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Perturbative Quantum Gravity

Compute QM amplitudes by Feynman diagram 't Hooft. & Veltman, 1974

perturbation theory:
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Bad high energy behavior
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Non-Renormalizability in Four Dimensions

[ = A / il /g — 161 - f g ‘@ Radiative corrections generate a
T

host of new interactions...
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= 4-d perturbation theory in (ordinary) gravity
seemingly leads to a dead end.

= Non-perturbative methods ? =
non-perturbative regularization, search for a new vacuum ...



Feynman Path Integral

Reformulate QM amplitudes in terms of discrete
Sum over Paths

FEYNMAN'S
THESIS

- non-commuting operators P,Q replaced by random
Wiener paths.

* In complex time t =-iz probabilities are real
(as in statistical mechanics: KT — #).

\ paths interfere q

constructively
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Path Integral for Quantum Gravitation

Sall2 = 4, ol DeWitt approach to measure: Volume
logll™ = /d v l9(2)] 09, (%) 09a5(%)  glement in function space obtained from
super-metric over metric deformations.
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Zcont — [[dg,,w] e—)\ fdmx/g-i-ﬁfdmﬁl%

ElRue] = fd = b Viwrohae Vv = [P12) ] p? Euclidean E-H action unbounded
below (conformal instability).



Only One Coupling

Pure gravity path integral:

7 — / d gu] el
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Rescale metric (edge lengths):

2/d . —2/d
QL-V = )\0/ my me = A / g

Ielg) = A [do V7 - —A—25 42 [ar VT R

In the absence of matter,

only one dimensionless
coupling:

-

& = AT 2

Similar to the g of QCD !



Functional Measure cont'd

Add volume term to functional measure (visner 1955) :
coordinate transformation z* + e (x)

s N )
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H (det ?‘;f:rf-‘ ) = H [det(6,” +0a€”)]" = exp { ~+8(0) /dd;r &,f“} =1 [Faddeev & Popov, 1973]
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Skeptics should systematically investigate (on the lattice) effects
due to the addition of an ultra-local term of the type

H [Q(m)]a/g = exp{%aéd(O)/ddm lng(;z:)}

T

Due to it's ultra-local nature, such a term would not be expected
to affect the propagation properties of gravitons (which are det. by R-term).



Perturbatively Non-Renorm. Interactions

Some early work :

K.G. Wilson, Quantum Field Theory Models in D < 4, PRD 1973.

K. Symanzik, Renormalization of Nonrenormalizable Massless ¢* Theory, CMP 1975.
G. Parisi, Renormalizability of not Renormalizable Theories, LNC 1973.

G. Parisi, Theory Of Nonrenormalizable Interactions - Large N, NPB 1975.

E. Brézin and J. Zinn-Justin, Nonlinear o Model in 2+& Dimensions, PRL 1976.



® Wilson expansion: formulate in 2+¢ dimensions...

G becomes dimensionless in d = 2 ... “Kinematic
singularities” as d — 2 make limit very delicate.

puvpo (p)

But G is dim-less and theory is pert. renormalizable,

5= Gli) = BG(0)

2 20
BG) = (d=2)G — (25 —ny) - 5 (25 —ng) G* + ...
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More on 2.000001 dim’s ...
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Graviton loops Graviton-ghost loops

e Expansion parameter ¢ =2 not small ...

e Singularity structure in d > 2 unclear (Borel)...

e But analytical control of UV fixed point at Gc . G2

) — /\GC
1 i@kﬁ)(d—%’?

Nontrivial scaling determined by UV FP. /

e g o
m ~ A exp (f ,dG ) ~ A|G- GC‘—l/ﬁ (Ge)

B(G") ) ¢—G.



Detour : Non-linear Sigma model

« Field theory description [O(N) Heisenberg model] :

ﬁd 2
[ do | H d (o — 1) exp T d,0% (1) O,0%( [dd“]"j )
Coupling g becomes dimensionlessin d = 2. - Wegner, 1989

N.A. Kivel et al, 1994

For d > 2theory is not perturbatively renormalizable, & srezinands. Hikami, 1996
but in the 2+ € expansion one finds:
dg* N -2 4

AT = B%) = ([@-2)¢" - —

Phase Transition = non-trivial UV fixed point; new non-perturbative mass scale.

+0 (4% (d-2)g")




Renormalization Group Equations

In the framework of the double (g and 2+¢) expansion the model
looks just like any other renormalizable theory, to every order...

0 d n 9, -
Koo Bl — =4 — | 0™ (p;, g,k A) =

; Callan-Symanzik Eq.
Aa—A|ren.ﬁxed g = rB(Q)

... but the price one pays is that now one needs ¢ — 1!
Similar result are obtained in large N limit [Parisi]...



But is it correct ?

