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ABSTRACT

The infrared structure of quantum gravity is explored by solving a lattice version of the Wheeler-

DeWitt equations. In the present paper only the case of 2+1 dimensions is considered. The nature

of the wave function solutions is such that a finite correlation length emerges and naturally cuts

off any infrared divergences. Properties of the lattice vacuum are consistent with the existence

of an ultraviolet fixed point in G located at the origin, thus precluding the existence of a weak

coupling perturbative phase. The correlation length exponent is determined exactly and found

to be ν = 6/11. The results obtained so far lend support to the claim that the Lorentzian and

Euclidean formulations belong to the same field-theoretic universality class.
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1 Introduction

It is possible that the well-known ultraviolet divergences affecting the perturbative treatment of

quantum gravity in four dimensions point to a fundamental vacuum instability of the full theory.

If this is the case, then the correct identification of the true ground state for gravitation necessarily

requires the introduction of a consistent nonperturbative cutoff. To this day the only known way

to do this reliably in quantum field theory is via the lattice formulation. Nevertheless, previous

work on lattice quantum gravity has dealt almost exclusively with the Euclidean formulation in

d dimensions, treated via the manifestly covariant Feynman path integral method. Indeed the

latter is very well suited for numerical integration, and many analytical and numerical results have

been obtained over the years within this framework. However the issue of their relationship to

the Lorentzian theory has remained largely open, at least from the point of view of a rigorous

treatment. The main supporting arguments for the Euclidean approach come from the fact that

the above equivalence holds true for other field theories (no exceptions are known), and from the

fact that in gravity itself it is rigorously true to all orders in the weak field expansion.

In this paper we will focus on the Hamiltonian approach to gravity, which assumes from the

beginning a metric with Lorentzian signature. In order to obtain useful insights regarding the non-

perturbative ground state, a Hamiltonian lattice formulation was introduced based on the Wheeler-

DeWitt equation, where the quantum gravity Hamiltonian is written down in the position-space

representation. In a previous paper [1] a general discrete Wheeler-DeWitt equation was given

for pure gravity, based on the simplicial lattice formulation originally developed by Regge and

Wheeler. On the lattice the infinite-dimensional manifold of continuum geometries is replaced by

a finite manifold of piecewise linear spaces, with solutions to the lattice equations then providing

a suitable approximation to the continuum gravitational wave functional. The lattice equations

were found to be explicit enough to allow the development of potentially useful practical solutions.

As a result, a number of sample quantum gravity calculations were carried out in 2 + 1 and 3 + 1

dimensions. These were based mainly on the strong coupling expansion and on the Rayleigh-Ritz

variational method, the latter implemented using a set of correlated product (Slater-Jastrow) wave

functions.

Here, we extend the work initiated in [1] and show how exact solutions to the lattice Wheeler-

DeWitt equations can be obtained in 2 + 1 dimensions for arbitrary values of Newton’s constant

G. The procedure we follow is to solve the lattice equations exactly for several finite regular
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triangulations of the sphere and then extend the result to an arbitrarily large number of triangles.

One finds that for large enough areas the exact lattice wave functional depends on geometric

quantities only, such as the total area and the total integrated curvature (which in 2+1 dimensions

is just proportional to the Euler characteristic). The regularity condition on the solutions of the

wave equation at small areas is shown to play an essential role in constraining the form of the wave

functional, which we eventually find to be expressible in closed form as a confluent hypergeometric

function of the first kind. Later it will be shown that the resulting wave function allows an exact

evaluation of a number of useful (and manifestly diffeomorphism-invariant) averages, such as the

average area of the manifold and its fluctuation.

From these results a number of suggestive physical results can be obtained, the first one of which

is that the correlation length in units of the lattice spacing is found to be finite for all G > 0, and

diverges at G = 0. Such a result can be viewed as consistent with the existence of an ultraviolet

fixed point (or a phase transition in statistical field theory language) in G located at the origin, thus

entirely precluding the existence of a weak coupling phase for gravity in 2 + 1 dimensions. Simple

renormalization group arguments would then suggest that gravitational screening is not physically

possible in 2 + 1 dimensions, and that gravitational antiscreening is the only physically realized

option in this model. A second result that follows from our analysis is an exact determination of the

critical correlation length exponent for gravity in 2 + 1 dimensions, which is found to be ν = 6/11.

It is known that the latter determines, through standard renormalization group arguments, the

scale dependence of the gravitational coupling in the vicinity of the ultraviolet fixed point.

A short outline of the paper is as follows. In Sec. 2, as a general background to the rest of

the paper, we briefly describe the formalism of classical canonical gravity, as originally formulated

by Arnowitt, Deser and Misner. The continuum Wheeler-DeWitt equation and its invariance

properties are introduced as well at this stage. In Sec. 3 we introduce the lattice Wheeler-DeWitt

equation derived in a previous paper [1], and later Sec. 4 makes more explicit various quantities

appearing in it. This last section also discusses briefly the role of continuous lattice diffeomorphism

invariance in the Regge framework as it applies to the present case of 2+1-dimensional gravity. Sec.

5 focuses on the scaling properties of the lattice equations and various sensible choices for the lattice

coupling constants, with the aim of giving eventually a more transparent form to the wave function

results. Sec. 6 gives a detailed outline of the general method of solution for the lattice equations and

then gives the explicit solution for a number of regular triangulations of the sphere. Later, a general

form of the wave function is given that covers all the previous discrete cases and allows a subsequent

study of the infinite volume limit. Sec. 7 focuses on one of the simplest diffeomorphism-invariant
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averages that can be computed from the wave function, namely the average total area. A brief

discussion follows on how the latter quantity relates to the corresponding averages computed in the

Euclidean theory. Sec. 8 extends the calculation to the area fluctuation and shows how the critical

exponents (anomalous dimensions) of the 2+1-gravity theory can be obtained from the exact wave

function solution, using some rather straightforward scaling arguments. Sec. 9 discusses some

simple physical implications that can be inferred from the values of the exact exponents and the

fact that quantum gravity in 2+1 dimensions does not seemingly possess, in either the Euclidean or

Lorentzian formulation, a weak coupling phase. Sec. 10 contains a summary of the results obtained

so far.

2 Continuum Wheeler-DeWitt Equation

Since this paper involves the canonical quantization of gravity we begin here with a very brief

summary of the classical canonical formalism [2] as derived by Arnowitt, Deser and Misner [3].

While many of the results presented in this section are rather well known, it will be useful, in view

of later applications, to recall the main results and formulas and provide suitable references for

expressions used later in the paper.

The first step in developing a canonical formulation for gravity is to introduce a time-slicing

of space-time, by introducing a sequence of spacelike hypersurfaces labeled by a continuous time

coordinate t. The invariant distance is then written as

ds2 ≡ −dτ2 = gµν dx
µdxν = gij dx

i dxj + 2gij N
idxjdt − (N2 − gij N

iN j)dt2 , (1)

where xi (i = 1, 2, 3) are coordinates on a three-dimensional manifold and τ is the proper time, in

units with c = 1.

Indices are raised and lowered with gij(x) (i, j = 1, 2, 3), which denotes the three-metric on the

given spacelike hypersurface, and N(x) and N i(x) are the lapse and shift functions, respectively.

It is customary to mark four-dimensional quantities by the prefix 4 so that all unmarked quantities

will refer to three dimensions (and are occasionally marked explicitly by a 3). In terms of the

original four-dimensional metric 4gµν one has
(

4g00
4g0j

4gi0
4gij

)

=

(

NkN
k −N2 Nj

Ni gij

)

, (2)

which then gives for the spatial metric and the lapse and shift functions

gij = 4gij N =
(

−4g00
)−1/2

Ni = 4g0i . (3)

4



For the volume element one has
√

− 4g = N
√
g , (4)

where the latter involves the determinant of the three-metric, g ≡ det gij. As usual g
ij denotes the

inverse of the matrix gij .

A transition from the classical to the quantum description of gravity is obtained by promoting

the metric gij , the conjugate momenta πij, the Hamiltonian density H and the momentum density

Hi to quantum operators, with ĝij and π̂
ij satisfying canonical commutation relations. In particular,

the classical constraints now select a physical vacuum state |Ψ〉, such that in the source-free case

Ĥ |Ψ〉 = 0 Ĥi |Ψ〉 = 0 (5)

and in the presence of sources more generally

T̂ |Ψ〉 = 0 T̂i |Ψ〉 = 0 , (6)

where T̂ and T̂i now include matter contributions that should be added to Ĥ and Ĥi. The momen-

tum constraint involving Ĥi or more generally T̂i, ensures that the state functional does not change

under a transformation of coordinates xi, so that Ψ depends only on the intrinsic geometry of the

3-space. The Hamiltonian constraint is then the only remaining condition that the state functional

must satisfy.

As in ordinary nonrelativistic quantum mechanics, one can choose different representations for

the canonically conjugate operators ĝij and π̂ij . In the functional position representation one sets

ĝij(x) → gij(x) π̂ij(x) → −i~ · 16πG · δ

δgij(x)
. (7)

In this picture quantum states become wave functionals of the three-metric gij(x),

|Ψ〉 → Ψ [gij(x)] . (8)

The two quantum-constraint equations in Eq. (6) then become the Wheeler-DeWitt equation [4, 5,

6]
{

− 16πG ·Gij,kl
δ2

δgij δgkl
− 1

16πG

√
g
(

3R − 2λ
)

+ Ĥφ

}

Ψ[gij(x)] = 0 , (9)

and the momentum constraint listed below. Here Gij,kl is the inverse of the DeWitt supermetric,

given by

Gij,kl = 1
2 g

−1/2 (gikgjl + gilgjk + α gijgkl) , (10)
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with parameter α = −1. The three-dimensional version of the DeWitt supermetric itself, Gij,kl(x)

is given by

Gij,kl = 1
2

√
g
(

gikgjl + gilgjk + ᾱ gijgkl
)

, (11)

with parameter α in Eq. (10) related to ᾱ in Eq. (11) by ᾱ = −2α/(2 + 3α), so that α = −1 gives

ᾱ = −2 (note that this is dimension dependent). In the position representation the diffeomorphism

(or momentum) constraint reads
{

2 i gij ∇k
δ

δgjk
+ Ĥφ

i

}

Ψ[gij(x)] = 0 , (12)

where Ĥφ and Ĥφ
i are possible matter contributions. In the following, we shall set both of these to

zero, as we will focus here almost exclusively on the pure gravitational case.

A number of basic issues need to be addressed before one can gain a full and consistent un-

derstanding of the dynamical content of the theory (see, for example, [7, 8, 9, 10, 11] as a small

set of representative references). These include possible problems of operator ordering, and the

specification of a suitable Hilbert space, which entails at some point a choice for the inner product

of wave functionals, for example in the Schrödinger form

〈Ψ|Φ〉 =

∫

dµ[g] Ψ∗[gij ] Φ[gij ] (13)

where dµ[g] is some appropriate measure over the three-metric g. Note also that the continuum

Wheeler-DeWitt equation contains, in the kinetic term, products of functional differential oper-

ators which are evaluated at the same spatial point x. One would expect that such terms could

produce δ(3)(0) -type singularities when acting on the wave functional, which would then have to be

regularized in some way. The lattice cutoff discussed below is one way to provide such an explicit

ultraviolet regularization.

A peculiar property of the Wheeler-DeWitt equation, which distinguishes it from the usual

Schrödinger equation HΨ = i~ ∂tΨ, is the absence of an explicit time coordinate. As a result, the

rhs term of the Schrödinger equation is here entirely absent. The reason is of course diffeomorphism

invariance of the underlying theory, which expresses now the fundamental quantum equations in

terms of fields gij and not coordinates.

3 Lattice Hamiltonian for Quantum Gravity

In constructing a discrete Hamiltonian for gravity, one has to decide first what degrees of freedom

one should retain on the lattice. One possibility, which is the one we choose to pursue here, is to
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use the more economical (and geometric) Regge-Wheeler lattice discretization for gravity [12, 13],

with edge lengths suitably defined on a random lattice as the primary dynamical variables. Even

in this specific case several avenues for discretization are possible. One could discretize the theory

from the very beginning, while it is still formulated in terms of an action, and introduce for it a

lapse and a shift function, extrinsic and intrinsic discrete curvatures etc. Alternatively one could

try to discretize the continuum Wheeler-DeWitt equation directly, a procedure that makes sense in

the lattice formulation, as these equations are still given in terms of geometric objects, for which

the Regge theory is very well suited. It is the latter approach which we will proceed to outline here.

The starting point for the following discussion is therefore the Wheeler-DeWitt equation for

pure gravity in the absence of matter, Eq. (9),
{

− (16πG)2 Gij,kl(x)
δ2

δgij(x) δgkl(x)
−
√

g(x)
(

3R(x) − 2λ
)

}

Ψ[gij(x)] = 0 (14)

and the diffeomorphism constraint of Eq. (12),
{

2 i gij(x)∇k(x)
δ

δgjk(x)

}

Ψ[gij(x)] = 0 . (15)

Note that these equations express a constraint on the state |Ψ〉 at every x, each of the form

Ĥ(x) |Ψ〉 = 0 and Ĥi (x)|Ψ〉 = 0.

On a simplicial lattice [14, 15, 16, 17, 18] (see for example [19], and references therein, for a

more complete discussion of the lattice formulation for gravity) one knows that deformations of the

squared edge lengths are linearly related to deformations of the induced metric. In a given simplex

σ, take coordinates based at a vertex 0, with axes along the edges from 0. The other vertices are

each at unit coordinate distance from 0 (see Figs. 1, 2 and 3 as an example of this labeling for a

triangle). In terms of these coordinates, the metric within the simplex is given by

gij(σ) = 1
2

(

l20i + l20j − l2ij
)

. (16)

Note that in the following discussion only edges and volumes along the spatial direction are involved.

