravitation1/3, and suggest a simple
relationship between Newton’s constant, the gravitational correlation length and the observable average space-
time curvature. Some perhaps testable phenomenological implications of these results are discussed. To
achieve a high numerical accuracy in the evaluation of the lattice path integral a dedicated parallel machine
was assembled.

PACS numbgs): 04.60.Gw, 04.60.Kz, 04.62v, 11.10.Gh

[. INTRODUCTION fields, one deals with gravitational degrees of freedom which
live only on discrete space-time points and interact locally
One of the outstanding problems in theoretical physics isvith each other. In Regge’s simplicial formulation of gravity
a determination of the guantum-mechanical properties of5] one approximates the functional integration over continu-
Einstein’s relativistic theory of gravitation. Approaches ous metrics by a discretized sum over piecewise linear sim-
based on linearized perturbation methods have had modergpicial geometried6—9]. In such a model, the role of the
success so far, as the underlying theory is known not to beontinuum metric is played by the edge lengths of the sim-
perturbatively renormalizablel,2]. Because of the complex- plices, while curvature is described by a set of deficit angles,
ity of even such approximate calculations, a fundamentalhich can be computed via known formulas as functions of
coupling of the theory, the bare cosmological constant termthe given edge lengths. The simplicial lattice formulation of
is usually set to zero, thus further restricting the potentialgravity is locally gauge invariartLO] and can be shown to
physical relevance of the results. In addition gravitationalcontain perturbative gravitons in the lattice weak field expan-
fields are themselves the source for gravitation already at thgion [6], making it an attractive and faithful lattice regular-
classical level, which leads to the problem of an intrinsicallyization of the continuum theory.
non-linear theory where perturbative results are possibly of The discretized theory is restricted to a finite set of dy-
doubtful validity for sufficiently strong effective couplings. namical variables, once a set of suitable boundary conditions
This is especially true in the quantum domain, where largere imposed such as periodic or with some assigned bound-
fluctuations in the gravitational field appear at short dis-ary manifold. In the end the original continuum theory of
tances. In general nonperturbative effects can give rise tgravity is to be recovered as the space-time volume is made
novel behavior in a quantum field theory and, in particular,large and the fundamental lattice spacing of the discrete
to the emergence of non-trivial fixed points of the renormal-theory is set to zero, possibly without having to rely, at least
ization group(a phase transition in statistical mechanics lan-in principle, on any further approximation to the original
guage. It has been realized for some time that in general theontinuum theory.
universal low and high energy behavior of field theories is Quantum fluctuations in the underlying geometry are rep-
almost completely determined by the fixed point structure ofesented in the discrete theory by fluctuations in the edge
the renormalization group trajectorig3). lengths, which can be modeled by a well-defined, and nu-
The situation described above bears some resemblance teerically exact, stochastic process. In analogy with other
the theory of strong interactions, quantum chromodynamicdfield theory models studied by computer, calculations are
Non-linear effects are known here to play an important roleusually performed in the Euclidean imaginary time frame-
and end up restricting the validity of perturbative calcula-work, which is the only formulation amenable to a controlled
tions to the high energy, short distance regime, where thaumerical study, at least for the immediate foreseeable fu-
effective gauge coupling can be considered weak due tture. The Monte Carlo method, based on the concept of im-
asymptotic freedoni4]. For low energy properties Wilson's portance sampling, is well suited for evaluating the discrete
discrete lattice formulation, combined with the renormaliza-path integral for gravity and for computing the required av-
tion group and computer simulations, has provided so far therages and correlation functions. By a careful and systematic
only convincing evidence for quark confinement and chiralanalysis of the lattice results, the critical exponents can be
symmetry breaking, two phenomena which are invisible toextracted and the scaling properties of invariant correlation
any order in the weak coupling, perturbative expansion.  functions determined from first principles.
A discrete lattice formulation can be applied to the prob- Studies on small lattices suggest a rich scenario for the
lem of quantizing gravitation. Instead of continuous metricground state of quantum gravity,9,11,12. The present evi-
dence indicates that simplicial quantum gravity in four di-
mensions exhibits a phase transiti@amthe bare couplings)
*Email address: hhamber@uci.edu betweentwo phasesa strong coupling phase, in which the
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geometry is smooth at large scales and quantum fluctuations R(&) ~ &4, (5)

in the gravitational field eventually average out and are k—kg

bounded, and a weak coupling phase, in which the geometr ) ] o ) )

is degenerate and space-time collapses into a lowe atching of dimensionalities in these equations is restored

dimensional manifold, bearing some physical resemblance tBY SUpplying appropriate powers of the ultraviolet cutoff, the
a branched polymer. Only the smooth, small negative curvaPlanck lengthi .= \/G. The exponent is known to be re-
ture and thus anti—de Sitter-like phase appears to be physated to the derivative of the beta function fGrin the vi-
cally acceptable. Phrased in different terms, the two phaseginity of the ultraviolet fixed point,

of quantized gravity found if12] can loosely be described .

as having, in one phas@vith bare couplingG<G,, the B'(Ge)=—1lv. ©)

rough branched polymer-like phase In addition, the correlation lengtl§ itself determines the

(9,,)=0 1) long-distance decay of the connected, invariant two-point
my ' correlations at fixed geodesic distandeFor the curvature
while, in the other(with bare couplingG>G,, the smooth correlation one has, for distances much larger compared to
phase, the correlation length,
vl - oa—dlé
(Gury~Crn, @ CGROOVGRO) S(lx—yl=dh)e ~ d™7e ™, (@

with a vanishingly small negative average curvature in thgyhjle for shorter distances one expects a slower power law
vicinity of the critical point atG;. The existence of a phase gecay

transition at finite couplings, usually associated in quantum

field theory with the appearance of an ultraviolet fixed point 1
of the renormalization group, implies in principle non-trivial, (VOR(X) VOR(y) 8(|x—y|=d))¢ ~ 1) (8
calculable non-perturbative scaling properties for correla- d<¢ d

tions and effective coupling constants and, in particular, in . . i ) ) ,

the case at hand for Newton’s gravitational constant. Sincd N€ Possibility of non-trivial scaling dimensions in the
only the smooth phase with>G, has acceptable physical th€ory of gravitation is not new and was pointed out some
properties, one would conclude on the basis of fairly generaiiMe ago in a series of interesting papgté]. Moreover, it is
renormalization group arguments that at least in this lattic&@SY 0 see that the scale dependence of the effective Newton
model the gravitational coupling can orilycreasewith dis- ~ constant is given by

tance. Furthermore, the rise of the gravitational coupling in _ 1/v 20y
the infrared region rules out the appgljicability of pertu?bat?on GN=G(OLL+e(r/T+O(r/OTH)], ©)

theory to the low energy domain, to the same extent tha iy, ¢ 4 calculable numerical constant. In this last expression
such an approach is deemed to be inapplicable to study tl}ﬂe momentum scalé~ ! plays a role similar to the scaling

Iow-gnergy properties of asymptotically fr_ee gauge_theoriesvidation parameten s of QCD. It seems natural, although
. Itis a_remarkable_property Of. quantum field the_orles that aradoxical at first, to associatewith some macroscopic
W'de. variety of physical properties can .be determined from osmological length scale, such as the Hubble distance
relatlvely sma!l set .O.f universal quantiti¢s3y: ”"’?me'y’ thg . cHgl, with the lack of screening of gravitational interactions
universal leading critical exponents, computed in the vicinity . : ; .
ultimately accounting for such an unusual interpretation

of some fixed point(or fixed ling of the renormalization 912,13. Of course an increase of the gravitational coupling

group equations. In t_h_e IaFtlce the(_)ry the presence of a fIXeat large distances signals a likely breakdown of perturbation
point or phase transition is often inferred from the appear;

. - . heory for computing low energy properties of gravity.
ance of non-analytic terms in invariant local averages, suc SN )
It should be clear, even from this brief discussion, that the
as for example the average curvature

critical exponents by themselves already provide a signifi-
cant amount of useful information about the continuum

<J d4x\/§R(x)> theory. In reality, the complexity of the lattice interactions
(1% =R(k) ~ —Agx(k.—k)* 1, and the practical need to sample many statistically indepen-
<j d4x\/§> k—kc dent field configurations contributing to the path integral,

3) which is necessary for correctly incorporating into the model
the effects of quantum-mechanical fluctuations, leads to the

wherek= 1/87G. From such averages one can determine théequirement of powerful computational resources. The re-

value for v, the correlation length exponent, sults presented in this paper were obtained using a dedicated
custom-built 20-GFlop 64-processor parallel computer, de-
EK) ~ Agke—Kk) . (4)  scribed in detail ir[16].
k—skeg Finally one should mention that recently there has been a

significant resurgence of interest in the classical applications
An equivalent result, relating the quantum expectation valu®f the Regge formulation to gravity. A description of the
of the curvature to the physical correlation lengthis methods as applied to several aspects of the initial value
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problem in general relativity can be found in the recent ref-physical systems exhibit the same scaling behavior in the
erences in[17]. For a related approach to lattice gravity vicinity of the critical point, as a consequence of a divergent
based on dynamical triangulations see 4158 correlation lengt 13].