Experimental test: O(2) non-linear sigma model describes
the phase transition of superfluid Helium

Space Shuttle experiment (2003)

High precision measurement of specific heat of superfluid Helium He4

(zero momentum energy-energy correlation at FP)

LIPA et al.
1201
o 100
x
: _ _ 3
J.A. Lipa et al, Phys Rev 2003: a=2-3v =-00127(3) g sl
S eof
4-¢ expansion to four loops, & to six loops ind=3: a=2-3v =-0.0125(4) oo
—10 6 -6 = -2
10 10 111%_1_}" 10 10
FIG. 15. Semilogarithmic plot of the specific heat vs reduced
. R temperature over the full range measured. Below the transition the
One Of the mOSt aCCu rate pred ICtIOnS Of QFT - 3ata (gcloseg si/)mbols) were Phu}ed \vi.lh a densiFy of 10 bvius per
ecade, and above (open symbols) with a density of 8 bins per
decade. Lines show best fits to the data.

Theory value reviewed in J. Zinn-Justin, 2007



The non-linear sigma model in 3d provides an explicit
example of a field theory which :

v' Is not perturbatively renormalizable in d=3 .

v Nevertheless leads to detailed, calculable
predictions in the scaling limitr » a ( g2 « A?2) .

v Involves a new non-perturbative scale é essential in determining the
scaling behavior in the vicinity of the FP.

v" Whose non-trivial, universal predictions agree with
experiments.



Key question:

What is left of the above q. gravity scenario in 4 dimensions?

A

B(G)

Y

Ge G




Strongly coupled gravity

“Hic sunt leones”

The Roman’s description of unknown territory...



Lattice Theory



Lattice Quantum Gravity ..

Sy

Lattice regqularization provides
explicit short distance cutoff.

>

YV VYV

Regularized theory is finite,
allows non-perturbative
treatment.

Methods of statistical field
theory.

Multi-year experience with
lattice QCD.

Numerical evaluation feasible.

Continuum limit requires UV
fixed point.

&0

-

statistical mechanics

ensemble
ensemble average
exp{—PrH}
By [ dPzH
finite 3,

zero temperature

IS !

quantum field theory
phase space
path integral
exp{—8F}
[dzy [ d®zL
finite J' dig =T

infinite time extent T

e

.



Proto: Wilson’ Lattice Gauge Theory

* Uny = exp(—iagha A3,)
~3 W5, Fi®
<€
A
Flaquetts Y 4% 3 Wilson loop A
Wilson Line IIv
(Palyakov loop) J
- e U oy Pas 0
1 @) (7" - gha Ay )h(z) + O(a?)
Local gauge invariance , S— e
L~
— exact lattice Ward identities @/, I
@ ¢ \\
Propagator = 1/'M \ 4/
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Lattice Gauge Theory Works

1

Lacn = — LB KO 435 4% (D, v
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Lattice gauge theory provides (so far) the
only convincing evidence for confinement

and chiral symmetry breaking in QCD.

q 1 ] T T 1

1 AVerage '
.

Hadronic Jets
. e'e rates
1
| ]

Photo-production
———

, Fragmentation

» Z width
-—O0—

ep event shapes |

Polarized DIS
Deep Inelastic Scatteting (DIS)
i

' ' tdecays

Spectroscopy (Lattice)

"O‘I
Y decay o
——1 |
1 1 | 1 1 I: : 1 1 1 | 1 1
0.1 0.12 0.14
a (M)

Summary of the value of ag(Myz) from various processes. The values
shown indicate the process and the measured value of ag extrapolated to = M.
The error shown is the total error including theoretical uncertainties. The average
quoted in this report which comes from these measurements is also shown. See text

for discussion of errors. .
[Particle Data Group LBL, 2008]



Quantum Continuum Limit

= Naive continuum limit : a—0 (A=n/a— )

= Quantum continuum limit

(based on RG) :
a—0 gla)—0

1
& = = const. X a exp
Mphys

1
2/09°(a)

} fixed

A phase transition (UV fixed point) is
required for the existence of a non-
trivial continuum limit [Wilson, 1974].

or simply: | ¢/a — oo




Wilson Loop in SU(N) Gauge Theories

<€

= Wilson loop in Lattice Gauge Theories,

W(C) = <trTexp{ig fCAﬁ(x)dx#D. ~ o EXP(—A(C) ED), ! : T ]

Gives linear confinement [eextbook result, Peskin & Schroeder p. 783] A

A
P
<
<
<€

A

& = gauge correlation length |

A
<

Golx) = <tr? exp{ig fcg Aﬁ(x")dxm} D—g

X (x) trfPexp{ig fCH Aﬂ(xu)dxm}(o» vt snerpl=E

C

... Both results are essentially geometric in nature.
They follow (almost trivially) from the use of the SU(N) Haar measure.



Simplicial Lattice Formulation

“General Relativity without coordinates” (rreg VITW ch 42

» Based on a dynamical lattice.

= [ncorporates continuous local invariance.

= Puts within the reach of computation
problems which in practical terms are
beyond the power of normal analytical
methods.

= |t affords any desired level of accuracy
by a sufficiently fine subdivision of the
space-time region under consideration.