It follows that one can introduce in a natural way a lattice analog of the DeWitt supermetric of

Eq. (11) by adhering to the following procedure [20, 21]. First one writes for the supermetric in

edge length space

‖ δl2 ‖2 =
∑

ij

Gij(l2) δl2i δl
2
j , (17)

with the quantity Gij(l2) suitably defined on the space of squared edge lengths. By a straightforward

exercise of varying the squared volume of a given simplex σ in d dimensions

V 2(σ) =
(

1
d!

)2
det gij(l

2(σ)) (18)
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to quadratic order in the metric (on the rhs), or in the squared edge lengths belonging to that

simplex (on the lhs), one is led to the identification

Gij(l2) = − d!
∑

σ

1

V (σ)

∂2 V 2(σ)

∂l2i ∂l
2
j

. (19)

It should be noted that in spite of the appearance of a sum over simplices σ, Gij(l2) is local, since

the sum over σ only extends over those simplices which contain either the i or the j edge.

At this point one is finally ready to write a lattice analog of the Wheeler-DeWitt equation for

pure gravity, which reads
{

− (16πG)2Gij(l
2)

∂2

∂l2i ∂l
2
j

−
√

g(l2)
[

3R(l2) − 2λ
]

}

Ψ[ l2 ] = 0 , (20)

with Gij(l
2) the inverse of the matrix Gij(l2) given above. The range of the summation over i and

j and the appropriate expression for the scalar curvature, in this equation, are discussed below and

made explicit in Eq. (21).

Equations (9) or (20) express a constraint equation at each “point” in space. Here we will

elaborate a bit more on this point. On the lattice, points in space are replaced by a set of edge

labels i, with a few edges clustered around each vertex in a way that depends on the dimensionality

and the local lattice coordination number. To be more specific, the first term in Eq. (20) contains

derivatives with respect to edges i and j connected by a matrix element Gij which is nonzero only

if i and j are close to each other, essentially nearest neighbor. One would therefore expect that the

first term could be represented by just a sum of edge contributions, all from within one (d − 1)-

simplex σ (a tetrahedron in three dimensions). The second term containing 3R(l2) in Eq. (20) is also

local in the edge lengths: it only involves a handful of edge lengths, which enter into the definition

of areas, volumes and angles around the point x, and follows from the fact that the local curvature

at the original point x is completely determined by the values of the edge lengths clustered around

i and j. Apart from some geometric factors, it describes, through a deficit angle δh, the parallel

transport of a vector around an elementary dual lattice loop. It should, therefore, be adequate to

represent this second term by a sum over contributions over all (d − 3)-dimensional hinges (edges

in 3+1 dimensions) h attached to the simplex σ, giving, therefore, in three dimensions







− (16πG)2
∑

i,j⊂σ

Gij (σ)
∂2

∂l2i ∂l
2
j

− 2nσh
∑

h⊂σ

lh δh + 2λ Vσ







Ψ[ l2 ] = 0 . (21)

Here δh is the deficit angle at the hinge h, lh the corresponding edge length, and Vσ =
√

g(σ) the

volume of the simplex (tetrahedron in three spatial dimensions) labeled by σ. Gij (σ) is obtained
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either from Eq. (19) or from the lattice transcription of Eq. (10)

Gij,kl(σ) = 1
2 g

−1/2(σ) [gik(σ)gjl(σ) + gil(σ)gjk(σ)− gij(σ)gkl(σ)] , (22)

with the induced metric gij(σ) within a simplex σ given in Eq. (16). The combinatorial factor nσh

ensures the correct normalization for the curvature term, since the latter has to give the lattice

version of
∫ √

g 3R = 2
∑

h δhlh (in three spatial dimensions) when summed over all simplices σ. The

inverse of nσh counts, therefore, the number of times the same hinge appears in various neighboring

simplices and consequently depends on the specific choice of underlying lattice structure; for a flat

lattice of equilateral triangles in two dimensions, nσh = 1/6.4 The lattice Wheeler-DeWitt equation

given in Eq. (21) was the main result of a previous paper [1].

4 Explicit Setup for the Lattice Wheeler-DeWitt Equation

In this section, we shall establish our notation and derive the relevant terms in the discrete Wheeler-

DeWitt equation for a simplex. From now on we shall focus almost exclusively on the case of 2+1

dimensions. The basic simplex in this case is, of course, a triangle, with vertices and squared edge

lengths labelled as in Fig. 1. We set l201 = a, l212 = b, l202 = c. The components of the metric for

coordinates based at vertex 0, with axes along the 01 and 02 edges, are

g11 = a, g12 =
1

2
(a+ c− b), g22 = c. (23)

The area A of the triangle is given by

A2 =
1

16
[ 2(ab + bc+ ca)− a2 − b2 − c2 ] , (24)

so the supermetric Gij , according to Eq. (19), is

Gij =
1

4A





1 −1 −1
−1 1 −1
−1 −1 1



 , (25)

Thus for the triangle we have

Gij
∂2

∂si ∂sj
= −4A

(

∂2

∂a ∂b
+

∂2

∂b ∂c
+

∂2

∂c ∂a

)

, (26)

and the Wheeler-DeWitt equation is

{

(16πG)2 4A

(

∂2

∂a ∂b
+

∂2

∂b ∂c
+

∂2

∂c ∂a

)

− 2 nσh
∑

h

δh + 2λA

}

Ψ[ s ] = 0, (27)
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0

1

2

l02

l01

l12

Figure 1: A triangle with labels.

0

1

2

c

a

b

s1

s5
s4

s3

s2

s6

A2

A0

A3

A1

Figure 2: Neighbors of a given triangle. The picture illustrates the fact that the Laplacian ∆(l2)
appearing in the kinetic term of the lattice Wheeler-DeWitt equation (here in 2+1 dimensions)
contains edges a, b, c that belong both to the triangle in question, as well as to several neighboring
triangles (here three of them) with squared edges denoted sequentially by s1 = l21 . . . s6 = l26.
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Figure 3: A small section of a suitable dynamical spatial lattice for quantum gravity in 2+1
dimensions.
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where the sum is over the three vertices h of the triangle.

In the following sections we will be concerned at some point with various discrete, but generally

regular, triangulations of the two-sphere, such as the tetrahedron, the octahedron and the icosahe-

dron. These were already studied in some detail in [22, 23]. A key aspect of the Regge theory is

the presence of a continuous, local lattice diffeomorphism invariance, whose main aspects in regard

to their relevance for the 3 + 1 formulation of gravity were already addressed in some detail in

[1] in the context of the lattice weak field expansion. Here we will add some remarks about how

this local invariance manifests itself in the 2 + 1 formulation, and, in particular, for the discrete

triangulations of the sphere studied later on in this paper. Of some relevance is the presence of

exact zero modes of the gravitational lattice action, reflecting a local lattice diffeomorphism invari-

ance, present already on a finite lattice. Since the Einstein action is a topological invariant in two

dimensions, the relevant action in this case has to be a curvature-squared action supplemented by

a cosmological constant term. Specifically, part of the results in [24, 22] can be summarized as

follows. For a given lattice, one finds for the counting of zero modes

Tetrahedron (N0 = 4) : 2 zero modes

Octahedron(N0 = 6) : 6 zero modes

Icosahedron(N0 = 12) : 18 zero modes .

(28)

Thus if the number of zero modes for each regular triangulation of the sphere is denoted by Nz.m.,

then the results can be reexpressed as

Nz.m. = 2N0 − 6 , (29)

which agrees with the expectation that, in the continuum limit, N0 →∞, Nz.m./N0 should approach

the constant value d in d space-time dimensions, the expected number of local parameters for a

diffeomorphism. Similar estimates were obtained when looking at deformations of a flat lattice

in various dimensions [22]. The case of near-flat space is obviously the simplest: by moving the

location of the vertices around in flat space, one can find a different assignment of edge lengths that

represents the same flat geometry. This then leads to the d·N0-parameter family of transformations

for the edge lengths in flat space.

In general, lattice diffeomorphisms correspond to local deformations of the edge lengths about

a vertex, which leave the local geometry physically unchanged, the latter being described by the

4Instead of the combinatorial factor nσh, one could insert a ratio of volumes Vσh/Vh (where Vh is the volume per
hinge [17] and Vσh is the amount of that volume in the simplex σ), but the above form is simpler.
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values of local lattice operators corresponding to local volumes, curvatures, etc. The lesson is that

the correct count of continuum zero modes will, in general, only be recovered asymptotically for

large triangulations, where N0 is significantly larger than the number of neighbors to a point in

d dimensions. With these observations in mind, we can now turn to a discussion of the solution

method for the lattice Wheeler-DeWitt equation in 2 + 1 dimensions.

One item that needs to be discussed at this point is the proper normalization of various terms

(kinetic, cosmological and curvature) appearing in the lattice equation of Eq. (21). For the lattice

gravity action in d dimensions one has generally the following correspondence

∫

ddx
√
g ←→

∑

σ

Vσ (30)

where Vσ is the volume of a simplex; in two dimensions it is simply the area of a triangle. The

curvature term involves deficit angles in the discrete case,

1
2

∫

ddx
√
g R ←→

∑

h

Vh δh (31)

where δh is the deficit angle at the hinge h, and Vh the associated “volume of the hinge” [12].

In four dimensions the latter is the area of a triangle (usually denoted by Ah), whereas in three

dimensions it is simply given by the length lh of the edge labeled by h. In two dimensions Vh = 1.

In this work we will focus almost exclusively on the case of 2 + 1 dimensions; consequently the

relevant formulas will be Eqs. (30) and (31) for dimension d = 2.

The continuum Wheeler-DeWitt equation is local, as can be seen from Eq. (14). One can

integrate the Wheeler-DeWitt operator over all space and obtain

{

− (16π G)2
∫

d2x∆(g) + 2λ

∫

d2x
√
g −

∫

d2x
√
g R

}

Ψ = 0 (32)

with the super-Laplacian on metrics defined as

∆(g) ≡ Gij,kl(x)
δ2

δgij(x) δgkl(x)
. (33)

In the discrete case one has one local Wheeler-DeWitt equation for each triangle [see Eqs. (20) and

(21)], which therefore takes the form

{

− (16π G)2 ∆(l2)− κ
∑

i⊂∆

δi + 2λA∆

}

Ψ = 0 , (34)

where∆(l2) is the lattice version of the super-Laplacian, and we have set for convenience κ = 2nσ h.

As we shall see below, for a lattice of fixed coordination number, κ is a constant and does not depend
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on the location on the lattice. In the above expression ∆(l2) is a discretized form of the covariant

super-Laplacian, acting locally on the space of s = l2 variables. From Eqs. (26) and (34) one has

explicitly

∆(l2) = − 4A∆

(

∂2

∂a ∂b
+

∂2

∂b ∂c
+

∂2

∂c ∂a

)

. (35)

Note that the curvature term involves three deficit angles δi, associated with the three vertices of a

triangle. Now, Eq. (34) applies to a single given triangle, with one equation to be satisfied at each

triangle on the lattice. One can also construct the total Hamiltonian by simply summing over all

triangles, which leads to
{

− (16π G)2
∑

∆

∆(l2) + 2λ
∑

∆

A∆ − κ
∑

∆

∑

i⊂∆

δi

}

Ψ = 0 . (36)

Summing over all triangles (∆) is different from summing over all lattice sites (i), and the above

equation is equivalent to
{

− (16π G)2
∑

∆

∆(l2) + 2λ
∑

∆

A∆ − κ q
∑

i

δi

}

Ψ = 0 , (37)

where q is the lattice coordination number and is determined by how the lattice is put together

(which vertices are neighbors to each other, or, equivalently, by the so-called incidence matrix).

Here, q is the number of neighboring simplexes that share a given hinge (vertex). For a flat

triangular lattice q = 6, whereas for a tetrahedron, octahedron, and icosahedron, one has q = 3, 4, 5,

respectively. For proper normalization in Eq. (36) one requires
∫

d2x
√
g ←→

∑

∆

A∆ (38)

as well as

1
2

∫

d2x
√
g R ←→

∑

i

δi . (39)

This last correspondence allows one to fix the overall normalization of the curvature term

κ ≡ 2nσ h =
2

q
, (40)

which then determines the relative weight of the local volume and curvature terms.

5 Choice of Coupling Constants

As in the Euclidean lattice theory of gravity, we will find it convenient here to factor out an overall

irrelevant length scale from the problem and set the (unscaled) cosmological constant equal to one

14



as was done in [17]. Indeed recall that the Euclidean path integral weight always contains a factor

P (V ) ∝ exp(−λ0V ), where V =
∫ √

g is the total volume on the lattice, and λ0 is the unscaled

cosmological constant. The choice λ0 = 1 then fixes this overall scale once and for all. Since

λ0 = 2λ/16πG, one then has λ = 8πG in this system of units. In the following we will also find it

convenient to introduce a scaled coupling λ̃ defined as

λ̃ ≡ λ

2

(

1

16πG

)2

(41)

so that for λ0 = 1 (in units of the UV cutoff or, equivalently, in units of the fundamental lattice

spacing) one has λ̃ = 1/64πG. One can now rewrite the Wheeler-DeWitt equation so that the

kinetic term (the term involving the Laplacian) has a unit coefficient and write Eq. (14) as
{

−∆ +
2λ

(16πG)2
√
g − 1

(16πG)2
√
g R

}

Ψ = 0 . (42)

Note that in the extreme strong coupling limit (G → ∞) the kinetic term is the dominant one,

followed by the volume (cosmological constant) term (using the facts about λ̃ given above) and,

finally, by the curvature term. Consequently, at least in a first approximation, the curvature R

term can be neglected compared to the other two terms in this limit.