A brief outline of the paper is as follows. Section Il con-  In practice the renormalization group approach is brought
tains a discussion of general and finite size scaling and rdn via a slightly different route, involving a change in the
lated issues as they apply to the lattice theory of gravityoverall linear size of the system. The usual starting point for
Section Il touches on the issue of the unboundedness of thie derivation of the scaling properties of the theory is the
Euclidean gravitational action. Section IV defines local cur-renormalization grougRG) behavior of the free energly
vature averages and their fluctuations, while Sec. V intro= —log Z/V:
duces a set of exact sum rules for averages which follow
from the scaling properties of the partition function. Section F(t{u})= Freg(ty{uj})+b_dFsing(bytt1{byjuj});

VI defines a set of invariant correlations and discusses how (12
they relate to the local fluctuations defined previously. Sec- , ) )

tion VIl includes a general discussion of the expected propWhereFsing is the singular, non-analytic part of the free en-
erties of the theory in the presence of an ultraviolet fixed€'9Y, andF 4 is the regular partb is the block size in the
point, including expectations based on the analyticale2 ~RG transformation, whilg; andy; (j=2) are the relevant
expansion. In Sec. VIII the numerical results are presentectigenvalues of the RG transformatigior more details see
Section IX contains a discussion of the possible future physithe review in[19]). One denotes here by>0 the relevant

cal relevance of the results, while Sec. X contains the congigenvalue, while the remaining eigenvalygs0 are asso-
clusions. ciated with either marginal or irrelevant operators. Usually

y(l is called v, while the next subleading exponey is
denoted— w.
The correlation lengtlg determines the asymptotic decay
One of the most important quantities used in establishing@f correlations, in the sense that one expects for example, for
the continuum limit of a lattice field theory are the critical the two-point function at large distances,
exponents. Reliable estimates for the exponents in a lattice —Ix—ylig
field theory require a comprehensive finite-size analysis, a (0x)0(y)) ~ e . (13
procedure by which accurate values for the critical exponents pyl=e
are obtained by taking into account the linear size depe
dence of the result computed in a finite volumeOne starts
from_the_general Euclidean actidor statistical mechanics £(t)=b&(btt), (14)
Hamiltonian

II. FINITE SIZE SCALING

Mhe scaling equation for the correlation length itself,

implies for b=t~ that ¢~t~" with a correlation length
exponent
H=2 60, (10 P

v=1l,. (19

with 9i Fhe coupling assomgted with the opera@dr. In the Derivatives of the free enerdy with respect ta then deter-
gravitational case the couplings would correspond to the bare . . iy :

, : o mine, after setting the scale factbr=t™ Yt the scaling
cosmological constant, the Newtonian gravitational ConStanE)roperties of physical observables, including corrections to
and the higher derivative coupling. Close to a renormahza-sca"ng[ZOl Thus for example, the second derivative of the

i ; i * ,
tion group fixed point denotgd u)g.i } one choosgs t.h@i S free energy with respect toyields the specific heat exponent
to be eigenvectors of the linearized renormalization group

transformation, such that a=2-dly=2-dv:
2

d
gi—gf —b%(g,—g}), (1) sy~ e, (16)

whereb is the scale factor of the transformation. In the sim-In the gravitational case one identifies the scaling fieldth

plest statistical mechanics systems, such as a ferromagneti—k, wherek=1/167G involves the bare Newton’s con-
the absence of an external magnetic field, oneasH as  stant. The appearance of singularities in physical averages,
the only relevant operataiin the sense thay>0) andg  obtained from appropriate derivatives Bf is rooted in the
~t=T—T,.. As will be discussed below, in the gravitational fact that close to the critical point a=0 the correlation
case the role of is played by the bare gravitational coupling length diverges.

G. Additional operators appearing in the action are classified The above results can be extended to the case of a finite
as marginal y=0) or irrelevant. The relevance of the energy lattice of volumeV and linear dimensiorL=V¥. The
operator reflects the fact that close to the critical poiatthe  volume-dependent free energy is then written as

only parameter that needs to be tuned to achieve criticality,

synonymous with long range correlations. Universality ofF(t,{uj},L‘l)zF,eg(t,{uj})+b‘dFsing(bytt,{byiuj},b/L).
critical behavior then accounts for the fact that many diverse (17)
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Forb=L (a lattice consisting of only one pojnbne obtains  #-function type singularity. The singularity in the free energy
the finite size scalingdFSS form of the free energyfor a  at the endpoint of the metastable brar(elt sayT*) then
detailed presentation of this procedure $@&]; see also cannot be explored directly; it has to reached by an analytic
[22,23 for a field-theoretic justification After taking de- continuation from the stable side of the free energy branch.
rivatives with respect to the fieldsand{u;}, the FSS scaling
form for physical observables follows. For a quanfydi-
verging liket *o in the infinite volume limit one has

~( L
fol ooty

IIl. UNBOUNDEDNESS OF THE EUCLIDEAN THEORY

Perturbation theory on a lattice and in the continuum sug-
. (18  9gests the presence of an instability in the Euclidean formu-
lation for sufficiently smooth manifold. It is also known that
_ the above instability is associated with the appearance of a
with 5 a smooth scaling function, ang{,t) the infinite  wrong sign for the conformal mode. On the lattice the insta-
volume correlation length. For sufficiently large volumes thebility seems to persist close to the critical pofa®2], which
correction to scaling term involving can be neglected, but suggests that the continuum limit has to be reached by some
in general one needs to be aware of their presence if eithgjort of analytic continuation from the stable phase towards
the volumes are not large enough or if the corrections arene critical point, naturally defined as the point in coupling
large due to a large amplitude or small exponent. Some progzonstant space where the correlation length diverges.
erties of the scaling functiohy(y) can be deduced on gen-  In the weak-field expansiof28] the Einstein-Hilbert ac-
eral grounds: it is expected to show a peak if the finite vol-tion contains both spin-2graviton and spin-O(conformal
ume value forO is peaked; it is analytic at=0 since no modg contributions. In the continuum one can by a judi-
singularity can develop in a finite volume, aris(y) cious chope of invariant qorrelatlon functions isolate physi-
~J o for largey for a quantityO which diverges as~* in cgl properties of the grawton_from the conformal mode. A
o T similar result holds on the lattice, as can be seen by expand-
the infinite volume limit.

The last exoression is useful when the infinite-volumeing the Regge action about a regular lattice and using the fact
. pres . ... that the lattice and continuum actions are equivalent for suf-
correlation length is known. But since close to the critical

ointé—t-" one can deduce the equivalent scaling from ficiently smooth manifold$6,29]. In general, after expand-
P § ’ q 9 ing the metric around flat spa¢ehich requires\ =0),

O(L,t):LXO/V _}_O(g—w,L—w)

O(L,t) =L " [o(Lt") +O(L™ )], 19
9uv= Myt V167Gh,,, (21
which relies on knowledge of and, thus, of the critical

Pnoel?rgbg]sSttiat?{er?er alls?rt%t?n%f dtgesg&? pplication of the abov%ne can cast the lowest order quadratic contribution to the

. , . ; . action in the form
The previous discussion applies to continuous, second or-

der phase transitions. First order phase transitions are driven

by instabilities and are in general not governed by any renor- Y

malization group fixed point. The underlying reason is that lelh,,]= Ef A",V uiotie (22)
the correlation length does not diverge at the transition point,

and thus the system never becomes scale invariant. Expc\}\;

. L hereV is a matrix which can be expressed in terms of spin
nents for continuous, second order phase transition in general = ~ . : X
: projection operators. In momentum space it can be written as
obey the rigorous bound

yi<d, or »>1/d. (20) V=[P@—-2p®]p2 (23

A first order phase transition in renormalization group

theory, on the other hand, can be associated with the som . . :
what pathological case=1/d, for which the first derivative ors introduced i 30]. Physically, the two terms correspond
' to the propagation of the graviton and of the conformal

of the free energy develops a step-function singularity. In a ; . . .

renormalization %)r/oup frarrp]ework t%e corresponging g)s/eudo‘r—mde’ ’r,es_pectwely, }f‘"th the”Iatter one appearing V‘."t.h the

critical point is denoted as a discontinuity fixed pdi@g]. wrong_lslgn.ﬂlyn Zthe Landau gauge,_wnh a gauge flx_mg
In the simplest case, a first order transition develops as th&"™ ¢ (9,h**)” and @=0, one obtains, for the graviton

system tunnels between two neighboring minima of the fredroPagAON in momentum space,

energy. In the metastable branch the free energy acquires a

complex part with an essential singularity in the coupling 1

shere P and P() are spin-2 and spin-0 projection opera-

. o —p(0)
located at the first order transition poi®6,27). As a conse- p2) 2 Pune
. . . .. MVNO
quence, such a singularity is not generally visible from the Gune(P)=—F———— (24)
stable branch, in the sense that a power series expansion in P P

the temperature is unaffected by such a singularity. Indeed in
the infinite volume limit the singularity associated with a first The unboundedness of the Euclidean gravitational action
order transition afl . becomes infinitely sharp, like & or  shows up clearly in the weak field expansion, with the spin-0
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mode acquiring a propagator term with the wrong Sidn.

has been argued that in weak field perturbation theory and i
order to avoid the unboundedness problem one should pe
form the functional integral over metrics by distorting the

integration contour so as to include complex conformal fac-2c=

tors [31]. One drawback of this prescription is that it only
appears applicable within the framework of perturbation
theory. For a recent review of the Euclidean instability prob-
lem se€[32].