Curvature - Described by Angles

SV
I
g°|||
N

2
h
P 1([2_ Ny E )
gij = o \'Li+1 T 1541 7 bl 541
1
Vi = a detg,'j
sinfy = d_ Vi Vd—,z
d—1 Vg, Vi
6h =27 — Z 9(5
d—simplices
meeting on h
d=3 d=4 Curvature determined by edge lengths

T. Regge 1961
J.A. Wheeler 1964



Lattice Rotations

f ath F}‘ d.’]i)‘ i)
Qﬁﬁ (Sﬂ+ l) — Rﬂu (P) @V (Sl) RND — [P e betweelr)l simplices :|

R(C) = R(s1,8,)---R(s2,51)

Due to the hinge’s intrinsic orientation, only components of
the vector in the plane perpendicular to the hinge are rotated:

Wil = N g s Vo »= Ao

Elementary polygonal path around a hinge (triangle) in four dimensions.

H

R~ (C) = (G(SU)

d(h) . . : : .. ,
Biuxalh) = A( i)z Uy (h) Uno (B) Exact lattice Bianchi identity,
c(h) L
H [ea(h.){f(h)]* _ 1
5 ] inges ¥
R(h) —_ 2 (1) meeﬁ}:}g%u :Ieldgep




Lattice Action

Ve (z) — > W

hinges hDx
\/aR(ZC) — 2 Z JhAh
hinges hD=x
VIR R () = 4 ) (6h4n)*/Va
hinges hDz

More than one way to finite-difference a continuum expression...

= Alternate actions can be a useful device for analytical estimates (i.e. large d)

= Should exhibit same continuum limit (universality)

Ir(®) = —k Y sV (h) k=1/(87G)
hinges h
Lom(®) = =k > twag(h) R (h)_ J. Frahlich 1980

hm&,cy \ — sin {5?;

hinge bivector rotation matrix

T.D. Lee 1984
Caselle, d’Adda Magnea 1989



Choice of Lattice Structure ==

A not so regular lattice ...

Al Timothy Nolan,
N
224 Carl Berg Gallery, Los Angeles

... and a more regular one:

Regular geometric objects

(hypercubes) can be stacked -
to form a regularly coordinated 7, AT
lattice of infinite extent. =




Lattice Measure

Metric deformations linearly related to
squared edge lengths

6gi;(17) = % (013, + 5133' - 53%’)

Jacobian from g’s to I's is constant within a simplex, o
1 o . d(d+1) /2 CMS, 1982 ; T.D.Lee, 1982
—+/det g;:(s dgii(s) = (=1)" 2 V. (1)1’ di? J.Hartle, 1984 ;
(d!\/ 9is )) g 9ii(s) = (-3) [Va®)] kl;[l = H. & Williams, 1984 ;

B. Berg, 1985 .

S /[dl2] = /OOO IT (Va(s))” H di;; Ol

8

Alternatively, can construct the discrete analog of DeWitt’s (super)
metric over metric deformations, and obtain same result [CMS]...

13g(s) 11 = Y G* (g(s)) Ggi;(s) Sgri(s)

s



Lattice Measure is Non-Trivial

There are important nontrivial constraints on the lattice gravitational measure,

[y = [T 1T wats)” TT az o)

which is generally subject to the “triangle inequality constraints” .

l?_j > ()
{ g FIN® . we

Generally these are implied in the continuum functional measure as well,
but are normally not spelled out in detail ...



Lattice Path Integral

Lattice path integral follows from edge assignments,
1

1
gij — 2 (l2a—|-1 _I_ll_]-l—]. lz2+13+1) Vg = d'\/detg”

Islg] = )\oAdde\/ﬁ - Ad‘Qfdaz VIR —— I = A ) Vi(l?) =280 ) dn(1?) An(P)
h h

167 G[)

7 — /[dgﬁi-v] e—)\o fdd:v\/@—k IG}TGfdd;v GgR — 7 = j.[ﬂTEE] t-:—fL[F]

[1dgu) = [T1 b@I=5** [ dgute) — [l = [~ [T % TT Wty o)

x U=

Without loss of generality, one can set bare A, =1;

Besides the cutoff, the only relevant coupling is k (or G).



Lattice Weak Field Expansion

« Exhibits correct nature of gravitational degrees of freedoms in the /attice weak field limit.
» Allows clear connection between lattice and continuum operators.

... start from Regge lattice action Rocek and Williams, PLB 1981

— 250 Y On(l?) An(l?)
h

(191}

... call small edge fluctuations “e” :
1
IR = § Ze@- Mz‘j 6j
ij

... then Fourier transform, and express result in terms of metric

deformations .
8gij(I*) = 5 (815, + 813, — dI%;)

... Obtaining in the vacuum gauge precisely the familiar 77T form in k-0 limit:




Lattice Higher Derivative Terms

= HDAQG is perturbatively renormalizable, asymptotically free, but contains s=0 and s=2

ghosts, .
/ d'z /g R*
/dltx‘/'aR“"RW @ [1_ 1 |1, 1
' k < h’l’“”(q) h’PfT(_q) = QRMI/,OJ 5T T |k +P,uppr,r ) + 5 .k
/d4 \fR Rp:y)\a q qz"'g q q2+%
T/ g flpvre
/ d* o/ O OHA7