Two further notational simplifications will be done in the following. The first one is introduced

in order to avoid lots of factors of 16π in many of the subsequent formulas. Consequently, from

now on we shall write G as a shorthand for 16π G,

16π G −→ G . (43)

In this notation one then has λ = G/2 and λ̃ = 1/4G. The above notational choices then lead to a

much more streamlined representation of the Wheeler-DeWitt equation,
{

−∆ +
1

G

√
g − 1

G2

√
g R

}

Ψ = 0 . (44)

A second notational choice will be dictated later on by the structure of the wave function solutions,

which will commonly involve factors of
√
G. For this reason we will now define the new coupling g

as

g ≡
√
G , (45)

so that λ̃ = 4/g2 (the latter g should not be confused with the square root of the determinant of

the metric).

Later on it will be convenient to define a parameter β for the triangulations of the sphere,

defined as

β ≡ 2π
√

λ̃ G2
. (46)
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Factors of 2π arise here because we are looking at various triangulations of the two-sphere. More

generally, for a two-dimensional closed manifold with arbitrary topology, one has by the Gauss-

Bonnet theorem
∫

d2x
√
g R = 4π χ (47)

with χ as the Euler characteristic of the manifold. The latter is related to the genus g (the number

of handles) via χ = 2−2g (note that for a discrete manifold in two dimensions one has the equivalent

form due to Euler χ = N0 −N1 +N2, where Ni denotes the number of simplices of dimension i).

Thus for a general two-dimensional manifold we will define

β =
π χ
√

λ̃ G2
. (48)

Equivalently, using
√

λ̃ G2 =
1

2
√
G
·G2 = 1

2 G
3/2 (49)

and then making use of the coupling g, one has simply

β =
4π

g3
(50)

for the sphere, and in the more general case

β =
2π χ

g3
. (51)

6 Outline of the General Method of Solution

It should be clear from the previous discussion that in the strong coupling limit (large G) one can, at

least at first, neglect the curvature term, which can then be included at a later stage. This simplifies

the problem quite a bit, as it is the curvature term that introduces complicated interactions between

neighboring simplices (this is evident from the lattice Wheeler-DeWitt equation of Eq. (21), where

the deficit angles enter the curvature term only).

The general procedure for finding a solution will be as follows. First a solution will be found for

equilateral edge lengths s. Later this solution will be extended to determine whether it is consistent

to higher order in the weak field expansion. Consequently we shall write for the squared edge

lengths

l2ij = s (1 + ε hij) , (52)
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with ε a small expansion parameter. Therefore, for example, in Eq. (35) one has a = s(1 + εha),

b = s(1 + εhb) and c = s(1 + εhc). The resulting solution for the wave function will then be

given by a suitable power series in the h variables. Nevertheless, in some rare cases (such as the

single-triangle case described below or the single tetrahedron in 3 + 1 dimensions [1]), one is lucky

enough to find immediately an exact solution, without having to rely in any way on the weak field

expansion.

To lowest order in h, a solution to the Wheeler-DeWitt equation is readily found using the

standard power series (or Frobenius) method, appropriate for the study of quantum mechanical

wave equations. In this method one first obtains the correct asymptotic behavior of the solution

for small and large arguments and later constructs a full solution by writing the remainder as a

power series or polynomial in the relevant variable. Of some importance in the following is the

correct determination of the wave functional Ψ for small and large areas (small and large s), and

to what extent the resulting wave function can be expressed in terms of invariants such as areas

and curvatures, or powers thereof.

In the following we will see that the natural variable for displaying results is the scaled total

area x, defined as

x ≡ 2
√

λ̃ Atot = 2
√

λ̃
∑

∆

A∆ . (53)

We will look at a variety of two-dimensional lattices, including the regular triangulations of the two-

sphere given by the tetrahedron, octahedron and icosahedron, as well as the case of a triangulated

torus with coordination number six. In the equilateral case the natural variable for displaying the

results is then

x = 2
√

λ̃ Atot = 2N∆

√

λ̃ A∆ . (54)

Later on we will be interested in taking the infinite volume limit, defined in the usual way as

N∆ → ∞ ,

Atot → ∞ ,

Atot

N∆
→ const. . (55)

It follows that this last ratio can be used to define a fundamental lattice spacing l0, for example

via Atot/N∆ = A∆ =
√
3 l20/4.

The full solution of the quantum mechanical problem will, in general, require that the wave

functions be properly normalized, as in Eq. (13). This will introduce at some stage wave function

normalization factors N and Ñ , which will be fixed by the standard rules of quantum mechanics.
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If the wave function depends on the total area only, then the relevant requirement becomes
∫ ∞

0
dAtot |Ψ(Atot) |2 ≡

1

2
√

λ̃

∫ ∞

0
dx |Ψ(x) |2 = 1 . (56)

As in nonrelativistic quantum mechanics, two solutions are expected, only one of which will be

regular as the origin and thus satisfy the wave function normalizability requirement.

At this point it will be necessary to discuss each lattice separately in some detail. For each

lattice geometry, we will break down the presentation into four separate items:

(a) Equilateral Case in the Strong Coupling Limit (ε = 0). This subsection will find a

solution in the extreme strong coupling limit (large G), without curvature term in the Wheeler-

DeWitt equation. The solution will not rely on the weak field expansion, and the results will be

exact to zeroth order in the weak field expansion of Eq. (52). In this case the simplices are all taken

to be equilateral, and the lattice edge lengths fluctuate together.

(b) Equilateral Case with Curvature Term (ε = 0). Next, the curvature term is included.

The solution again will not rely on the weak field expansion, and all the triangles will be taken to

be equilateral. The resulting solution will, therefore, be valid again (and exact) to zeroth order in

the ε expansion parameter of Eq. (52).

(c) Large Area in the Strong Coupling Limit (ε 6= 0). In this case we will look at nonzero

local fluctuations in Eq. (52). The method of solution will now rely on the weak field expansion

for large areas (large s), but nevertheless it will turn out that an exact solution can be found in

this case. The resulting answer will be found to be correct to arbitrarily large order O(εn), with n
a positive integer.

(d) Small Area in the Strong Coupling Limit (ε 6= 0). Finally we will look at the case of

nonzero fluctuations [ε 6= 0 in Eq. (52)] in the limit of small areas (small s). In this limit we will

find that, in general, the solution can be written entirely in terms of invariants involving total areas

and curvatures only up to order O(ε) or O(ε2), depending on whether a further symmetrization of

the problem is performed or not.

If the reader is not interested in the details for each lattice, he can skip the next few subsections

and go directly to the summary presented in Sec. (6.6).

6.1 Single Triangle Case

From Eq. (34) the Wheeler-DeWitt equation for a single triangle reads
{

(16πG)2 4A∆

(

∂2

∂a ∂b
+

∂2

∂b ∂c
+

∂2

∂c ∂a

)

+ 2λA∆

}

Ψ( a, b, c ) = 0, (57)
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where a, b, c are the three squared edge lengths for the given triangle, and A∆ is the area of the

same triangle. Note that for a single triangle there can be no curvature term. Equivalently one

needs to solve
{

∂2

∂a ∂b
+

∂2

∂b ∂c
+

∂2

∂c ∂a
+ λ̃

}

Ψ( a, b, c ) = 0 . (58)

If one sets

Ψ[ a, b, c ] = Φ[A∆ ] , (59)

then one finds the following equivalent differential equation

A∆
d2Φ

dA2
∆

+ 2
dΦ

dA∆
+ 16 λ̃ A∆ Φ = 0 . (60)

For a single triangle the total area equals the area of the single triangle, Atot = A∆. Here it will

be convenient to define

x = 4
√

λ̃ Atot ≡ 4
√

λ̃ A∆ (61)

so that the solution will be function of this variable only. Note that in this case, and in this case

only, we will deviate from the general definition of the variable x given in Eq. (53). One can then

write the solution to Eq. (60) in the form

Ψ(x) = N Jn(x)

xn
(62)

with

n =
1

2
(63)

so that

Ψ(x) = N
J1/2

(

4
√

λ̃ Atot

)

(

4
√

λ̃ Atot

)1/2
. (64)

The wave function normalization constant is given here by

N = 2 λ̃1/4 . (65)

Note that the above solution is exact, and did not require in any way the weak field expansion.

Two alternate forms of the wave function are

Ψ(Atot) = N
sin
(

4
√

λ̃Atot

)

2
√
2π
√

λ̃ Atot

= N
√

2

π
exp

(

− 4 i
√

λ̃ Atot

)

1F1

(

1, 2, 8 i
√

λ̃ Atot

)

. (66)
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Here 1F1(a, b, z) is the confluent hypergeometric functions of the first kind. The usefulness of the

latter representation will become clearer later, when other lattices are considered and the curvature

term is included. Expanding the solution for small area one obtains

Ψ(x) = N
√

2

π

[

1− x2

6
+

x4

120
+O

(

x6
)

]

(67)

which shows that it is indeed nonsingular and, thus, normalizable.

In the limit of large areas, a solution to the original differential equation is given either by the

asymptotic behavior of the above Bessel (here sine) function (J), the same limiting behavior for

the corresponding Bessel function Y, or by the two corresponding Hankel functions (H).

Ψ ∼
x → ∞

1

x
exp (± i x) ∼ 1

Atot
exp

(

± 4 i
√

λ̃ Atot

)

. (68)

Nevertheless among those four solutions, only one is regular and, therefore, physically acceptable.

The calculation for a single triangle can be regarded as a useful starting point, and a basic

stepping stone, for the strong coupling expansion in 1/G. It shows the physical characteristics

of the wave function solution deep in the strong coupling regime: for G → ∞ the coupling term

between different simplices, which is caused mainly by the curvature term, disappears and one ends

up with a completely decoupled problem, where the edge lengths in nonadjacent simplices fluctuate

independently.

6.2 Tetrahedron

In the case of the tetrahedron one has 4 triangles, 6 edges, and 4 vertices, and 3 neighboring

triangles for each vertex. Let us discuss again, here, the various cases individually.

(a) Equilateral Case in the Strong Coupling Limit (ε = 0)

We first look at the case when ε = 0 in Eq. (52), deep in the strong coupling region and without

the curvature term.

Following Eq. (53) we define the scaled area variable as

x = 2
√

λ̃ Atot = 4× 2
√

λ̃ A∆ (69)

and the solution will be found later to be a function of this variable only. For equilateral triangles

the wave function Ψ needs to satisfy

Ψ′′ +
2

x
Ψ′ + Ψ = 0 . (70)
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The correct solution can be written in the form

Ψ(x) = N Jn(x)

xn
(71)

with

n =
1

2
(72)

so that

Ψ(x) = N
J1/2

(

2
√

λ̃ Atot

)

(

2
√

λ̃ Atot

)1/2
. (73)

The wave function normalization constant is given by

N =
√
2 λ̃

1
4 . (74)

Below are two equivalent forms of the same wave function

Ψ(Atot) = N
sin
(

2
√

λ̃ Atot

)

√
2π
√

λ̃ Atot

= N
√

2

π
exp

(

− 2 i
√

λ̃ Atot

)

1F1

(

1, 2, 4 i
√

λ̃ Atot

)

(75)

for the equilateral case. In the limit of small area one obtains

Ψ = N
√

2

π

[

1− x2

6
+

x4

120
+O

(

x6
)

]

(76)

which again confirms that the wave function is regular at the origin. Since one is solving a second-

order linear differential equation, one expects two solutions; here, one is singular and the other

one is not, as is often the case in quantum mechanics. For the geometry of the tetrahedron, one

solution can be written in terms of Bessel functions of the first kind (J)

J1/2(x)√
x

=

√

2

π

sinx

x
. (77)

The Bessel function of the second kind (Y ) also satisfies the same differential equation, but since

Y1/2(x)√
x

= −
√

2

π

cos x

x
(78)

this second solution is not normalizable, it is therefore discarded on physical grounds. We shall see

below that the same behavior at small x holds also for the nonzero curvature term. Note that both

of the above solutions are real. 5

5There are also linear combinations of Bessel functions which give complex Hankel (H) functions. These satisfy
the Wheeler-DeWitt equation as well; however, they are not physically acceptable since both are singular at the
origin.
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(b) Equilateral Case with Curvature Term (ε = 0)

Next we include the effects of the curvature term. To zeroth order in weak field expansions,

when all edges fluctuate in unison, one now needs to solve the ordinary differential equation

Ψ′′ +
2

x
Ψ′ − 2β

x
Ψ + Ψ = 0 , (79)

with β = 2π/
√

λ̃ G2 as in Eq. (46). Since the deficit angle δ = π at each vertex, the curvature

contribution for each triangle is κ · π · 3. In this case one has, therefore,

κtetra = 2 · 1
3

(80)

and, therefore, the solution is given by

Ψ ' exp
(

− 2 i
√

λ̃ Atot

)

1F1

(

1− i 3π κtetra
G2
√

λ̃
, 2, 4 i

√

λ̃ Atot

)

= exp
(

− 2 i
√

λ̃ Atot

)

1F1

(

1− i 2π

G2
√

λ̃
, 2, 4 i

√

λ̃ Atot

)

(81)

in the equilateral case, up to an overall normalization factor. Note that in this case one had to

include a factor of Atot/(4A∆) (which in the tetrahedron case equals one) in the imaginary part of

the first argument of 1F1.

(c) Large Area in the Strong Coupling Limit (ε 6= 0)

Next we look at the case ε 6= 0 in Eq. (52). In the limit of large areas one finds that the two

independent solutions reduce to

Ψ ∼
x → ∞

exp (± i x) ∼ exp
(

± 2 i
√

λ̃ Atot

)

(82)

to all orders in ε. To show this, one sets Ψ = eαAtot, where Atot is a sum of the four triangle areas

that make up the tetrahedron, and then expands the edge lengths in the usual way according to

Eq. (52), by setting a = s(1 + ε ha), etc. Here we are interested specifically in the limit when s is

large and ε is small. One then finds that the rhs of the lattice Wheeler-DeWitt equation is given

to O(εn) by
eα

√
3 s

4

1

2n
√
3 n n!

