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Chapter 1

Introduction

Quantum gravity is a subject of great interest in its own right. Construction of a

successful quantized theory can in principle help us to understand [1]

� the dynamics of gravity during the expansion of the universe at the immedi-

ate post big bang era, the Planck time, 10−42s. Typically it may be responsible

for triggering the inflationary evolution that many feel it is a necessary stage

for the very early expanding universe [2, 3, 4]. Some difficulties hinged in

the standard hot big bang model, such as the homogeneity problem, the hori-

zon problem, the flatness problem, the monopole problem may find natural

solutions in the context of inflationary model.

� spacetime regions with intense gravity force. Examples of these spacetime

regions are: the surroundings of black holes, cosmic strings, domain walls,

etc. [5]. The singularity nature of these objects can be possibly avoided with

a correct theory of quantum gravity. A theory of quantum gravity will also

provide accurate descriptions of black hole radiation [6], thermodynamics

inside black holes [7, 8, 9, 10], and formulation of quantum cosmology [11, 12].

� how gravity can possibly provide a fundamental cut-off at the Planck energy

1028eV for quantum field theory. Quantum gravity in this context is regarded

as a necessary ingredient of an unifying theory of all known forces.

1
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Different approaches to quantize gravity based on our understandings and/or

assumptions of gravity have been proposed since the advent of quantum mechanics

discovered at the early century. Current popular theories are

� Lagrangian formation of quantum gravity. Gravity is quantized like other

known forces: electromagnetic, weak (electroweak), and strong force. One

starts with a Lagrangian describing the interactions of the field particles; the

theory is then quantized by putting the constructed Lagrangian in the Feyn-

man path integral. The lack of analytical methods in solving the path integral

in general leaves the perturbation method as the predominent method used

in analyzing the theory. In perturbative quantum gravity, the genuine metric

is separated into two parts, a fixed background Minkowski spacetime metric

ηµν, and a perturbation metric hµν representing the fluctuation of the space-

time geometry due to quantum gravity interaction. The action S is expanded

in series in terms of the perturbation metric, hµν. Corresponding Feynman

rules to each order of the hµν are subsequently developed, such as the prop-

agator of the field particles (gravitons), and the interaction vertices among

gravitons and material particles. The biggest obstacle presented in this ap-

proach is the problem of the renormalizability of the theory. A simple power

counting method shows that gravity in this approach is non-renormalizable

to all loop orders. Explicit calculations to two loops have also verified that

the theory is non-renormalizable in perturbation theory.

� Regge simplicial formulation. The spacetime is divided into many tiny blocks,

simplexes. The interior of each block is flat, and the curvature of the con-

tinuum spacetime is concentrated on the vertices, hinges. The fluctuation

of the metric is represented by the changing in the volume of the simplex,

edge lengths, and the angles at the hinges. The continuum Lagrangian is

rewritten in the simplicial form. There are essentially two ways to study the
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simplicial gravity: the lattice perturbative method, and the computer simula-

tion method. The lattice perturbative method is very similar to the continuum

perturbative method. Starting with the lattice Lagrangian, one series expands

the lattice Lagrangian in terms of the dynamical variables, edge lengths. Lat-

tice Feynman rules are subsequently enumerated (see detailed discussions in

chapter 3.) Once the Feynman rules are developed, analytical results can be

obtained by performing loop calculations. The computer simulation method

employs a quite different approach. In this method, one relies on fast comput-

ers to simulate the sum of all possible metrics and spacetime points through

a Monte-Carlo algorithm. This method is essentially non-perturbative.

� Supergravity and superstrings. Quantum gravity in these theories are better

behaved with improved renormalizability due to the added supersymmetry

between bosonic and fermionic degrees of freedom. They are also hoped to

provide the necessary mechanisms to unify all the known forces as quantum

gravity is needed in these theories (superstring) to cancel the gauge anomaly.

String objects as the fundamental building blocks of matter also remove the

point, local notion of the spacetime, an ”unpleasant" feature of point particle

quantum field theory.

� new canonical quantization of gravity proposed by Abhay Ashtekar, 1986.

A new set of canonical variables are found to tremendously simplify the

structure of constraints in gravity. This work supports the idea of quantum

gravity being non-perturbative [13, 14].

In this thesis, the first two methods will be used to study quantum gravity. It

is a general assumption that a quantum theory of gravity cannot lead to testable

predictions, due to a lack of perturbative renormalizability of the Einstein-Hilbert

action. Chapter 2 starts with a brief review of the fundamentals of quantum gravity
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in the Lagrangian path integral approach. The action is simply taken as the Hilbert-

Einstein action (without the higher derivative curvature terms of the form R2). A

weak field expansion of the theory is developed by writing the metric composed of

a static flat Minkowski metric plus a weak perturbation metric. Derivation of the

Feynman rules to the first loop order for pure gravity and also gravity coupled to

massive scalar field is presented. Using the Feynman rules developed, we calculate

the interaction potential of two massive scalar particles generated by an exchange

of gravitons in a fixed four dimensional flat background. By evaluating the twelve

relevant one-loop Feynman diagrams, we show that our results for the classical

relativistic corrections to the potential agrees exactly with those obtained earlier by

Y. Iwasaki. More interestingly we obtain a finite leading quantum correction to the

potential that increases slowly with distance.

One disadvantage of the weak field expansion of quantum gravity developed

in chapter 2 is that all calculated results are necessarily perturbative. However,

many may argue that quantum gravity is essentially non-perturbative in nature.

The only non-perturbative way to deal with quantum gravity we know so far

is the simplicial formulation. This leads to the next topic of my study, simplicial

gravity. In chapter 3 we develop the general formalism for performing perturbative

diagrammatic expansions in the lattice theory of quantum gravity. We obtain the

lattice Feynman rules for pure gravity and scalar matter field coupled to gravity to

one loop order. The exact correspondence between the lattice Feynman rules and

continuum Feynman rules is established. As an application, the two-dimensional

conformal anomaly due to a D-component scalar field is explicitly computed in

perturbation theory. The result in the small momentum limit is found to agree

with those obtained by the continuum weak field theory.

While analytical results of high loop orders of quantum gravity are usually dif-

ficult to obtain in both the weak field expansion method and the diagrammatic ex-
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pansion method of the lattice theory, it is much “easier" to obtain non-perturbative

results by performing Monte Carlo simulations of simplicial gravity. Chapter 4

presents our studies of the properties of random Ising spins coupled to two dimen-

sional gravity. Ising spins are placed at the vertices of a flat triangulated lattice.

The background lattice is allowed to fluctuate by varying the local coordination

numbers through a “link flip" operation. The resulting model exhibits a tricriti-

cal behavior, with the first order and the second order phase lines meeting at a

tricritical point. The critical exponents are found to agree with those obtained by

KPZ and in the matrix model solution. This suggests that the values of the critical

exponents are directly related to the randomness of the spin system, and are not

affected by gravity.



Chapter 2

On the Quantum Corrections to the
Newtonian Potential

2.1 Introduction

It is generally assumed that a quantum theory of gravity cannot lead to testable

predictions, due to a lack of perturbative renormalizability of the Einstein-Hilbert

action [16, 17, 18, 19, 20]. Recently an interesting possibility has been raised [21]

that quantitative results can be obtained in the low energy limit of quantum gravity

without concerning details of the short distance behavior (renormalizability) of

gravity. In this chapter we will examine this possibility by explicitly calculating

the leading long distance quantum corrections to the Newtonian potential for two

massive spinless particles to the order of O(G�

h ⁄ c3r3).

The existence of a universal long distance quantum correction to the Newto-

nian potential should be applicable to a wide class of gravity theories. A more

general class of gravity is to have higher derivative curvature terms in the form

of αRµνRµν + βR2 added to the pure Einstein-Hilbert theory[22]. This modification

of the Lagrangian has been shown to improve the renormalizability of the theory

significantly at the short distance scale, e.g. Planck scale, lp = (G�

h ⁄ c3)1⁄ 2. However,

these terms do not contribute to the gravity potential at the large distance scale,

and will not be considered for the present purpose. Another modification of the

6
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theory is to have a cosmological constant added to the pure Einstein-Hilbert action.

The addition of a cosmological constant would in principle complicate the pertur-

bative treatment significantly due to the need to expand the metric in a non-flat

spacetime background. In the following treatment of the quantum corrections to

the Newtonian potential, we will simply assume it is zero. This assumption may

be partially justified by the fact that the physical cosmological constant is measured

experimentally to be vanishingly small at a large distance scale (macroscopic), and

thus bears no effect on our potential calculations. It is thus sufficient to consider

the action as the pure Einstein-Hilbert theory only as long as we restrict ourselves

to the low energy limit (long distance scale) of the theory.

In this chapter we will explicitly show how the leading classical and quantum

corrections to the static potential is obtained by evaluating a complete set of dia-

grams contributing to the scattering amplitude for heavy spinless particles in the

low momentum transfer limit. Our results for the static potential indicate a slow

increase of gravitational interactions with distance due to the quantum corrections.

2.2 One Loop Amplitudes

Before describing the calculation, it will be useful to first clarify out conventions

and notation. We shall expand around the flat Minkowski space-time metric, with

signature given by ηµν = diag(1, −1, −1, −1). The Einstein-Hilbert action is given by

SE = +
1

16πG

�
dx � −g(x) R(x) , (2.2.1)

with g(x) = det(gµν) and R the scalar curvature. The presence of a non-vanishing

cosmological constant will in general introduce additional momentum indepen-

dent vertices. For a simplified treatment of the potential calculation, we shall

assume the cosmological term is zero since it may have little effect on the quantum

corrections to the gravity potential at a very large scale, as argued in the previous
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section.

The quantized theory of gravity is obtained by performing the path integral

integrations of all possible spacetime metric and coordinates. The path integral is

given by

Z[g] =
�

D[g(x)]eiS[g(x)]. (2.2.2)

While no analytical method is found to solved the theory exactly, perturbation

theory is the method we will use in the following calculations.

In perturbation theory the metric gµν(x) is expanded around the flat metric ηµν

[19],

gµν(x) = ηµν + κ hµν(x) (2.2.3)

with the expansion parameter κ2 = 32πG. The inverse of the gµν(x) is given by

gµν(x) = ηµν − κ hµν(x) + κ2 hµ
λ hλν(x) + O(h3). (2.2.4)

We shall only keep the expansion to the orders of κ2 for the one loop calculations

followed. Once the action is expanded out in the graviton field hµν(x), the space-

time indices are then raised and lowered using the flat metric (in the following

I will not make the distinction between upper and lower indices in most cases

even thought they are actually raised and lowered by the background Minkowski

spacetime.)

The expansion of metric determinant gµν(x) in terms of hµν is given by

� −gµν(x) = e
1
2 Tr ln(ηµν+κ hµν)

= 1 +
κ
2

(Tr(h) −
κ
2

Tr(h2) ) +
κ
8

(Tr(h) −
κ
2

Tr(h2) )2 + O(κ3)

= 1 +
κ
2

hα
α −

κ2

4
hα

β hβ
α +

κ2

8
(hα

α)2 + O(κ3). (2.2.5)

The expansion of the Ricci curvature Rµν can be determined by first noting that

Rµν = ∂νΓλ
µλ − ∂λ Γλ

µν + Γσ
µλ Γλ

νσ − Γσ
µν Γλ

λσ , (2.2.6)
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where the Levi-Civita connection written in terms of the full metric gµν is given by

Γλ
µν =

1
2

gλσ(∂µgνσ + ∂νgµσ − ∂σgµν)

=
1
2

(ηλσ − κ hλσ + κ2 hλ
αhασ) � κ (∂µhνσ + ∂νhµσ − ∂σhµν )

=
κ
2

(∂µhλ
ν + ∂νhµλ − ∂ λ hµν)

−
κ2

2
hλν (∂µhνσ + ∂νhµσ − ∂σhµν) + O(h3). (2.2.7)

Collecting the Lagrangian in powers of hµν, we have

L(h2) =
1
2

(hρλ ,σhρλ ,σ − 2 hσλ ,ρhσρ,λ + 2 hλλ ,ρhσρ,σ − hλλ ,ρhσσ,ρ), (2.2.8)

L(h3) = −
κ
2

[ hττ
�
hσλ ,ρhσρ,λ −

1
2

hρλ ,σhρλ ,σ − hλλ ,ρhσρ,σ +
1
2

hλλ ,ρhσσ,ρ �
+ hµν

�
hρλ ,µhρλ ,ν − 2 hµλ ,ρhνρ,λ + 2 hµλ ,ρhνλ ,ρ + 2 hλλ ,ρhµρ,ν − 2 hλλ ,ρhµν,ρ

+ 2 hλµ,λ hρρ,ν − 2 hλλ ,µhρρ,ν + 2 hλρ,λ hµν,ρ − 4 hλµ,ρhλρ,ν � ]. (2.2.9)

The theory of pure gravity describes the interactions among the graviton gauge

particles. We are also interested in gravity coupled to material particles through

the exchange of gravitons. The Lagrangian for scalar fields coupled to gravity is

given by

Lscalar =
1
2

�
−g (gµν ∂µφ ∂νφ − m2φ2) (2.2.10)

In terms of perturbed metric hµν, Lscalar can be written as:

L(φ2) =
1
2

(∂µφ∂µφ − m2φ2), (2.2.11)

L(hφ2) =
κ
2

[ − hµν∂µφ∂νφ +
1
2

hρρ(∂λ φ∂λ φ − m2φ2)], (2.2.12)

L(h2φ2) =
κ2

2
[ hµρhνρ∂µφ∂νφ −

1
2

hρρhµν∂µφ∂νφ

+ (
1
8

hρρhλλ −
1
4

hρλ hρλ )(∂ρφ∂ρφ − m2φ2)]. (2.2.13)
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The Feynman rules can be determined quite straightforwardly. The graviton

propagator is given by

Dµν,αβ (p) =
i

2
ηµαηνβ + ηµβ ηνα − 2

d−2 ηµνηαβ

p2 + iε
. (2.2.14)

It is clear from the above expression that the graviton propagator diverges in two

dimensions. It simply reflects the fact that gravity does not exist in exactly two

dimensions. The propagator for the scalar particle is

D(k) =
i

k2 − m2 . (2.2.15)

The interaction among scalar particles and gravitons is described by the Feynman

vertices. For the scalar-scalar-graviton, we have

Vµν(k1, k2, q) =
iκ
2

[ηµν(k1 � k2 − m2) − k1µk2ν − k1νk2µ] � (2.2.16)

for scalar-scalar-graviton-graviton vertex, we have

Vαβ ,µν(k1, k2, q1, q2) =
iκ2

2
�
(ηαβηµν − ηαµηβν − ηανηβµ)(k1 � k2 − m2)

+ ηαβ(k1βk2ν + k1νk2β) + ηαν(k1βk2µ + k1µk2β)

+ ηβµ(k1αk2µ + k1νk2α) + ηβν(k1αk2µ + k1µk2α)

− ηαβ(k1µk2ν + k1νk2µ) − ηµν(k1αk2β + k1βk2α) � . (2.2.17)

The Feynman rules developed above are well suited for many kinds of gravity

perturbation calculation. (These Feynman rules will be used to compare with

the lattice Feynman rules developed in chapter 3 in the lowest momentum limit.)

However, in the following we shall adopt a different metric expansion method [27].

This expansion method of the metric has the advantage of having simpler Feynman

rules for the tripled graviton vertex and for the two-scalar and two-graviton vertex.