/ A /G NPT Ry o RPWT = 19872
/d“:n\/gep“”" RWPJRWM =967°T

= Lattice higher derivative terms
... involve deficit angles squared, as well as coupling between hinges,

0
%/ddx\/ng.vkaR#yAG — Z I[h(A(}i )2

hinges h “h

Jd% fG CunaCPA7 ~ 33 Ve Y e (‘”h [%] poE [Ac

8 h,h'Cs




Scalar Matter

Make use of lattice metric to correctly define lattice field 6,
derivatives [Ninomiya 1985] ...

g;ux(m) — gc}(A) ?,
det g, (z) — detgij(A)

g"" (z) — g (A) . .
Aidh A ii(A) = ‘ lﬁi ‘ %(—l%'ﬁlé"‘lﬁ)
Ouddud —> Aid Ajd Hs L—12+12+12) 12

... and obtain a simple geometric form, involving dual (Voronoi) L
volumes F

I0%¢) =5 > V" (Ll;@j)z o

<ij> A

...which also allows correct definition of /attice Laplacian: G;;(?)

Il
| — |
|
L
—
~—
SV
| —
_+.._
-~
=
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SR |
=
ey



Fermionic Matter

Start from continuum Dirac action d

i = / dz/g ¥ (z)y* D, ()

\ (7 ()7 ()} = 20(9
< 1 ab 1
D, =0,+ 2w pab? Tab = %['Yaﬂ'b]

Discrete action jprummond 1986) iNvolves lattice spin connection :

T=14 3 V(s b SR8y (5 (s )

faces (ss')

Potential problems with fermion doubling (as in ordinary LGT)...



Wilson Loop vs.

Loop correlations

FIG. 2 (color online). Gravitational analog of the Wilson loop.

ReglC)— [Texp{f F;\,dx"Ha .
path C B

Giddings, Hartle &
Marolf PRD 2006

FIG. 6 (color online). Correlations between action contribu-
tions on hinge 1 and hinge A’ arise 1o lowest order in the strong

Gr(d) ~ <+/gR(z) /g R(y) é(lz —y|—d) >,




Wilson Loop does not give Potential

In ordinary LGT, Wilson loop gives V(r) /IH }

W(I') =< exp ze?gA dm“}>

V(R) = —T11_>r20—log < exp zef A, d$“
In lattice regularized gravity, potential is computed from

the correlation of geodesic line segments, associated with

the particle’s world line:

G. Modanese, PRD 1994;
NPB 1995

7(b)
dzt dx¥ g
M.[r(a) dT\/gMV( dT dr q <
T é {
>

L(0; p1) :exp{—mfdfx/guv(ﬁ)df—:?_: } >




Correlations

. of invariant operators at fixed geodesic distance.

Distance is a function of metric, which fluctuates:

T(y)
i dEM degv
dyle) = min [ dr Jou(© B8

Jr(z)

< [ [ 4y JaR@) VGRG) 82—yl - d) >

- GR(d) =< Z OnAp Z Opr Aps 5(|$“_y| —d) >
hDx h!' Dy

1
G(J:,y|g) = <:E|—~A(g) + 7n2|y>

N d—(d_l)/z(ﬂf,y) Cxp{ ~md(ﬁ°ay)}

d{z,y)—o0



Hypercubic Lattice Gravity

= Flat hypercubic lattice - geometric features not manifest
e.g. Mannion &Taylor PLB 1982 ; see also Smolin 1978; Das Kaku Townsend 1982.

= Lattice discretization of the Cartan theory based on SL(2,C) —=>50(3,1) = SO(4)

' 1
1 - — ; 13
L-'T;_;.('ﬂ.-) — |:L"T il ('ﬂ.. + ‘U):I = EXp[%‘B:u_ (f“)] B:u. — %aBﬁb(w)!]ba Tab — 2 [,}'a*’)h]
Local gauge invariance: E,(n)=ae,v,
Uy = An) Up(n) A+ p) E,(n) = A(n)E,(n) A ' (n)
I= ]62,;-\-2 Z tr[ s Up(n) Uy (n4+p)U_y(n4+pu+v)U_(n+v) Ex(n) Ex(n)]
. ngf-l,v,)\,ﬁ
1 .
| B 2 /dfl ;I:EHVAJ €abed R,u.va.b ﬁ)\r_ ecrd
Path integral over U’s (Haar) and E’s: A2

Z = / [T dB,.(n) []dE-(n) exp { _I(B,E) }

.l n,o



Dynamical Triangulations

= Simplified version of Regge Gravity
» Edge lengths fixed to unity, vary incidence matrix [David 1984, ...]

an integer

1 /d+1 1

Vy = i\ 5 cosfly = 3 d(h) = 27 —ns(h)by

. No immediate notion of continuous metric, or continuous diffeos.

. Curvature varies in discrete steps.
. No continuous metric deformations — hence no w.f.e., and no

gravitons (at least not in an explicit way).

Constraints on functional measure unclear, since theory has no explicit metric.
Seemingly pathological behavior of Euclidean theory [Loll et al] —
numerical Lorentzian path integral (with yet unresolved convergence issues).