αn
(

α2 + 4 λ̃
)

εn sn
(

∑

h
)n

+ · · · . (83)

One concludes that in this limit it is sufficient to have

α2 + 4 λ̃ = 0, (84)

or α = ± 2 i
√

λ̃, to obtain an exact solution in the limit n→∞. Note that in the strong coupling

limit the two independent wave function solutions in Eq. (82) completely factorize as a product of

single-triangle contributions.
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(d) Small Area in the Strong Coupling Limit (ε 6= 0)

In the limit of small area, we have shown before that the solution reduces to a constant in the

equilateral case [O
(

ε0
)

] for small x or small areas. Beyond the equilateral case one can write a

general ansatz for the wave function in terms of geometric invariants

Ψ =

(

∏

∆

A∆

)γ0


1 + γ2

(

∑

∆

A∆

)2

+ γ4

(

∑

∆

A∆

)4

+ · · ·



 , (85)

and then expand the solution in ε for small s. To zeroth order in ε we had the solution Ψ ∼ Jn(x)/xn

with x = 2
√

λ̃ Atot and n = 1/2. This gives in Eq. (85) γ0 = 0, γ2 = − 2
3 λ̃ and γ4 = 2

15 λ̃
2. To

linear order [O (ε)] one finds, though, that terms appear which cannot be expressed in the form

of Eq. (85). But one also finds that, while these terms are nonzero if one uses the Hamiltonian

density (the Hamiltonian contribution from just a single triangle), if one uses the sum of such

triangle Hamiltonians, then the resulting solution is symmetrized, and the corrections to Eq. (85)

are found to be of order O
(

ε2
)

. Then the wave function for small area is of the form

Ψ ∼ 1 − 2
3 λ̃ A

2
tot +

2
15 λ̃

2A4
tot + . . . (86)

up to terms O(ε2).

6.3 Octahedron

The discussion of the octahedron proceeds in a way that is similar to what was done before for

the tetrahedron. In the case of the octahedron one has 8 triangles, 12 edges and 6 vertices, with 4

neighboring triangles per vertex. Again we will now discuss the various cases individually.

(a) Equilateral Case in the Strong Coupling Limit (ε = 0)

Again we look first at the case ε = 0 in Eq. (52), deep in the strong coupling region and without

the curvature term. Following Eq. (53) we define the scaled area variable as

x = 2
√

λ̃ Atot = 8× 2
√

λ̃ A∆ (87)

and it is found that the solution is a function of this variable only. For equilateral triangles the

wave function Ψ needs to satisfy

Ψ′′ +
4

x
Ψ′ + Ψ = 0 . (88)

The correct solution can be written in the form

Ψ(x) = N Jn(x)

xn
(89)
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with

n =
3

2
(90)

so that

Ψ(x) = N
J3/2

(

2
√

λ̃Atot

)

(

2
√

λ̃Atot

)3/2
. (91)

The wave function normalization factor is given by

N =
√
15 λ̃1/4 . (92)

Equivalent forms of the above wave function are

Ψ(Atot) = N 1

23/2 Γ
(

5
2

) exp
(

− 2 i
√

λ̃ Atot

)

1F1

(

2, 4, 4 i
√

λ̃ Atot

)

= N



−
cos
(

2
√

λ̃ Atot

)

2
√
2π λ̃A2

tot

+
sin
(

2
√

λ̃ Atot

)

4
√
2π λ̃3/2A3

tot



 . (93)

These can be expanded for small Atot or small x to give

Ψ = N
√
2

3
√
π

[

1− x2

10
+

x4

280
+O(x6)

]

. (94)

We note here again that both Bessel functions of the first (J) and second (Y ) kind, in principle,

give solutions for this case, as well as the two corresponding Hankel (H) functions. Nevertheless,

only the solution associated with the Bessel J function is regular near the origin.

(b) Equilateral Case with Curvature Term (ε = 0)

Next, we include the effects of the curvature term. Since here the deficit angle δ = 2π/3 at

each vertex, the curvature contribution for each equilateral triangle is κ · 2π3 · 3 = 2π κ. For the

octahedron one has in Eq. (40)

κocta = 2 · 1
4
. (95)

With the curvature term one finds

Ψ(Atot) ' exp
(

− 2 i
√

λ̃ Atot

)

1F1

(

2− i 4π κocta√

λ̃ G2
, 4, 4 i

√

λ̃ Atot

)

= exp
(

− 2 i
√

λ̃ Atot

)

1F1

(

2− i 2π
√

λ̃ G2
, 4, 4 i

√

λ̃ Atot

)

. (96)

Note that in this case one had to include a factor Atot/(4A∆), which in the octahedron case equals

two.

(c) Large Area in the Strong Coupling Limit (ε 6= 0)
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In the limit of large areas the two independent solutions reduce to

Ψ ∼
x → ∞

exp (± i x) ∼ exp
(

± 2 i
√

λ̃ Atot

)

(97)

to all orders in ε. In other words, to O (εn) with n → ∞, as for the tetrahedron case. Note also

that in the strong coupling limit the two independent wave function solutions again completely

factorize as a product of single-triangle contributions.

(d) Small Area in the Strong Coupling Limit (ε 6= 0)

In the limit of small area, the solution approaches a constant in the equilateral case. To go

beyond the equilateral case, one can write again a general ansatz for the wave function, written in

terms of geometric invariants as in Eq. (85). Then the solution can be expanded in ε for small s.

To zeroth order in ε, the solution is Ψ ∼ Jn(x)/x
n with n = 3/2. This gives in Eq. (85) γ0 = 0,

γ2 = − 2
5 λ̃ and γ4 = 2

35 λ̃
2. However, to linear order [O (ε)] one finds again that linear terms in

h appear which cannot be expressed in the form of Eq. (85). But one also finds that while these

terms are nonzero if one uses the Hamiltonian density (the Hamiltonian contribution from just

a single triangle), if one uses the sum of such triangle Hamiltonians then the resulting solution

is symmetrized, and the corrections to Eq. (85) are found to be of order O
(

ε2
)

. Then the wave

function for small area is of the form

Ψ ' 1 − 2
5 λ̃ A

2
tot +

2
35 λ̃

2A4
tot + . . . (98)

up to terms of O(ε).

6.4 Icosahedron

The discussion of the icosahedron proceeds in a way that is similar to what was done before for the

other regular triangulations. Here one has 20 triangles, 30 edges and 12 vertices, with 5 neighboring

triangles per vertex. Let us again discuss the various cases individually.

(a) Equilateral Case in the Strong Coupling Limit (ε = 0)

Again we look first at the case ε = 0 in Eq. (52), deep in the strong coupling region and without

curvature term. Following Eq. (53) we define the scaled area variable as

x = 2
√

λ̃ Atot ≡ 20× 2
√

λ̃ A∆ (99)

and a solution is found which is a function of this variable only. For equilateral triangles the wave

function Ψ needs to satisfy

Ψ′′ +
10

x
Ψ′ + Ψ = 0 . (100)
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A solution can then be found of the form

Ψ(x) = N Jn(x)

xn
(101)

with

n =
9

2
(102)

so that

Ψ(x) = N
J9/2

(

2
√

λ̃ Atot

)

(

2
√

λ̃ Atot

)9/2
. (103)

The wave function normalization factor is given by

N = 9
√
12155 λ̃1/4 . (104)

Below is an equivalent form of the same solution

Ψ(Atot) = N 1

29/2 Γ
(

11
2

) exp
(

− 2 i
√

λ̃ Atot

)

1F1

(

5, 10, 4 i
√

λ̃ Atot

)

. (105)

For small area Atot or small x, one obtains

Ψ = N 1

29/2 Γ
(

11
2

)

[

1− x2

22
+

x4

1144
+O

(

x6
)

]

(106)

which shows that the above solution is regular at the origin and normalizable.

(b) Equilateral Case with Curvature Term (ε = 0)

Next we include again the effects of the curvature term. Since now the deficit angle δ = π/3 at

each vertex, the curvature contribution for each triangle is κ · π3 · 3 = π κ. For the icosahedron one

has in Eq. (40)

κicosa = 2 · 1
5
. (107)

Then with the curvature term included for equilateral triangles one obtains for equilateral triangles

[O(ε0)]

Ψ(Atot) ' exp
(

− 2 i
√

λ̃ Atot

)

1F1

(

5− i 5π κicosa√

λ̃ G2
, 10, 4 i

√

λ̃ Atot

)

= exp
(

− 2 i
√

λ̃ Atot

)

1F1

(

5− i 2π
√

λ̃ G2
, 10, 4 i

√

λ̃ Atot

)

, (108)

up to an overall wave function normalization constant. Note that in this case one had to include a

factor Atot/4A∆, which in the dodecahedron case equals five.

(c) Large Area in the Strong Coupling Limit (ε 6= 0)
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In the limit of large areas the two independent solutions reduce to

Ψ ∼
x → ∞

exp (± i x) ∼ exp
(

± 2 i
√

λ̃ Atot

)

(109)

to all orders in the weak field expansion parameter ε, as for the tetrahedron and octahedron case.

Note also that in the strong coupling limit the two independent wave function solutions again

completely factorize as a product of single-triangle contributions.

(d) Small Area in the Strong Coupling Limit (ε 6= 0)

In the limit of small area, the solution approaches a constant in the equilateral case. To go

beyond the equilateral case, one can write again a general ansatz for the wave function, written in

terms of geometric invariants as in Eq. (85). Then the solution in ε for small s. To zeroth order

in ε the solution is Ψ ∼ Jn(x)/x
n with n = 9/2. This gives in Eq. (85) γ0 = 0, γ2 = − 2

11 λ̃ and

γ4 =
2

143 λ̃
2. But to linear order [O (ε)] one finds again that linear terms in h appear which cannot

be expressed in the form of Eq. (85). But one also finds that, while these terms are nonzero if

one uses the Hamiltonian density (the Hamiltonian contribution from just a single triangle), if one

uses the sum of such triangle Hamiltonians then the resulting solution is symmetrized, and the

corrections to Eq. (85) are found to be of order O
(

ε2
)

. Then the wave function for small area is of

the form

Ψ ' 1 − 2
11 λ̃ A

2
tot + 2

143 λ̃
2A4

tot + . . . , (110)

up to terms of O(ε).

6.5 Torus

Finally we will consider a regularly triangulated torus, which will consist here of an infinite lattice

built out of triangles, with each triangle having 12 neighboring triangles. The torus topology is

equivalent to requiring periodic boundary conditions in the two spatial directions. Of course, one

could consider the same type of lattice but with some other sort of boundary condition, but we

shall not pursue that aspect here.

Due to the local structure of the lattice Wheeler-DeWitt equation in Eq. (34), it will not be

necessary to include in the wave function triangles that are arbitrarily far apart. Instead it will be

sufficient, in order to determine the overall structure of the solution, to include only those triangles

that are affected in a nontrivial way by the interaction terms in the Wheeler-DeWitt equation. In

the present case, this requires the consideration of one given triangle plus its 12 neighbors, giving

a total of 13 triangles. Here, we will also set as before x ≡ 2
√

λ̃ Atot.
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(a) Equilateral Case in the Strong Coupling Limit (ε = 0)

For this case the relevant equation and its solution are largely in line with what was obtained

for the previous cases. For equilateral triangles the wave function Ψ has to satisfy

Ψ′′ +
13

2x
Ψ′ + Ψ = 0 . (111)

The wave function can now be written as

Ψ(x) = N Jn(x)

xn
(112)

with, here, (due to our specific choice of sublattice)

n =
11

4
(113)

so that

Ψ(x) = N
J11/4

(

2
√

λ̃ Atot

)

(

2
√

λ̃ Atot

)11/4
. (114)

The wave function normalization constant is given in this case by

N = 4

√

30Γ
(

13
4

)

Γ
(

11
4

) λ̃1/4 . (115)

For the above wave function an equivalent form is

Ψ(Atot) = N 1

211/4 Γ
(

15
4

) exp
(

− 2 i
√

λ̃ Atot

)

1F1

(

13

4
,
13

2
, 4 i

√

λ̃ Atot

)

. (116)

Expanding the above solution for small area one obtains

Ψ = N 1

211/4 Γ
(

15
4

)

[

1− x2

15
+

x4

570
+O(x6)

]

, (117)

which shows the above solution is indeed regular at the origin.

(b) Equilateral Case with Curvature Term (ε = 0)

In the case of the torus, the curvature term is zero (χ = 0), so there are no changes to the

preceding discussion.

(c) Large Area in the Strong Coupling Limit (ε 6= 0)

In the limit of large areas the two independent solutions reduce to

Ψ ∼
x → ∞

exp (± i x) ∼ exp
(

± i 2
√

λ̃ Atot

)

(118)

to all orders in ε. This is similar to what was found earlier for the other lattices. In particular, the

two independent solutions again completely factorize as a product of single-triangle contributions.
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(d) Small Area in the Strong Coupling Limit (ε 6= 0)

In the limit of small area, the regular solution approaches a constant and the discussion, and

solution, is rather similar to the previous cases. Here one finds

Ψ ' 1 − 4
15 λ̃ A

2
tot + 8

285 λ̃
2A4

tot + . . . , (119)

up to terms of O(ε2).

6.6 Summary of Results

In this section we will summarize the results obtained so far for the various finite lattices considered

(tetrahedron, octahedron, icosahedron, and regularly triangulated torus).