Let’s define the small fluctuation graviton field hµν(x) via the expansion

gµν(x)� −g(x) = ηµν + κ hµν(x). (2.2.18)
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The expansion of the determinant in d-dimension is

� −g(x) = e
1

d−2 Tr ln(ηαβ +κ hαβ )

= 1 +
κ

d − 2
hα

α −
κ2

2(d − 2)
hα

β hβ
α +

κ2

2(d − 2)2 (hα
α)2 + O(h3). (2.2.19)

The expansion of the scalar curvature can be performed similary. Collecting the

Lagrangian in powers of hµν, we have

L(h2) =
1
2

∂µhνλ ∂µhνλ −
1

2(d − 2)
∂µhνν ∂µhρρ − ∂µhµν ∂ρhρν, (2.2.20)

L(h3) =
κ
2

hσρ(∂ρhµκ ∂σhµκ −
1

d − 2
∂ρhµµ ∂σhνν)

+ κ hµτ(∂τhµσ∂σhλτ − ∂ρhµκ ∂ρhτκ +
1

d − 2
∂ρhµτ∂ρhνν). (2.2.21)

The Lagrangian describing the coupling of gravity to scalar particles with mass m

is the same as before, eq. (2. 2. 10). Its series expansion in terms of the perturbed

metric hµν via. the new expansion method is

L(φ2h) =
κ
2

( hµν ∂µφ ∂νφ −
1

d − 2
m2 hµ

µ φ2), (2.2.22)

L(φ2h2) = −
κ2

2
m2φ2 ( −

1
2(d − 2)

hα
β hβ

α +
1

2(d − 2)2 (hµ
µ)2). (2.2.23)

One can again extract the Feynman rules in a similar fashion. It is convenient to

keep the Feynman rule expressions in d dimensions. This becomes necessary when

dimensional regularization is used in 4 − ε dimensions. The graviton propagator

is simply given by

Dαβ ,µν(p) =
i

2
ηαµηβν + ηανηβµ − ηαβηµν

p2 . (2.2.24)

Note that the graviton propagator is well defined in any dimensions in this ex-

pansion method. However, the interaction vertices of gravitons will involve with

coefficients of 1 ⁄ (d − 2) , which become divergent in two dimensions.
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The scalar particle propagator is the same as before

D(p) =
i

p2 − m2 . (2.2.25)

The two scalar-one graviton vertex is given by

Vµν(p1, p2) =
iκ
2

�
p1µp2ν + p1νp2µ −

2
d − 2

m2 ηµν� . (2.2.26)

The two scalar-two graviton vertex is given by

Vµν,ρσ =
iκ2m2

2(d − 2)

�
ηµλ ηνσ + ηµσηνλ −

2
d − 2

ηµνηλσ � , (2.2.27)

where one pair of indices (µ , ν) is associated with one graviton line, and the other

pair (λ , σ) is associated with the second graviton line. The three-graviton vertex

Vα1β1,α2β2,α3β3(q1, q2, q3) is given by

V(q1, q2, q3) = −
iκ
2

[q2
(α1

q3
β1) (2 ηα2(α3ηβ3)β2 −

2
d − 2

ηα2(β2 ηα3)β3)

+ q1
(α2

q3
β2) (2 ηα1(α3ηβ3)β1 −

2
d − 2

ηα1(β1 ηα3)β3)

+ q1
(α3

q2
β3) (2 ηα1(α2ηβ2)β1 −

2
d − 2

ηα1(β1 ηα2)β2)

+ 2 q3
(α2

ηβ2)(α1ηβ1)(α3q
2
β3) + 2 q1

(α3
ηβ3)(α2ηβ2)(α1q

3
β1)

+ 2 q2
(α1

ηβ1)(α3ηβ3)(α2q
1
β2)) + q2 � q3 (

2
d − 2

ηα1(α2ηβ2)β1ηα3β3

+
2

d − 2
ηα1(α3ηβ3)β1ηα2β2 − 2 ηα1(α2ηβ2)(α3ηβ3)β1)

+ q1 � q3 (
2

d − 2
ηα2(α1ηβ1)β2ηα3β3 +

2
d − 2

ηα2(α3ηβ3)β2ηα1β1

− 2 ηα2(α1ηβ1)(α3ηβ3)β2) + q1 � q2 (
2

d − 2
ηα3(α1ηβ1)β3ηα2β2

+
2

d − 2
ηα3(α2ηβ2)β3ηα1β1 − 2 ηα3(α1ηβ1)(α2ηβ2)β3) ]. (2.2.28)

A gauge fixing term [28, 29] has to be introduced to give raise to the Feddev-

Popov ghost fields, and it has the form

1
κ2 �∂µ � −g(x)gµν � 2

. (2.2.29)
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The ghost Lagrangian is

Lghost = ξν[ηνλ ∂α∂ α − κ(hµν,λµ − hµρηνλ ∂µ∂ρ − hµρ,µηνλ ∂ρ + hµν,µ ∂λ ) ] ξλ . (2.2.30)

The propagator for the ghost is

Dµν(p) =
iηµν

p2 . (2.2.31)

The ghost-ghost-graviton vertex is

Vλ ,µ,αβ = iκ[ − ηλ (αk1β)k2µ + ηλ (µk2α)k3β]. (2.2.32)

To lowest order in G, the contribution to the potential from the single graviton

exchange diagram can be computed easily. In momentum space the static potential

is obtained as

−G m1 m2
4π
q̃2 (2.2.33)

where q̃ is the momentum transfer (see also [30]). It is simply the familiar Newto-

nian gravity potential, as expected.

Higher order corrections in G are computed by evaluating contributions to the

interaction coming from the complete set of one-loop diagrams, Figs. 2.1, 2.2. One

notices that the relevant length scale appearing with the Einstein-Hilbert action

for pure gravity is the Planck length lp = (G�

h ⁄ c3)1⁄ 2. On the other hand the action

for the scalar particle involves only the combination mc ⁄ �

h, the inverse Compton

wavelength associated with the heavy sources. This is also clearly seen from the

path integral phase contribution for a single particle, which is given by

imc2

�

h

� τ(b)

τ(a)
dτ � gµν(x(τ)) dxµ

dτ
dxν

dτ , (2.2.34)

When one considers the lowest order contribution to the gravitational interaction

due to single graviton exchange one obtains a contribution to the static gravitational

potential proportional to (�

h ⁄ c)(mc2 ⁄ �

h)2(G�

h ⁄ c3) = m2G. At order G2 one finds
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contributions both of order (�

h ⁄ c)(mc2 ⁄ �

h)2(G�

h ⁄ c3)2 = m2 �

hG2 ⁄ c3 and of order

(�

h ⁄ c)(mc2 ⁄ �

h)3(G�

h ⁄ c3)2 = m3G2 ⁄ c. The first one represents a genuine quantum

correction proportional to
�

h, while in the second type of contribution the
�

h’s have

canceled, and the resulting correction represents a classical relativistic correction.

The latter involves the Schwarzschild radius of the massive particle, 2Gm ⁄ c2.

These considerations lead us to believe that Feynman diagram perturbation

theory should be able to reproduce the classical relativistic corrections, which are

independent of
�

h. And indeed it is shown by the authors of Ref. [31, 32] that classical

relativistic corrections can be obtained by considering the tree graphs connected

to an arbitrarily high number of external classical sources. Calculation of these

classical relativistic corrections is performed in Ref. [33] using the diagrammatic

method. In the paper, by explicitly evaluating the scattering amplitude of two

massive scalar particles, Iwasaki is able to show that the corrections of order G2

correctly and completely reproduce the leading classical relativistic corrections

appearing in the Einstein-Hoffmann-Infeld effective post-Newtonian Hamiltonian.

The remaining of this chapter will be focused on the computation of the one

loop scattering amplitude. By including a complete set of one loop diagrams, we

will be able to calculate all first-order corrections in G, which will include both the

classical relativistic O(G2m2 ⁄ c2) and the quantum mechanical O(�

hG2 ⁄ c3) corrections

to the classical Newtonian potential energy. The classical relativistic in potential

will be identical to those obtained by Iwasaki. The relevant topologically distinct

Feynman diagrams are shown in Figs. 2.1 and 2.2.

In the following we will first compute the relevant amplitudes in momentum

space as a function of the total momentum transfer squared q̃2. They are then

evaluated using dimensional regularization in 4−ε dimensions, using the Feynman

parametric representation for combining propagator denominators. For small q̃2

the contributions arising from each diagram can be separated into two types of
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1a) 1b)

1c) 1d)

Figure 2.1: Some one loop graviton exchange diagrams.

terms, one describing the classical relativistic correction proportional to 1 ⁄ � q̃2,

and the other describing the leading quantum correction proportional to � � � q̃2.

The final answer to the Newtonian potential is then obtained by performing the

necessary momentum and parametric integrations. In our calculations, due to the

vast amount of algebraic manipulations involved in doing the index contractions,

computer algebra was employed throughout the calculation in order to ensure the

correctness of the results.

Transformation from the momentum space to the usual coordinate space can be

done with the help of the following equations

� d3q̃

(2π)3 e−iq̃ �x̃ 1
q̃2 →

1
4πr

. (2.2.35)

� d3q̃

(2π)3 e−iq̃ �x̃ 1
� q̃2

→
1

2πr2 . (2.2.36)

� d3q̃

(2π)3 e−iq̃ �x̃ � � � q̃2 → −
1

2πr3 . (2.2.37)
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A nontrivial check of the calculation is provided by the expected equality, for each

diagram involving massless particles only, of the coefficient of the 2 ⁄ ε ultraviolet

divergence and of the coefficient of the − � � � q̃2 contribution, which would appear

as one single logarithmic term � � � (Λ2 ⁄ q̃2) in the presence of an explicit ultraviolet

cutoff Λ.

2.3 Results and Discussion

After converting the expressions for the individual diagrams to coordinate space,

one obtains the following results. One has the Newtonian potential correction from

Figs. 2.1, diagram 1a

+
3
4

G2 m1m2(m1 + m2)
r2 + 2 G2 m1m2

πr3 , (2.3.38)

from diagram 1b

+
3
4

G2 m1m2(m1 + m2)
r2 + 2 G2 m1m2

πr3 , (2.3.39)

from diagram 1c

− G2 m1m2(m1 + m2)
r2 + 8 G2 m1m2

πr3 , (2.3.40)

from diagram 1d

−10 G2 m1m2

πr3 , (2.3.41)

from Figs. 2.2, diagram 2b

+
16
3

G2 m1m2

πr3 , (2.3.42)

and from diagram 2d

+
23
3

G2 m1m2

πr3 . (2.3.43)

From diagrams 2e and 2g one obtains the graviton and ghost vacuum polarization

contribution

−
206
30

G2 m1m2

πr3 . (2.3.44)
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2a) 2b)

2c) 2d)

2e) 2f)

2g) 2h)

Figure 2.2: Additional one loop graviton exchange diagrams.
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This last contribution was also computed in Ref. [27]. We have verified that the

Slavnov-Taylor identity for the vacuum polarization Παβγδ (q),

qµqν Dµλαβ(q) Παβγδ (q) Dγδνσ(q) = 0 (2.3.45)

is indeed satisfied to this order. In Ref. [19] the vacuum polarization was com-

puted using a somewhat different expansion for the metric field, and a coordinate

invariant expression for the one-loop counterterms was given in terms of operators

quadratic in the curvature.

Diagram 2h represents the contribution to the vacuum polarization due to one

massless scalar particle,

−
1
20

G2 m1m2

πr3 . (2.3.46)

Its contribution to the vacuum polarization satisfies separately the Slavnov-Taylor

identity, as one would expect from the covariant conservation law for the energy-

momentum tensor associated with matter. Explicit calculations of diagrams 2a and

2c show that they do not give any correction terms in the form of 1 ⁄ � q̃2 and � � � q̃2,

and thus give no rise to any classical relativistic or quantum correction. Diagram

2f vanishes identically in dimensional regularization. Diagrams 2b, 2d, 2e, 2g and

2h give only quantum mechanical corrections, involving closed graviton loops in

all cases, except 2b.

The sum of all contributions from diagrams 1a to 2g is therefore

+
1
2

G2 m1m2(m1 + m2)
r2 +

122
15

G2 m1m2

πr3 . (2.3.47)

The contribution of n species of massless scalar particles to the vacuum polarization

(arising from diagram 2h) changes the quantum correction to the potential to

+
1
60

(488 − 3n) G2 m1m2

πr3 , (2.3.48)

which represents a relatively small modification to the result for pure gravity if n

is small. Massless particles of higher spin will contribute additional terms to the

vacuum polarization.
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Putting back in the appropriate powers of c and
�

h, one obtains the following

final answer for the corrected potential in pure gravity, valid to order G2

V(r) = −G
m1m2

r

�
1 −

G(m1 + m2)
2c2r

−
122G

�

h

15πc3r2 � . (2.3.49)

Two very different length scales enter in the correction to the static Newtonian

potential, namely the Schwarzschild radii of the heavy sources, 2Gmi ⁄ c2, and the

Planck length (G�

h ⁄ c3)1⁄ 2. As a consequence there are two independent dimen-

sionless parameters that appear in the correction term, involving the ratio of these

two scales with respect to the distance r. Presumably the above calculation is

meaningful only if these two length scales are much smaller than the distance r.

Similar calculations have been performed in the work of Ref. [21]. There

the starting point is to calculate the scattering amplitude in the limit of small

momentum transfer. The potential is defined as the non-relativistic limit of the

one particle reducible graphs in the crossed channel, which represents therefore

a subset of the graphs considered here. We should point out that the results we

obtain are in complete agreement with the expected classical relativistic correction,

as derived for example from the expansion of the Schwarzschild metric [35]. The

sign of the quantum correction of our result is found to be the same as in Ref.

[21], and the magnitude of the correction is comparable. The sign of the quantum

correction we obtain indicate that gravitational interactions increase (slowly) with

distance, which shows similarities with the evolution of the coupling constant in

pure Yang-Mills theories, but differs in sign from the QED radiative corrections to

the static Coulomb potential. This result is also in agreement with the intuitive

expectation that gravity couples universally to all forms of energy, and cannot be

easily screened by quantum fluctuations.

Recently the authors of Ref. [25] have computed the corrections to the static

Newtonian potential following the method of Ref. [49], thus extending to the next

order in G the calculation of Ref. [50]. In their work the radiative corrections to the
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potential are obtained by considering correlations between the action contributions

from two heavy particle world lines, separated by a fixed geodesic distance. The

results they obtain appear to correctly reproduce the classical relativistic correction,

but arise from only a subset of two diagrams among the four which lead to the

classical correction in Ref. [33]. In this last reference the ladder and crossed ladder

diagrams give, using the same metric expansion, additional contributions which

appear to be necessary in order to obtain the correct classical relativistic correction.

These diagrams involve recoil of the massive particles, and have been neglected

in the calculation of Ref. [25]. In our calculation we find that ladder and crossed

ladder diagrams (1a and 1b), when carefully treated, contribute to the quantum

correction. This probably explains why our results and the results of Ref. [25]

differ in both sign and magnitude for the quantum correction.

It is unclear at present if higher loop order corrections in G can still lead to

finite corrections in the long distance limit. Whether higher derivative terms or

string theory is needed to control the ultraviolet divergences appearing at higher

loops remains an open question [38]. There is also an issue of the non-perturbative

definition of the Euclidean path integral for quantum gravity, which suffers from

the problem of the unbounded fluctuations in the conformal mode, and for which

an integration over complex conformal factors has been suggested, followed by

an integration over conformal equivalence classes of metrics. In the framework of

perturbation theory we did not have to deal with these difficult problems.