Large D Limit

Early work in continuum by A. Strominger (1984, 1=0), ...

o [2 di22 ]
On the lattice, phase he = =R [3 m]
transition persists at d = oo. o 1 [2di2i2]
0= Agfd [E m]

ke=+/3/(16-5/1)=0.0724ind =4 compared to k. = 0.0636

= Conformal mode instability disappears, O(1/d).

N-cross polytope, homeomorphic to a sphere

= At large d, partition function at large G dominated
by closed surfaces, tiled with elementary parallel
transport polygonal loops.

Very large surfaces are important as k — k,

H & Williams, PRD 2006



Large D Limit - Exponent v

= At large d, characteristic size & of random surface
diverges logarithmically as G— Gc (D. Gross PLB 1984).

= Suggests universal correlation length exponent v = 0. m

Known results from random surface theory then imply:

~ /logT ~ . — k)2
¢ ~ ViogT |~ |[log(ke—F)

scalar field P o= %
v=1/(d—1) | =—— v =1/2d lattice gauge field v = %
lattice gravity v = {

D. Litim PRL 2004,

PLB 2007



CM5 at NCSA, 512 processors



Dedicated Parallel Supercomputer

xxxxxxxx

3900 FE Switch 3900 FE Switch
(36 ports) (36 ports)

]

‘node node node node node node
00 o --- 31 32 33 .- 63




Edge length/metric distributions

= =4 - 6,144 simplices
= =8 - 98,304 simplices
= L=16-> 1,572,864 simplices
= | =32 - 25,165,824 simplices

120000 . . 200000 T T T T
S f\ a = 0005
100000 —
k=t / k=4,
150000 +
80000 [+ |
S omf = 100000 -
T
40000 \
50000 ! B
s 0 _
T 2
i A i ; A
; : . 0 4 6

' il 1 i o o
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Two Phases of L. Quantum Gravity

Earliest studies of Regge lattice theories
found evidence for :

G > G, Smooth phase: R =0

(Guv) = CNuw

G <G, Rough phase :
branched polymer, d = 2

(guv) = 0
Unphysical
Similar two-phase structure also found later in Lattice manifestation of conformal instability

some d=4 DTRS models [Migdal, ...]



Invariant Averages

Singularities in the free energy F are

R(k) ~ < Jd'= yg Riz) > determined from non-analiticities in
< Jd'eg> invariant local averages.
<(J VGR?> — < [ IR >
Xr(k) ~ — —
< [7>

= Divergent local averages provide
information about non-trivial exponents.

R(k) ~ 10 InZ; = Finite Size Scaling (FSS) theory useful.
V Ok O(L,t) - Lwo/u [f"o (L tu) + O(L—u.:)]
1 & ,
Xr(k) ~ VoKt In Zp, = Correlations are harder to compute

directly (geodesic distance).

¢~tv| "Scaling assumption” for F =In Z

A




Determination of Scaling Exponents

R(k) ~ —Ag (k(: - k)ﬁ v =

k—k.

xr(k) ~ —Ag (k.—k)~070

k—rke

Scaling Fune(C)
assumption: }v

(k) = m(k)™

Find value close to 1/3:

ke = 0.0636(11)

—R(k) ROk
4k » = 0.330(6) =
ke = 0.0630(11)
2k o
0 1 1 | 1 1 1 |
—0.01 0 0.01 0.02 0.03  0.04 0.05 006 0.07
k=1/8xG
— U
sl Jﬁlg (k(: - k:)
k—k.
—Rik)y LY
~

1
Ip&

ke = 0.0639(10)

0.07

6| (v =1/3) &
1+ |
2 |
0 1 1 I ! 1 1 I
—0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
k=1/8xG
160
140
120
100 v =0.333
80 ke = 0.0637 -
60 -,
40 [ =
20 i o
0 1 1 1 1
0 50 100 150 200 250

(ke — k) LY

PRD 61 2000



Lattice) Continuum Limit A — oo

Standard (Wilson) procedure in cutoff field theory:

G(A) — G."
=1/m m ~ A A) -
/ o i
RG invariant correlation UV cutoff A — Bare G must approach
length € is kept fixed (average lattice spacing — 0) UV fixed point at Gc

The very same relation gives the RG running of G(u) close to the FP.



Exponent v compared

Ly

10
8j ///,/"'///
6 Lattice in d=3,4,;>/PRD 93, ‘00, ‘06
4 - ,/////
2 ,,,/’/
| < 2*eexpansion

i
Truncated RG Litim PRL 04, PLB 07

(1 loop, 2 loops)  A&K NPB 1998

0 0.2 0.4 0.6 0.8

1

d = o (v=0)



\

G R

9

“Triviality” of lambda phi 4

5\

g

Asymptotic freedom of YM

Wilson-Fisher FP in d<4

» Coupling gets weaker at large r
» ... approaches an IR FP at large r.
> ... Qets weaker at small r: UV FP

» Both possibilities can coexist:
nontrivial UV fixed point.

Callan-Symanzik. beta function(s):

\

= Gl) = B(G()

G

Ising model, o-model, Gravity (2+¢, lattice)



Only One Phase?