(a) Equilateral Case in the Strong Coupling Limit (ε = 0)

It is rather remarkable that all of the previous cases (except the trivial case of a single triangle,

which has no curvature) can be described by one single set of interpolating wave functions, where

the interpolating variable is simply related to the overall lattice size (specifically, the number of

triangles).

Indeed for equilateral triangles and in the absence of curvature, the wave function Ψ(x) for all

previous cases is a solution to the following equation

Ψ′′ +
2n + 1

x
Ψ′ + Ψ = 0 , (120)

with parameter n given by

n = 1
4 (N∆ − 2) (121)

where N∆ ≡ N2 is the total number of triangles on the lattice. Thus

N∆ = 4(n + 1
2) (122)

and, consequently,

ntetrahedron = 1
4 (4− 2) =

1

2
,

noctahedron = 1
4 (8− 2) =

3

2
,

nicosahedron = 1
4 (20− 2) =

9

2
,

ntorus = 1
4 (13− 2) =

11

4
. (123)

Note that for a single triangle one has n = 1
2 as well, but the definition of the scaled area is different

in that case.
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Furthermore the differential equation in Eq. (120) describes, in spherical coordinates and with

suitable choice of constants, the radial wave function for a free quantum particle in D = 2n + 2

dimensions. Indeed recall that in D dimensions the Laplace operator in spherical coordinates has

the form

∆Ψ =
∂2Ψ

∂r2
+
D − 1

r

∂Ψ

∂r
+

1

r2
∆SD−1 Ψ (124)

where ∆SD−1 is the Laplace-Beltrami operator on the (D−1)-sphere. In our case, the wave function

does not, to this order, depend on angles and therefore the last (angular variable) term does not

contribute. The role of the angles is played in our case by the h variables, which to this order do

not fluctuate.

A nonsingular, normalizable solution to Eq. (120) is then given by

Ψ(x) = N Jn(x)

xn
= Ñ e−i x

1F1

(

n+ 1
2 , 2n + 1, 2 i x

)

(125)

where N is the wave function normalization constant

N ≡ 2

[

Γ(n+ 1
2) Γ(2n + 1

2)

Γ(n)

]1/2

λ̃1/4 , (126)

and

Ñ ≡ 1

2n Γ(n+ 1)
N . (127)

Here and in Eq. (125) 1F1(a, b; z) denotes the confluent hypergeometric function of the first kind,

sometimes denoted also by M(a, b, ; z). In either form, the above wave function is real, in spite of

appearances. The general asymptotic behavior of the solution Ψ(x) is found from Eq. (120). For

small x one has

Ψ(x) ∼ xα (128)

with index α = 0, −2n. The latter solution is singular and will be discarded. For large x one finds

immediately

Ψ(x) ∼ 1

xn+
1
2

exp (±ix) , (129)

which is of course consistent with all the previous results. Indeed the other possible independent

solution of Eq. (120) would be

Ψ(x) ' Yn(x)

xn
, (130)

where Yn(x) is a Bessel function of the second kind (or Neumann function). However, the latter

leads to a wave function Ψ which is singular as x→ 0,

Ψ(x) ∼ − 1

π
Γ(n) 2n x−2n (131)

30



and gives, therefore, a solution which is not normalizable. For completeness we record here the

small x (small area) behavior of the normalized wave function in Eq. (125)

Ψ(x) ∼ N 1

2n Γ(n+ 1)
, (132)

and the corresponding large x (large area) behavior

Ψ(x) ∼ N
√

2

π

1

xn+
1
2

cos
(

x− nπ

2
− π

4

)

, (133)

both of which reflect well-known properties of the Bessel functions Jn(x).

(b) Equilateral Case with Curvature Term (ε = 0)

When the curvature term is included in the Wheeler-DeWitt equation, and still in the limit of

equilateral triangles, one obtains the following interpolating differential equation

Ψ′′ +
2n+ 1

x
Ψ′ − 2β

x
Ψ + Ψ = 0 , (134)

which now describes the radial wave function for a quantum particle in D = 2n + 2 dimensions,

with a repulsive Coulomb potential proportional to 2β. The nonsingular, normalizable solution is

now given by

Ψ(x) ' e− i x
1F1

(

n+ 1
2 − i β, 2n+ 1, 2 i x

)

, (135)

up to an overall wave function normalization constant Ñ (n, β). The normalization constant can

be evaluated analytically but has a rather unwieldy form and will not be recorded here. Note

that the imaginary part (β) of the first argument in the confluent hypergeometric function of

Eq. (135) depends on the topology but does not depend on the number of triangles. In view of

the previous discussion the parameter n increases gradually as more triangles are included in the

simplicial geometry. For the regular triangulations of the sphere, the total deficit angle (the sum

of the deficit angles in a given simplicial geometry) is always 4π, so even if one writes for the wave

functional Ψ[Atot, δtot], the curvature contribution
∑

h δh is a constant and does not contribute in

any significant way. Note also that, in spite of appearances, the above wave function is still real for

nonzero β. That Ψ(x) in Eq. (135) is a real function can be seen, for example, from its definition

via the power series expansion

Ψ(x) ' 1 +
2β

2n+ 1
x − 1 + 2n − 4β2

4 + 12n + 8n2
x2 − β

(

5 + 6n− 4β2
)

6 (3 + 11n + 12n2 + 4n3)
x3 + O(x4) , (136)

and again up to an overall normalization factor N (n, β).

The general asymptotic behavior of the solution Ψ(x) is again easily determined from Eq. (134).

For small x one has

Ψ(x) ∼ xα (137)
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with again α = 0, −2n, and, therefore, independent of the curvature contribution involving β. The

second solution is singular and will be discarded as before. For large x one finds immediately

Ψ(x) ∼ 1

xn+
1
2

exp {± i (x− β lnx) } , (138)

which is of course consistent with all previous results. It also shows that the convergence properties

of the wave function at large x are not affected by the β term. A second independent solution to

Eq. (134) is given by

Ψ(x) ' e− i x U
(

n+ 1
2 − i β, 2n+ 1, 2 i x

)

, (139)

where U(a, b, ; z) is the confluent hypergeometric function of the second kind (sometimes referred

to as Tricomi’s function). This second solution is singular at the origin, leading to a wave function

that is not normalizable and will not be considered further here.

The asymptotic behavior of the regular solution for large argument z (discussed in standard

quantum mechanics textbooks such as [25, 26] and whose notation we will follow here) can be

obtained from the asymptotic form of the confluent hypergeometric function 1F1, defined originally,

for small z, by the series

1F1(a, b, z) = 1 +
az

b 1!
+
a(a+ 1)z2

b(b+ 1) 2!
+ · · · . (140)

It is common procedure to then write 1F1(a, b, z) =W1(a, b, z) +W2(a, b, z), where W1 and W2 are

separately solutions of the confluent hypergeometric equation

z
d2F

dz2
+ (b− z)dF

dz
− aF = 0 . (141)

Then an asymptotic expansion for 1F1 (or M) is obtained from the following relations:

W1(a, b, z) =
Γ(b)

Γ(b− a) (−z)
−a w(a, a − b+ 1,−z) (142)

W2(a, b, z) =
Γ(b)

Γ(a)
ez za−b w(1− a, b− a, z)

where

w(α, β, z) ∼
z → ∞

1 +
αβ

z 1!
+
α(α+ 1)β(β + 1)

z2 2!
+ · · · , (143)

with the irregular (at the origin) solution given instead by the combination G(a, b, z) = iW1(a, b, z)−
iW2(a, b, z). One immediate and useful consequence of the above result is that, as anticipated be-

fore, the behavior of the regular solution close to the origin is not affected by the presence of the

β (curvature) term. In other words, the wave function solution Ψ(x) in Eq. (135) is always well

behaved for small areas and, therefore, leads to a perfectly acceptable, normalizable solution.
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Furthermore, the combination and properties of arguments in the confluent hypergeometric

function in Eq. (135) allow one to write it equivalently as a Coulomb wave function with (Sommer-

feld) parameter η

Cl(η) ρ
l+1 · e− i ρ

1F1 (l + 1− i η, 2 l + 2, 2 i ρ) = Fl(η, ρ) , (144)

where Fl(η, ρ) denotes the regular Coulomb wave function that arises in the solution of the quantum

mechanical three-dimensional Coulomb problem in spherical coordinates [25, 26]. The latter is a

solution of the radial differential equation

d2 Fl

d ρ2
+

[

1 − 2 η

ρ
− l(l + 1)

ρ2

]

Fl = 0 , (145)

with the actual radial wave function then given by Rl(r) = Fl(kr)/r. After comparing the above

equation with Eq. (135) one then identifies ρ = x, l = n− 1
2 and η = β. Thus l = N∆/4− 1, where

N∆ is the number of triangles on the lattice. The proportionality constant Cl in Eq. (144) is given

by the (Gamow) parameter

Cl(η) ≡
2l e−

π η
2 |Γ(l + 1 + i η)|
Γ(2l + 2)

. (146)

One then has immediately, from Eq. (135), an equivalent representation for the regular wave func-

tion as

Ψ(x) '
[

C
n− 1

2
(β)

]−1 1

xn+
1
2

Fl(β, x) , (147)

again up to an overall wave function normalization constant Ñ (n, β). Again we note here that,

on the other hand, the irregular Coulomb wave function [usually denoted by Gl(η, ρ)] is singular

for small r and will, therefore, not be considered here. Further relevant properties of the Coulomb

wave function can be found in [25, 26, 27, 28, 29].

The known asymptotics of Coulomb wave function [27, 28, 29] allow one to derive the following

result for the wave function Ψ for large x

Ψ(x) ' Ñ 1

C
n− 1

2
(β) · xn+

1
2

sin

[

x− β ln 2x− (2n − 1)π

4
+ σn

]

(148)

with (Coulomb) phase shift

σn(β) = arg Γ(n+ 1
2 + iβ) . (149)

Also, from Eq. (146),

C
n− 1

2
(β) ≡ 2n−

1
2 e−

π β
2 |Γ(n+ 1

2 + i β)|
Γ(2n+ 1)

. (150)
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It is easy to check that the above result correctly reduces to the asymptotic expression given earlier

for Ψ in Eq. (133) in the limit β = 0. The structure of the wave function in Eq. (148) implies

that the norm is still finite for β 6= 0, since the convergence properties of the wave function are not

affected by the curvature term.

(c) Large Area in the Strong Coupling Limit (ε 6= 0)

In the limit of large areas the two independent solutions reduce to

Ψ ∼
x → ∞

exp (± i x) (151)

where x ∝ Atot. This is true without assuming the weak field expansion, as was already the case

before (see, in particular, the section discussing the tetrahedron case).

Consequently in the strong coupling limit the two wave function solutions in Eq. (151) com-

pletely factorize as a product of single-triangle contributions,

Ψ '
∏

∆

exp
(

± 2 i
√

λ̃ A∆

)

, (152)

again up to an overall normalization constant. The above result, anticipated in [1], was the basis for

the variational treatment using correlated product wave functions given in our previous work. Note

also, in view of the result of Eq. (133), that the correct solution, satisfying the required regularity

condition for small areas, is actually a linear combination of the above factorized solutions.

(d) Small Area in the Strong Coupling Limit (ε 6= 0)

In the limit of small area, we have shown before in all cases that the solution reduces to a

constant in the equilateral case [O
(

ε0
)

] for small x or small areas. To linear order [O (ε)] the

general result is still that linear terms in h appear which cannot be expressed in the form of

Eq. (85). But one also finds that, while these terms are nonzero if one uses the Hamiltonian

density (the Hamiltonian contribution from just a single triangle), if one uses the sum of such

triangle Hamiltonians then the resulting solution is symmetrized, and the corrections to Eq. (85)

are found to be of order O
(

ε2
)

. In other words, it seems that some residual lattice artifacts that

survive at very short distances can be partially removed by a suitable coarse-graining procedure on

the Hamiltonian density.

One might wonder what lattices correspond to values of n greater that 9/2, which is the highest

value attained for a regular triangulation of the sphere, corresponding to the icosahedron. For

each of the three regular triangulations with N0 sites one has for the number of edges N1 = q
2N0

and for the number of triangles N2 = ( q2 − 1)N0 + 2, where q is the number of edges meeting

at a vertex (the local coordination number). In the three cases examined before q was between
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three and five, with six corresponding to the regularly triangulated torus. Note that for a sphere

N0 −N1 + N2 = 2 always. The interpretation of other, even noninteger, values of q is then clear.

Additional triangulations of the sphere can be constructed by considering irregular triangulations,

where now the parameter q is interpreted as an average coordination number. Of course the

simplest example is a semiregular lattice with Na vertices with coordination number qa and Nb

vertices with coordination number qb, such that Na + Nb = N0. Various irregular and random

lattices were considered in detail some time ago in [16], and we refer the reader to this work for a

clear exposition of the properties of these lattices.

We conclude this section by briefly summarizing the key properties of the gravitational wave

function given in Eqs. (135) and (147), which from now on will be used as the basis for additional

calculations. First we note that the above wave function is a function of the total area and total

curvature only and, as such, is manifestly diffeomorphism-invariant and in accord with the spatial

diffeomorphism constraint. While it was derived by looking at the discrete triangulations of the

sphere, it contains a parameter n, related to the total number of triangles on the lattice by Eq. (121),

that will allow us to go beyond the case of a finite lattice and investigate the physically meaningful,

and presumably universal, infinite volume limit n→∞ [see Eq. (55)]. We have also shown that the

above wave function is, in all cases, an exact solution of the full lattice Wheeler-DeWitt equation of

Eq. (21) in the limit of large areas, and to all orders in the weak field expansion. Again, this last case

is most relevant for taking the infinite volume limit, defined previously in Eq. (55). Furthermore,

the small area behavior of the wave function plays a crucial role in uniquely constraining, through

the regularity condition, the correct choice of solution. In this last limit one also finds that the

various individual lattice solutions agree with the universal form of Eqs. (135) and (147) only

to a low order in the weak field expansion, which is expected given the different short distance

lattice artifacts of the regular triangulation solutions. Nevertheless, knowledge of their behavior

is completely adequate for extracting the most important physically relevant piece of information,

namely the constraint on the wave function based on the stated regularity condition at small areas,

which comes down to a simple integrability or power counting argument.