In the presence of a cosmological constant, things are

PHYSICAL REVIEW D 61 124008

The above expression represents a lattice discretization of the
oontinuum Euclidean path integral for pure quantum gravity,

r_
| T ooy T dg0

M=V

Xexp[—f d4x\/§<)\—

a
~R+-R

k nvpo
> 2 /“’PU'R +...

|

(27)

further complicated by the fact that since flat space is no . _
longer a solution of the classical equations of motion, and thavith k™ ~=87G, andG Newton’s constant, and reduces to it

above expansion for the metric loses part of its meaning du

tor smooth enough field configurations. In the discrete case

to the presence of the tadpole term. But after shifting to théhe integration over metrics is replaced by integrals over the
correct Oth order solution, a similar result is obtained. Oneslementary lattice degrees of freedom, the squared edge

can further modify the action to include additional invariant

lengths. The discrete gravitational measur&jircan be con-

terms, but things do not get any better. In the presence didered as the lattice analogue of the De\\88] continuum
higher derivative terms in the gravitational action, the aboveunctional measurgl5]. The 5A term in the lattice action is

result is modified by term®(p?), and becomef33]

1
p2) > Plne
MVNO
G,uv}\o'(p): 2a a . (25)
p2_’_Tp4 _p2+Ep4

The p* terms improve the ultraviolet behavior of the theory,

the well-known Regge terifb], and reduces to the Einstein-
Hilbert action in the lattice continuum lim[i6,29]. A cosmo-
logical constant term is needed for convergence of the path
integral, while the curvature squared term allows one to con-
trol the fluctuations in the curvatuf&,9,11,12. In practice,
and for obvious phenomenological reasons, one is only in-
terested in the limit when the higher derivative contributions
are small compared to the reat~0. In this limit the theory

but do not remove the unboundedness problem, which redepends, in the absence of matter and after a suitable rescal-

appears for sufficiently smap?, in the low momentum or
long-distance limit. Moreover, the resulting theory is most
likely not unitary unless the couplingis vanishingly small.
The lack of positivity of physical correlations fa>0 can

be seen explicitly even in a non-perturbative treatnjut,

ing of the metric, only on one bare parameter, the dimension-
less coupling®/\. Without loss of generality, one can there-
fore set the bare cosmological constart1.

Some partial information about the behavior of physical
correlations can be obtained indirectly from local invariant

and makes such a modified theory of gravitation in the encverages. 117,12] gravitational observables such as the av-

somewhat unattractive.

IV. LOCAL AVERAGES AND FLUCTUATIONS

In the following the relevant definitions for gravitational

averages and correlations on the lattice will be briefly re-

called, in a form which will be used in later sections. The

starting point for a non-perturbative study of quantum grav-
ity is a suitable definition of the discrete Feynman path inte-

erage curvature and its fluctuation were introduced. The ap-
propriate lattice analogues of these quantities are readily
written down by making use of the usual correspondences
fd“.x\/§f>2hinges Vh, etc. On the lattice the natural choices
for invariant operators are

>

hinges hDx

Vo(x)— Vi

gral. In the simplicial lattice approach one starts from the

discretized Euclidean path integral for pure gravity, with the
squared edge lengths taken as fundamental variables:

2. [ I vao9)I] dizepi2]
0 s ]

xexp{ — > (A= K& A +adiAYVp+ )},
h

(26)

JoR(x)—2 >

hinges hDx

SnAn

VR, GREM(X) =4 D (84A2IV),

hinges hDx

(28)

[we have omitted here on the right-hand s{g&lS) an over-

all numeric coefficient, which will depend on how many
hinges are actually included in the summation; if the sum
extends over all hinges within a single hypercube, then there

it should be noted that such an instability is not peculiar to gravi-Will be a total of 50 hinge contributiogsin this paper no

tation. Indeed the Euclidean path integral for the one-dimensiondligher derivative terms will be considered, and thus only the
Coulomb potential, an otherwise completely well-behaved quanturfi’St f’md second operators will be used in the following dis-
mechanical system, already exhibits such an instability. It would b&USSION.

premature to conclude from such a result that the problem is phys
cally ill posed.

i- On the lattice one prefers to define quantities in such a
way that variations in the average lattice spacifi@?®) are
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compensated by the appropriate factor as determined fromnd its fluctuation defined as
dimensional considerations. In the case of the average curva-

2 2
ture one defines the lattice quanti® as Vv _ vV
PRILAONRE AT
xv(K)= ;
|23 an) V s
R(K)=(12) -— (29) "
<; Vh> where one denotes by, the volume associated with the

hingeh. In the continuum it corresponds to the expression
which in the continuum corresponds to

([ aveigron) XMJ(J @l ) @>2_

R(K)~ <Jd4x\/§> , (30 <f fg>

The latter is related to the connected volume correlator at
and similarly for the curvature fluctuation, zero momentum:

([3 o) )-(3 o) [ atx [ @ty 500 G
xr(K)= . (3D Xv~
<; vh> <fd4x g(X)>

o _ The average volume per sitg/), and its fluctuationy, are
which in the continuum corresponds to simply related to derivatives of, with respect to the bare

cosmological constar:
e

Xk~ 2>_<J @R>2' i
1K »

32 —

(32) (V)~-xInZ (40)
The latter is related to the connected curvature correlation at

zZero momentum:

f déx f d*y(VaOR(MX)VIYIR(Y))e

(38

(39

(92

One would expect the fluctuations in the curvature to be

(33 sensitive to the presence of a spin-2 massless particle, while
< f d4X\/9(X)> fluctuations in the volume would only probe the correlations
in the conformal mode channel.

XR™

Both R and y are related to derivatives @, with respect

to k: V. SUM RULES
1 9 In this section some useful sum rules will be derived,
R(k)~v %In Z (34  which follow from simple scaling properties of the discrete

functional integral. These will be later used in the discussion
of the numerical results. A simple scaling argument, based

and on neglecting the effects of curvature terms entir@lich
1 2 vanish in the vicinity of the critical pointgives first of all an
xr(K)~5 —5InZ, . (35)  estimate of the average volume per edge:
ak
2(1+od) 1
One can contrast the behavior of the preceding quantities, V)~ —xd 2N (42)

. . . . d=4,0=0
associated strictly with the curvature, with the analogous

quantities involving the local volume&nd which corre- |n four dimensions the numerical simulations with=0
spond to the square root of the determinant of the metric ilgree quite well with the above formula.

the continuum Consider the average volume per site, Additional exact lattice identities can be obtained by ex-
amining the scaling properties of the action and measure.
(V)Ei<2 Vh>, (36) The bare coupling& and )\ in the gravitational action are
No \ dimensionful in four dimensions, but one can define the di-
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mensionless rati&?/\ and rescale the edge lengths so as to VI. INVARIANT CORRELATIONS
eliminate the overall length scalgk/\. As a consequence

the path integral for pure gravity, In quantized gravity complications arise due to the fact

that the physical distance between any two poxndsidy in
a fixed background geometry,

z.0 k)= [ duliie !, @3 " GE aE°
docyloy=min [ "dr o, (65 g @7

obeys the simple scaling property
is a fluctuating quantity dependent on the choice of back-

k\N1 (k2 K? ground metric. In addition, the Lorentz group used to classify

Z (N k,a)= X) Z T’T’a spin states is meaningful only as a local concept. Since the
simplicial formulation is completely coordinate independent,

Kk \ the introduction of the local Lorentz group requires the defi-

=()\)‘N1’22,_< l,—,a) =()\)‘NlZL(E2,1,a , nition of a tetrad within each simplex, and the notion of a

VA spin connection to describe the parallel transport of tensors

(44) between flat simplices. Some of these aspects have recently
been discussed from a continuum point of view 36—39.

If the deficit angles are averaged over a number of con-
%guous hinges which share a common vertex, one is natu-
rally lead to the connected correlator

whereN; represents the number of edges in the lattice, an
thedl? measure ¢=0) has been selectéd5], which is the
lattice analog of the continuum DeWitt functional measure.

This equation implies in turn a sum rule for local averages,
which (again for the specific case of til? measurgreads GR(d)E<hE ShAn D, ShiAn S(Ix—y| —d)> , (48
oX h'Dy .
2)\< > Vh> —k< > 5hAh> —N;=0, (45  which probes correlations in the scalar curvatures:
h h

Gr(d)~(VGRO)VORY) (| x—y[=d))e. (49
and is easily derived from E¢44) and the definitions in Eqs. | .
(34) and(40). N, represents the number of sites in the lattice,SiMilarly one can construct the connected correlator
and the averages are defined per sfte the hypercubic
lattice used in this paperN;=15N;, N;=50No, Nj Gv(d)E< > Ve > Ve d(|x—y| —d)> . (50
=36N, andN,=24N,). The coefficients on the LHS of the hox  hioy .
equation reflect the scaling dimensions of the various terms,
with the last term on the LHS term arising from the scalingwhich probes correlations in the volume elements:
property of the functional measure. This last formula is very
useful in checking the accuracy of numerical calculations Gy~ (Ng(x)Va(y) 8(|x—y|—d))c. (51)
and the convergence properties of the Monte Carlo samplin

and is usually satisfied to high accura®y10~%). It is easy
to see that a similar sum rule holds for the fluctuations:

«

2
- < > 5hAh> }—Zleo. (46) At shorter distances one expects a slower, power law decay
h

gI‘he correlation lengtl§ is defined through the long-distance
decay of the connected, invariant correlations at fixed geo-
desic distancal. For the curvature correlation one has, at
large distances,