Chapter 3

Feynman Rules in Simplicial
Quantum Gravity

3.1 Introduction

In the quantization of gravitational interactions one expects non-perturbative

effects to play an important role. One formulation available for studying such

effects is Regge’s simplicial lattice theory of gravity [39]. It is the only lattice model

with a local gauge invariance [40], and the only model known to contain gravitons

in four dimensions [41]. A number of fundamental issues in quantum gravity, such

as the existence of non-trivial ultraviolet fixed points of the renormalization group

in four dimensions and the recovery of general relativity at large distances, can in

principle be addressed in such a model. The presence of a local gauge invariance,

which is analogous to the diffeomorphism group in the continuum, makes the

model attractive as a regulated theory of gravity [42], while the existence of a

phase transition in three and four dimensions [43, 44, 45, 46] (but not in two

[47, 48]) suggests the existence of a (somewhat unusual) lattice continuum limit.

A detailed discussion of the properties of the two phases characterizing four-

dimensional gravity, and of the associated critical exponents, can be found in [45].

Recently calculations have progressed to the point that a first calculation of the

21
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Newtonian potential from the correlation of heavy particle world lines, following

the proposal of [49], has become feasible [50]. These results indicate that in the

lattice quantum theory the potential is indeed attractive, and has the correct heavy

mass dependence. In the same work a general scaling theory for gravitational

correlations, valid in the vicinity of the fixed point, was put forward.

In view of this recent progress it would appear desirable to further elucidate the

correspondence between continuum and lattice theories. The weak field expansion

is available to systematically develop this correspondence, and it is well known

that such an expansion can be carried out in both formulations. Not unexpectedly,

it is technically somewhat more complex in the lattice theory due to the presence of

additional vertices, as happens in ordinary lattice gauge theories. In the past most

perturbative studies of lattice gravity have focused on the lowest order terms, and

in particular the lattice graviton propagators [41, 47, 51]. As such, these did not

probe directly important, genuinely quantum-mechanical, aspects of the theory. A

systematic weak field expansion is generally useful, since it allows one in principle

to determine subleading lattice corrections to the continuum results, which can be

relevant in the analysis of the numerical non-perturbative results in the full theory.

More importantly, the weak field expansion can be used to compare with known

results in the continuum, and some are known in two dimensions [94, 53]. A related

motivation comes from trying to understand the recently discovered discrepancy

between the critical exponents for matter coupled to gravity in two dimensions

as computed in the lattice regularized model for gravity [83, 55], and the corre-

sponding conformal field theory predictions [82, 57]. Particularly significant in

this respect appears to be the recent realization that the conformal field theory

exponents describe two-dimensional random systems in flat space, and do not

correspond to “gravitational” dressing of correlators [59, 60].

The plan of this chapter is as follows. We shall first introduce our notation and
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describe the gravitational action, including matter fields. We will limit our discus-

sion mostly to the two-dimensional case, although it can be easily generalized to

higher dimensions. The subsequent sections will then be devoted to the systematic

development of the lattice weak field expansion. The results presented here will

help elucidate the correspondence between the lattice and continuum theories, and

bring out the role of local gauge invariance in the lattice theory. We will develop the

Feynman rules for gravity coupled to a scalar field, and as an application compute

the conformal anomaly in two dimensions.

3.2 The Discretized Theory

In this section we shall briefly review the construction of the action describing

the gravitational field on the lattice, and use the occasion to define the notation

used later in the chapter. In concrete examples we will often refer, because of its

simplicity, to the two-dimensional case, where a number of results can be derived

easily and transparently. In a number of instances though important aspects of

the discussion will be quite general, and not restricted to specific aspects of the

two-dimensional case.

It is well known that in two dimensions quantum gravity can be defined on

a two-dimensional surface consisting of a network of flat triangles. The underly-

ing lattice may be constructed in a number of ways. Points may be distributed

randomly on the surface and then joined to form triangles according to some algo-

rithm. An alternative procedure is to start with a regular lattice, like a tessellation

of the two sphere or a lattice of squares divided into triangles by drawing in parallel

sets of diagonals, and then allow the edge lengths to vary, which will introduce

curvature localized on the vertices. For arbitrary assignments of edge lengths, con-

sistent with the imposition of the triangle inequalities constraints, such a lattice is
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in general far from regular, and resembles more a random lattice. In the following

though we will narrow down the discussion, and think of the “regular” lattice as

consisting of a network of triangles with a fixed coordination number of six, al-

though many of the results in this work are expected to be quite general and should

not depend significantly on the specific choice of local coordination numbers.

The elementary degrees of freedom on the lattice are the edge lengths, with the

correspondence between continuum and lattice degrees of freedom given locally

by
�
gµν(x) � xεM

→ � l2
i � i=1…N1

, (3.2.1)

where the index i ranges over all N1 edges in the lattice. From the well known

relationship between the induced metric in a simplex and its squared edge lengths,

gij(l2) = 1
2

�
l2
0i + l2

0j − l2
ij � . (3.2.2)

one then has the essentially unique functional measure contribution

� �
x

dgµν(x) →
� �

0

�
i

dl2
i , (3.2.3)

supplemented by the additional constraint that the triangle inequalities be satisfied

for all quantum fluctuations of the edge lengths [40]. Both the continuum metric

and the lattice edge lengths imply some redundancy due to local gauge invariance

of the action, which therefore requires gauge-fixing when performing perturbation

theory due to the presence of the exact gauge zero modes [41] (the triangle inequal-

ities, which violate gauge invariance by imposing a cutoff on the gauge orbits, are

in fact not seen to any order in the weak field expansion). 1 A gauge fixing term

is not required in non-perturbative studies, since the contributions from the gauge

zero modes are expected to cancel exactly between numerator and denominator in

the functional integral for observables, as discussed for example in [42].

1A small breaking of gauge invariance causes well known problems in perturbation theory.
There are rather convincing arguments that this is not necessarily the case non-perturbatively, if the
breaking can be considered small [62, 63], as in the present case
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For a given action, the dynamics of the lattice will give rise to some average

lattice spacing a0 = [ � l2 � ] 1
2 , which in turn will supply the ultraviolet cutoff needed

to define the quantum theory. It should be stressed that in the following we

shall restrict our attention to the lattice theory, which is defined in terms of its

lattice degrees of freedom only. Since it is our purpose to describe an ultraviolet

regulated theory of quantum gravity, we shall follow the usual procedure adopted

when discussing lattice field theories, and describe, in the spirit of Regge’s original

idea, the model exclusively in terms of its primary, lattice degrees of freedom: the

squared edge lengths. As such, the theory does not require any additional ad-hoc

regulators for defining conical singularities, for example.

3.2.1 Curvature and Discretized Action

In simplicial gravity the curvature is concentrated on the hinges, which are

subspaces of dimensions d − 2, and is entirely determined from the assignment of

the edge lengths. In two dimensions the hinges correspond to the vertices, and δh,

the deficit angle at a hinge, is defined by

δh = 2π − �
triangles t

meeting at h

θt , (3.2.4)

where θt is the dihedral angle associated with the triangle t at the vertex h (see Figs.

3.1). In d dimensions several d-simplexes meet on a (d − 2)-dimensional hinge, with

the deficit angle defined by

δh(l2) = 2π − �
d−simplexes
meeting on h

θd(l2) . (3.2.5)

Useful formulas for the cosine of the dihedral angles can be found in [43]. In two

dimensions the dihedral angle is obtained from

cosθd =
l2
01 + l2

02 − l2
12

2l01l02
. (3.2.6)
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Figure 3.1: Dual area Ad associated with vertex 0, and the corresponding dihedral
angle θd.

(for the labeling see Figs. 3.1).

It is useful to introduce a dual lattice following, for example, the Dirichlet-Voronoi

cell construction (see [64, 65] and references therein), which consists in introduc-

ing perpendicular bisectors in each triangle and joining the resulting vertices. It

provides for a natural subdivision of the original lattice in a set of non-overlapping

exhaustive cells (see Figs. 3.2), and furthermore has a natural generalization to

higher dimensions.

The vertices of the original lattice then reside on circumscribed circles, centered

on the vertices of the dual lattice. For the vertex 0 the dihedral dual volume

contribution is given by

Ad(l2) =
1

16A

�
l2
12(l2

01 + l2
02) − (l2

01 − l2
02)2� . (3.2.7)

It should be pointed out that the above subdivision is not unique. Alternatively, one

can introduce a baricenter for each triangle, defined as the point equidistant from

all three vertices, and again join the resulting vertices. The baricentric dihedral

volume is given simply by

Ad(l2) = A ⁄ 3 . (3.2.8)
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Figure 3.2: Original simplicial lattice (continuous lines) and dual lattice (dotted
lines) in two dimensions. The shaded region corresponds to the dual area associated
with vertex 0.

For the baricentric subdivision one then has simply

Ah = 1
3 �

triangles t
meeting at h

At . (3.2.9)

Ah can also be taken to be the area of the cell surrounding h in the dual lattice, with

Ah = �
triangles t

meeting at h

Ad , (3.2.10)

with the dual area contribution for each triangle Ad given in Eq. (3.2.7). In general,

if the original lattice has local coordination number qi at the site i, then the dual

cell centered on i will have qi faces. A fairly complete set of formulae for dual

volumes relevant for lattice gravity and their derivation can be found in [43]. In

the following we shall refer to the Voronoi cell construction as the “dual subdivision”,

while we will call the baricentric cell construction the “baricentric subdivision”.

It is well known that two-dimensional Einstein gravity is trivial because the

Einstein action is constant and the Ricci tensor vanishes identically. When a cos-
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mological constant term and a curvature-squared term are included in the action,

I =
�

d2x
�

g
�
λ − kR + aR2� , (3.2.11)

the classical solutions have constant curvature with R = ±
�

λ ⁄ a (there being no

real solutions for λ < 0). The theory with the Einstein action and a cosmological

constant is metrically trivial, having neither dynamical degrees of freedom nor field

equations, although non-trivial interactions can arise from the functional measure.

The lattice action corresponding to pure gravity is

I(l2) = �
h

Ah

�
λ − 2k Rh + a R2

h� , (3.2.12)

with local volume element Ah and the local curvature given by Rh = 2δh ⁄ Ah.

In the limit of small fluctuations around a smooth background, I(l2) corresponds

to the above continuum action [47]. For a manifold of fixed topology the term

proportional to k can be dropped, since � h δh = 2πχ, where χ is the Euler charac-

teristic. The curvature-squared leads to non-trivial interactions in two dimensions,

although the resulting theory is not unitary.

A number of results have been obtained from the above pure gravitational ac-

tion. Arguments based on perturbation theory about two dimensions (where the

gravitational coupling is dimensionless and the Einstein theory becomes renorma-

lizable) suggest that there should be no non-trivial ultraviolet fixed point of the

renormalization group in two dimensions. Explicit calculations in the lattice the-

ory have shown conclusively that this is indeed the case in the absence of matter

[47, 83, 48], as well as in the presence of scalar matter for a sufficiently small number

of components [66].

3.2.2 Scalar Field
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Figure 3.3: Labeling of edges and scalar fields used in the construction of the scalar
field action.

A scalar field can be introduced, as the simplest type of dynamical matter that

can be coupled to the gravitational degrees of freedom. The continuum action is

I[g, φ] = 1
2

�
d2x

�
g [ gµν ∂µφ ∂νφ + (m2 + ξR)φ2] , (3.2.13)

The dimensionless coupling ξ is arbitrary. Two special cases are the minimal (ξ = 0)

and the conformal (ξ = 1
6 ) coupling case; in the following we will mostly consider

the case ξ = 0.

On the lattice consider a scalar φi and define this field at the vertices of the

simplexes. The corresponding lattice action can be obtained through the usual

procedure which replaces the original continuum metric with the induced metric

on the lattice, written in terms of the edge lengths [41, 51]. Here we shall consider

only the two-dimensional case; the generalization to higher dimensions is straight-

forward. It is convenient to use the notation of Figs. 3.3, which will bring out

more readily the symmetries of the resulting lattice action. Here coordinates will

be picked in each triangle along the (1,2) and (1,3) directions.

To construct the scalar lattice action, one performs in two dimensions the re-
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placement

gµν(x) −→ gij(∆) =

�
���

l2
3

1
2 ( − l2

1 + l2
2 + l2

3)
1
2 ( − l2

1 + l2
2 + l2

3) l2
2

�
��� , (3.2.14)

which then gives

� � �
gµν(x) −→

� � �
gij(∆) = 1

4 � 2(l2
1l2

2 + l2
2l2

3 + l2
3l2

1) − l4
1 − l4

2 − l4
3 � ≡ 4A2

∆ , (3.2.15)

and also

gµν(x) −→ gij(∆) =
1� � �
g(∆)

�
���

l2
2

1
2 (l2

1 − l2
2 − l2

3)
1
2 (l2

1 − l2
2 − l2

3) l2
3

�
��� . (3.2.16)

For the scalar field derivatives one writes [67, 68]

∂µφ ∂νφ −→ ∆iφ∆jφ =

�
���

(φ2 − φ1)2 (φ2 − φ1)(φ3 − φ1)

(φ2 − φ1)(φ3 − φ1) (φ3 − φ1)2

�
��� , (3.2.17)

which corresponds to introducing finite lattice differences defined in the usual way

by

∂µφ −→ (∆µφ)i = φi+µ − φi . (3.2.18)

Here the index µ labels the possible directions in which one can move from a point

in a given triangle. The discrete scalar field action then takes the form

I(l2, φ) = 1
16 �

∆

1
A∆

�
l2
1(φ2 − φ1)(φ3 − φ1) + l2

2(φ3 − φ2)(φ1 − φ2) + l2
3(φ1 − φ3)(φ2 − φ3)� .

(3.2.19)

Using the identity

(φi − φj)(φi − φk) = 1
2

�
(φi − φj)2 + (φi − φk)2 − (φj − φk)2� , (3.2.20)

one obtains after some re-arrangements the simpler expression [67]

I(l2, φ) = 1
2 �

<ij>
Aij � φi − φj

lij

� 2
, (3.2.21)
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Figure 3.4: Dual area associated with the edge l1 (shaded area), and the correspond-
ing dual link h1.

where Aij is the dual (Voronoi) area associated with the edge ij. In terms of the

edge length lij and the dual edge length hij, connecting neighboring vertices in

the dual lattice, one has Aij = 1
2hijlij (see Figs. 3.4). Other choices for the lattice

subdivision will lead to a similar formula for the lattice action, but with the Voronoi

dual volumes replaced by their appropriate counterparts in the new lattice.

For the edge of length 1 the dihedral dual volume contribution is given by

Al1 =
l2
1(l2

2 + l2
3 − l2

1)
16A123

+
l2
1(l2

4 + l2
5 − l2

1)
16A134

= 1
2 l1h1 , (3.2.22)

with h1 is the length of the edge dual to l1. The baricentric dihedral volume for the

same edge would be simply

Al1 = (A123 + A134) ⁄ 3 . (3.2.23)

It is well known that one of the disadvantages of the Voronoi construction is the

lack of positivity of the dual volumes, as already pointed out in [43]. Thus some

of the weights appearing in Eq. (3.2.21) can be negative for such an action. On

the other hand, for the baricentric subdivision this problem does not arise, as the

areas Aij are always positive due to the enforcement of the triangle inequalities. It
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is immediate to generalize the action of Eq. (3.2.21) to higher dimensions, with the

two-dimensional Voronoi volumes replaced by their higher dimensional analogs.

Mass and curvature terms can be added to the action, so that the total scalar

action contribution becomes

I(l2, φ) = 1
2 �

<ij>
Aij � φi − φj

lij

� 2
+ 1

2 �
i

Ai (m2 + ξRi) φ2
i . (3.2.24)

The term containing the discrete analog of the scalar curvature involves the quantity

AiRi ≡ �
h� i

δh ∼
�

g R . (3.2.25)

In the above expression for the scalar action, Aij is the area associated with the edge

lij, while Ai is associated with the site i. Again there is more than one way to define

the volume element Ai, [43], but under reasonable assumptions, such as positivity,

one expects to get equivalent results in the lattice continuum limit. In the following

we shall only consider the simplest form for the scalar action, with m2 = ξ = 0.