7 Average Area

In this section we will look at a natural quantum mechanical expectation value, the average total

physical area of the lattice simplicial geometry. It is one of many quantities that can be calcu-
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Figure 4: Wave Function Ψ versus total area for the octahedron lattice, with and without curvature
contribution. The wave function is shown here for g =

√
G = 1, a value chosen here for illustration

purposes. The relevant expression for the wave function is given in Eq. (153). We refer to the text
for further details on how the wave function was obtained, and what its domain of validity is. The
wave functions shown here have been properly normalized. Note that with a nonzero curvature
term the peak in the wave function moves away from the origin.

lated within the lattice quantum gravity formalism, and is clearly both manifestly geometric and

diffeomorphism-invariant. Here we will use the wave functions given in Eqs. (135) and (147), origi-

nally obtained for the tetrahedron, octahedron and icosahedron, and later extended to any number

of triangles N∆

Ψ(Atot) ' e
− i

Atot
g

1F1

(

n+ 1
2 − i β , 2n + 1, 2 i

Atot

g

)

, (153)

with n ≡ 1
4 (N∆ − 2), β ≡ 4π/g3 and g ≡

√
G, and again valid up to an overall wave function

normalization constant. Due to the structure of the wave function the resulting probability dis-

tribution for the area is rather nontrivial, having many peaks associated with the infinitely many

minima and maxima of the hypergeometric function. Clearly the most interesting limit is one

where one considers an infinite number of triangles, N∆ → ∞, which corresponds to n → ∞ in

Eq. (153). In Figs. 4 and 5, we display the behavior of the wave function in Eq. (153), both with

and without the curvature contribution in the Wheeler-DeWitt equation. One notices that when

the curvature term is included (β 6= 0), the peak in the wave function shifts away from the origin.

This is largely expected, based on the contribution from the repulsive Coulomb term in the wave

equation of Eq. (134).
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Figure 5: Same wave function Ψ as in Fig. 4, but now for the icosahedron lattice.

The average total area can then be computed from the above wave function, as the ground state

expectation value

< A > =
〈Ψ|A |Ψ〉
〈Ψ|Ψ〉 =

∫

dµ[g] A(g) |Ψ(g)|2
∫

dµ[g] |Ψ(g)|2 , (154)

where g, here, is the three-metric, and dµ[g] denotes a functional integration over all three-metrics.

In our case we use the measure

∫

dµ[g] −→
∫ ∞

0
dAtot , (155)

which then gives, in terms of the scaled area variable x,

< Atot > = g

∫∞
0 dxx · |Ψ(x)|2
∫∞
0 dx |Ψ(x)|2 . (156)

In the absence of a curvature term in the Wheeler-DeWitt equation (β = 0), the average area can

easily be computed analytically in terms of Bessel function integrals, and the result is

< Atot > = g · π (4n − 1) Γ(4n − 2)

28n−5 Γ(n)4
. (157)

Note that the average area diverges as n→ 1
2 , which corresponds to the tetrahedron; this entirely

spurious divergence prevents us from using the tetrahedron lattice in plotting and numerically

extrapolating the remaining two lattices (octahedron and icosahedron) to the infinite lattice limit.

For the octahedron one finds < Atot >= 15 g/π, for the icosahedron < Atot >= 21879 g/3920π, and

in the large n limit < Atot >=
√

2n/π g +O(1/√n).
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One finds that in the presence of a curvature term (β 6= 0) the resulting integrals are significantly

more complicated. We have, therefore, resorted to a number of tools, which include an analytic

expansion in β, the use of known asymptotic expansions for the wave function at large arguments,

and an exact numerical integration of the resulting integrals. Let us first discuss here the expansion

in β. It is known that the Coulomb wave functions can be expanded in terms of spherical Bessel

functions (Neumann expansion) [27, 28, 29], so that one has

Fl(η, ρ) =
2l+1

√
π

Γ(l + 3
2) Cl(η) ρ

√

π

2ρ
·
{

∞
∑

k=l

bk(η)Jk+ 1
2
(ρ)

}

(158)

with coefficients bk(η) given by a simple recursion relation. When written out explicitly, the ex-

pression in curly brackets involves

J
l+

1
2
(x) +

2l + 3

l + 1
η · J

l+
3
2
(x) +

2l + 5

l + 1
η2 · J

l+
5
2
(x) + · · · , (159)

with additional terms linear in η reappearing at higher orders. That the above expansion is a bit

problematic is not entirely surprising, given the modified asymptotic behavior of the Coulomb wave

functions for η 6= 0. In the following, in order to provide initially some insight into the effects of

the η (or β) term on the wave function Ψ, we will include the first correction as a perturbation,

and drop the rest. Later on, higher order corrections can be included as additional contributions.

With this truncation, the Coulomb wave function in Eq. (144) becomes

Fl(η, ρ) =
2l+1

√
π

Γ
(

l + 3
2

)

Cl(η) ρ

√

π

2 ρ

[

J
l+

1
2
(ρ) + η

2l + 3

l + 1
J
l+

3
2
(ρ) + · · ·

]

(160)

with the last term treated as a perturbation, giving for the wave function itself [see Eq. (135)]

Ψ(x) ' e− i x
1F1

(

n+ 1
2 − i β, 2n+ 1, 2 i x

)

=
1

xn

[

Jn(x) + β
2n+ 2

n+ 1
2

Jn+1(x) + · · ·
]

, (161)

again up to an overall wave function normalization constant Ñ . Note that if m Bessel function

terms are kept in Eq. (161), beyond the zeroth order, strong coupling, term involving Jn(x), then

the resulting expansion in β contains terms up to βm. One finds to lowest order (m = 1)

1

Ñ 2
=

Γ(n)

2Γ
(

n+ 1
2

)

Γ
(

2n + 1
2

) +
41−n(n+ 1)β

(2n+ 1)Γ(n + 1)2
+ · · · (162)

From the above expressions, the average area can then be computed as some still rather complicated

function,

< Atot >= g

{

π (4n− 1) Γ(4n − 2)

28n−5 Γ(n)4
+

4(n + 1)β

2n+ 1

[

1− 41−2nΓ
(

n− 1
2

)

Γ
(

n+ 1
2

)

Γ
(

2n+ 1
2

)2

n2Γ(n)6

]

+ · · ·
}

.

(163)
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Figure 6: Average area of a single triangle vs. g =
√
G for the octahedron and the icosahedron

configurations. The average area was calculated using the expression in Eq. (156). Note the
qualitative change when one includes the curvature term, with a minimum appearing at g ∼ O(1).

Additional terms can later be included in the Bessel function expansion of Eq. (158), so as to obtain

more accurate values for the averages; this will be done later.

Figure 6 shows the exact value of the average area for a single triangle < A∆ >=< Atot > /N∆

as a function of the coupling g, obtained by doing the integral in Eq. (156) numerically, with the

wave function given in Eq. (153). One noteworthy aspect is that a qualitative change seems to

occur when one includes the curvature term: a well defined minimum occurs at g ∼ 1, which would

suggest the appearance of some sort of phase transition. Doing the integrals numerically one finds

a minimum in the average area of a triangle at gc ≈ 3.1 for the octahedron, and at gc ≈ 2.6 for the

icosahedron. On the other hand, using the lowest order Bessel function expansion of Eq. (161) for

the octahedron (n = 3/2) one finds a minimum at gc = 2.683, and for the icosahedron (n = 9/2) at

gc = 2.271. Adding one more Bessel function correction term then gives gc = 3.135 and gc = 2.637

for the two cases, respectively, which suggests that the expansion is converging.

The limit of a large number of triangles N∆ → ∞ corresponds to taking the parameter n in

Eq. (153) to infinity, since n ≡ 1
4 (N∆ − 2). From the lowest order Bessel function expansion one

obtains the following analytic expression for the average total area

< Atot > = g ·
√

2n

π

[

1 +
3

16n
+ O

(

1

n2

)]

+
2(π − 2) g

π
β + · · · , (164)

with β ≡ 4π/g3 [see Eq. (50)]. In this limit the resulting function of g has, again, a well defined
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minimum at

g3c =
8(π − 2)

√
2π√

n
(165)

or gc ' 2.839/n1/6 for large n with one Bessel function correction term. With two Bessel function

correction terms in Eq. (161) one finds gc ' 3.276/n1/6, which again suggests that the expansion

is slowly converging. Using the exact wave function to do the integrals numerically one finds

for the minimum gc ' 3.309/n1/6, which is close to the above answer. Interestingly enough, the

above result would suggest that in the limit of infinitely many lattice points the critical point gc

actually moves to the origin, indicating a phase transition located at exactly g = 0 (G = 0) in the

infinite volume (n → ∞) limit (see further discussion later). We note here that the average area

for a single triangle is obtained by simply dividing the average total area by the total number of

triangles N∆ = 4n+ 2, which then gives in the same limit of large n and strong coupling

< A∆ > =
g

2
√
2π n

+ O( 1
n
) . (166)

Quite generally, the average of the area per site in the lattice theory (the spatial volume per site)

appears to be well defined mainly due to our wave function normalization choices and, consequently,

can be explicitly calculated without any leftover ambiguity.

As will be discussed further below in more detail, the estimate for the critical point given in

Eq. (165) is also in good agreement with a previous variational estimate. In [1] the quantum-

mechanical variational (Rayleigh-Ritz) method was used to find an approximation for the ground

state wave function, using as variational wave function a correlated (Jastrow-Slater) product of

single-triangle wave functions. There it was found, from the roots of the equation < Ψ|H|Ψ >= 0,

that the variational parameters are almost purely imaginary for strong coupling (large G > Gc),

whereas for weak enough coupling (small G < Gc) they become real. This abrupt change in

behavior of the wave function at Gc then suggested the presence of a phase transition. With the

notation used in this paper, the result of [1] reads g3c ∼ 1/N∆, in qualitative agreement with the

result of Eq. (165), in the sense that both calculations point to a critical point Gc = 0 in the infinite

volume limit.

Let us now make some additional comments which should help clarify the interpretation of the

previous results. It is well known that if there is some sort of continuous phase transition in the

lattice theory, the latter is generally associated with a divergent correlation length in the vicinity

of the critical point. In our case it is clear that at strong coupling (large g) the correlation length is

small (of order one) in units of lattice spacing. This can be seen from the fact that (a) the coupling

term in the Wheeler-DeWitt equation is due mainly to the curvature term, which is small for large
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g, and (b) that the ground state wave function is of the form of a correlated product in the same

limit [see Eq. (152)]. Then as the effects of the curvature term are included, the correlation length

starts to grow due to the additional coupling between edge variables. The previous calculation

would then suggest that the point of divergence is located at g = 0. It is, of course, essential that

one looks at the limit of infinitely many triangles, N∆ →∞, since no continuous phase transition

can occur in a system with a finite number of degrees of freedom.

It is also of interest here to discuss how the above (Lorentzian) results relate to what is known

about the corresponding Euclidean lattice theory in three dimensions, which was studied in some

detail in [24]. There a phase transition was found between two phases, with the weak coupling phase

G < Gc exhibiting a sort of pathological behavior, whereby the lattice collapses into what geomet-

rically could be described as a branched polymer. This is clearly a nonperturbative phenomenon

that cannot be seen from perturbation theory in G. In the Euclidean formulation, average volumes

are obtained as suitable derivatives of logZlatt with respect to the bare cosmological constant λ0,

where Zlatt is the lattice path integral

Zlatt =

∫

[dl2] e−Ilatt(l
2) (167)

with, in four dimensions, the action given by

Ilatt = λ0
∑

h

Vh(l
2)− k

∑

h

δh(l
2)Ah(l

2) (168)

and h denoting a hinge [more details can be found in [24]]. Similarly, the average curvature can

also be obtained as a derivative of logZ with respect to k ≡ 1/(8πG). More importantly, a

nonanalyticity in Z, as induced by a phase transition, is expected to show up in local averages as

well. From the above expression for Zlatt, exact sum rules can be derived relating various averages

[30]. In the case of the three-dimensional Euclidean theory the sum rule reads

2λ0 <
∑

T

VT > −k <
∑

h

δhlh > −C0 = 0 (169)

where the first term contains a sum over all lattice tetrahedra, and the second term involves a sum

over all lattice hinges (just edges in this case). The quantity C0, here, is a constant that solely

depends on how the lattice is put together (i.e. on the local coordination number, or incidence

matrix).

In [24] it was found that the average curvature goes to zero at some gc with a characteristic

universal exponent δ,

<
∑

h

δhlh > = −R0 |g − gc|δ (170)
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and that the curvature fluctuation diverges in the same limit. From the sum rule in Eq. (169) one

then deduces that the average volume in the Euclidean theory has a singularity of the type

<
∑

T

VT > = V0 − V1 |g − gc|δ (171)

with the same exponent δ ' 0.77. The latter is related by standard universality and scaling

arguments [31, 32, 33] (see [19] for details specific to the gravity case) to the correlation length

exponent ν by ν = (1 + δ)/d in d dimensions. To compare to the Lorentzian theory discussed

in this paper, one notes that the three-dimensional Euclidean theory corresponds to the (2 + 1)-

dimensional Wheeler-DeWitt theory, so that the average volume in the above discussion should be

taken to correspond to an average area in our case. 6 To conclude, the results for the average area

suggest the existence of a phase transition in the Lorentzian theory located at g = 0. In the next

sections we will present a further test of this hypothesis, based on physical observables that can

establish directly and unambiguously the location of the phase transition point.