2
> (VGROOVER(Y)S([x=y|~d))c ~ ™% (52

>¢

— K2

3w/ -3

3o

1\2n
Further sum rules can be derived by considering even higher (VORO)VGR(y) (x| d)>°d<§(a) ' 53
derivatives of IriZ; with respect of\ andk. The last equation
relates the fluctuation in the curvature to fluctuations in thewith a power characterized by the exponantn both cases,
volumes, and thus implies a relationship between their sinthe distances considered are much larger than the lattice
gular parts as well. In particular, a divergence in the curvaspacingd,&>1,. From scaling considerations one can show
ture fluctuation implies a divergence of the same nature irfsee belown=4—1/v.
the volume fluctuation. In light of the previous discussion, Simple scaling arguments allow one to determine the scal-
from now on we shall consider without loss of generalitying behavior of correlation functions from the critical expo-
only the case of bare coupling=1. As a consequence, all nents which characterize the singular behavior of local aver-
lengths will be tacitly expressed in units of the fundamentalages in the vicinity of the critical point. A divergence of the

microscopic length scale ™4, correlation lengtrg,
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gl)=m(k) ™t ~ Agk—k)7, (54 (@R(X)\/ER(Y))‘ ~| exp(—|x—y[/§), (62)
k— kC X—y|>¢&

signals the presence of a phgse transition, and leads to tl’\)\?nereg is the fundamental correlation length ant= 1/¢

appearance of a singularity in the free enefgfk). The  he associated mass. The above equation can in fact be con-

presence of a phase transition usually inferred from nongjgered as a definition for what is meant by the correlation
analytic terms in invariant averages, such as the average cygngth ¢.

vature. The curvature critical exponefitis introduced via

R(k) ~ _AR(kc—k)5_ (55 VIlI. BETA FUNCTION AND CONTINUUM LIMIT

k‘)k
¢ The long distance behavior of quantum field theories is

An additive constant could be added, but the evidence up tgetermined by scaling behavior of the coupling constant un-

now points to this constant being zero. Similarly one sets, fofler @ change in the momentum scale. Asymptotically free
the curvature fluctuation, theories such as QCD lead to vanishing gauge couplings at

short distances, while the opposite is true for QED. In gen-
xr(K) ~ —Ag(ke—k)~079, (56)  eral the fixed poirts) of the renormalization group need not
Ke be at zero coupling, but can be located at some fiGite
leading to a non-trivial fixed point or limit cyclg3,4,4Q.
Scaling[Egs. (19)] relates the exponerdt to v: In the 2+ e perturbative expansion for gravify1] one
analytically continues in the spacetime dimension by using
V:1+_5 (57) dimensional regularization, and applies perturbation theory
d - aboutd=2, where Newton’s constant is dimensionless. A
similar method is quite successful in determining the critical
From such averages one can determine the value,fthe  properties of theO(n)-symmetric non-linear sigma model
correlation length exponent. An equivalent result, relatingabove two dimensiong2]. In this expansion the dimension-
the quantum expectation value of the curvature to the physiful bare coupling is written a&,=A?"9G, whereA is an

k—

cal correlation lengtlt , is ultraviolet cutoff (corresponding on the lattice to a momen-
tum cutoff of the order of the inverse average lattice spacing,

R(&) ~ &4 (58)  A~1/ly). There seem to be some technical difficulties with
k—ke this expansion due to the presence of kinematic singularities

L . _ for the graviton propagator in two dimensidthe Einstein
which is obtained from Eqg54) and(55) using(57). Match- action is a topological invariant id=2), but which seem to

ing of dimensionalities in these equations is restored by SUPs,ve heen overcome recently. A double expansio ind
plying appropriate powers of the Planck lengh- VG. e=d—2 then leads in lowest order to a nontrivial fixed point
It is then easy to relate the critical exponentto the i, g apove two dimensions:

scaling behavior of correlations at large distances. The cur-
vature fluctuation is related to the connected scalar curvature

correlator at zero momentum: ,B(G)E =(d— 2)G—BoG2+ . (62
dlogA
d* f d*y(JgR R
xr(K)~ j X Y(VGROOVGRY)) ~ (k—k)o1 with Bo>0 for pure gravity. To lowest order the ultraviolet
& <f d4xJ§> K—ke ¢ ' fixed point is then aG.=1/8y(d—2). Integrating Eq(62)
close to the non-trivial fixed point one obtains, 6> G,

(59

. . o oo G ,
A dlvergence'm the fluctuatlop is then indicative of long m= A exd — dG ~ AlG-G |—1/ﬁ’(Gc)
range correlations, corresponding to the presence of a mass- B(G")) s c ,
less particle. Very close to the critical point one would ex- ¢ (63)
pect for large separations a power law decay in the geodesic

distance:

wherem s an arbitrary integration constant, with the dimen-
sions of a mass, and which should be associated with some
1 . ; oo
(JGRX)VGR(YY)) ~ ——— (60) physlcal scale. It Would.ap.pear natural here to identify it with
\ y|*" the inverse of the gravitational correlation length=m1)
or some scale associated with the average curvature. The
with the powern related to the exponent via n=6d/(1 derivative of the beta function at the fixed point defines the
+68)=d—1/v. A priori one cannot exclude to possibility critical exponent,, which to this order is independent 8§,
that some states acquire a mass away from the critical poin’' (G;)=—(d—2)=—1/v.
in which case one would expect the following behavior for The previous results illustrate how the lattice continuum
the correlation functions: limit should be taken. It corresponds Ao—x~, G— G, with

x—y|-e [X—
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1/v
+...

m held constant; for fixed lattice cutoff the continuum limit 2 11
is approached by tunin@ to G.. In four dimensions the G(r) ~ Ig\
exponentr is defined by r<¢

r

G+ Ce

: (70)

m ~ CA|G—G.", (64)  WhereG. is a pure number of order one, and below it will be
G—G, argued that 1#=3. The quantityl, is the average lattice
spacing, and the correct dimensions f@(u) (length

wherem is proportional to the graviton mass, adlis a  squaregihave been restored. In addition a bare cosmological
calculable numerical coefficient. The value ofdetermines  constant\A was re-introduced, which was previously set
the running of the effective couplinG(x), whereu is an  equal to one in Eq(26) (it fixes the overall length scale in
arbitrary momentum scale. The renormalization group tellshe functional integral over edge lengths
us that in general the effective coupling will grow or de-
crease with length scaIg: 1/, depend.ing on whethe® VIIl. NUMERICAL RESULTS
>G, or G<G,, respectively. The physical mass parameter
mis itself scale independent, and obeys the Callan-Symanzik Next we come to a discussion of the numerical methods

renormalization group equation employed in this work and the analysis of the results. As in
previous work, the edge lengths are updated by a straightfor-

J d o ward Monte Carlo algorithm, generating eventually an en-
“ﬁm_“@{CMG(“)_GJ }=0. (65 semble of configurations distributed according to the action

and measure of Eq26). Further details of the method as
As a consequence, f@>G,, corresponding to the smooth applied to pure gravity are discussed[#12], and will not
phase, one expects, for the running, effective gravitationabe repeated here.
coupling[12,15, In this work lattices of size (44X 4X 4 (with 256 sites,
B " . 3840 edges, 6144 simpligeB8XxX8Xx8X 8 (with 4096 sites,
G(r)=GO)[1+c(r/e)™"+0((r/e)*M],  (66) 144 edges, 98304 simplioed6x 16X 16X 16 (with 65536

sites, 983040 edges, 1572864 simpljce®re considered.

Vr;/]'t:h gc_:la d(é?é(;umlﬁ]beli trr]]lém;:Cr?iltfggitfgéél}rnhecg?ésc'gﬁlq?::%ven though these lattices are not very large, one should
9 ) eep in mind that as a result of the simplicial nature of the

pg)tﬁrzgg\llzlswgg?tr;mgg a?sce% ilrat%ar;gtci)égecgr?;?a:nmtmsg SIa_lttice there are many edges per hypercube with many inter-
P y bp 9 - TSN tion terms, and as a consequence the statistical fluctuations

cally it separates the short distance, ultraviolet regime Withcan be comparatively small, unless measurements are taken

characteristic momentum scale very close to a critical point and at rather large separation in

|61>M>m, (67) the case of the p_otential. The_ results presenteq here are still
preliminary, and in the future it should be possible to repeat
from the large distance, infrared region Isuc.h calculations with improved accuracy on much larger
attices.
msu>L"1 (69) The topology is restricted to a four-tor(seriodic bound-
ary conditiong. We have argued before that one could per-
whereL =(V)¥is the linear size of the system. form similar calculations with lattices employing different

The exponent is simply related to the derivative of the boundary conditions or topology, but the universal infrared
beta function forG in the vicinity of the ultraviolet fixed scaling properties of the theory should be determined only by
point: short-distance renormalization effects.

It seems reasonable that based on physical considerations
B'(Ge)=—1v. (69 one needs to impose the constraint that the scale of the cur-

. . ) ) ~_vature be much smaller than the average lattice spacing, but
Thus computing is equivalent to computing the derivative gij| mych larger than the overall size of the system, in other
of the beta function in the vicinity of the ultraviolet fixed \yorgs,

point. There are indications from the lattice theory that only

the smooth phase wit > G, exists(in the sense that space- (IH<(1?)|R|1<(V)¥2, (72

time collapses onto itself fo6<G.), which would suggest

that the gravitational coupling can onlgcreasewith dis-  or that in momentum space the physical scales should be

tance. much smaller that the ultraviolet cutoff, but much larger than
One should also perhaps recall here the fact that a batke infrared cutoff. An equivalent requirement is then

cosmological constarX, which could appear in the original

action[as indicated in Eq(26)], has been scaled out when it L 1< mslgl, (72

was set equal to one by rescaling all the edge lengths. If one

puts it back in, then the effective Newton’s constant wouldwhereL is the linear size of the systerm=1/£, andl, the

have to be multiplied by that bare scale. As a result ondattice spacing. It should be kept in mind that in this model,

obtains for the running of Newton’'s constant, valid for and contrary to ordinary gauge theories on a lattice, the lat-

“short” distancesu>m, tice spacing is a dynamical quantity. Even close to the criti-
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6
~R(k) ~R(k)

i 4t v = 0.330(6) -
k. = 0.0630(11)

| . | . \ ) . i 0 I ) A I ) 1 1

—00.01 0 001 002 003 004 005 006 007 —-001 0 001 002 003 004 005 006 007
k=1/8rG k=1/8nG

FIG. 1. Average curvatur® as a function ok, on lattices with FIG. 2. Average curvaturg as a f}lglctlon ok, on the 16 (O)
4* (O), 8 (A) and 18 (O) sites. Statistical errors lattice only. Statistical errors~O(10 °)] are much smaller than

[~O(1072)] are much smaller than the size of the symbols. Thethe size of the symbols. The solid line represents a best fit of the

AT Hh S— Ay —
thin-dotted, dotted and solid lines represent best fits of the forrﬂ‘orm A(k;—k)® for k=0.02, with6=4v—1.