3.3 Lattice Weak field Expansion

One of the simplest problems which can be studied analytically in the con-

tinuum as well as on the lattice is the analysis of small fluctuations about some

classical background solution. In the continuum, the weak field expansion is often

performed by expanding the metric and the action about flat Euclidean space

gµν = δµν + κhµν . (3.3.26)

In four dimensions κ =
�

32πG, which shows that the weak field expansion there

corresponds to an expansion in powers of G. In two dimensions this is no longer

the case and the relation between κ and G is lost; instead one should regard κ

as a dimensionless expansion parameter which is eventually set to one, κ = 1,
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at the end of the calculation. The procedure will be sensible as long as wildly

fluctuating geometries are not important in two dimensions (on the lattice or in

the continuum). The influence of the latter configurations can only be studied by

numerical simulations of the full path integral [47, 83].

In the lattice case the weak field calculations can be carried out in three [51] and

four [41] dimensional flat background space with the Regge-Einstein action. One

finds that the Regge gravity propagator indeed agrees exactly with the continuum

result [69] in the weak-field limit. As a result, the existence of gravitational waves

and gravitons in the discrete lattice theory has been established (indeed it is the

only lattice theory of gravity for which such a result has been obtained).

In the following we shall consider in detail only the two-dimensional case,

although similar calculations can in principle be performed in higher dimensions,

with considerable more algebraic effort. In pure gravity case the Einstein-Regge

action is a topological invariant in two dimensions, and one has to consider the

next non-trivial invariant contribution to the action. We shall therefore consider a

two-dimensional lattice with the higher derivative action of Eq. (3.2.12) and λ = 0,

I(l2) = 4a �
hinges h

δ 2
h

Ah
. (3.3.27)

The weak field expansion for such a term has largely been done in [47], and we

will first recall here the main results. Since flat space is a classical solution for such

an R2−type action, one can take as a background space a network of unit squares

divided into triangles by drawing in parallel sets of diagonals (see Figs. 3.5).

This is one of an infinite number of possible choices for the background lattice,

and a rather convenient one. Physical results should in the end be insensitive to

the choice of the background lattice used as a starting point for the weak field

expansion.

It is also convenient to use the binary notation for vertices described in references

[41]. As discussed in the previous section, the edge lengths on the lattice correspond
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Figure 3.5: Notation for the weak-field expansion about the rigid square lattice.

to the metric degrees of freedom in the continuum. The edge lengths are thus

allowed to fluctuate around their flat space values,

li = l0
i (1 + εi) , (3.3.28)

with l0
1 = l0

2 = 1 and l0
3 =

�
2 for our choice of lattice. The second variation of the

action is then expressed as a quadratic form in the ε’s,

δ 2I = 4a �
ij

εiMijεj . (3.3.29)

The properties of Mij are best studied by going to momentum space. One assumes

that the fluctuation εi at the point i, j steps in one coordinate direction and k steps

in the other coordinate direction from the origin, is related to the corresponding εi

at the origin by

ε (j+k)
i = ω j

1 ωk
2 ε (0)

i , (3.3.30)

where ωi = e−iki and ki is the momentum in the direction i. The matrix M then

reduces to a 3 � 3 matrix Mω with components given by [47]

(Mω)11 = 2 + ω1 − 2ω2 − 2ω1ω2 + ω1ω2
2 + c. c.

(Mω)12 = 2 − ω1 − �ω2 − ω1ω2 − �ω1
�ω2 − ω2

1 − �ω2
2 + ω2

1 ω2 + �ω1
�ω2

2 + 2ω1
�ω2



35

(Mω)13 = 2( − 1 + 2ω1 − �ω1 + ω2 − �ω2 − ω1ω2 + 2 �ω1
�ω2 + �ω2

2 − �ω1
�ω2

2 − ω1
�ω2)

(Mω)33 = 4(2 − 2ω1 − 2ω2 + ω1ω2 + �ω1ω2 + c. c. )

(3.3.31)

with the other components easily obtained by symmetry. The change of variables

ε
�

1 = ε1 ε
�

2 = ε2 ε
�

3 = 1
2(ε1 + ε2) + ε3 . (3.3.32)

leads for small momenta to the matrix M
�

ω given by

M
�

ω = l4

�
�������

k4
2 k2

1k2
2 −2k1k3

2

k2
1k2

2 k4
1 −2k3

1k2

−2k1k3
2 −2k3

1k2 4k2
1k2

2

�
�������

+ O(k5) . (3.3.33)

This expression is identical to what one obtains from the corresponding weak-field

limit in the continuum theory. To see this, one defines as usual the small fluctuation

field hµν about flat space, which then gives

�
g R2 = (h11,22 + h22,11 − 2h12,12)2 + O(h3) . (3.3.34)

In momentum space, each derivative ∂ν produces a factor of kν, and one has

�
g R2 = hµν Vµν,ρσ hρσ , (3.3.35)

where Vµν,ρσ coincides with M
�

above (when the metric components are re-labeled

according to 11 → 1, 22 → 2, 12 → 3).

It is easy to see the reason for the change of variables in Eq. (3.3.32). Given the

three edges in Figure 5, one can write for the metric at the origin

gij =

�
���

l2
1

1
2(l2

3 − l2
1 − l2

2)
1
2 (l2

3 − l2
1 − l2

2) l2
2

�
��� . (3.3.36)

Inserting li = l0
i (1 + εi), with l0

i = 1 for the body principals (i = 1, 2) and l0
i =

�
2 for

the diagonal (i = 3), one then obtains

l2
1 = (1 + ε1)2 = 1 + h11
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l2
2 = (1 + ε2)2 = 1 + h22

1
2 l2

3 = (1 + ε3)2 = 1 + 1
2 (h11 + h22) + h12 ,

(3.3.37)

which can be inverted to give

ε1 = 1
2h11 − 1

8h2
11 + O(h3

11)

ε2 = 1
2h22 − 1

8h2
22 + O(h3

22)

ε3 = 1
4(h11 + h22 + 2h12) − 1

32 (h11 + h22 + 2h12)2 + O(h3)

(3.3.38)

which was used in Eq. (3.3.32). Thus the matrix Mω was brought in the continuum

form after performing a suitable local rotation from the local edge lengths to the

local metric components.

A similar weak field expansion can be performed for the cosmological constant

term, although strictly speaking flat space is no longer a classical solution in the

presence of such a term [47]. One then obtains a contribution to the second variation

of the action of the form

Lω =
λ
2

�
�������

−1 0 1 + �ω2

0 −1 1 + �ω1

1 + ω2 1 + ω1 −4

�
�������

. (3.3.39)

In the weak field limit, and with the same change of variables as described for the

matrix Mω , this leads to

L
�

ω = −
λ
2

�
�������

1 −1 0

−1 1 0

0 0 4

�
�������

+ O(k) . (3.3.40)

The local gauge invariance of the R2-action is reflected in the presence of two

exact zero modes in Mω of Eq. (3.3.31). As discussed in Ref. [70], the eigenvalues
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of the matrix Mω are given by

λ1 = 0

λ2 = 0

λ3 = 24 − 9(ω1 + �ω1 + ω2 + �ω2) + 4(ω1
�ω2 + �ω1ω2)

+ω1ω2
2 + ω2

1 ω2 + �ω1
�ω2

2 + �ω2
1

�ω2 .

(3.3.41)

It should be noted that the exact zero modes appear for arbitrary ωi, and not just

for small momenta.

It is clear that if one were interested in doing lattice perturbation theory with

such an R2 action, one would have to add a lattice gauge fixing term to remove the

zero modes, such as the lattice analog of

1
κ2 �∂µ � g(x)gµν � 2

, (3.3.42)

and then add the necessary Fadeev-Popov nonlocal ghost determinant. A similar

term would have to be included as well if one were to pick the lattice analog of

the conformal gauge [94]. If one is not doing perturbation theory, then of course

the contribution of the zero modes will cancel out between the numerator and

denominator in the Feynman path integral representation for operator averages,

and such a term is not needed, as in ordinary lattice formulations of gauge theories.

The above zero modes correspond to the lattice analogs of diffeomorphisms. It

is easy to see that the eigenvectors corresponding to the two zero modes can be

written as�
�������

ε1(ω)

ε2(ω)

ε3(ω)

�
�������

=

�
�������

1 − ω1 0

0 1 − ω2

1
2 (1 − ω1ω2) 1

2(1 − ω1ω2)

�
�������

�
���

χ1(ω)

χ2(ω)

�
��� , (3.3.43)

where χ1(ω) and χ2(ω) are arbitrary functions (the above result is not restricted to

two dimensions; completely analogous zero modes are found for the Regge action
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in three [51] and four [41] dimensions, leading to expressions rather similar to Eq.

(3.3.43), with d gauge zero modes in d dimensions; their explicit form can be found

in the quoted references). In position space one then has

ε1(n) = χ1(n) − χ1(n +
�

µ1)

ε2(n) = χ2(n) − χ2(n +
�

µ2)

ε3(n) = 1
2 χ1(n) + 1

2 χ2(n) − 1
2 χ1(n +

�

µ1 +
�

µ2) − 1
2χ2(n +

�

µ1 +
�

µ2)

(3.3.44)

Using the correct relation between induced metric perturbations and edge length

variations,

δ gij =

�
���

δ l2
1

1
2(δ l2

3 − δ l2
1 − δ l2

2)
1
2(δ l2

3 − δ l2
1 − δ l2

2) δ l2
2

�
��� , (3.3.45)

one can easily show that the above corresponds to the discrete analog of the familiar

expression

δ gµν = − ∂µχν − ∂νχµ , (3.3.46)

which indeed describes the correct gauge variation in the weak field limit. In the

discrete case it reflects the invariance of the lattice action under local deformations

of the simplicial manifold which leave the local curvatures unchanged [40]. The

above relationships express in the continuum the well-known fact that metrics re-

lated by a coordinate transformation describe the same physical manifold. Since

the continuum metric degrees of freedom correspond on the lattice to the values

of edge lengths squared, one expects to find analogous deformations of the edge

lengths that leave the lattice geometry invariant, the latter being specified by the

local lattice areas and curvatures, in accordance with the principle of discussing the

geometric properties of the lattice theory in terms of lattice quantities only. This

invariance is spoiled by the presence of the triangle inequalities, which places a

constraint on how far the individual edge lengths can be deformed. In the per-
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turbative, weak field expansion about a fixed background the triangle inequalities

are not seen to any order in perturbation theory, they represent non-perturbative

constraints.

The above invariance of the lattice action is a less trivial realization of the exact

local gauge invariance found already in one dimension

δ ln = χn+1 − χn , (3.3.47)

where the χn’s represent continuous gauge transformations defined on the lattice

vertices [71]. The invariance of the quantum theory is again broken by the triangle

inequalities, which in one dimension reduces to the requirement that the edge

lengths be positive. Such a breaking is unavoidable in any lattice regularization

as it cannot preserve the invariance under scale transformations, which are just

special cases of diffeomorphisms.

The weak field expansion for the purely gravitational part can be carried out to

higher order, and the Feynman rules for the vertices of order h3, h4, … in the R2-

action of Eq. (3.2.12) can be derived. Since their expressions are rather complicated,

they will not be recorded here.

3.3.1 Feynman Rules

Let us consider next the scalar action of Eq. (3.2.21),

1
2

�
d2x

�
g gµν ∂µφ ∂νφ ∼ 1

2 �
<ij>

Aij � φi − φj

lij

� 2
. (3.3.48)

In the continuum, the Feynman rules are obtained by first expanding out the action

in the weak fields hµν(x),

1
2

�
d2x

�
ggµν ∂µφ ∂νφ = 1

2

�
d2x (∂φ)2 + 1

2

�
d2x hµν � 1

2 δµν(∂φ)2 − ∂µφ ∂νφ �
+

1
2

�
d2x

�
hµρhνρ∂µφ∂νφ −

1
2

hρρhµν∂µφ∂νφ

+ (
1
8

hρρhλλ −
1
4

hρλ hρλ ) ∂αφ∂αφ � + O(h3φ2) . (3.3.49)
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and then by transforming the resulting expressions to momentum space.

On the lattice the action is again expanded in the small fluctuation fields εi,

which depend on the specific choice of parameterization for the flat background

lattice. We will first discuss the lattice of Figure 2. 6(a), with the choice of labeling

according to Figure 2. 5. Figures 2. 6(a) and 2. 6(b) correspond to two different gauge

choices for the background metric which are physically equivalent; there are many

others. The fluctuations in the edge lengths εi (see Eq. (3.3.28)) and the scalar fields

φ at the point i, j steps in one coordinate direction and k steps in the other coordinate

direction from the origin, are related to the corresponding εi and φ at the origin by

ε (j+k)
i = ω j

1 ωk
2 ε (0)

i , (3.3.50)

where ωi = e−iki and ki is the momentum in the direction i.

φ (j+k) = ω
� j
1 ω

� k
2 φ (0

i ) , (3.3.51)

where ω
�

i = e−ipi . In practice it is actually more convenient to redefine the edge

variables at the midpoints of the links, since this choice neatly removes later a

set of complex phase factors from the Feynman rules. For the edge lengths we

therefore define the lattice Fourier transforms as

ε1(n) =
� π

−π

� π

−π

d2k

(2π)2 e−ik �n−ik1 ⁄ 2 ε1(k)

ε2(n) =
� π

−π

� π

−π

d2k

(2π)2 e−ik �n−ik2 ⁄ 2 ε2(k)

ε3(n) =
� π

−π

� π

−π

d2k

(2π)2 e−ik �n−ik1 ⁄ 2−ik2⁄ 2 ε3(k) ,

(3.3.52)

while we still define the scalar field on the vertices, and therefore the Fourier

transform in the usual way,

φ(n) =
� π

−π

� π

−π

d2p

(2π)2 e−ip �n φ(p) . (3.3.53)
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(b)(a)

Figure 3.6: Two equivalent triangulation of flat space, based on different subdivi-
sions of the square lattice.

These formulae are easy to generalize to higher dimensions when a simplicial

subdivision of a hypercubic lattice is employed, as first suggested in [41].

The kinetic energy term for the scalar field can naturally be decomposed as a

sum of three terms

I =
1
2

�
<ij>

Aij(
φi − φj

lij
)2

=
1
2

�
horizontal

A(h)
ij (

φi − φj

1 + ε1
)2 +

1
2

�
vertical

A(v)
ij (

φi − φj

1 + ε2
)2

+
1
2

�
diagonal

A(d)
ij (

φi − φj

1 + ε3
)2 , (3.3.54)

where < ij > labels an edge connecting sites i and j. We have separated the sum

over all edges into sums over horizontal, vertical, and diagonal edges. The series

expansion of each term in the sums with respect to an edge length fluctuation in a

particular direction is given by the following expressions

A(h)
ij

(1 + ε1)2 =
1
4

−
1
2

ε1 +
1
2

ε3

+
1
2

ε2
1 +

1
4

ε2
2 +

3
4

ε2
3
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εi

p q

k

εi εj

p q

k k′

Figure 3.7: Labeling of momenta for the scalar-graviton vertices.