8 Area Fluctuation, Fixed Point and Critical Exponent

Another quantity that can be obtained readily from the wave function Ψ is the fluctuation in the

total area

χA =
1

N∆

{

< (Atot)
2 > − < Atot >

2
}

. (172)

The latter is related to the fluctuations in the individual triangles by

χA = N∆

{

< A2
∆ > − < A∆ >2

}

(173)

with the usual definition of averages, such as the one given in Eq. (154).

Generally for a field φ(x) with renormalized mass m and correlation length ξ = m−1, wave

function renormalization constant Z, and (Euclidean) propagator

< φ(x)φ(0) > =

∫

ddp

(2π)d
e−ip·x Z

p2 +m2
, (174)

one has for Φ ≡
∫

x φ(x)

< Φ2 > =

∫

x,y
< φ(x)φ(y) > = V

∫

x
< φ(x)φ(0) > = V

Z

m2
= V Z ξ2 . (175)

6It should be noted that in the case of the lattice Wheeler-DeWitt equation of Eqs. (20) and (21) and, generally, in
any lattice Hamiltonian continuous-time formulation, the lattice continuum limit along the time direction has already
been taken. This is due to the fact that one can view the resulting 2 + 1 theory as originating from one where there
exist initially two lattices spacings, at and a. The first one is relevant for the time direction and the second one for
the spatial directions. In the present lattice formulation the limit at → 0 has already been taken; the only limit left
is a → 0, which requires the existence of an ultraviolet fixed point of the renormalization group.
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Thus the field fluctuation probes the propagator at zero momentum, which in turn is directly

related to the renormalized mass (and thus ξ) for the field in question. If the field Φ acquires a

nonzero expectation value, the above result is modified to

1

V

{

< Φ2 > − < Φ >2
}

=
Z

m2
= Z ξ2 , (176)

involving instead the connected propagator. In the gravity case the quantity Atot plays the role of

Φ; if the fluctuation diverges (ξ →∞) then one has a phase transition or an ultraviolet fixed point

in quantum field theory language [17, 30].

Without the curvature term in the Wheeler-DeWitt equation [β = 0 for the wave function Ψ in

Eq. (161)], the area fluctuation does not diverge, even when n is large and is simply proportional

to g2. In this case one finds

χA(β = 0) =
4n− 1

16

[

2n− 1

2n2 − n− 1
− π2(4n− 1)Γ(4n − 2)2

216n−13(2n+ 1)Γ(n)8

]

g2 ∼ π − 2

4π
g2 + O( 1

n
) . (177)

Note the spurious singularity for the special case of the tetrahedron, n = 1/2. When the curvature

term is taken into account one finds, from the full wave function Ψ in Eq. (161) and in the limit of

large n,

χA =

(

1− 2

π

)

g2

4
+ 2 (4 − π)

√

2

nπ

1

g
+ · · · (178)

Note that the fluctuation now appears to diverge as g → 0 (see also Fig. 7). Furthermore, χA is

nonanalytic in the original Newton’s coupling G = g2, which suggests that perturbation theory in

G is useless. A divergence of the fluctuations as g → 0 implies that in this limit the correlation

length diverges in lattice units, signaling the emergence of a massless excitation.

Just as for the case of the average curvature [Eq. (169)], an exact sum rule can be derived in

the (Euclidean) lattice path integral formulation, relating the local volume fluctuations to the local

curvature fluctuations. In the three-dimensional Euclidean path integral theory the following exact

identity holds for the fluctuations [30]

4λ20

[

< (
∑

h

Vh)
2 > − <

∑

h

Vh >
2

]

− k2

[

< (
∑

h

δhlh)
2 > − <

∑

h

δhlh >
2

]

− 2N1 = 0 , (179)

whereN1 is the number of edges on the lattice (further exact sum rules can be derived by considering

even higher derivatives of the free energy lnZL with respect to the parameters λ0 and k). Since the

last equation relates the fluctuation in the curvature to fluctuations in the volumes, it also implies

a relationship between their singular (divergent) parts. 7

7We noted previously that in our Hamiltonian formulation, the lattice continuum limit along the time direction
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Figure 7: Area fluctuation χA vs g =
√
G for the octahedron and icosahedron, computed from

Eq. (172). Note the divergence for small g.

According to the sum rule of Eq. (179) a divergence in the curvature fluctuation

χR ∼ < (
∑

h

δhlh)
2 > − <

∑

h

δhlh >
2 (180)

for the three-dimensional (Euclidean) theory generally implies a corresponding divergence in the

volume fluctuation

χV ∼ < (
∑

h

Vh)
2 > − <

∑

h

Vh >
2 (181)

for the same theory. In our case a divergence is expected in 2 + 1 dimensions of the form

χA ∼
g→gc

|g − gc|−α (182)

with exponent α ≡ 1− δ = 2− 3ν, where δ is the universal curvature exponent defined previously

in Eq. (170), and ν the correlation length exponent. The latter is defined in the usual way [31, 32]

through

ξ ∼
g→gc

|g − gc|−ν , (183)

where ξ is the invariant gravitational correlation length. The scaling relations among various

exponents (ν, δ, α) are rather immediate consequences of the scaling assumption for the singular

has already been taken. This results in two lattice spacings, one for the time and one for the space directions, denoted
here respectively by at and a, with the first lattice spacing already sent to zero. It is then relatively straightforward
to relate volumes between the two formulations, such as V ' atA. Relating curvatures (for example, 2R in the 2 + 1
theory vs the Ricci scalar R in the original three-dimensional theory) in the two formulations is obviously less easy,
due to the presence of derivatives along the time direction.
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part of the free energy, Fsing ∼ ξ−d in the vicinity of a critical point (for more detailed discussion see,

for example, [19, 31, 32]). The preceding argument then implies, via scaling, that a determination

of α provides a direct estimate for the correlation length exponent ν defined in Eq. (183). Note

that based on the results so far one would be inclined to conclude that for 2+ 1 gravity the critical

point gc → 0 as n→∞. Equation (182) can then be rewritten either as

χA ∼
g→gc

ξα/ν (184)

or, in a finite volume with linear lattice dimensions L ∼ N1/d
0 ∼ √N∆ ∼

√
n (since N∆ = 4n + 2),

as

χA ∼
g→gc

Lα/ν ∼ n1/ν−3/2 , (185)

since, for a very large box and g very close to the critical point gc, the correlation length saturates

to its maximum value ξ ∼ L. Hence the volume- or n-dependence of χ provides a clear and direct

way to estimate the critical correlation length exponent ν defined in Eq. (183).

9 Results for Arbitrary Euler Characteristic χ

The results of the previous sections refer to regular triangulations of the sphere (χ = 2) and the

torus (χ = 0) in 2 + 1 dimensions. It would seem that one has enough information at this point

to reconstruct the same type of answers for arbitrary χ. In particular one has for the parameter β

[see Eqs. (48) and (51)]

β =
2πχ

g3
, (186)

relevant for the wave functions in Eqs. (135) or (147). For the average total area one then finds,

using the wave function expansion in Eq. (161),

< Atot >= g















21−2nΓ
(

n− 1
2

)

Γ
(

2n+ 1
2

)

Γ(n)3
+

8(n+ 1)π χ

[

1− 41−2nΓ(n− 1
2)Γ(n+

1
2)Γ(2n+

1
2)

2

n2Γ(n)6

]

g3 (2n + 1)
+ · · ·















.

(187)

In the large n limit one obtains for the average area of a single triangle

< A∆ > =
g

2
√
2π n

[

1 − 5

16n
+ O

(

1

n2

)]

+
(π − 2)χ

g2 n

[

1 +
1

4n(π − 2)
+ · · ·

]

, (188)

and for the average total area

< Atot > ∼
√

2n

π
g +

4(π − 2)χ

g2
+ · · · . (189)
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For the area fluctuation defined in Eq. (173) one finds in the same large n limit

χA =

(

1− 2

π

)

g2

4
+ O

(

1

n

)

+ (4− π)
√

2

nπ

χ

g
+ · · · . (190)

Again note that the fluctuation appears to diverge as g → 0, which implies that this is the more

interesting limit, so from now on we will focus specifically on this limit. It is clear from the analytic

expression for < Atot > in Eqs. (187) or (188) that as n →∞, the gravitational coupling g(n), to

this order in the Bessel expansion, has to scale like

g(n) ∼ 1√
n
, (191)

so that the expression for < Atot > scales like n or N∆, with the expression for < A∆ > staying

finite.

The result of Eq. (190) for χA then implies

χA ∼
1

g
√
n
∼ n0 (192)

in the same limit n → ∞. In view of Eqs. (187) and (185) with n ∼ N∆ ∼ L2, this would imply

2/ν − 3 = 0, and thus for the universal critical exponent ν itself ν = 2
3 = 0.666 to first order

(m = 1) in the Bessel function expansion of Eq. (161) and ν = 17
10 = 0.588 to the next order

(m = 2) in the same expansion.

With some additional work one can, in fact, completely determine the asymptotic behavior of

various averages for large β (small g) and large n. First one notes that when m Bessel functions

are included in the expansion for the wave function given in Eq. (161), beyond the leading order

one at strong coupling, one obtains a wave function which contains powers of β up to βm. For a

given fixed m one then finds for the average area per triangle the following asymptotic result

< A∆ > ∼ 1

g3m−1 n
m+1

2

, (193)

up to terms which contain higher powers of 1/n (making these less relevant in the limit n → ∞),

and also up to terms which are less singular in g for small g. The requirement that the average

area per triangle be finite as n → ∞ then requires that the coupling g itself should scale with n

according to

g(n) ∼ 1

n
m+1

2(3m−1)

. (194)

For the area fluctuation itself one then computes in the same limit

χA ∼
1

g3m−2 n
m
2

, (195)
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again to leading order in 1/n and 1/g. The requirement that g(n) scale according to Eq. (194) then

implies from Eq. (195) that the area fluctuation diverges in the limit n→∞ as

χA(n) ∼ n
m−1
3m−1 . (196)

By comparing with Eqs. (184) and (185) one obtains immediately for the exponent

α

ν
=

2m− 2

3m− 1
, (197)

and, therefore, from the scaling relation α = 2− 3 ν finally

ν =
6m− 2

11m − 5
. (198)

One can now take the limitm→∞ [infinite number of Bessel functions retained in the expansion of

Eq. (161)], which leads to the exact result for the correlation length exponent of 2 + 1 dimensional

quantum gravity

ν =
6

11
= 0.5454... . (199)

The derivation shows that the exponent ν does not seem to depend on the Euler characteristic χ

and, therefore, on the boundary conditions.8 Furthermore one can compare the above value for

ν with the (numerically exact) Euclidean three-dimensional quantum gravity result obtained over

twenty years ago in [24], namely ν ' 0.59(2). It would, of course, be of great interest to repeat the

above Euclidean lattice calculation in order to refine the estimate and improve on the statistical and

systematic uncertainty. The exponent ν is expected to represent a universal quantity, independent

of short-distance regularization details and, therefore, characteristic of gravity’s universal scaling

properties on distances much larger than the lattice cutoff. As such, it should apply equally to both

the Lorentzian and the Euclidean formulation, and our results are consistent with this conclusion.

Moreover, in 3+1 dimensions the exponent ν is a key physical quantity as it determines the power

for the running of the gravitational constant G [34] and for the Euclidean theory it is known [30]

that the universal scaling exponent is consistent with ν = 1/3.

It is perhaps worthwhile at this point to compare with other attempts at determining the critical

exponent ν in three-dimensional gravity. The latest and best results for quantum gravity in the

perturbative diagrammatic 2 + ε continuum expansion using the background field method [35, 36]

give in d = 3 (ε = 1 and central charge c = 1)

ν−1 = 1 +
3

5
+ . . . (200)

8One might wonder if the value for ν is affected by the choice of normalization in Eqs. (56) and (155). It is easy to
check that at least the inclusion of a weight factor Am, with m integer, does not change the result given in Eq. (199).
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to two-loop order and, therefore, ν ≈ 0.625, with a substantial uncertainty of about fifty percent

(which can be estimated for example by comparing the one- and two-loop results). On the other

hand, truncated renormalization group calculations for gravity directly in three dimensions [37, 38]

give to lowest order in the truncation (i.e. with the inclusion of the cosmological and Einstein-

Hilbert terms only) the estimate

ν−1 =
2d(d − 2)

d+ 2
(201)

and, therefore, in d = 3 the value ν ≈ 0.833. This last result is also affected by a rather substantial

uncertainty (again as much as fifty percent), which can be estimated, for example, by including

curvature-squared terms in the truncated expansion. Nevertheless, and in light of the uncertainties

associated with the various methods, it is very encouraging to note that widely different calculations

(on the lattice and in the continuum) give values for the universal scaling exponent ν that are

roughly in the same ballpark.

From Eq. (199) one obtains the fractal dimension for a gravitational path in 2 + 1 dimensions

ν−1 = dF =
11

6
= 1.8333... (202)

This is slightly smaller than the value for a free scalar field dF = 2, corresponding to the Brownian

motion (or Wiener path) value. It is closer to the value expected for a dilute branched polymer in

the same dimension [39, 40], and the best match at this point seems to be the O(n) vector model

for n = −1. The exact value ν = 6/11 for 2 + 1 gravity would then suggest a connection between

the ground state properties of quantum gravity and the geometry of dilute branched polymers in

the same dimension.

In light of the results obtained so far it is possible to make a number of additional observations.