R(K)=A(k.— k). tend to collapse into degenerate configurations with very
small volumes (V)/(12)?~0) (a similar two-phase structure
cal point where the curvature vanishes the lattice is by Nthas been found recently also in the dynamical triangulation
means regular, and the quantity= \(1%) only represents an approach[18], with the smooth phase replaced by a col-
“average” cutoff parameter. lapsed unphysical phaseThis “rough” or “collapsed”

The bare cosmological constantappearing in the gravi- phase is the region of the usual weak field expansiGn (
tational action of Eq(26) was fixed at 1(since this coupling —0); in the continuum it is characterized by the unbounded
sets the overall length scale in the probjemind the higher fluctuations in the conformal mode. But there appears to be
derivative couplinga was set to O(pure Regge-Einstein ac- more structure to the data.
tion). For the measure in E@26) this choice of parameters Accurate and reproducible curvature data can only be ob-
leads to a well-behaved ground state kork.~0.053 for tained fork below the instability poink, since, as already
a=0 [12,11. The system then resides in the “smooth” pointed out in12], for k>k,~0.053 an instability develops,
phase, with a fractal dimension close to 4; on the other hanchresumably associated with the unbounded conformal mode.
for k>k. the curvature becomes very largé€rough” Its signature is typical of a sharp first order transition, be-
phasg, and the lattice tends to collapse into degenerate congond which the system tunnels into the rough, elongated
figurations with very long, elongated simplicg89,11,12.  phase which is two dimensional in nature and has no physi-
Fora=0 we investigated 22 values &f cally acceptable continuum limit. The instability is caused by

On the 16 lattice 36000 consecutive configurations werethe appearance of one or more localized singular configura-
generated for each value &fand 22 different values fok  tion, with a spike-like curvature singularity. It is not associ-
were chosen. The results for different valueskotan be ated with any sort of coherent effect or the appearance of
considered as completely statistically uncorrelated, sincéong-range order, and remains localized around a few lattice
they originated from unrelated configurations. On the smallepoints. In other words, the correlation lengtiiemains finite
8 lattice 100000 consecutive configurations were generategt k,. At strong coupling such singular configurations are
for each value ok. On the 4 lattice 500000 consecutive suppressed by a lack of phase space due to the functional
configurations were generated for each valud.ofo accu- measure, which imposes non-trivial constraints due to the
mulate the results, the machine ran continuously for about 1#iangle inequalities and their higher dimensional analogues.

months. In other language, the measure regulates the conformal insta-
The results obtained for the average curvatdrfdefined  bility at sufficiently strong coupling.
in Eq.(29)] as a function of the bare couplikgare shown in It is characteristic of first order transitions that the free

Fig. 1, on lattices of increasing size wittf,48* and 16  energy develops only a delta-function singularitkaf with
sites. Figure 2 shows the 1@ata by itself. The errors in are the metastable branch developing no non-analytic contribu-
quite small, of the order of a tenth of 1% or less, and ardion atk,. Indeed it is well known from the theory of first
therefore not visible in the graph. order transitions that tunneling effects will lead to a purely

In [12] it was found that ak is varied, the curvature is imaginary contribution to the free energy, with an essential
negative for sufficiently smak (“smooth” phasg, and ap-  singularity fork>k, [26]. In the following we shall clearly
pears to go to zero continuously at some finite védueFor  distinguish the instability poiri, from the true critical point
k=k. the curvature becomes very large, and the simpliceg,.
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As a consequence, the non-analytic behavior of the fre
energy (and its derivatives which include for example the
average curvatujehas to be obtained bgnalytic continua-
tion of the Euclidean theory into the metastable branch. This
procedure, while unusual, is formally equivalent to the con- 8
struction of the continuum theory exclusively from its strong
coupling (smallk, largeG) expansion:

10

k. = 0.0639(10)
w=1/3)

) |R(K)[/
Z (k)= 2, ak", (73) i ]
n=0
o’} 2 [ -
R(K)= 2, bk". (74)
n=0

L 1 1 1 1 1 1

0
—0.01 0 0.01 - 0.02 003 0.04 005 006 0.07
k=1/8zG

Given a large enough number of terms in this expansion, th:
nonanalytic behavior in the vicinity of the true critical point

at k. can then be determined using differential or Pade ap- [ 3. Average curvature on the“lttice, raised to the third
proximants[43], for appropriate combinations of thermody- power. If §=v=1/3, the data should fall on a straight line. The
namic functions which are expected to be meromorphic insolid line represents a linear fit of the forA(k.—k). The small
the vicinity of the true critical poinf44]. In the present case, deviation from linearity of the transformed data is quite striking.
instead of the analytic strong coupling expansion, one has at
one’s disposal a set ¢in principle, arbitrarily accurate data and use the results to further constraint the errorégn k.
points to which the expected functional form can equally beand §=4v—1.
fitted. And what is assumed is the kind of regularity which is Using this set of procedures one obtains on the lattice
always assumed in extrapolating finite serfadether con-  with 4* sites,
vergent or asymptotic as in the case of QEDNap* in d
<4 [45]) to the boundary of their radius of convergence. k.=0.067620), »=0.3438), (77
Ultimately it should be kept in mind that one is really
only interested in theoseudo-Riemanniaoase, and not the
Euclidean one for which an instability due to the conformal _ _
mode is to be expected. Indeed, had such an instability not k=0.061427), »=032216), (78
occurred, one might wonder if the resulting theory still hadwhile on the lattice with 16 sites one finds
any relationship to the original continuum theory. Arguments
based on effective actions suggest that if the Euclidean k,=0.063011), »=0.3306). (79
more appropriately, Riemannipiattice theory eventually
approaches the classical continuum theory at large distancd§1ese results suggest thais very close to 1/3, and can be
and in the vicinity of the critical point, then an instability in compared to the older low-accuracy estimate on ‘afagiice
the quantum lattice theomustdevelop, since the continuum ©btained in[12] for a=0, »=0.333).
classical theory is known to be unstable. Figure 3 shows a graph of the average curvatii(é)
In the following only data fok<k, will be considered; in raised to the third power. One would expect to get a straight
fact to add a margin of safety onks<0.051 will be consid- line close to the critical point if the exponent fét(k) is
ered throughout the rest of the paper. This choice will avoiceXactly 1/3. The numerical data indeed support this assump-
the inclusion in the fits of any data affected by the sharpion, and in fact the linearity of the results closekiais quite
turnover which appears, for large lattices kat k,~0.053. striking. The computed data are quite close to a straight line
To extract the critical exponerd, one fits the computed Over a wide range ok values, providing further support for

and on the lattice with 8sites one finds

values for the average curvature to the fdsee Eq(55)] the assumption of an algebraic singularity fB(k) itself,
with exponent close to 1/3. Using this procedure one finds,
R(K) ~ —Agr(k.—k)?. (75 on the 186-site lattice,
k—kg
k.=0.063910). (80

It would seem unreasonable to expect that the computed val-

ues forR are accurately described by this function even for Since the critical exponents play such a central role in

small k. Instead the data are fitted to the above functionatetermining the existence and nature of the continuum limit,

form for eitherk=0.02 ork=0.03 and the difference in the it appears desirable to have an independent way of estimat-
fit parameters can be used as one more measure for the erriitg them, which either does not depend on any fitting proce-

Additionally, one can include a subleading correction dure or at least analyzes a different and complementary set of
data. By studying the dependence of averages on the physi-
R(k) ~ —Ag[ke—k+ B(kc—k)z]‘s, (76) cal size of the system, one can independently estimate the

k—ke critical exponents.
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FIG. 4. Finite size scaling behavior of the scaled curvature ver- 15 5 volume dependence of the average curvature,Lfor

sus the scaled coupling. Helre= 4 for the lattice with 4 sites (J), =4,8,16, and(from top to bottor) k=0.040, 0.045, 0.050 and
L=8 for a lattice with & sites (A), andL = 16 for the lattice with ~ § gs5 ' '

16* sites (O). Statistical errors are comparable to the size of the

dots. The solid line represents a best fit of the fambx®. Finite . L o .
size scaling predicts that all points should lie on the same universdfc (@S obtained from the algebraic singularity fits discussed

curve. Atk,=0.0637 the scaling plot gives the value=0.333. previously on different lattice sizes. One writes
FigLi[el/ 4 shqws a graph of the scaled curvature Ko(L) ~ kg(se)+cL ... (83)
R(K)L*™*" for different values ofL=4,8,16, versus the Lo

scaled coupling K.—k)L'". If scaling involving k and L

holds according to Eq(19), with xp=1—4v the scaling

dimension for the curvature, then all points should lie on the"'9ure 6 shows the size dependence of critical cougkings
same universal curve. From E@.9), with t~k.—k andxg obtained on different size lattices. In all three calsgs.) is
— _5=1—4v. one has ¢ first obtained from a fit to the average curvature of the form

R(K)=A(k.—k)? for k=0.02. Furthermore, ifsone assumes
| —@-1) P v - v=1/3 and extractk, from a linear fit toR*, then the
R(kL)=L" TRk LM+ O(L™)] (8D variations ink, for di?ferent size lattices are substantially
where »>0 is a correction-to-scaling exponent. The datafducedpoints labeled by circles in Fig. 5.Because of the
support well such scaling behavior, and provide a furthef€W values ofL, it is not possible at this point to extract an
stringent test on the value for, which appears to be consis-
tent, within errors, with 1/3.