+
1
2

ε1ε2 − ε1ε3 − ε2ε3 + O(ε3
i ) � (3.3.55)

A(v)
ij

(1 + ε2)2 =
1
4

−
1
2

ε2 +
1
2

ε3

+
1
4

ε2
1 +

1
2

ε2
2 +

3
4

ε2
3

+
1
2

ε1ε2 − ε1ε3 − ε2ε3 + O(ε3
i ) � (3.3.56)

A(d)
ij

(1 + ε3)2 =
1
4

ε1 +
1
4

ε2 −
1
2

ε3

−
1
8

ε2
1 −

1
8

ε2
2 −

1
4

ε2
3

−
1
2

ε1ε2 +
1
2

ε1ε3 +
1
2

ε2ε3 + O(ε3
i ) . (3.3.57)

The 0-th order term in ε gives the scalar field propagator

1
4 � µ sin2( pµ

2 )
, (3.3.58)

which is the usual scalar propagator for the square lattice, and coincides with the

continuum one for small momenta.

The higher order terms give, after transforming to momentum space, the Feyn-

man rules for the vertices. For the trilinear vertex associated with ε1(k)φ(p)φ(q) one
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finds

−2 sin(
p1

2
) sin(

q1

2
) + cos(

k2

2
) sin(

p1 + p2

2
) sin(

q1 + q2

2
) � (3.3.59)

for the vertex ε2(k)φ(p)φ(q) one obtains

−2 sin(
p2

2
) sin(

q2

2
) + cos(

k1

2
) sin(

p1 + p2

2
) sin(

q1 + q2

2
) � (3.3.60)

and for the vertex ε3(k)φ(p)φ(q) one has

2 cos( k2
2 ) sin( p1

2 ) sin( q1
2 ) + 2 cos( k1

2 ) sin( p2
2 ) sin( q2

2 )

− 2 sin( p1+p2
2 ) sin( q1+q2

2 ) . (3.3.61)

In order to compare the lattice Feynman rules with the usual continuum ones, one

needs to perform a transformation from the εi variables to the metric fluctuation

hµν. The correspondence between the two is given in Eqs. (3.2.13), (3.3.37) and

(3.3.38). However, one must be careful in doing the transformation since ε3 contains

contributions to all h11, h22, and h12. The exact correspondence is given by the

following relation. After writing

aε1 + bε2 + cε3 + Aε2
1 + Bε2

2 + Cε2
3

+ Dε1ε2 + Eε1ε3 + Fε2ε3, (3.3.62)

one can use the relationships between εi and hµν of Eq. (3.3.37) to obtain

( a
2 + c

4 ) h11 + ( b
2 + c

4 ) h22 + c
4 h12 + c

4 h21

+ ( − a
8 − c

32 + A
4 + C

16 + E
8 ) h2

11 + ( − b
8 − c

32 + B
4 + C

16 + F
8 ) h2

22

+ ( − c
16 + C

8 + D
4 + E

8 + F
8 ) h11 h22 + ( − c

16 + C
8 + E

8 ) h11 h12

+ ( − c
16 + C

8 + F
8 ) h11 h21 + ( − c

16 + C
8 + F

8 ) h22 h12

+ ( − c
16 + C

8 + F
8 ) h22 h21 + ( − c

32 + C
16) h2

12 + ( − c
16 + C

8 ) h12 h21 . (3.3.63)

With the aid of the above equation, one can then easily rewrite the Feynman rules

in terms of hµνφ2. For the vertex h11(k)φ(p)φ(q) one has

−4 (1 − 1
2cos k2

2 )sin( p1
2 ) sin( q1

2 ) + 2 cos( k1
2 ) sin( p2

2 ) sin( q2
2 )
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− 2 (1 − cos k2
2 ) sin( p1+p2

2 ) sin( q1+q2
2 ) . (3.3.64)

When expanded out for small momenta it gives

1
2

( − p1 q1 + p2 q2) =
1
2

(p � q − 2 p1 q1) . (3.3.65)

For the vertex h22(k)φ(p)φ(q) one obtains

2 cos( k2
2 ) sin( p1

2 ) sin( q1
2 ) − 4 (1 − 1

2 cos k1
2 ) sin( p2

2 ) sin( q2
2 )

− 2 (1 − cos k1
2 ) sin( p1+p2

2 ) sin( q1+q2
2 ) , (3.3.66)

and its leading continuum approximation is given by

1
2

( − p2 q2 + p1 q1) =
1
2

(p � q − 2 p2 q2) . (3.3.67)

For the vertex h12(k)φ(p)φ(q) ( = h21(k)φ(p)φ(q) ) one has

2 cos( k2
2 ) sin( p1

2 ) sin( q1
2 ) + 2 cos( k1

2 ) sin( p2
2 ) sin( q2

2 )

− 2 sin( p1+p2
2 ) sin( q1+q2

2 ) , (3.3.68)

and its leading continuum approximation is given by

−
1
2

(p1 q2 + p2 q1) . (3.3.69)

Written in Lorentz covariant form, the leading continuum approximations for the

vertices hµν(k)φ(p)φ(q) can be grouped together as

1
2

(δµνp � q − pµ qν − pν qµ) (3.3.70)

which is now identical to the usual continuum Feynman rule, derived from the

original continuum action (see eq.(2.2.16), chapter 2.)

One can proceed in a similar way for the higher order vertices. The Feynman

rules for the 2-scalar 2-graviton vertex written in the component forms are:

for the vertex ε1(k)ε1(k
�

)φ(p)φ(q),

2 sin( p1
2 ) sin( q1

2 ) + cos( k1+k2+k
�

1+k
�

2
2 ) sin( p2

2 ) sin( q2
2 )

− 1
2 cos( k2+k

�

2
2 ) sin( p1+p2

2 ) sin( q1+q2
2 ) � (3.3.71)
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for the vertex ε2(k)ε2(k
�

)φ(p)φ(q),

cos( k1+k2+k
�

1+k
�

2
2 ) sin( p1

2 ) sin( q1
2 ) + 2 sin( p2

2 ) sin( q2
2 )

− 1
2 cos( k1+k

�

1
2 ) sin( p1+p2

2 ) sin( q1+q2
2 ) � (3.3.72)

for the vertex ε3(k)ε3(k
�

)φ(p)φ(q),

3 cos( k2+k
�

2
2 ) sin( p1

2 ) sin( q1
2 ) + 3 cos( k1+k

�

1
2 ) sin( p2

2 ) sin( q2
2 )

− sin( p1+p2
2 ) sin( q1+q2

2 ) � (3.3.73)

for the vertex ε1(k)ε2(k
�

)φ(p)φ(q),

2 cos( k
�

1+k
�

2
2 ) sin( p1

2 ) sin( q1
2 ) + 2 cos( k1+k2

2 ) sin( p2
2 ) sin( q2

2 )

− 2 cos( k2−k
�

1
2 ) sin( p1+p2

2 ) sin( q1+q2
2 ) � (3.3.74)

for the vertex ε1(k)ε3(k
�

)φ(p)φ(q) ,

−4 cos( k
�

2
2 ) sin( p1

2 ) sin( q1
2 ) − 4 cos( k1+k2+k

�

1
2 ) sin( p2

2 ) sin( q2
2 )

+ 2 cos( k2
2 ) sin( p1+p2

2 ) sin( q1+q2
2 ) � (3.3.75)

for the vertex ε2(k)ε3(k
�

)φ(p)φ(q),

−4 cos( k1+k2+k
�

2
2 ) sin( p1

2 ) sin( q1
2 ) − 4 cos( k

�

1
2 ) sin( p2

2 ) sin( q2
2 )

+ 2 cos( k1
2 ) sin( p1+p2

2 ) sin( q1+q2
2 ). (3.3.76)

After writing again the εi fields in terms of the hµν fields (see Eq. (3.3.37)), one

obtains the Feynman rules for the vertex h11(k)h11(k
�

)φ(p)φ(q),

(6 − 1
2 cos k2

2 + 3
2 cos

k2+k
�

2
2 − 4 cos

k
�

2
2 ) sin( p1

2 ) sin( q1
2 )

+ ( 3
2 cos

k1+k
�

1
2 − 4 cos

k
�

1+k1+k2
2 + 2 cos

k1+k2+k
�

1+k
�

2
2 − 1

2 cos k1
2 ) sin( p2

2 ) sin( q2
2 )

+ (cos k2
2 − cos

k2+k
�

2
2 ) sin( p1+p2

2 ) sin( q1+q2
2 ) . (3.3.77)

The above expression should be symmetrized in k and k
�

to reflect the fact that an

edge is shared between two neighboring triangles. For small momenta its leading
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continuum approximation is given by

1
4

( − p � q + 4 p1q1) . (3.3.78)

For the vertex h22(k)h22(k
�

)φ(p)φ(q),

( 3
2 cos

k2+k
�

2
2 − 4 cos

k1+k2+k
�

2
2 + 2 cos

k1+k2+k
�

1+k
�

2
2 − 1

2 cos k2
2 ) sin( p1

2 ) sin( q1
2 )

+ (6 − 4 cos
k

�

1
2 + 3

2 cos
k1+k

�

1
2 − 1

2 cos k1
2 ) sin( p2

2 ) sin( q2
2 )

+ (cos k1
2 − cos

k1+k
�

1
2 ) sin( p1+p2

2 ) sin( q1+q2
2 ) , (3.3.79)

and its leading continuum approximation for small momenta is given by

1
4

( − p � q + 4 p2q2) . (3.3.80)

For the vertex h11(k)h22(k
�

)φ(p)φ(q),

2( − cos
k

�

2
2 + cos

k
�

1+k
�

2
2 + 3

4 cos
k2+k

�

2
2 − cos

k1+k2+k
�

2
2 − 1

4 cos k2
2 ) sin( p1

2 ) sin( q1
2 )

+ 2( − cos
k

�

1
2 + 3

4 cos
k1+k

�

1
2 + cos k1+k2

2 − cos
k1+k2+k

�

1
2 − 1

4 cos k1
2 ) sin( p2

2 ) sin( q2
2 )

+ (cos k1
2 − 2 cos

k
�

1−k2
2 + cos k2

2 ) sin( p1+p2
2 ) sin( q1+q2

2 ) , (3.3.81)

and its leading continuum approximation for small momenta is

−
1
4

p � q . (3.3.82)

For the vertex h11(k)h12(k
�

)φ(p)φ(q) ( = h11(k)h21(k
�

)φ(p)φ(q) ),

1
2 ( − cos k2

2 − 4 cos
k

�

2
2 + 3 cos

k2+k
�

2
2 ) sin( p1

2 ) sin( q1
2 )

+ 1
2 ( − cos k1

2 + 3 cos
k1+k

�

1
2 − 4 cos

k1+k2+k
�

1
2 ) sin( p2

2 ) sin( q2
2 )

+ cos( k2
2 ) sin( p1+p2

2 ) sin( q1+q2
2 ) , (3.3.83)

and its leading continuum approximation for small momenta is

1
4

(p1q2 + p2q1) . (3.3.84)
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For the vertex h22(k)h12(k
�

)φ(p)φ(q) ( = h22(k)h21(k
�

)φ(p)φ(q) ),

1
2 ( − cos k2

2 + 3 cos
k2+k

�

2
2 − 4 cos

k1+k2+k
�

2
2 ) sin( p1

2 ) sin( q1
2 )

+ 1
2 ( − cos k1

2 − 4 cos
k

�

1
2 + 3 cos

k1+k
�

1
2 ) sin( p2

2 ) sin( q2
2 )

+ cos( k1
2 ) sin( p1+p2

2 ) sin( q1+q2
2 ) , (3.3.85)

and its leading continuum approximation for small momenta is

1
4

(p1q2 + p2q1) . (3.3.86)

For the vertex h12(k)h12(k
�

)φ(p)φ(q) ( = h21(k)h21(k
�

)φ(p)φ(q) = 1
2 [h12(k)h21(k

�

)

φ(p)φ(q) + h21(k)h12(k
�

)φ(p)φ(q)] ),

1
2 ( − cos k2

2 + 3 cos
k2+k

�

2
2 ) sin( p1

2 ) sin( q1
2 )

+ 1
2( − cos k1

2 + 3 cos
k1+k

�

1
2 ) sin( p2

2 ) sin( q2
2 ) , (3.3.87)

and its leading continuum approximation for small momenta is

1
4

p � q . (3.3.88)

The above lattice Feynman rules for the 2-graviton 2-scalar vertex in terms of hµν can

be compared to the continuum Feynman rules, which are given by the following

expression

Vµν,αβ = (1 ⁄ 4) [ δµα (pνqβ + pβqν) + δµβ (pνqα + pαqν)

+ δνα (pµqβ + pβqµ) + δνβ (pµqα + pαqµ) − δµν (pαqβ + pβqα)

− δαβ (pµqν + pνqµ) + (δµνδαβ − δµαδνβ − δµβδνα ) p � q ] . (3.3.89)

Again one sees that the 2-graviton 2-scalar vertex in the leading continuum ap-

proximation reduces completely to the continuum Feynman rules (see eq.(2.2.17),

chapter 2.)

In order to see how much the lattice Feynman rules depend on a particular

lattice triangulation, one can derive the Feynman rules for the lattice obtained by
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a reflection with respect to the vertical axis (see Figure 6b). It turns out that these

Feynman rules can simply be obtained by performing the following substitutions

in all the above formulae for the vertices,

p1 → −p1, q1 → −q1, k1 → −k1, k
�

1 → −k
�

1 , (3.3.90)

which indeed corresponds to a reflection about the vertical axis. In this case the

leading continuum approximation of the lattice Feynman rules are again identical

to the continuum Feynman rules. One therefore concludes that the two inequiva-

lent lattice triangulations give the same physical results, at least to the first leading

continuum order (for momenta which are small compared to the ultraviolet cut-

off). This should not come as a surprise, since the two lattices correspond to two

equivalent parameterizations of flat space, with an action that is parameterization

invariant, at least for small deformations.

3.3.2 Conformal Anomaly

As an application, we will compute the graviton self-energy using the lattice

Feynman rules developed above. There are two diagrams contributing to the

lattice graviton self-energy, namely the vacuum polarization loop and the tadpole

diagram shown in Figs. 3.8.