Weak coupling phase is seemingly unphysical

(branched polymer).

v’ Lattice results appear to exclude the
weak coupling phase as physically
relevant...

v’ Leads to a gravitational coupling G
that increases with distance...

Anti-screening phase.

-

G

Gravity



New question then :

Is this new scenario physically acceptable?

A

B(G)

— >

Gc\ .




Running Newton’s G

= ¢ is a new invariant scale of gravity. m=¢1=AF(G)
= Newton’s constant G must run.
= Cutoffdependence determines B-function :

d o 6 F ' I P
AZmAGA) =0 and  AZ=CA) = BEW0) —>  B(G) =

F(G)
- OF(G)/0G

Running of G det. largely by £ and v :

2

1+ ag (%) " 0((?132/142)5)]

W Gl) = BEL) ——= | G(k?) = G,




So, what value to take for & ?

. ¢isan RG invariant.

- m=1/¢ has dimensions of a mass.

In Yang-Mills m = glueball mass



Three Theories Compared

R,u.u - %g,u.y R "’@,uu — S@M-U
@“F“u +@AL’ — 41}
"0 & +@ ¢ = @@53

Suggests A,pys = é I I

RG invariants Running couplings

m=1/¢



Gravitational Wilson Loops

= In gravity, Wilson loop not related to static potential
[G. Modanese PRD 1993; PRD 1994]

= Parallel transport of a vector done via lattice
rotation matrix

_ path Tdry, o
R&g = |: ';n ¢ between simplices :|
" &)

For a large closed circuit obtain Wilson loop - which can be computed at strong
coupling using a first order formulation of Regge gravity [Caselle, d'Adda, Magnea PLB 1989]

W(T) ~ Tr P exp [ [: | Ff"*..arm} ~ exp [ L @ R'.Wﬂé“] ~ exp(—A/€?)

- Stokes theorem - /

e ¢related to curvature. “Area law” follows from loop tiling
e ¢ RG invariant. - iy HH&R M.Williams, PRD 76, 2007

.. . - 72
e prediction of positive <

cosmological constant?



Vacuum Condensate Picture of QG?

= Lattice Quantum Gravity: Curvature condensate  seeaiso J.0.5orken, PRD 05

1

R ~ (107"eV)? ~ ¢ Mohws = 77

= Quantum Chromodynamics: Gluon and Fermion condensate

ag < F, - " >~ (250MeV)* ~ ¢7°
—1
5@09 ™~ Am
(ag)¥P0 < Pop >~ — (230MeV)? ~ ¢73

= Electroweak Theory: Higgs condensate




Effective Theory



Graviton Vacuum Polarization Cloud

Picture: Source mass M surrounded by virtual graviton cloud

Need a covariant running of G.

Effective field equations: :
R;w — %gw R + Aglw _ 87TG(I:|) j}w ............... iW
= ~

- %

A~ 1/62 G_>:G

O = ¢* V.V,

2 \E
1 4+ ag T—I—mg = e




Relative Scales in the Cutoff Theory

[, <<r<<¢ r>>¢

At the Planck length new terms appear: . /,,

higher derivative terms, string corrections, conformal
anomaly contributions...




Cosmological Solutions

Explore possible effective field equations...generally covariant

G. Veneziano

R, — %QWR + Agy = 871G (1 + A(D)) T, G.A. Vilkovisky ..
\A(D) _ CD( 1 )1/21/

€0

... for RW metric A = 0 initially for simplicity

dr?

1—Fkr?

ds® = —dt® + a,2(t) { 12 (d¢92 + sin? 0 dgoQ) }

... and perfect fluid p(t) =0 Consistency condition:
VET, = VP [(1+AD) Tw] = 0

O = g"V,V, = Taﬁmfya... = ¢""'V, (V,, Taﬁ"'fya...)

Form of D’Alembertian depends on object it acts on ...



Solution of Effective Field Equation

= Full effective field equation involves D’Alembertian on tensor

Ry — 59w R+ Agu = 87G (1+ A(D)) Ty /
—— 1/2v
A@Q) = e (L)

Repeated action of D’Alembertian O™, n = -1/2v

A=0
. 2 .
(OTw)y = 6[p(t) + pl0) (%) - 390 T —
(OTw),, = =g {2 Io(0) + p()] R — 35() RE) (D) — (1) R(1)?)
(DTLLV)QH = T2 (1 - krz) (DT;W)W
OTw),, = r?(1 — kr?) sin?0 (0T),),,

—— existence of solution requires 6= —-2-1/v as before,

and R(t) wd TE 5y 751/2 p(t) ~ t—2—1/v ~ (R(t))—2(2+1/v)

Accelerated expansion, even with c.c. A=0. o(t) ~ 2



Cosmological Solutions — Cont'd

Modified FRW solution acquires a significant radiation-like (vac. pol.)
component at large times,

k a*(t)  87G(t) 1 t-teq.