0.07 T T T T T

Figure 5 shows explicitly the size dependence of the av ,
erage curvature. For smaddithe volume dependence is small, -
and gradually increases towards the critical point. Such 0.068 - 4} 4
trend is in agreement with the expectation that the correlatiol
length¢ is growing as one approaches the critical point, lead- A
ing to a more marked volume dependence. For fikedk, 0066 o 1
one expects, on the four-torus, k(L)
0.064 S 4
RuK)  ~ Ra(k)+AmK)ML" e mb4 i ......................... { ----------
L>1/m(k)
(82 0.062 - _
whereL =V¥*is the linear size of the system ant= ¢t is

the lightest mass in the theory. Combining and averaging th 0.06

estimates from correlatiori84], potential[12] and finite size

corrections to the average curvature one can in fact estimaic

the magnitude of this mass directly. One obtains FIG. 6. Volume dependence of the critical coupling as de-

~0.81(.— k)", giving a correlation length of about two termined from the singularity in the average curvature, for lattices

lattice spacings at=0.050. with L=4,8,16. The points labelled b$ are obtained assuming
The value ofk, itself should depend on the size of the »=1/3; in both cases the lines represent simple fits of the kype

system. Indeed such a dependence is found when comparirga+b/L3.

0 0.05 0.1 0.15 0.2 0.25 0.3
1/
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FIG. 8. Curvature amplitudé\; versus the higher derivative

FIG. 7. Average curvatur& versus reduced couplirig-k, on o 5jinga. The amplitude increases rapidly aspproaches zero,
a log-log scale. From top to bottora=0, 0.0005, 0.005, 0.02, 0.1, 4 pure Einstein-Regge limit.

with a the higher derivative coupling. Statistical error bars are com-

peable It e of e ol 1 ope of ach SUlgh IS Figure & shows  plot of the cunature amplule ver-

B P v Pe. Y sus the higher derivative coupliray The rapid growth close
smaller fora=0, suggesting that the higher derivative terms maskto a=0 is consistent with an expected catastrophic instabil-
the true critical behavior up to very smédl—k. N P P

ity for a<0 (wrong sign for higher derivative terms

estimate forv from this particular set of data. But sineeis A compilation of previous estimates for, together with
close to 1/3, it makes sense to use this value in(Bg. at  the new value aa=0, is shown in Fig. 9. There seems to be
least as a first approximation. a clear trend toward smaller valuesaapproaches zero, the

Figure 7 shows a plot of the average curvat®k) ver-  Einstein-Regge limit. While the Einstein action contribution
sus reduced coupling.—k, for several values of, the  pecomes the dominant one at large distances, this is no
higher derivative coupling of Eq26). a=0 corresponds to |onger the case at intermediate distances in the presence of
the pure Regge action with no explicit higher derivative lat-the higher derivative terms. One concludes thatafor0 the
tice contribution, for which the path integral is still well de- higher derivative terms tend to mask the true critical behav-
fined (at least for sufficiently smallk|), since the deficit jor, which requiresk,—k<a 1.
angles are bounded, and the edge lengths fluctuate around Figure 10 shows a plot of the average volume per site,
some average value, which is determined by the interplay o{v>, in units of the average edge lengfiil?). The curve is

the measure and the cosmological constant term. Alterngy fit of the forma+ b(k.—k)¢, and suggests a rather sudden
tively, one can think of the fluctuations in the conformal

mode as becoming boundddgain at least for sufficiently

small |k|) when a momentum cutoff of order/\(1?) is 05 — : ; ;

dynamically generated. 0.48 | J
The slope of each straight lines determines the critica o6 | IR

exponents=4v—1, and it seems clear from the graph that '

the slope is noticeably smaller far=0, suggesting that the 0.44 1 { 7

higher derivative terms mask the true critical behavior up tc 042 [ .

very smallk.—k (it was already noted i12] that for a v o4l { i |

=0 the assumption of an algebraic singularity for the aver- L

age curvature leads to a value for the curvature exponer 0381 . 1

which is much smaller than the estimate for0, namely 036 ¢ .

5~0.304)). o3 b i
Indeed it seems that one of the effects of the higher de 0.32 K]

rivative terms is to push the region of instability towards

smaller and smaller values &.—k, until it becomes nu- 03— 005 o1 o5 09

merically undetectable. But we would argue that it is only
close to this region that the correct continuum behavior is
I‘ecovel’ed. The Situation iS Similar to What happens in the FIG. 9. Critical exponenp Computed from the average curva-
weak field expansion and perturbation theory: higher derivature versus the higher derivative coupliagNote the small errorbar

tive terms do not cure the instability problems in the physi-on the recent value for ata=0. Fora>0 the higher derivative

cally relevant region of small momenta and large correlatiorterms tend to mask the true critical behavior, which requkgs

lengths. —k<a™ L
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) . ) FIG. 11. Average edge length as a function of the bare coupling
FIG. 10. Average volume per sit€V), in units of the average y The curve is a fit of the forna+b(k.—k)° for k=0.02. Statis-
edge length. Statistical errors are much smaller than the size of the.o| errors are much smaller than the symbol size.

dot. The curve is a fit of the forra+ b(k.—k)°. Note the resolution

on the vertical scale. based on a regular tessellation of the four-spfiér@. From

a continuum point of view, the existence of such a pathologi-
drop of the average volume in the vicinity of the critical cal phase is not unexpected, and is interpreted as a reflection
point. A non-analiticity in(V) atk. is in fact consistent with ~ of the unbounded fluctuations in the conformal mode ex-
the sum rule of Eq(45), which suggest that the singular pected for sufficiently largk. Indeed unbounded fluctuations
behavior in the average curvatuR{k) and the average vol- in the conformal mode in the continuum correspond to rapid
ume (V)(k) are simply related. Typically, the sum rule of fluctuations in the simplicial volumes, and this is precisely
Eq. (45) is satisfied to one part in $@r better. what is observed on the lattice fér>k., namely a rapid

As can be seen from Fig. 10, close to the transitiok.at Vvariation of simplicial volumes when going from one sim-
the average volume per site expressed in units of the averadiéeXx to a neighboring one.
lattice spacing,(V)/(12)2, shows only a weak singularity ~ Figure 11 shows a plot of the average edge lendif).
when the critical point is approached from the smooth phas&he curve is a fit of the forna+b(k.—k)®, and suggests a
(k<k.), and tends to a finite value. On the other hand, in thgapid increase in this quantity towards the critical point at
rough phaseK>k.) the volume per site seems to approachk.. Indeed as the critical point is approached the number of
smaller and smaller values as the lengths of the runs arkirly small and fairly large edge lengths proliferate, leading
extended. In fact it would seem that in the rough phase th& an increasingly wide edge length distribution.
volume per site can be made to approach zero, at least for Figure 12 shows a plot of the average curvature fluctua-
some simplices. One refers therefore alternatively to thigion xz(k) defined in Eq(31). At the critical point the cur-
phase as the collapsed or polymer-like phase, since its effewature fluctuation diverges, by definition. As in the case of
tive dimension is Z.Furthermore, the relaxation times in the the average curvatur&(k) analyzed previously, one can
rough phase become exceedingly long, with the system geextract the critical exponerdt andk, by fitting the computed
ting stuck in some degenerate, spike-like configurationgalues for the curvature fluctuation to the fofsee Eq(56)]
without being able to get out of it again. _1-3

It seems difficult to see how the collapse of the simplices xr(k) ~ AXR( ke=K) ' (84)
could be averted by choosing a different lattice structtoe k=ke

example a random lattigesince its properties seem to be ag for the curvature itself, it would seem unreasonable to

uhnaffected E]y crrzanges in the measure dor tr('je agtiﬁn, atl:eas”z%pect that the computed values fAr are accurately de-
the extent they have been investigated. Indeed the collapsegyineq by this function even for sméll Instead the data are

polymer-like phase appears even in the simplest mOdeIﬁtted to the above functional form for eithée=0.02 ork

=0.03 and the difference in the fit parameters can be used as
one more measure for the error. Additionally, one can in-
2An elementary argument can be given to explain the fact that thelude a subleading correction

collapsed phase fdt>k. has an effective dimension of 2, as was

found in [12]. The instability is driven by the Euclidean Einstein xr(K) ~ —A, [ke—k+ B(k.—k)?]" =9, (85

term in the action and, in particular, its unbounded conformal mode k—ke

contribution. As the manifold during collapse reaches an effective .

dimension of 2 this term turns into a topological invariant, unable to@Nd use the results to further constraint the errord.pn k.

drive the instability further to a still lower dimension. andé=4v—1.
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FIG. 14. Inverse of the logarithmic derivative of the average
curvatureR (k). The straight line represents a best fit of the form
fA(kcfk) for k=0.02. The location of the critical point ik is
consistent with the estimate coming from the average curv&ure
From the slope of the line one computes directly the exponent

FIG. 12. Curvature fluctuation on lattices with 41), 8* (A)
and 16 (O) sites. The thin-dotted, dotted and solid lines represen
best fits of the formyz(k)=A(k,—k) ™1~ for k=0.02.