The evaluation of the above diagrams corresponds to a functional integration

over the scalar field, performed to lowest order in the weak field expansion, and

with a scalar field measure deriving from the functional measure

� �
0

�
edges ij

dl2
ij Fε[l] �

� �
−�

�
sites i

�
a

dφa
i � (3.3.91)

the specific form of the gravitational measure will not matter in the following

calculation since only the scalar field is integrated over. The relevant expressions
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εi εj
q q

εi εj
q q

Figure 3.8: Lowest order diagrams contributing to the conformal anomaly.

for the vacuum polarization loop diagram, written in component form, are then

Vε1,ε1(q) =
1
2

� π

−π

� π

−π

d2p

(2 π)2

�
−2 sin

p1

2
sin

p1 + q1

2

+cos
q2

2
sin

p1 + p2

2
sin

p1 + q1 + p2 + q2

2 � 2

�
1

16 [ � µ sin2( pµ
2 ) ][ � µ sin2( pµ+qµ

2 ) ]
, (3.3.92)

Vε2,ε2(q) =
1
2

� π

−π

� π

−π

d2p

(2 π)2

�
−2 sin

p2

2
sin

p2 + q2

2

+cos
q1

2
sin

p1 + p2

2
sin

p1 + q1 + p2 + q2

2 � 2

�
1

16 [ � µ sin2( pµ
2 ) ][ � µ sin2( pµ+qµ

2 ) ]
, (3.3.93)

Vε3,ε3(q) =
1
2

� π

−π

� π

−π

d2p

(2 π)2

�
2 cos

q2

2
sin

p1

2
sin

p1 + q1

2

+2 cos
q1

2
sin

p2

2
sin

p2 + q2

2
− 2 sin

p1 + p2

2
sin

p1 + q1 + p2 + q2

2 � 2

�
1

16 [ � µ sin2( pµ
2 ) ][ � µ sin2( pµ+qµ

2 ) ]
, (3.3.94)

Vε1,ε2(q) =
1
2

� π

−π

� π

−π

d2p

(2 π)2

�
( − 2 sin

p1

2
sin

p1 + q1

2
+ cos

q2

2
sin

p1 + p2

2

� sin
p1 + q1 + p2 + q2

2
) � ( − 2 sin

p2

2
sin

p2 + q2

2
+

cos
q1

2
sin

p1 + p2

2
sin

p1 + q1 + p2 + q2

2
) �

�
1

16 [ � µ sin2( pµ
2 ) ][ � µ sin2( pµ+qµ

2 ) ]
. (3.3.95)
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Vε1,ε3(q) =
1
2

� π

−π

� π

−π

d2p

(2 π)2

�
( − 2 sin

p1

2
sin

p1 + q1

2
+ cos

q2

2
sin

p1 + p2

2

� sin
p1 + q1 + p2 + q2

2
) � (2 cos

q2

2
sin

p1

2
sin

p1 + q1

2
+

2 cos
q1

2
sin

p2

2
sin

p2 + q2

2
− 2 sin

p1 + p2

2
sin

p1 + q1 + p2 + q2

2
) �

�
1

16 [ � µ sin2( pµ
2 ) ][ � µ sin2( pµ+qµ

2 ) ]
. (3.3.96)

Vε2,ε3(q) =
1
2

� π

−π

� π

−π

d2p

(2 π)2

�
( − 2 sin

p2

2
sin

p2 + q2

2
+ cos

q1

2
sin

p1 + p2

2

� sin
p1 + q1 + p2 + q2

2
) � (2 cos

q2

2
sin

p1

2
sin

p1 + q1

2
+

2 cos
q1

2
sin

p2

2
sin

p2 + q2

2
− 2 sin

p1 + p2

2
sin

p1 + q1 + p2 + q2

2
) �

�
1

16 [ � µ sin2( pµ
2 ) ][ � µ sin2( pµ+qµ

2 ) ]
. (3.3.97)

For zero external momentum q all the quantities Vεi,εj
’s are infrared finite, and one

finds

Vε1,ε1(q = 0) =
1
16

�
1 −

2
π �

Vε2,ε2(q = 0) =
1
16

�
1 −

2
π �

Vε3,ε3(q = 0) =
1
8

�
1 −

2
π �

Vε1,ε2(q = 0) = 0

Vε1,ε3(q = 0) = −
1

16

�
−1 +

1
π �

Vε2,ε3(q = 0) = −
1

16

�
−1 +

1
π �

(3.3.98)

The q2-dependent terms are the ones that are of physical importance. Expanding

the lattice integrals for small external momentum one obtains for example

Vε1,ε1(q1 = q2 = q) =
1

16

�
1 −

2
π � +

1
96π

q2 + O(q4) , (3.3.99)
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which can be compared with the continuum result for the metric vacuum polariza-

tion

Π11,11 =
1

96π
q2 + O(q4) . (3.3.100)

The expressions relevant for the tadpole diagram, written in component form,

are

Tε1,ε1(q) =
� π

−π

� π

−π

d2p

(2 π)2 � 2 sin2(
p1

2
) + sin2(

p2

2
) −

1
2

sin2(
p1 + p2

2
)�

�
1

4 [ � µ sin2( pµ
2 )]

. (3.3.101)

Tε2,ε2(q) =
� π

−π

� π

−π

d2p

(2 π)2 � sin2(
p1

2
) + 2 sin2(

p2

2
) −

1
2

sin2(
p1 + p2

2
)�

�
1

4 [ � µ sin2( pµ
2 )]

. (3.3.102)

Tε3,ε3(q) =
� π

−π

� π

−π

d2p

(2 π)2

�
3 sin2(

p1

2
) + 3 sin2(

p2

2
) − sin2(

p1 + p2

2
) �

�
1

4 [ � µ sin2( pµ
2 )]

. (3.3.103)

Tε1,ε2(q) =
� π

−π

� π

−π

d2p

(2 π)2 cos
q1 + q2

2

�
2 sin2(

p1

2
) + 2 sin2(

p2

2
)

−2 sin2(
p1 + p2

2
) � �

1
4 [ � µ sin2( pµ

2 )]
. (3.3.104)

Tε1,ε3(q) =
� π

−π

� π

−π

d2p

(2 π)2 cos
q2

2

�
−4 sin2(

p1

2
) − 4 sin2(

p2

2
) + 2 sin2(

p1 + p2

2
) �

�
1

4 [ � µ sin2( pµ
2 )]

. (3.3.105)

Tε2,ε3(q) =
� π

−π

� π

−π

d2p

(2 π)2 cos
q1

2

�
−4 sin2(

p1

2
) − 4 sin2(

p2

2
) + 2 sin2(

p1 + p2

2
) �

�
1

4 [ � µ sin2( pµ
2 )]

. (3.3.106)
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The first three integrals are q-independent, while in the last three the q-dependence

factorizes. One finds

Tε1,ε1(q) =
3
8

−
1

4π

Tε2,ε2(q) =
3
8

−
1

4π

Tε3,ε3(q) =
3
4

−
1

2π

Tε1,ε2(q) = cos(
q1 + q2

2
)

�
1
2

−
1
π �

Tε1,ε3(q) = cos(
q2

2
)

�
−1 +

1
π �

Tε2,ε3(q) = cos(
q1

2
)

�
−1 +

1
π �

(3.3.107)

The terms in Tεi,εj
(q) are required to cancel some of the unwanted, including non-

covariant, terms in Vεi,εj
(q). Also, a number of contributions to the lattice vacuum

polarization can be shown to contribute to a renormalization of the cosmological

constant. It should be noted here that the lattice form of the cosmological constant

term (which just corresponds to the total area of the triangulated manifold) con-

tains, in contrast to the continuum, momentum dependent terms [47]. The reason

for this is that the lattice area terms couple neighboring edges, and lead therefore

to some residual local interactions between the edges variables, as shown in Eq.

(3.3.39).

Eventually one needs to rotate the final answer for the vacuum polarization

from the εi to the hµν variables, which is achieved to linear order (and for small q)

by the matrix

V =

�
�������

1
2 0 0

0 1
2 0

1
4

1
4

1
2

�
�������

. (3.3.108)
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with ε(q) = V � h(q) (see Eq. (3.3.38)). Since the integration over the scalar gives

Ieff = −1
2

� d2q

(2π)2 h(q) � Π(h) � h(q) = −1
2

� d2q

(2π)2 ε(q) � Π(ε) � ε(q) , (3.3.109)

one obtains the correspondence between the two polarization quantities,

Π(h) = V−1 � Π(ε) � V , (3.3.110)

correct to lowest order in the weak field expansion.

Analytical evaluations of the remaining integrals in terms of Bessel functions

will be presented elsewhere [72]. In the following we will calculate the graviton

self-energy using the lattice Feynman rules in the leading continuum order, by

doing a continuum approximation to the integrands valid for small momenta. The

procedure is justified for integrands that are sharply peaked in the low momentum

region, and neglects the effects due to presence of a high momentum cutoff.

The calculation is most easily done by using the Feynman rules in terms of hµν

in the Lorentz covariant form, which were given before. The vacuum polarization

loop contributing to the graviton self-energy then reduces to

Vµν,αβ (q) =
1
2

� d2p

(2 π)2
tµν(p, q) tαβ(p, q)

p2 (p + q)2

tµν(p, q) =
1
2

[δµνp � (p + q) − pµ (pν + qν) − pν (pµ + qµ) ] . (3.3.111)

The calculation of the integral is easily done using dimensional regularization. One

obtains

Vµν,αβ (q) =
1

48 π
(q2δµν − qµqν)

1
q2 (q2δαβ − qαqβ) . (3.3.112)

As expected, the tadpole contribution Tµν,αβ (q) to the graviton self-energy is 0. The

remaining graviton self-energy contribution is given by

Πµν,αβ (q) = Vµν,αβ (q) + Tµν,αβ (q)

=
1

48 π
(q2δµν − qµqν)

1
q2 (q2δαβ − qαqβ) . (3.3.113)
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The above result is valid for one real massless scalar field. For a D-component scalar

field, the above result would get multiplied by a factor of D. Then the effective

action, obtained from integrating out the scalar degrees of freedom, and to lowest

order in the weak field expansion, is given by

Ieff = −1
2

� d2q

(2π)2 hµν(q) Πµνρσ(q) hρσ( − q) , (3.3.114)

with the scalar vacuum polarization given by

Πµνρσ(q) =
D

48π
(qµqν − δµνq2)

1
q2 (qρqσ − δρσq2) . (3.3.115)

In the lattice analog of the continuum conformal gauge,

gµν(x) = δµν eϕ(x) , (3.3.116)

one can write for the scalar curvature

(qµqν − δµνq2)hµν(q) = R(q) = q2ϕ(q) , (3.3.117)

and therefore re-write the effective action in the form

Ieff(ϕ) = −
D

96π

� d2q

(2π)2 ϕ(q) q2ϕ( − q) , (3.3.118)

which in real space becomes the well-known Liouville action

Ieff(ϕ) = −
D

96π

�
d2x

�
(∂µϕ)2 + (λ − λc) eϕ � . (3.3.119)

One therefore completely recovers the result derived perturbatively from the con-

tinuum Feynman rules, as given for example in [53]).

In the continuum, the effective action term of Eq. (3.3.119) arising from the

conformal anomaly can be written in covariant form as

1
2

�
d2x d2y R

�
g(x) �x � 1

−∂ 2 + m2 �y� R
�

g(y) , (3.3.120)

where ∂ 2 is the continuum covariant Laplacian, ∂ 2 ≡ ∂µ(� ggµν∂ν), and m2 → 0. In

two dimensions and for flat space, �x � 1
∂2 �y� ∼ 1

2π � � � �x−y �. Using the correspondence
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between lattice and continuum curvature operators derived in [43], its lattice form

gives rise to an effective long-range interaction between deficit angles of the type

1
2 �

hingesh,h
�

δh

� 1
−∆ + m2 � h,h

� δh
� , (3.3.121)

where ∆ is the nearest-neighbor covariant lattice Laplacian, as obtained from the

discrete scalar action, and m2 → 0 an infrared mass regulator. This result was given

in [47]; see also the recent discussion in [73].

In general one cannot expect the lattice expression for the vacuum polarization

to match completely the continuum expression already at the lowest order of

perturbation theory. Since there is no small parameter controlling the weak field

expansion in two dimensions, it is difficult to see why the first few orders on the

lattice should suffice. Indeed in the weak field expansion the background lattice

is usually taken to be regular, which leads to a set of somewhat preferred lattice

directions for high momenta, which are close to the momentum cutoff at ±π. It

would seem though that this is an artifact of the choice of background lattice

(which is necessarily rigid), and whose effects are eventually washed out when the

fluctuations is the edge lengths are properly accounted for in higher order in the

weak field expansion. The fact that the conformal mode in fact remains massless

in two dimensions in the full numerical, non-perturbative treatment of the lattice

theory was shown in [83, 66], without the necessity of any sort of fine-tuning of

bare parameters.

The gravitational contribution to the effective action in the lattice conformal

gauge can, at least in principle, be computed in a similar way. Let us sketch here

how the analogous lattice calculation would proceed; a more detailed discussion of

the relevant calculations will be presented elsewhere. In the continuum the metric

perturbations are naturally decomposed into conformal and diffeomorphism parts,

δ gµν(x) = gµν(x) δϕ(x) + � µχν(x) + � νχµ(x) . (3.3.122)
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where � ν denotes the covariant derivative. A similar decomposition can be done

for the lattice degrees of freedom, by separating out the lattice gauge transforma-

tions [40] (which act on the vertices and change the edge lengths without changing

the local curvatures) from the conformal transformations (which change the local

volumes and curvatures) in Eq. (3.3.45). The explicit form for the lattice diffeomor-

phisms, to lowest order in the lattice weak field expansion, is given in Eq. (3.3.43),

which makes it obvious that such a decomposition can indeed be performed on the

lattice. After rewriting the gravitational functional measure in terms of conformal

and diffeomorphism degrees of freedom,

[dg] = [dϕ][dχ] �� � �
(L+L)�

1
2 , (3.3.123)

which involves the Jacobian of the operator L, which in the continuum is deter-

mined from

(L+L χ)µ = � ν(� µχν + � νχµ − gµν� ρχρ) , (3.3.124)

one has for the effective action contribution in the conformal gauge, and to lowest

order in the weak field expansion,

�� � �
(L+L)� −

1
2 ∼ exp � −Ieff(ϕ)� . (3.3.125)

The lattice form of L depends on the specific form of the lattice gauge fixing term.

On the lattice the functional integration is performed over the edge lengths, see

Eq. (3.2.3). The lattice conformal gauge choice corresponds to an assignment of

edge lengths such that

gij(n) =

�
���

l2
3

1
2 ( − l2

1 + l2
2 + l2

3)
1
2 ( − l2

1 + l2
2 + l2

3) l2
2

�
��� � δij eϕ(n) . (3.3.126)

The lattice fields ϕ(n) are defined on the lattice vertices. So are the gauge degrees

of freedom χµ(n), as can be seen from Eq. (3.3.44). It should therefore be clear

that the choice of lattice conformal gauge corresponds to a re-assignment of edge
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lengths about each vertex which leaves the local curvature unchanged but brings

the induced metric into diagonal form; it corresponds to a choice of approximately

right-angle triangles at each vertex [70].

A diagrammatic calculation, similar to the one for the scalar field contribution,

gives in the continuum the celebrated result [53]

Πµνρσ (q) =
13

48π
(qµqν − δµνq2)

1
q2 (qρqσ − δρσq2) . (3.3.127)

As a consequence the total Liouville action for the field ϕ = 1
∂2 R becomes

Ieff(ϕ) =
26 − D

96π

�
d2x

�
(∂µϕ)2 + (λ − λc) eϕ � , (3.3.128)

Thus to lowest order in the weak field expansion the critical value of D for which

the action vanishes is Dc = 26, but this number is expected to get modified by

higher order quantum corrections. In any case, for sufficiently large D one expects

an instability to develop. Numerical nonperturbative studies of two-dimensional

gravity suggest that in the lattice theory the correction is large, and one finds that

the threshold of instability moves to Dc � 13 [66]. It is unclear if this critical value

can be regarded as truly universal, and independent for example on the detailed

choice of gravitational measure.

3.4 Conclusions

In the previous section we have presented results relevant for the weak field

expansion of lattice gravity. We have shown the precise correspondence between

continuum and lattice degrees of freedom within the context of such an expansion.

To avoid unnecessary technical complications, most of our discussion has focused

on the two-dimensional case, but the methods presented here can be applied to any

dimension. In the purely gravitational case, we have shown that the presence of
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zero modes is tied to the existence of a local invariance of the gravitational action.

This invariance corresponds precisely to the diffeomorphisms in the continuum,

with appropriate deformations in the edge lengths playing the role of local gauge

variations of the metric in the continuum.

We have then derived the Feynman rules for gravity coupled to a massless

scalar field, to lowest order in the weak field expansion. Although the lattice

Feynman rules for the edge length vertices appear to be rather unwieldy, they

actually reduce to the familiar continuum form when re-expressed in terms of the

weak field metric field, and we have presented this important result in detailed

form. As an application, the two-dimensional conformal anomaly due to a massless

scalar field was computed by diagrammatic methods. We have given explicitly the

relevant lattice integrals, which involve among other things a new diagram, the

tadpole term, which vanishes in the continuum but is necessary on the lattice for

canceling unwanted terms. Finally we have shown that in the leading continuum

approximation the expected continuum form for the anomaly is obtained, with the

correct coefficient.