20 T 2n - 3 "Wt3a 7
8rld 1 (t) = @ (t)
> a i Gi) _
S E = [ Lo s Jwofe g rrea vt gl 1)
™
Effective pressure term Similarities to:
p(t) = wpl(t)
At (very) large times, G is further modified to: w =1/3
G(t):Gll—l—q (%)UV—I—...] Git) ~ G |1+ ¢ (tzﬁ—l—...
IR regulator



Modified cosmological expansion rate

4 I 1 ] I

Dark Matter + Dark Energy
effect the expansion of the universe

Q, Q,
3r 0.3 0.7

0.3 0.0
1.0 0.0
2 5.0 0.0

Standard FRW
expansion at / \ e
early times 0 ‘

B1ll1uns uf Years Running G effects

are maximal “now
[T. D’Amour 2007]

A-dominated
expansion at
later times

Relative size of the universe

7



Static Isotropic Solution

Start again from fully covariant effective field equations

9 1/2v
Ry — 39w R+ Aguw = 871G (1+ADQ) T | A@D) = ao( o )

—0 + m?
General static isotropic metric A~ 1/62 —— 0
ds®* = — B(r)dt* + A(r)dr?® + r*(d6? + sin® 6 dp?)
Ayt =1 - 2A:G T U:) ap small
; , IMG
B(r) =1- 2]\7{0 + 95_7) T
Search solution for a point source, or vacuum solution for
r#0.
T, = diag[B(r)p(r), A(r)p(r), r*p(r), r* sin O p(r)] H. & Williams, PLB 2006;

PRD 2007



Static Isotropic Solution

Non-relativistic solution can be obtained from vacuum density:

1 ; ;
pm(r) — g Cp Q) ]\Ims (mr)_%(g_%) K%(S_%)(m 7’) T = 1/£

47r/ r?dr pm(r) = ag M
0

Promote o(r) to a covariantly conserved, relativistic perfect fluid, with a p(r):

T = diag[ B(r) p(r), A(r)p(r). r2p(r), r? sin? Op(r)] VAT =0




Relativistic Fluid cont’d

And finally ... |
y 3 g
B(T) — 1 — QA[G _|_ 4&0]\/[0?7’5 7‘2 ln(ffn}fr) _|_ .. wl's.//
r 3 : ]
3 0 ,
AYr) =1 - 2M G + dag M Gm r2In(mr) + ..
T 3’]T 0 5 1ro 15 20
...which can be consistently interpreted as a G(r):
agp 3 3 1
G—>G(T):G<1—|——mr In —I—)
3 m2 r?
po = 1/
Reminiscent of QED (Uehling) answer:
ao_ 42
Q(T):l—f—&ln%—i—... mr <1

37 mer



Outlook

= More Work is Needed

— 2 + € expansion to three loops is a clear, feasible goal.

— Systematic careful investigation of 4d s. gravity should be pursued
— Status of weak coupling phase unclear

— Connection with other lattice models, eg hypercubic?

= Covariant Effective Field Equations
— Formulation of fractional operators.
— Further investigation on nature of solutions (horizons).
— Possible Cosmological (observable) ramifications.



The End






“Herb, as far as | know you are the only one that
still believes in this non-trivial ultraviolet fixed point
scenario [for gravity] © ”

Howard Georgi, January 30, 2008



Large D and Strong Coupling

= Strong coupling expansion for gravity,

s & 4 !
_ 2y k> op Ap ~n 2
Zian (k) = ‘/d,u,(l ) eF2ndnAn — ,r;) ~ k ./dﬂ(l ) ;5&4}& k=1/(8"G)

o0

/a

1 . A ) n
ik / du(I?)5 A (Z(ShAh)
' h

<A > = "0

R(k) ~ Ag(k.—k)°

k—k.

(d—n+1)(0—n+2)...0

(-D"Axr L= k"

At large d, strong coupling (large G) expansion simplifies considerably,
as excluded volume effects can be neglected in this limit ...



Galactic R

otation Curves

Straightforward, calculable

relationship between potential

modification and deviations in galactic rotation curves

Very large values of rc (§) mak

Capoziello, Cardone, Troisi
astro-ph0602349 (2006)

e effects tiny on kp scales.



Relation to R" Gravity Models

=  Superficial resemblance of running G(r) model to R" & scalar-
tensor gravity theories (within FRW cosmology framework).

S. Capoziello, A.Troisi et al
S. Carroll et al ; E. Flanagan

= Obtained - from running G(r) models - by simply replacing scale
factor a(t) with scalar curvature R :

R = 6(k+ a(t) + a(t)(t)) /a*(1)

1 ~3
Ieff o 167TG/d$\/§ (R + (]J;)g%_l — 2)\)

T

F(R) models generally lack justification as to why A~ 1/§2
only Ricci scalar R should be considered in action.




Static Isotropic Solution in d Dim’s

Covariant effective field equations in d space-time dimensions

m

9 1/2v
RPW — %QMVR + )\g,ur/ = 87 G (1 ‘|—A(D)) j}u/ { AM) = ao (—El + ?11.2)

A~ 1/ 0

In the absence of a running G, static isotropic
solutions in d dimensions are given by:

Myers and Perry, Ann. Phys 1986
Xu, Class Q Grav 1988

A7H(r) = B(r) = 1 =2MGear*™ " — g 1

g = 4?TF(%)/(OIA 2)7‘('%
Based on same arguments as in d = 4 would
expect solution to exists only if | v = 1/(d — 1)
consistent with the result ¥ = 0 found on the
lattice at d = oo. Problem not fully worked out yet.