The values for§ andk; obtained in this fashion are con- . S .
sistent with the ones obtained from the average curvaturf‘er support for the assumption of an algebraic singularity
R(K), but with somewhat larger errors, since fluctuations ard®" X=(K) itself, with exponent close te-2/3. Using this
more difficult to compute accurately than local averages, angrocedure one finds, on the “8ite lattice,
require much higher statistics. Using these procedures one

obtains, on the lattice with f6sites, k.=0.064117), (87)

k.=0.063630), »=0.31738). (86) which is completely consistent with the value obtained from
R 3 (see Fig. 3 and related discussioand suggests again
Figure 13 shows a graph of the inverse curvature fluctuatiothat the exponent must be close to 1/3.
x=(k) on the 18-site lattice, raised to power 3/2. One would Figure 14 shows the results for the logarithmic derivative
expect to get a straight line close to the critical point if theof the average curvatur&(k), obtained from the data
exponent foryz(k) is exactly —2/3. The numerical data shown in Figs. 3 and 12. From the definition of the average
indeed support this assumption. The computed data are coftrvatureR and curvature fluctuatiofEgs. (29) and (31)],

sistent with linear behavior for smal=0.02, providing fur- ~and the fact that both are proportional to derivatives of the
free energyF with respect tok [Egs. (34) and (35)], one

T . T T . . T notices, for the ratio,

2(1%)xr(k) [ 9 2
| —R(k) "‘(%In ZL)/ (@M ZL)

10

6 : : ! 1 i I i InZ 88
[ea (k)] ak Mok oL 9
a i The assumption of an algebraic singularitykifor R andyr
ke = 0.0641(17) [Egs.(55) and(56)] then implies that the logarithmic deriva-
2t . tive as defined above has a simple polé&kat with residue
o=4v—1:
Lot o0 0.61 002 003 004 005 006 007 2(1%)x (k) S
k=1/8rG RE ., kK (89

FIG. 13. Inverse curvature fluctuation raised to the power 3/2, N ] ] ) .
on the 16 (O) lattice; data are scaled by a factor 6fL00. The ~ With the critical amplitude dropping out of this particular

straight line represents a linear fit of the fomik.—k). The loca- ~ expression. The above result is general and does not rely on
tion of the critical point ink is consistent with the estimate obtained k being real. This suggests that in principle the method of
from the average curvature, but with a somewhat larger error.  Paderational approximantéwvhich applies only to meromor-
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FIG. 15. Finite size scaling behavior of the scaled curvature
fIgctuaAtio_n versus the scaled coupling. Here-4 for the lattice FIG. 16. Inverse curvature fluctuationyk/, versus the average
with 4* sites (J), L=8 for the lattice with § sites (), andL  curvature,R (OJ), and 14/xx versusR (O). Points shown are for

=16 for the lattice with 16 sites O). The solid line represents a the largest, 16site, lattice. Forv=1/3, 1Ay is expected to be
best fit of the form 1/4+bx°). Finite size scaling predicts that all |inear inR for small R.

points should lie on the same universal curve.kAt0.0637 the

scaling plot gives the value=0.318. The error inv can be estimated, for example, by using a

. . . ... more elaborate fit of the type
phic functiong can be employed to locate singularities in

x=(K), even for complexk [43,44. Using this method on the Xr ~ AR+BR?2|#=24r=1) (94)
16* lattice one finds R—0
k.=0.063511), »=0.3399). (90) For v=1/3 the exponent becomes equaH@, and one has

the simple result
It is encouraging that the above estimates are in good agree-
ment with the values obtained previously using the other xr ~ AIR| 2 (95)
methods. R—=0
Figure 15 shows a graph of the scaled curvature fluctu
tion yr(k)/L?"~* for different values olL=4,8,16, versus

i — 1y Wy o :
the scaled couplingic—K)L™. If scaling involvingk andL and the correlation lengt§j diverge. This result is further

holds according to Eq(19), with t~k.—k andxo=1-4 supported by the consistency of the values Kgrobtained

=2—4v, then all points should lie on the same universal: d dentlv f K d K) (Figs. 2. 3. 4. 12. 13
curve. From the general E(L9) one expects, in this particu- |1n4 e:ri;] 16,;” y fromR(k) and xz(k) (Figs. 2, 3, 4, 12, 13,

lar case,

@ne concludes that the evidence supports a vanishing curva-
ture at the critical point, where the curvature fluctuatjon

As an independent measure of the fluctuation one can also
investigate the behavior of the edge length fluctuation de-

XR(KL) =L [xr((ke=KL*™)+OL )], (9D fired as

where >0 is again the correction-to-scaling exponent. 1 Ny 2 Ny 2
Again the data support such scaling behavior, and provide a (k)= _[ < ( > |.2) > - < > ||2> ] ~ (ke— k)77,
further estimate on the value for, close to 1/3. Ny i=1 i=1 k

Figure 16 shows a plot of the curvature fluctuatigp (96)

versus the curvatur®. If the curvature approaches zero at , . . L
wherey is a critical exponent. Using an analysis similar to

the critical point where the curvature fluctuation diverges, . :
one would expect the curvature fluctuation to divergeRat what is done for the curvature and curvature fluctuation, on

—0. One has the 16 lattice it is found to diverge at

—>kc

xr(R) ~ A|R|A- I a|R|“4r-2/(4v=1) (g k.=0.060923) (97)

k—k . - . .
¢ in agreement within errors with the previous values quoted

An advantage of this particular combination is that it doesfor k.. One would expect such a fluctuation to be related to
not require knowledge df. in order to estimate.. Using all  the fluctuations in the local volumes, and, by the sum rule of

points corresponding tk=0.02 one finds Eq. (45) which relates the fluctuations in the volume to fluc-
tuations in the curvature, one would expegtl—56=2
r=0.3286). (93 —4v. The numerical results for gamma have larger errors
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k.=0.063G11), »=0.3359), (99)

0.12 T T T T

o which suggests = 1/3 for pure gravity’

0.08 | | IX. CRITICAL EXPONENTS AND PHENOMENOLOGY

In this section some consequences of the results presented
a 0.06 - 8 above will be discussed, with ultimately an eye towards pos-
Smooth Phase sible physical applications. Naively one would expect simply
0.04 - . on the basis of dimensional arguments that the curvature
Rough Phase scale gets determined by the correlation length
0.02 4
R ~ &, (99)
OF------ O O e e m R—0

but one cannot in general exclude the appearance of some
k. non-trivial exponent.
In the previous section arguments have been given in sup-
FIG. 17. Phase diagram for the model in tha plane. A criti- port of the valuer=1/3 for pure gravity. From Eq(58)

cal line separates the smooth, strong coupling, phase from thgelating the average curvature to the correlation length one
rough, weak coupling, phase. The dotted line denotes the pure Eithgg

stein theory, without higher derivative terms.

but give values between 0.46 and 0.85, certainly consistent (100

with a value ofy=2/3 for v=1/3.

Finally F'Q- 17 summarizes the known |_nfo_rmat|on abOUtand the correct dimension for the average curvafdreas
the phase diagram in thea plane. The solid line separates poen restored by supplying appropriate powers of the ultra-

the smooth phase with small negative curvature from th?/iolet cutoff, the Planck lengthp=G. One notices that

rough, polymer-like phase. _ . close to two dimensions the exponentdhdeed approaches
Table | summarizes the results obtained for the critical, sincer~1/(d—2), and the classical result is recovered.

pointk.=1/8mG, and the critical exponent. From the best  For ,=1/3 in four dimensiorfsone then obtains the re-
data(with the smallest statistical uncertainties and the leasgnarkably simple result
systematic effecjsone concludes

R(E ~ g7
Kok, ||23 d+1/V§d—1/V

1
R( f)k:kc ToE (10D

TABLE |. Summary table for the critical poirk, and the criti-

cal exponenty, as obtained from the Iargest lattice With"’]ﬁtes. An equiva|ent form can be given in terms of the curvature

The last three entries assume a critical poink at 0.0636.

scaleH,, defined throughR=—12H2 and which has di-
mensions of a mass squared. One has close to the critical

Method K¢ v point
R vsk 0.063@11) 0.3306) 5
Ho=Cpupm, (102
R3vsk 0.063910) - o
Yr VS k 0.063630) 0.31739) where up=1/\/G is the Planck massn=1/¢ is the inverse
gravitational correlation length, an@,~4.9 a numerical
X2 vsk 0.064117) -
xr/((1DR) vs k 0.063511) 0.3399)
3The valuer=1/3 does not correspond to any known field theory
Xr VSR ) 0.3286) or statistical mechanics model in four dimensions. For dilute
xi2 Vs k 0.060923) y=0.46(8) branched polymers it is known that=1/2 in three dimensions
! [46], andv=1/4 at the upper critical dimensiah= 8 [47], so one
X12VSR - v=0.54(7) would expect a value close to 1/3 somewhere in between. | thank
- John Cardy for a discussion on this point.
R FS scaling - 0.332) “For all scalar field theoriespin s=0) in four dimensions it is
. known that v=1/2, while for the compact Abelian () gauge
FS I - 0.31@0
XR scaling 180 theory (s=1) one hasv=2/5 [49]. The valuev=1/3 for pure
xi2 FS scaling - v=0.85(6) gravitation 6=2) in four dimensions is then consistent with the

simple formulav=1/(2+s/2).
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constant of order 1; the value f@ is extracted from the v=1/3 clearly has some aesthetic appeal. Additional cosmo-
known numerical values foR and m close to the critical logical and astrophysical arguments and proposed tests can
point atk. . be found in a recent papgbl].