The procedure followed here in deriving the Feynman rules for lattice gravity

works in any dimension, including therefore the physical case of four dimensions.

The lack of perturbative renormalizability in four dimensions is not ameliorated

though by the presence of an explicit lattice cutoff, and non-perturbative searches

for an ultraviolet fixed point and a lattice continuum limit are still required.



Chapter 4

Random Ising Spins in Two
Dimensions - A Flat Space
Realization of the KPZ Exponents

4.1 Introduction

In this chapter we will discuss the computer simulation aspect of quantum gravity.

More specifically we will consider the dynamics of random Ising spins coupled to

gravity in two dimensions. The continuum space is divided into a random lattice.

Ising spins with spin either up or down are placed at the vertices of the lattice, and

are allowed to move randomly on a discretized version of a fluid surface. The lattice

geometry is allowed to fluctuate by varying the local coordination number through

a “link flip” operation which varies the local connectivity [77]. The transformation

from the continuum spacetime to lattice (after a Wick rotation) essentially turns

the field theory into a statistical mechanics theory. Our study of this “statistical"

system consists of several steps. The first step is to determine if this system has

a phase transition. Whether a phase transition has taken placed is manifested by

the singular (or vanishing) nature of some thermodynamic functions at the phase

transition point. The phase diagram can be mapped out by a carefully study of

these thermodynamic functions. After the phase transition has taken place, the

initial symmetry of the system may no longer be preserved by the new ground

59
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state. In this case, the system is said to have undergone a spontaneous symmetry

breaking. This breaking of the symmetry has a great relevance in quantum field

theory as the masses of gauge field particles are generated in this manner, known

as the Higgs mechanism. In the regular (Onsagar) Ising model, magnetization

can be spontaneously generated even in the absence of an external magnetic field.

Another interesting thing happened at the critical point is that the correlation length

of the system becomes infinite. The details of the underlying lattice is no longer

revalent, and the continuous spacetime symmetries of the field theory are restored.

In this chapter, we will be interested in measuring thermodynamical quantities,

such as spontaneous magnetization per spin, zero field susceptibility, latent heat,

average energy per spin, and specific heat, in our dynamically triangulated random

Ising model. The phase transition diagram will be constructed by examining the

behavior of these quantities.

After the phase diagram of the theory has been established, we are next to

determine the order of the phase transition, as well as the critical exponents char-

acterizing the universality class of the system. One of the most interesting aspect

of critical phenomena is that many systems with different lattice structures have

the exact critical exponents which allow us to classify them by their universality

property.

Before we actually go into the Ising model on random surface, it is useful to

give a brief review of the exactly solvable Onsager Ising model on two dimensions

[78, 79, 80]. Consider a two dimensional flat surface divided into square lattice.

Each site of the lattice is labeled by a vector of a pair integers,

n = (nx, ny). (4.1.1)

A spin variable s(n) with spin value +1 (up) or −1 (down) is placed at the site n.



61

The action describing the model is

S = −J �
n,µ

s(n)s(n + µ), (4.1.2)

where µ is an unit vector connecting the two neighboring spins. The Ising spin

interaction is local; it only interacts with its four nearest neighbors. We further

choose the coupling parameter J positive such that the system results in a lower

energy state when the neighboring two spins have both +1 or both −1 spins. The

system is called ferromagnetic (as contrast to anti-ferromagnetic when J < 0.) The

system posses a global symmetry. When all spins flip their values, the action S

remains unchanged. This global symmetry can be explicitly broken by introducing

an external magnetic field B to the action

S = −J �
n,ν

s(n)s(n + ν) − B �
n

s(n). (4.1.3)

The partition function of the statistical system is given by

Z = �
configs

e−βS, (4.1.4)

where the sum runs over all possible spin configurations. On a lattice of N sites,

there are 2N possible configurations. β = 1 ⁄ kT is the inversed Ising temperature.

Some interesting thermodynamic quantities are: free energy

F = −β T lnZ � (4.1.5)

magnetization per site

M =
1
N

∂F

∂B
� (4.1.6)

magnetic susceptibility per site

χ =
∂M

∂B
�B=0

=
1

NkT
[ < (stot− < stot > )2 > ] � (4.1.7)



62

and the specific heat

C = −T
∂ 2F

∂T2 . (4.1.8)

The system can undergo a spontaneous magnetization even in the absence of

external magnetic field B when the temperature T is below the critical value Tc.

Above Tc the system is completely random, and exhibits no magnetization. The

magnetization M is thus served as a local order parameter characterizing the phase

transition of the Ising system. At the phase transition region, many thermodynamic

quantities obey some scaling laws: for the magnetization,

M ∼ (Tc − T)β , (4.1.9)

where β is called the magnetization critical exponent; for the spin-spin correlation

function,

Γ(n) = < s(n)s(0) >

∼ �n �−(d−2+η) , T = Tc � (4.1.10)

for the correlation length,

ξ (T) ∼ (T − Tc)−ν � (4.1.11)

for the susceptibility,

χ ∼ (T − Tc)−γ � (4.1.12)

for the specific heat,

C ∼ (T − Tc)−α � (4.1.13)

and for the magnetization when a small external magnetic field B is applied,

m ∼ B1⁄ δ , T = Tc . (4.1.14)

The critical exponents are solved exactly in the two dimensional Ising model (On-

saga). They are β = 1 ⁄ 8, η = 1 ⁄ 4, ν = 1, γ = 7 ⁄ 4, α = 0, and δ = 15. Furthermore,
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these critical indices are related as follows

β =
1
2

ν(d − 2 + η),

γ = ν(2 − η),

α = 2 − νd,

δ = (d + 2 − η) ⁄ (d − 2 + η). (4.1.15)

There are thus essentially only two independent critical exponents in the regular

Ising model in two dimensions. A very important property of these critical expo-

nents is that these values are shared by many physical systems with different lattice

structures. Anisotropic lattices of the Ising model having the same critical indices

are said to belong to the same universality class.

Exact solution of the Ising model on a random surface is solved in matrix model

methods [74]. In this model, in addition to all 2N spin configurations summed over,

all planar graphs with the topology of sphere and N vertices are summed over in

the action. The phase transition of this model is found to be third order instead

of second order in regular Ising model. This work has been extented to study

the properties of random Ising spins coupled to two-dimensional gravity. More

recently, work based on both series expansions [75, 76] and numerical simulations

[77, 81] has verified and extended the original results. Remarkably, the same

critical exponents have been found using consistency conditions derived from

conformal field theory for central charge c = 1
2 [82], which should again apply

to Ising spins. It is generally believed that the new values for the Ising critical

exponents are due to the random fluctuations of the surface in which the spins

are embedded, and therefore intimately tied to the intrinsic fractal properties of

fluctuating geometries. It comes therefore as a surprise that in our study of non-

random Ising spins, placed on a randomly fluctuating geometry but with fixed spin

coordination number, exhibits the same critical behavior as in flat space, without
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any observed “gravitational” shift of the exponents [83].

The natural question to ask is to what extent the values of the critical Ising

exponents found by KPZ for c = 1
2 and in the matrix model solution (α = −1,

β = 1 ⁄ 2, γ = 2, η = 2 ⁄ 3, ν = 3 ⁄ 2 [74, 82]) are due to the annealed randomness of

the lattice, and to what extent they are due to the physical presence of a fluctuating

background metric. The most straightforward way to answer this question is to

investigate the critical properties of annealed random Ising spins, with interactions

designed to mimic as closely as possible the dynamical triangulation model, but

placed in flat two-dimensional space. It is well known that for a quenched random

lattice the critical exponents are the same as on a regular lattice [84], as expected

on the basis of universality, even though in two dimensions the Harris criterion

(which applies to quenched impurities only) does not give a clear prediction, since

the specific heat exponent vanishes, α = 0, for Onsager’s solution.

4.2 Formulation of the Model

In a square d-dimensional box of sides L with periodic boundary conditions we

introduce a set of N = Ld Ising spins Si = ±1 with coordinates xa
i , i = 1. . . N, a = 1. . . d,

and average density ρ = N ⁄ Ld = 1. Both the spins and the coordinates will be

considered as dynamical variables in this model. Interactions between the spins

are determined by

I[x, S] = − �
i<j

Jij(xi, xj) Wij SiSj − h �
i

Wi Si , (4.2.16)

with ferromagnetic coupling

Jij(xi, xj) =

����
���

0 if �xi − xj � > R

J if r < �xi − xj � < R
, (4.2.17)

and infinite energy for �xi − xj � < r, giving therefore a hard core repulsion radius

equal to r ⁄ 2. As will be discussed further below, the hard core repulsive interaction
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is necessary for obtaining a non-trivial phase diagram, and mimics the interaction

found in the dynamical triangulation model, where the minimum distance between

any two spins is restricted to be one lattice spacing. For r → 0, Jij = J[1−θ( �xi−xj �−R)].

The weights Wij and Wi appearing in Eq. (4.2.16) could in principle contain

geometric factors associated with the random lattice subtended by the points, and

involve quantities such as the areas of the triangles associated with the vertices,

as well as the lengths of the edges connecting the sites. In the following we will

consider only the simplest case of unit weights, Wij = Wi = 1. On the basis of

universality of critical behavior one would expect that the results should not be

too sensitive to such a specific choice, which only alters the short distance details

of the model, and should not affect the exponents.

The full partition function for coordinates and spins is then written as

Z =
N�

i=1
�

Si=±1 �
d�

a=1

� L

0
dxa

i � exp( − I[x, S]) . (4.2.18)

In the following we will only consider the two-dimensional case, d = 2, for which

specific predictions are available from the work of KPZ and the matrix model

solution.

It should be clear that if the interaction range R is of order one, then, for

sufficiently large hard core repulsion, r →
�

5 ⁄ 2 < R, the spins will tend to lock

in into an almost regular triangular lattice. As will be shown below, in practice

this crossover happens already for quite small values of r. The critical behavior

is then the one expected for the regular Ising model in two dimensions, namely a

continuous second order phase transition with the Onsager exponents. Indeed for

the Ising model on a triangular lattice it is known that Jc = 1
2

�
3ln3 = 0. 9514. . .. On

the other hand if the hard core repulsion is very small, then for sufficiently low

temperatures the spins will tend to form tight ordered clusters, in which each spin

interacts with a large number of neighbors. As will be shown below, this clustering

transition is rather sudden and strongly first order. Furthermore, where the two
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transition lines meet inside the phase diagram one would expect to find a tricritical

point.

In order to investigate these issues further, we have chosen to study the above

system by numerical simulation, with both the spins and the coordinates updated

by a standard Monte Carlo method. We choose any spin on the lattice, flip its

spin, and increment its (x, y) coordinates by a random amount (between 0 and 1.)

The motion of the spin particles results in new neighbors within the interaction

range. The probability for both of these occurring is computed, and compared to

a random number. If the probability is larger than the random number, both spin

flip and change in coordinates are accepted, otherwise both are ejected. This pro-

cedure is repeated for every spin in the lattice to give a new configuration. Before

any thermodynamic quantities can be computed, many sweeps of the spin config-

uration must be done to bring the system to the thermal equilibrium state. The

computation of thermodynamic averages is quite time consuming in this model,

since any spin can in principle interact with any other spin as long as they get

sufficiently close together. As a consequence, a sweep through the lattice requires

a number of order N2 operations, which makes it increasingly difficult to study

larger and larger lattices. In order to extend our study to even larger lattices, we

have applied a binning procedure in such a way that the time for the updating of

a given configuration grows as zN, where z is the average coordination number of

the lattice, instead of N2. This binning procedure consists of dividing the system in

cells of unit length, and keeping track of the spins in each cell. Since all the moves

are local, and spins can only move from a given cell to the neighboring ones, we

only need to consider the spins in a given cell and its neighbors at each updating

step. This procedure is very effective when the average coordination number is

relatively small (J < Jc and r large), however, if z ∼ N the updating time grows again

as N2.
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There are a number of local averages and fluctuations which can be determined

and used to compute the critical exponents. The spontaneous magnetization per

spin can be determined as

M =
1
N

∂
∂h

lnZ �h=0 =
1
N

< � �
i

Si � > , (4.2.19)

was measured (here the averages involve both the x and S variables, < >≡< >x,S),

and the zero field susceptibility

χ =
1
N

∂ 2

∂h2 lnZ �h=0 =
1
N

< �
ij

SiSj > −
1
N

< � �
i

Si � >2 . (4.2.20)

It is customary to use the absolute value on the r.h.s., since on a finite lattice the

spontaneous magnetization, defined without the absolute value, vanishes identi-

cally even at low temperatures. In addition, the latent heat and the specific heat

exponent can be determined from computing the average Ising energy per spin

defined as

E = −
1
N

∂
∂ J

lnZ �h=0 = −
1

JN
< �

i<j

Jij(xi, xj) Wij SiSj > , (4.2.21)

and its fluctuation,

C =
1
N

∂ 2

∂ J2 lnZ �h=0 . (4.2.22)

4.3 Results and Analysis

In the simulations we have investigated lattice sizes varying from 52 = 25 sites

to 302 = 900 sites. The length of our runs varies in the critical region (J ∼ Jc)

between 2M sweeps on the smaller lattices and 200k sweeps on the largest lattices.

A standard binning procedure then leads to the errors reported in the figures.

As it stands, the model contains three coupling parameters, the ferromagnetic

coupling J, the interaction range R and the hard core repulsion parameter r. We

have fixed R = 1; comparable choices should not change the universality class. As

we alluded previously, for small r we find that the system undergoes a sharp first
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Figure 4.1: A system configuration with N = 400 spins and r = 0. 4 for J = 0. 35.
Spins ±1 are represented by empty and solid circles, respectively.

order transition, between the disordered phase and a phase in which all spins form

a few very tight magnetized clusters, in which the number of neighbors is of the

order N. These clusters persist even for larger values of the hard core repulsion, r,

but the number of interacting neighbors does not become as large as N in this case.

In Figs. 4.1 and 4.2 we show the existence of these clusters when the hard core

repulsion is as large as r = 0. 4. In Fig. 4.1 we observe ferromagnetic order in small

domains even though we are below Jc. On the other hand, in Fig. 4.2, where we are

above Jc, the system has practically clustered into a single ferromagnetic domain.

For sufficiently large r, the transition is Ising-like, between ordered and disordered,

almost regular, Ising lattices (for our choice of range R, the transition appears to be

very close to regular Ising-like for r � 0. 6 and larger, see below).

In Fig. 4.3 we show a particular configuration for r = 0. 98 where the regular,

almost triangular, lattice is clearly visible. In this case the average coordination

number z is very close to 3, as expected for a regular triangular lattice.

In Fig. 4.4 we show the average number of neighbors z for several values of r
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Figure 4.2: A system configuration with N = 400 spins and r = 0. 4 for J = 0. 65.
Spins ±1 are represented by empty and solid circles, respectively.

Figure 4.3: A system configuration with N = 400 spins and r = 0. 98 for J = 0. 25.
The hard core repulsion radius is shown as a circle around the spin.
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Figure 4.4: The average number of neighbors as a function of J on a lattice with
N = 144 spins for several choices of the hard core repulsion r.

on a system with N = 144 spins. We find that for small values of r the coordination

number increases very rapidly as we approach the critical point. On the other

hand, for intermediate choices of r, z saturates to a smaller value. When r = 0. 6,

the coordination number saturates to a value of z = 3. 1, which is already very close

to the value on a regular triangular lattice (z = 3).

In Fig. 4.5 we plot the average energy per bond Ez as a function of J for several

choices of the hard core repulsion r. The jump discontinuity, which is visible

for small hard core repulsion r, indicates the existence of a first order transition.