Effects of small gauge breaking

* “Dynamical stability of local gauge symmetry”

D. Foerster, H. B. Nielsen, M. Ninomiya , Physics Letters B 94, 135 (1980)

“We show that the large distance behavior of gauge theories is stable, within
certain limits, with respect to addition of gauge non-invariant interactions at
small distances.”

® G. Parisi argument - for compact groups (ca. 1996, unpublished):

“The effects of small gauge-breaking terms average to zero”

Proof based on Elitzur’s theorem on the Impossibility Of Spontaneously Breaking
Local Symmetries (PRD 12, 3978,1975), for compact gauge groups.

7= / DQ DA e Ssymlda) =95(Aa) / DQ DA ¢ Ssym(A4) —5(4a)

/DQ e 55(‘49) = 6_(5ssym(‘4) 5Ssym(A) = Zéfrsym(AafE)



Quantum “Gravity” in two dimensions ?

« KPZ formula predicts v=3/2 etc. (non-Onsager exponents) for c=1/2 (Ising spins)
coupled to gravity (“gravitational dressing of exponents”).

» A flat space realization of same KPZ exponents is found instead:

The change in the exponents appears due to the randomness of the interaction.

1w, 8] =

Z=1] > ( / dz?) exp(—I[z,S])

_ZJZJ .”E“IJ)WUSS hZWzSz

N

1<J

i—15;—%1 a=1

Table 1: Critical exponents of random and non-random Ising models.

/v B/v afv @ v
Onsager solution on regular flat lattice | 1.75 0.125 0 0 1
Ising spins coupled to gravity0: 331 | 1.73(2) | 0.124(3) | -0.06(11) | - 0.98(1)
Matrix model and CFT D7 98] 1.333... ] 0.333... | -0.666... | -1.0 15
Random Ising spins in flat spacel60] 1.32(3) | 0.31(4) | -0.65(4) | -0.98(4) | 1.46(8)

Vekic, Liu & H, PLB 1994; PRD 1994

Jiitass) = J

PHYSICAL REVIEW ¥ VOLUME 51, NUMBER 8 15 APRIL 1995

Random Ising spins in two dimensions: A flat space realization of the
Knizhnik-Polyakov-Zamolodchikov exponents

Marco Veki¢
Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, California 93106

Shao Liu
Department of Physics, University of California Irvine, Irvine, California 92717

Herbert W. Hamber
Theory Division, CERN, CH-1211 Genéve 28, Switzerland
(Received 25 July 1994)

A model describing Ising spins with short range interactions moving randomly in a plane is
considered. In the presence of s hard-core repulsion, which prevents the Ising spins from overlapping,
the model is anal to a dy Ising model with spins constrained to move
on a flat surface. As a function of coupling strength and hard-core repulsion the model exhibits
multicritical behavior, with first- and second-order transition lines terminating at a tricritical point.
The thermal and d at the tricritical point are consistent with the KP%
values associated with Ising spins, and with the exact two-matrix model solution of the random
Ising model, introduced previously to describe the effects of fluctuating geometries.




Is there Q. Gravity in two dimensions ?

Follow up: dynamically

triangulated |Sing Spins ELSEVIER Nuclear Physics B 452 (1995) 415-428

(c=1/2) on

fixed curved geometry

(sphere) also give KPZ Is there quantum gravity in two dimensions? *
eXponentS. Wolfgang Beirl*!, Bernd A. Berg >¢?

& Institut fir Kernphysik, Technische Universitidt Wien, A-1040 Vienna, Austria
b Department of Physics, The Florida State University, Tallahassee, FL 32306, USA
¢ Supercomputer Computations Research Institute, Tullohassee, FL 32306, USA

i Received 17 May 19935; accepted 7 July 1995
k !
i
Abstract
; A hybrid model that allows one to interpolate between the (original) Regge approach and

dynamical triangulation is introduced. The gained flexibility in the measure is exploited fo study
dynamical triangulation in a fixed geometry. Our numerical resulis support KPZ exponents. A
critical assessment concerning the apparent lack of gravitational etfects in two dimensions follows.

Some lattice re-linkings

Beirl and Berg, NPB 1995



Three Approaches Compared
¢ Continuum 2+¢ expansion (1 loop): ///
2 (d—2)/2 °
Gk ~ G, 1+(ﬁ) + . \
¢ Simplicial Lattice QG: B ag ‘ 1
. { G(r) —G<1—|—ﬂm3r3ln m2r2—|—...)
GO) = G |1+ ag (%2)2_ + ... o)~ 2 [ (1= almnF e )]
¥ —1/3
¢ E-H “truncation” (Reuter/Litim):
GO G() ’f’3

s = W generally complex
3+ & Go [r + vGoM] = Scale £?Phases?

. Formulation of G(r) not covariant

Effects fitted to g. rotation curves

G(F)

G(r)

T 14w Gy k2