One can raise the legitimate concern of how these results One further observation can be made regarding the run-
are changed by quantum fluctuations of matter fields. In th@ing of G. Assuming the existence of an ultraviolet fixed

presence of matter fields coupled to graviggalars, sping point, the effect.ive gravitational coupling' is given by Eg.
fermions, vector bosons, spin-3/2 fields, ptme expects the (66) for “short distances™r <¢£, but now with an exponent
value forv to change due to vacuum polarization loops con-¥— 1/3:
taining these fields. A number of arguments can be given _ 3 6
though for why these effects should not be too dramatic, CIN=GO)[A+c(r/8) ™+ O((r/ &), (104
unless the number of light matter fields is very large. First, inwith ¢ a calculable numerical constant of order 1. The ap-
the case of a single light scalar field the vacuum polarizatiorpearance of in this equation, which is a very large quantity
effects are so small that they are barely detectable in thpy Eq.(102), suggests that the leading scale-dependent cor-
numerical evaluations of the path integfdB]. Furthermore  rection, which gradually increases the strength of the effec-
one notices that to leading order in the-2 expansion the tive gravitational interaction as one goes to larger and larger
exponentr only depends on the dimensionality of space-length scales, should be extremely srfall.
time, irrespective of the number of matter fields and of their |t is only for distances comparable to or larger thiathat
type[41]. Finally one can compute for example the effects ofthe gravitational potential should start to weaken and fall off
scalar matter fields on the one-loop beta function in the Zexponentially, with a range given by the gravitational corre-
+ e expansion for gravity, and findg,=(2/3)(25-n;) lation lengthé:
wheren; is the number of massless scalar field$]. Thus,
. . . . . —rlé

unlessn; is large, the matter contribution is quite small even V(r) ~ _G(r)ﬂlﬂze (109
to next-to-leading order in the2e expansion. The present (> r '
evidence would therefore suggest that the approximation in
which vacuum polarization effects of light matter fields areln many ways these results appear qualitatively consistent
neglected should not be too unreasonable. with the expected behavior of the tree-level graviton propa-

It seems natural to identifil, with either soménegativé  gator in anti—de Sitter spad&2,53. In the real world the
average spatial curvature or possibly with the Hubble conrange ¢ must be of course very large. From the fact that
stant determining the macroscopic expansion rate of theuper-clusters of galaxies apparently do form, one can easily
present universe[12,15. In the Friedmann-Robertson- set an observational lower limit>10°° cm.

Walker (FRW) model of standard cosmolod$0] one has, It is unclear to what extent gravitational correlations can
for the Ricci scalar, be measured directly. From the definition of the curvature
correlation function in Eq.(53) one has for “short dis-
R\ k R tances”r<¢ and for the specific value=1/3 the remark-
RRicci= —6[ R +¥ + ﬁ] , (103  ably simple result

A
(GROOVGRY) (x| =d)e ~ Gz, (10

<¢

whereR(t) is the FRW scale factor, ankd=0,=1 for spa-

tially flat, open or closed universes respectively. Today the
Hubble constant is given bMSz(R/R)tZ but it is eventu- With A a calculable numerical constant of order 1. One can
OI

I ted o sh | > tion in ti dit contrast this behavior with the semiclassical result attained
ally expected 1o snow some Slow varation in ime, and fiSgose 1o two dimensiongand which incidentally coincides
characteristic length scateH, *~10?® cm today is compa-

with the lowest order weak field expansion resi88]),

rable to the present extent of the visible universe. Under sucjicn gives instead for the power the valued2(1/v)

circumstances from Eq102 one would expect the gravita- ~2[d—(d—2)]~4, as expected on the basis of naive di-

tional correlation¢ to be significantly larger thanHal. A mensional argume,ntsR(~ %h).

potential problem arises though in trying to establish a rela- |t gne considers the curvatuReaveraged over a spherical

tionship between quantities which are truly constdstsch volumeV, = 47133,

as the ones appearing in E(L02], and H, which most

likely depends on timé.In any case it is clear that some of — 1 3z = -

these considerations are in fact quite general, to the extent JgR= V_Jv d*xVg(x, HR(X 1), (107

that they rely on general principles of the renormalization '

group and are not tied to any particular valuevpfalthough  one can compute the corresponding variance in the curva-
ture:

5The only exception being the steady state cosmological models,
whereH, is truly a constant of nature. These models are not fa- SAnd suggests that the deviations from classical general relativis-
vored by present observations, including detailed features of théc behavior for most physical quantities are in the end practically
cosmic background radiation. negligible.
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1 . R . R 9A that the physical correlatioé diverges.
[5(\/§R)]2=V—zf dsxf d3y<ng(x)ng(y)>c=p- If this prescription is followed, an estimate for the non-
P vr (108 perturbative Callan-Symanzik beta function in the vicinity of
the fixed point can be obtained, to leading order in the de-
As a result the rms fluctuation ofgR averaged over a Viation of the bare coupling from its critical value. The re-

spherical region of size is given by sulting scale evolution for the gravitational constant is then
quantitatively quite small, if one assumes that the scaling
_3\/K 1 violation parameter is related to an average curvature and its
& @R)_T PN (109 characteristic scalély. Its infrared growth, consistent with

the general idea that gravitational vacuum polarization ef-
while the Fourier transform power spectrum at snhai$ fects cannot exert any screening, suggests that low energy
properties of quantum gravity are inaccessible by weak cou-

i o 47m2A 1 pling perturbation theory: low energy quantum gravity is a

Pk:|\Fng “Tov k- (110 strongly coupled theory. On a more quantitative side, as

pointed out in the discussion there are a number of attractive
One can use Einstein’s equations to relate the local curvatufeatures to the pure gravity resuit= 1/3, including a simple
to the (primordia) mass density. From Einstein’s field equa- form for the curvature correlations at short distances.
tions Compared to results found in dynamical triangulation
models, where the average curvature is of the same order as
the ultraviolet cutoff in the vicinity of the critical point, here

Ruv= EgMVRZSWTMV (111 the strong coupling, smooth phase is found not to be col-

lapsed. A likely explanation for the unphysical behavior of

for a perfect fluid the dynamical triangulation model in the strong coupling
phase is the lack of perturbative gravitons in the weak field

Tu=Pgut(ptpu,u, (112 |imit or equivalently, the absence of smooth deformations of

the geometryincluding gauge modesnd of classical gravi-
tational waves.
It seems legitimate to ask the question whether the present
R(X)~87Gp(X). (113 lattice model for quantum gra\_/ity provides any insight intq
the problem of the cosmological constant. The answer is
As a result one expects for the density fluctuations a powepoth yes and no. To the extent that a naive prediction of
law decay of the form quantum gravity is that the curvature scale should be of the
same order of the Planck lengiR,~ 1/G, the answer is defi-
nitely yes. Indeed it can be regarded as a non-trivial result of
(P(X)p(¥))e ~ x—y[?" (119 the Jattice models for gravity that a region in coupling con-
beyl<e stant space can be found where space-time is stiff and the

Similar density correlations have been estimated from obsefUrvature can be made much smaller tha@.1/n fact the
vational data by analyzing known galaxy number densityvidence indicates that the average curvafreanishes at
distributions, giving a value for the exponent of about 1.77the critical pointk.. And this is achieved with a bare cos-

+0.04 for distances in the 10 kpc to 10 Mpc rari§é]. mological constar_w\ which is of_ order_ 1in units of the
cutoff. Phrased differently, the dimensionless ratio between

the renormalized and the bare cosmological constant be-
comes arbitrarily small towards the critical point.

Numerical simulation methods combined with modern At the same time the effective long distance cosmological
renormalization group arguments and finite size scaling canonstant is non-vanishing and of ordeg,1and the value
provide detailed information on non-perturbative aspects of @ero is only obtained wheé is exactly zero, which happens
lattice model of quantum gravity. It has been known foronly at the critical poink.. Thus to make the effective cos-
some time that the lattice model has two phases, only one ahological constant small requires a fine-tuning, in the sense
which is physically acceptable. In this work we have de-that the bare coupling.-k has to be small. But since the
scribed in some detail the properties of the latter smootltorrelation length determines the corrections to the Newton-
phase, and provided quantitative estimates for the criticalan potential(and in particular its eventual decrease for large
point, the scaling dimensions and the behavior of correlaenough distancesit would seem unnatural to have a short
tions at distances large compared to the cutoff. In spite of theorrelation lengtté: in such a world there would be no long-
fact that the Euclidean theory becomes unstable as one apange gravitational forces, and separate space-time domains
proaches the critical point &, it is still possible to deter- would have decoupled fluctuations. From this perspective,
mine by a straightforward analytic continuation the physicallong range forces and a small cosmological constant go hand
properties of the model in the vicinity of the true fixed point, in hand. Quantum fluctuation effects show that hyperbolic
defined as the point where a non-analyticity develops in thepace-times with small curvature radii cannot sustain long-
strong coupling branch o, (k), and where scaling implies range gravitational forces, at least in this model.

one obtains for the Ricci scalar, in the limit of negligible
pressure,

X. CONCLUDING REMARKS
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