First, note from Eq. (194) that as n→∞, the critical point (or renormalization group ultraviolet

fixed point) moves to g = 0

g(n) ∼
m → ∞

1

n1/6
. (203)

For comparison, a variational calculation based on correlated product (Slater-Jastrow) wave func-

tions [1] in 2 + 1 dimensions gave

g3c =
4π χ

N∆

√

σ0(σ0 − 2)
, (204)

where σ0 > 2 was a parameter associated there with the choice of functional measure over edges.

The variational result of Eq. (204) can be compared directly with the result of Eqs. (165) and (203),

for χ = 2 and N∆ = 2n+2. Thus in both treatments the limiting value for the critical point for g

in 2 + 1 dimensions is zero, gc → 0 as the number of triangles N∆ →∞.
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Physically, this last result implies that there is no weak coupling phase (g < gc, or in terms

of Newton’s constant G < Gc): the only surviving phase for gravity in three dimensions is the

strongly coupled one (g > gc or G > Gc). Furthermore, the correlation length ξ of Eq. (183) is

finite for g > 0 and diverges at g = 0. In particular, the weak field expansion, which assumes g

small, is expected to have zero radius of convergence. 9 In a sense this is a welcome result, as in

the Euclidean theory the weak coupling phase was found to be pathological and thus physically

unacceptable in both three [24] and four dimensions [17, 30]. It would seem, therefore, that the

Euclidean and Lorentzian lattice results are ultimately completely consistent: quantum gravity

in 2 + 1 dimensions always resides in the strong coupling, gravitational antiscreening phase; the

weak coupling, gravitational screening phase is physically excluded. In addition, the exact value

for ν determines, through standard renormalization group arguments, the scale dependence of the

gravitational coupling in the vicinity of the ultraviolet fixed point [34]. 10

10 Summary and Conclusions

In this paper we have discussed the form of the gravitational wave function that arises as a solution

of the lattice Wheeler-DeWitt equation [Eqs. (20),(21) and (34)] for finite lattices. The main result

was the wave function Ψ given in Eqs. (135), (147) and (153) with strong coupling limit (curvature

term absent) corresponding to the choice of parameter β=0.

To summarize, and for the purpose of the following discussion, the wave function Ψ given in

Eq. (153) can be written in the most general form as

Ψ ∼ e− i x
1F1 (a, b, 2 i x) (205)

up to an overall normalization constant Ñ , and with parameters related to various geometric

9These circumstances are perhaps unfamiliar in the gravity context, but are nevertheless rather similar to what
happens in gauge theories, including compact Quantum Electrodynamics in 2+ 1 dimensions [41]. There, the theory
always resides in the strong coupling or disordered phase, with a finite correlation length which eventually diverges
at zero charge.

10Specifically, the universal exponent ν is related to the behavior of the Callan-Symanzik beta function for Newton’s
constant G in the vicinity of the ultraviolet fixed point by β′(G)|G=Gc

= −1/ν. Integration of the renormalization
group equations for G then determines the scale dependence of G(µ) or G(�) in the vicinity of the ultraviolet fixed

point. Concretely, ν determines the exponent in the running of G. One findsG(�) ∼
(

ξ2�
)

−1/2ν
, with � ≡ gµν∇µ∇ν

the covariant d’Alembertian and ξ the renormalization group invariant correlation length. A broader discussion of
renormalization group methods as they apply to quantum gravity can be found for example in [19].
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invariants

a ≡ 1
4 N∆ −

√
2π i√
λG

χ = 1
4 N∆ −

i

2
√
2λG

∫

d2y
√
g R

b ≡ 1
2 N∆

x ≡
√
2λ

G
Atot =

√
2λ

G

∫

d2y
√
g . (206)

In the above definitions one can trade, if one so desires, the total number of triangles N∆ for the

total area

N∆ =
1

< A∆ >
Atot =

1

< A∆ >

∫

d2y
√
g . (207)

Use has been made of the relationship between various coupling constants (g,G, β, λ̃, λ) to reexpress

the wave function ψ in slightly more general terms, as a function of the original couplings λ and G

appearing in the original form of the Wheeler-DeWitt equation [see for example Eqs. (42) and (44)].

We did show that an equivalent form for the wave function Ψ can be given in terms of Coulomb

wave functions [see Eq. (147)], with argument

β ≡
√
2π χ√
λG

=
1

2
√
2λG

∫

d2x
√
g R (208)

and x defined as in Eq. (206).

The above wave function is exact in the limit of large areas and completely independent of the

weak field expansion. Nevertheless it is only correct to some low order in the same expansion in the

limit of small areas. This situation was interpreted as follows. For large areas one has a very large

number of triangles, and the short distance details of the lattice setup play a vanishingly small role

in this limit. One recognizes this limit as being relevant for universal scaling properties, including

critical exponents. For small areas on the other hand a certain sensitivity to the short distance

properties of the lattice regularization persists, and thus a universal behavior is, not unexpectedly,

hard to achieve. In any case this last limit, in the absence of a truly fundamental and explicit

microscopic theory, is always expected to be affected by short distance details of the regularization,

no matter what its ultimate nature might be (a lattice of some sort, dimensional regularization, or

an invariant continuum momentum cutoff, etc.)

In principle any well-defined diffeomorphism-invariant average can be computed using the above

wave functions. This will involve at some point the evaluation of a vacuum expectation value of

some operator Õ(g)

〈Ψ|Õ(g)|Ψ〉 =

∫

dµ[g] Õ(gij) |Ψ[gij ]|2
∫

dµ[g] |Ψ[gij ]|2
(209)
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where dµ[g] is the appropriate functional measure over three-metrics gij . Evaluating such an average

is, in general, non-trivial, as it requires the computation of a (Euclidean) lattice path integral in

one dimension less

〈Ψ|Õ(g)|Ψ〉 = N
∫

dµ[g] Õ(gij) exp {−Seff [g]} (210)

with Seff [g] ≡ − ln |Ψ[gij ]|2 and N a normalization constant. The operator Õ(g) itself can be

local, or nonlocal as in the case of the gravitational Wilson loop discussed in [42]. Note that the

statistical weights have many zeros corresponding to the nodes of the wave function Ψ, and that

Seff is infinite there.

In the previous sections we have shown that the wave function allows one to calculate a number

of useful and physically relevant averages and fluctuations, which were later extrapolated to the

infinite volume limit of infinitely many triangles. It was found that these diffeomorphism-invariant

observables point in 2+ 1 dimensions to the existence of a fixed point (a phase transition in statis-

tical field theory language) at the origin, Gc = 0. One concludes, therefore, that the weak coupling

(or gravitational screening) phase has completely disappeared in the lattice nonperturbative formu-

lation and that the theory resides in the strong coupling phase only. By contrast, in the Euclidean

theory it was found in [24] that the weak coupling or gravitational screening phase exists but is

pathological, corresponding to a degenerate branched polymer. A similar set of results is found in

the four-dimensional Euclidean theory, where the weak coupling, gravitational screening phase also

describes a branched polymer. 11

The calculations presented in this paper and in [1] can be regarded, therefore, as consistent

with the conclusions reached earlier from the Euclidean framework, and no new surprises arise

when considering the Lorentzian 2 + 1 theory. Furthermore, we have emphasized before that the

results obtained point at a nonanalyticity in the coupling at G = 0, signaling a strong vacuum

instability of quantum gravitation in this dimension. In view of these results it is therefore not

surprising that calculations that rely on the weak field, semiclassical or small G expansion run into

serious trouble and uncontrollable divergences very early on. Such an expansion does not seem to

exist if the non-perturbative lattice results presented here are taken seriously. The correct physical

vacuum apparently cannot in any way be obtained as a small perturbation of flat or near-flat

spacetime.

Let us add here a few final comments aimed at placing the present work in the context of

previous calculations for the same theory. A number of attempts have been made over the years

11The nature of solutions to the lattice Wheeler-DeWitt equation in 3+1 dimensions will be discussed in a separate
publication [43].
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to obtain an estimate for the gravitational wave functional Ψ[g] in the absence of sources. These

generally have relied on the weak field expansion in the continuum, as originally done in [8, 9].

Thus, for example, one finds in 3 + 1 dimensions

Ψ[hTT ] = N exp

{

−1
4

∫

d3k k hTT
ik (k) hTT∗

ik (k)

}

, (211)

where hTT
ik (k) is the Fourier amplitude of transverse-traceless modes for the linearized gravitational

field in four dimensions. The above wave functional describes a collection of harmonic oscillator

wave functions, one for each of the infinitely many physical modes of the linearized gravitational

field. As in the case of the electromagnetic field, the ground state wave functional can be expressed

equivalently in terms of first derivatives of the field potentials (the correspondingB field for gravity),

without having to mention Fourier amplitudes, as

Ψ[hTT ] = N exp

{

− 1

8π2

∫

d3x

∫

d3y
hTT
ik,l(x) h

TT∗
ik,l (y)

|x − y|2

}

. (212)

Clearly both of the above expressions represent only the leading term in an expansion involving

infinitely many terms in the metric fluctuation hij (and since they apply to an expansion about flat

space, the cosmological constant term does not appear either). Now, in 2+1 dimensions the above

expressions become meaningless, since there cannot be any transverse-traceless modes. The only

expectation that remains true is that the wave functional should still depend on physical degrees

of freedom only: it should be a function of the intrinsic geometry of 3-space and should not change

under a general coordinate change.

If one restricts oneself to local terms a number of invariants are possible in 2 + 1 dimensions.

In principle, the wave function could depend on, besides the total area

Atot =

∫

d2x
√
g (213)

and curvature

4π χ =

∫

d2x
√
g R , (214)

other invariants such as

rn =

∫

d2x
√
g Rn (215)

with n an integer. The latter result follows from the fact that in d = 2, both the Riemann and

Ricci tensors only have one component, related to the scalar curvature,

Rµνρσ = 1
2 R (gµσ gνρ − gµρ gνσ) , Rµν = 1

2 Rgµν . (216)

52



Nonlocal terms are possible as well involving inverse powers of the covariant d’Alembertian �, but

these do not seem to play a significant role in the lattice theory.

Now, the relevant Euclidean theory for the present work is, of course, gravity in three (2 + 1)

dimensions. But in three dimensions the Riemann and Ricci tensor have the same number of

algebraically independent components (6) and are related to each other by

Rµν
λσ = εµνκ ελσρ

(

Rρ
κ − 1

2 δ
ρ
κ

)

(217)

The field equations then imply, using Eq. (217), that the Riemann tensor is completely determined

by the matter distribution implicit in Tµν ,

Rµνρσ = 8πG [gµρ Tνσ + gνσ Tµρ + gµσ Tνρ − gνρ Tµσ + T (gµσ gνρ − gµρ gνσ)] (218)

In empty space Tµν = 0, which then implies for zero cosmological constant the vanishing of Riemann

there

Rµνρσ = 0 . (219)

As a result in three dimensions classical spacetime is locally flat everywhere outside a source, gravi-

tational fields do not propagate outside matter, and two bodies cannot experience any gravitational

force: they move uniformly on straight lines. There cannot be any gravitational waves either: the

Weyl tensor, which carries information about gravitational fields not determined locally by matter,

vanishes identically in three dimensions.

What seems rather puzzling at first is that the Newtonian theory seems to make perfect sense

in d = 3. This can only mean that the Newtonian theory is not recovered in the weak field limit of

the relativistic theory. To see this explicitly, it is sufficient to consider the trace-reversed form of

the field equations,

Rµν = 8πG

(

Tµν −
1

d− 2
gµν T

)

(220)

with T = T λ
λ, in the weak field limit. In the linearized theory, with hµν = gµν − ηµν , and in the

gauge ∇λh
λ
µ − 1

2∇µh
λ
λ = 0, one obtains the wave equation

�hµν = −16πG
(

τµν −
1

d− 2
ηµν τ

)

(221)

with τµν the linearized stress tensor. After neglecting the spatial components of τµν in comparison

to the mass density τ00, and assuming that the fields are quasistatic, one obtains a Poisson equation

for h00,

∇2 h00 = −16πG d− 3

d− 2
τ00 (222)
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In four dimensions this is equivalent to Poisson’s equation for the Newtonian theory when one

identifies the metric with the Newtonian field φ in the usual way via h00 = −2φ. But in three

dimensions such a correspondence is obstructed by the fact that, from Eq. (222), the nonrelativistic

Newtonian coupling appearing in Poisson’s equation is given by

GNewton =
2 (d − 3)

(d− 2)
G (223)

and the mass density τ00 completely decouples from the gravitational field h00. As a result, the

linearized theory in three dimensions fails to reproduce the Newtonian theory.

In a complementary way one can show that gravitational waves are not possible either in the

linearized theory in three dimensions. Indeed the counting of physical degrees of freedom for the

d-dimensional theory goes as follows. The metric gµν has 1
2d(d + 1) independent components; the

Bianchi identity and the coordinate conditions reduce this number to 1
2d(d+1)−d−d = 1

2d(d−3),

which gives indeed the correct number of physical degrees of freedom (two) corresponding to a

massless spin two particle in d = 4, and no physical degrees of freedom in d = 3 (and minus one

degree of freedom in d = 2, which is in fact incorrect). Nevertheless, investigations of quantum

two-dimensional gravity have uncovered the fact that there can be surviving degrees of freedom in

the quantum theory, at least in two dimensions. The usual treatment of two-dimensional gravity

[44] starts from the metric in the conformal gauge gµν(x) = eφ(x)g̃µν , where g̃µν is a reference

metric, usually taken to be the flat one. The conformal gauge-fixing then implies a nontrivial

Faddeev-Popov determinant, which, when exponentiated, results in an effective Liouville action,

with a potential term coming from the cosmological constant contribution. One would, therefore,

conclude from this example that gravity in the functional integral representation needs a careful

treatment of the conformal degree of freedom, since in general its dynamics cannot be assumed

to be trivial. The calculations presented in this paper show that this is indeed the case in 2 + 1

dimensions as well.
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