For larger values of r, the discontinuity is reduced and eventually vanishes. A

determination of the discontinuity in the average energy of Fig. 4.5 at the critical

coupling Jc shows that it gradually decreases as r is increased from zero.

Fig. 4.6 shows a plot of the latent heat per bond ∆z versus r at the transition point

Jc. In general we do not expect the latent heat to vanish linearly at the endpoint,

but our results seem to indicate a behavior quite close to linear. From the data we

estimate that the latent heat vanishes at r = 0. 344(7), thus signaling the presence of
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Figure 4.5: The average energy per bond Ez as a function of J for several choices of
the hard core repulsion r for a system with N = 100 sites.

Figure 4.6: The latent heat per bond ∆z along the first order transition line, plotted
against the hard core repulsion parameter r. The tricritical point is located where
the latent heat vanishes.
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Figure 4.7: The phase diagram for the dynamical random Ising model on a two
dimensional flat space. The critical point (denoted by the solid circle) separates
the first order from the second order transition lines. The paramagnetic (PM) and
ferromagnetic (FM) phases are also shown.

a tricritical point at the end of the first order transition line. Beyond this point, the

transition stays second order, as will be discussed further below.

The phase transition line is shown in Fig. 4.7; for r = 0 we found on the largest

lattices Jc = 0. 19(2), while for r = 0. 98 we found Jc = 0. 93(3).

In Fig. 4.8 we plot the spin susceptibility as a function of J for several system

sizes near the tricritical point, showing a growth of the peak with system size. To

determine the critical exponents, we will resort to a finite-size scaling analysis. In

the following we will be mostly concerned with the values for the critical exponents

in the vicinity of the tricritical point. In the case of the spin susceptibility, from

finite-size scaling, we expect a scaling form of the type

χ(N, J) = Nγ ⁄ 2ν �χ(N1⁄ 2ν �J − Jc �) . (4.3.23)

To recover the correct infinite volume result one needs
�χ(x) ∼ x−γ for large argu-

ments. Thus, in particular the peak in χ should scale like Nγ ⁄ 2ν for sufficiently large

N.
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Figure 4.8: The magnetic susceptibility χ versus J for fixed hard core repulsion
parameter r = 0. 35 and different system sizes.

Figure 4.9: The peak in the magnetic susceptibility χmax versus the number of Ising
spins N for choices of the hard core repulsion parameter corresponding to r = 0. 35
and r = 0. 6.
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Figure 4.10: The magnetization M versus J, for fixed hard core repulsion parameter
r = 0. 35 and different system sizes. The solid line is a spline through the data for
n = 144.

Despite the fact that the lattices are quite small, as can be seen from the graph,

a linear fit to the data at the tricritical point is rather good, with relatively small

deviations from linearity, χ2 ⁄ d. o. f . ∼ 10−4. Using least-squares one can estimate

γ ⁄ ν. For r = 0. 35 we find γ ⁄ ν = 1. 32(3), which is much smaller than the exact

regular Ising result γ ⁄ ν = 1. 75. From scaling one then obtains the anomalous

dimension exponent η = 2 − γ ⁄ ν = 0. 68(3). To further gauge our errors, we have

computed the same exponent for the regular Ising limit, for r = 0. 6. In this case we

indeed recover the Onsager value: we find on the same size lattices and using the

same analysis method γ ⁄ ν = 1. 72(4). We also note that the shift in the critical point

on a finite lattice is expected to be determined by the correlation length exponent

ν, namely Jc(N) − Jc(� ) ∼ N−1⁄ 2ν. This relationship can be used to estimate ν, but it

is not very accurate. From a fit to the known values of Jc(N) we obtain a first rough

estimate ν = 1. 3(2). A more precise determination of ν will be given later.

A similar finite-size scaling analysis can be performed for the magnetization,

which is shown in Fig. 4.10 for several system sizes. Close to and above Jc we
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Figure 4.11: Finite size scaling of the magnetization at the inflection point Minf

versus the total number of Ising spins N for choices of the hard core repulsion
parameter corresponding to r = 0. 35 and r = 0. 6.

expect M ∼ (J − Jc)β . At the critical point on a finite lattice, as determined from the

peak in the susceptibility (which incidentally is very close to the inflection point in

the magnetization versus J), M should scale to zero as MN(Jc) ∼ Nβ ⁄ 2ν.

In Fig. 4.11 we show the magnetization M computed in this way for different

size lattices At the tricritical point we find β ⁄ ν = 0. 31(4), which again clearly

excludes the pure Ising exponent, β ⁄ ν = 0. 125. For the pure Ising limit (r = 0. 6)

we obtain β ⁄ ν = 0. 13(7), which is close to the expected Onsager value.

The results for the Ising specific heat C at the tricritical point as a function of

lattice size N are shown in Fig. 4.12. One expects the peak to grow as C ∼ Nα ⁄ 2ν, but

the absence of any growth for the larger values of N implies that α ⁄ ν < 0 (a weak

cusp in the specific heat). In general close to a critical point, the free energy can be

decomposed into a regular and a singular part. In our case the singular part does

not seem to be singular enough to emerge above the regular background, leading

to an intrinsic uncertainty in the determination of an α < 0, and which can only be

overcome by determining still higher derivatives of the free energy with respect
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Figure 4.12: Plot of the specific heat C versus ferromagnetic coupling J at r = 0. 35,
showing the absence of a growth in the peak with increasing lattice size (for the
larger systems), in contrast to the behavior of the magnetic susceptibility. The
errors (not shown) are smaller than the size of the symbols.

to the coupling J. In order to isolate the singular part of the specific heat we have

therefore calculated dC ⁄ dJ from the expression

dC

dJ
= N2

�
3 �E� �E2 � − �E3 � − 2 �E� 3 � . (4.3.24)

In the infinite system dC ⁄ dJ should diverge according to

dC

dJ
∼ �J − Jc �−(α+1). (4.3.25)

In particular, if α = −1, dC ⁄ dJ should diverge logarithmically. In Fig. 4.13 we

show the scaling of dC ⁄ dJ on a lattice with N = 256 spins according to Eq. (4.3.25).

From the slope of the curve we determine the critical exponent to be α � −0. 98(4).

We have also tried to assume a logarithmic scaling behavior as shown in Fig.

4.14. It is clear that from the linear behavior of dC ⁄ dJ we can conclude that our

results are completely consistent with an exponent of α = −1. We attribute the

small discrepancy between the results of Figs. 4.13 and 4.14 to the fact that we are

not sufficiently close to Jc and that we are on a finite lattice with N sites. We have
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Figure 4.13: The derivative of the specific heat dC ⁄ dJ as a function of Jc − J on
logarithmic axes for N = 256.

Figure 4.14: The derivative of the specific heat dC ⁄ dJ as a function of Jc − J on
semi-logarithmic axes for N = 256.
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also performed a similar analysis for the fluctuation in the energy per bond (as

opposed to the energy per site as defined previously). In this case we find close to

the tricritical point α � −0. 96(2).

In the regular Ising case one has in a finite volume a logarithmic divergence

C ∼ lnN (and α ⁄ 2ν = 0), and we indeed see such a divergence clearly for r = 0. 6,

which corresponds to the almost regular triangular Ising case.

Another approach to obtaining α is to determine the correlation length exponent

ν directly instead, and use scaling to relate it to α = 2 − 2ν. The exponent ν can

be obtained in the following way. First one can improve on the estimate for Jc by

considering the fourth-order cumulant [88]

UN(J) = 1 −
< m4 >

3 < m2 >2 , (4.3.26)

where m = � i Si ⁄ N. It has the scaling form expected of a dimensionless quantity

UN(J) =
�

U(N1⁄ 2ν �J − Jc �). (4.3.27)

The curves UN(J), for different and sufficiently large values of N, should then

intersect at a common point Jc, where the theory exhibits scale invariance, and U

takes on the fixed point value U
�

. In Fig. 4.15 we show the fourth-order cumulant

as a function of J for r = 0. 35 and for several lattice sizes. We have found that

indeed the curves meet very close to a common point, and from the intersection of

the curves for N = 25 to 400 we estimate Jc = 0. 472(9), which is consistent with the

estimate of the critical point derived from the location of the peak in the magnetic

susceptibility. We also determine U
�

= 0. 47(4), which should be compared to the

pure Ising model estimate for the invariant charge U
�

� 0. 613 [89].

One can then estimate the correlation length exponent ν from the scaling of the

slope of the cumulant at Jc. For two lattice sizes N, N
�

one computes the estimator

νeff(N, N
�

) =
ln[N

�

⁄ N]
2ln[U

�

N
� (Jc) ⁄ U

�

N(Jc)]
, (4.3.28)



79

Figure 4.15: The Binder fourth-order cumulant U as a function of J for fixed hard
core repulsion r = 0. 35 and on several lattices with N spins. The solid line is a
spline through the data for N = 144.

with U
�

N ≡ ∂UN ⁄ ∂ J defined by

U
�

N =
N

3 �m2 � 2

�
�m4 � �E� + �m4E� − 2

�m4 � �m2E�
�m2 � � . (4.3.29)

Using values of N from systems with 256, 400, and 900 spins we estimate ν from

Eq. (4.3.29) to be 1. 46(8). Using the scaling relationship α = 2 − 2ν, we obtain an

estimate for α which is again quite consistent with our previous estimate derived

from dC ⁄ dJ.

In Table 4.1 we summarize our results, together with the exponents obtained

for the two-matrix model [74] (and which are the same as the KPZ values [82]), for

the Onsager solution of the square lattice Ising model, and for the tricritical Ising

model in two dimensions [86]. As can be seen, the exponents are quite close to

the matrix model values (the pure Ising exponents seem to be excluded by several

standard deviations).
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Table 4.1: Estimates of the critical exponents for the random two-dimensional Ising
model, as obtained from finite-size scaling at the tricritical point.

γ ⁄ ν β ⁄ ν α ⁄ ν α ν

This work 1.32(3)0.31(4)-0.65(4)-0.98(4)1.46(8)

Matrix model 1.333...0.333...-0.666...-1.0 1.5

Onsager 1.75 0.125 0.0 0.0 1.0

Tricritical Ising1.85 0.075 1.60 0.888... 0.555...

4.4 Conclusions

In the previous sections we have presented some results for the exponents of a

random Ising model in flat two-dimensional space. The model reproduces some of

the features of a model for dynamically triangulated Ising spins, and in particular

its random nature, but does not incorporate any effects due to curvature. Due to

the non-local nature of the interactions of the spins, only relatively small systems

have been considered so far, which is reflected in the still rather large uncertainties

associated with the exponents. Still a rich phase diagram has emerged, with a

tricritical point separating first from second order transition lines. The phase

diagram we obtain is shown in Fig. 4.7. We have localized the tricritical point at

Jc = 0. 471(5) and r = 0. 344(7). The thermal and magnetic exponents determined

in the vicinity of the tricritical point (presented in Table 4.1) have been found to

be consistent, within errors, with the matrix model solution of the random Ising

model and the KPZ values. Our results would therefore suggest that matrix model

solutions can also be used to describe a class of annealed random systems in flat

space.

One might wonder at this point if the spin system discussed in this chapter

can be found among the models in the FQS classification scheme [90] of two-



81

dimensional conformally invariant field theories 1. Since the model is apparently

not unitary (it contains short range repulsion and long range attraction terms),

it should fall into the wider class of degenerate theories considered by BPZ [91].

The allowed scaling dimensions in these theories are given by the well-known Kac

formula,

∆p,q =
1
4

�
(pα+ + qα−)2 − (α+ + α−)2� (4.4.30)

with p, q positive integers, and α± = α0 ± (1 + α2
0 )1⁄ 2. α0 is related to the conformal

anomaly c of the theory by c = 1 − 24α2
0 . Often the central charge is then written

as c = 1 − 6 ⁄ m(m + 1). One of the difficulties in this approach is the identification

of a given realization of conformal symmetry with a particular universality class.

The simplest possibility appears to be m = 4 ⁄ 5, corresponding to m = r ⁄ (s − r) with

s = 9 and r = 4. One then obtains for this choice the central charge c = −19 ⁄ 6, and

α0 = 5 ⁄ 12, α+ = 3 ⁄ 2 and α− = −2 ⁄ 3. The matching scaling dimensions are then

∆1,4 = ∆3,5 = 1 ⁄ 6 (which gives η = 2 ⁄ 3), and ∆1,5 = ∆3,4 = 2 ⁄ 3 (which gives ν = 3 ⁄ 2).

Negative values of c are allowed in non-unitary theories. It would be of interest

to compute the central charge directly in the random spin model and verify this

assignment, using the methods described in Ref. [93].

We should mention that the above values for s and r appear to be rather close

to the ones associated with the Yang-Lee edge singularity, which describes the

behavior of the magnetization in the Ising model in the presence of an imaginary

external field, and for which Cardy [92] has suggested the identification s = 5 and

r = 2, which yields m = 2 ⁄ 3 and c = −22 ⁄ 5. It is known that the Yang-Lee edge

singularity also describes the critical properties of large branched dilute polymers

and of the Ising model in a quenched random external field in d + 2 dimension [94].

1We thank Giorgio Parisi for suggesting to look into this aspect.



Chapter 5

Conclusion

In this thesis we have presented results for 1) the quantum corrections to the

Newtonian potential in the long distance scale; 2) Feynman rules for simplicial

gravity in two dimensions; 3) critical exponents for the dynamically triangulated

random Ising model in flat two dimensional space. For the Newtonian potential

correction to the order of G2, we obtain

V(r) = −G
m1m2

r

�
1 −

G(m1 + m2)
2c2r

−
122G

�

h

15πc3r2 � . (5.0.1)

The first correction term at the scale of 2Gmi ⁄ c2 represents the classical relativistic

correction, and the second term at the Planck scale (G�

h ⁄ c3)1⁄ 2 represents the genuine

quantum mechanical correction. The relativistic correction we obtained are in

complete agreement with the result obtained by using classical relativistic method

(Einstein-Hoffmann-Infeld.) The quantum correction to the potential to the one

loop order is finite, despite the theory is non-renormalizable in perturbation theory.

The sign of the quantum correction we obtained indicates an increase (slowly) of

gravitational potential with distance. This result is in agreement with the intuitive

expectation that gravity couples universally to all forms of energy, and cannot be

easily screened by quantum fluctuations. Further investigation in this study will

be to see if higher loop order corrections in G can still lead to finite corrections in

the long distance limit. In case they are not finite, should one need to add higher

derivative terms in the Hilbert-Einstein action to control the ultraviolet divergences.

82
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In the chapter of “Feynman Rules for Simplicial Gravity", We derived the lattice

Feynman rules for gravity coupled to a D-component massless scalar field. Even

though the lattice Feynman rules derived are necessary more complicated than

their corresponding continuum Feynman rules (involved sine of the momentum,)

in the lowest order in momentum expansion, they completely reduce to the familiar

continuum form. As an application, the conformal anomaly due to a massless

scalar field was computed by diagrammatic methods. In the continuum theory, it

has been shown (Polyakov) the conformal anomaly is canceled when D = 26. It is

interesting to see if the anomaly can also be canceled in the lattice theory.

In the last chapter we presented the results for the exponents of a dynamically

triangulated random Ising model in flat two-dimensional space using computer

simulation method. The model describes Ising spins moving randomly on a two

dimensional surface with no curvature (gravity.) The obtained phase diagram

shows a tricritical point separating first from second order transition lines at Jc =

0. 471(5) and r = 0. 344(7). The thermal and magnetic exponents determined in

the vicinity of the tricritical point (presented in Table 4.1) have been found to

be consistent, within errors, with the matrix model solution of the random Ising

model and the KPZ values. Our results would therefore suggest that matrix model

solutions can also be used to describe a class of annealed random systems in flat

space (without gravity.)
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