Nuclear Physics B415 (1994) 463-496
North-Holland

Simplicial gravity coupled to scalar matter

Herbert W. Hamber !
Department of Physics, University of California at Irvine, Irvine, CA 92717, USA

Ruth M. Williams
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge CB3 9EW, UK

Received 10 August 1993
Accepted for publication 23 November 1993

A model for quantized gravity coupled to matter in the form of a single scalar field is
investigated in four dimensions. For the metric degrees of freedom we employ Regge’s simplicial
discretization, with the scalar field defined at the vertices of the four-simplices. We examine how
the continuous phase transition found earlier, separating the smooth from the rough phase of
quantized gravity, is influenced by the presence of scalar matter. A determination of the critical
exponents seems to indicate that the effects of matter are rather small, unless the number of
scalar flavors is large. Close to the critical point where the average curvature approaches zero,
the coupling of matter to gravity is found to be weak. The nature of the phase diagram and the
values for the critical exponents suggest that gravitational interactions increase with distance.

1. Introduction

Any serious attempt at understanding the ground-state properties of quantized
gravity has to include at some stage the consideration of the effects of matter
fields. While there are many choices for the matter fields and for their interac-
tions, the simplest actions to deal with in the framework of a lattice model for
gravity are the ones that represent one (or more) scalar fields. In this paper we will
discuss a first attempt at determining those effects.

Regge’s model is the natural discretization for quantized gravity [1]. At the
classical level, it is completely equivalent to general relativity, and the correspon-
dence is particularly transparent in the lattice weak field expansion, with the
invariant edge lengths playing the role of infinitesimal geodesics in the continuum.
In the limit of smooth manifolds with small curvatures, the continuous diffeomor-
phism invariance of the continuum theory is recovered [2,3]. But in contrast to
ordinary lattice gauge theories, the model is formulated entirely in terms of
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coordinate invariant quantities, the edge lengths, which form the elementary
degrees of freedom in the theory [4,5].

Recent work based on Regge’s simplicial formulation of gravity has shown, in
pure gravity without matter, the appearance in four dimensions of a phase
transition in the bare Newton constant, separating a smooth phase with small
negative average curvature from a rough phase with large positive curvature [6,7].
While the fractal dimension is rather small in the rough phase, indicating a
tree-like geometry for the ground state, it is very close to four in the smooth phase
close to the critical point. Furthermore, a calculation of the critical exponents in
the smooth phase close to the critical point indicates that the transition is
apparently second order with divergent curvature fluctuations, and that a lattice
continuum can be constructed.

Very similar resuits have recently been obtained in the dynamical triangulation
model for gravity, in the sense that a similar phase transition was found separating
what appear to be the same type of phases [8]. This development represents an
alternative and complementary approach to what is being discussed here. However
it has not been possible yet in these models to extract the critical exponents, and it
is therefore not clear yet whether a continuum limit really exists. In particular it
appears that close to the transition, the dynamical triangulation model does not
give rise to the correct scaling properties for the curvature, which are necessary to
define a lattice continuum limit really exists. In particular it appears that close to
the transition, the dynamical triangulation model does not give rise to the correct
scaling properties for the curvature, which are necessary to define a lattice
continuum limit. It is therefore unclear whether the transition is first order as a
consequence of the discreteness of the curvatures, with no continuum limit (as one
finds for example in lattice gauge theories based on discrete subgroups of SU(N)
[9]). While in two dimensions both lattice models lead to similar results both in the
absence and presence of scalar matter [10-12] in three dimensions the dynamical
triangulation model has no continuum limit [13], in apparent disagreement with
the continuum expectations [14,15], and the simplicial Regge gravity results [3],
which suggest instead that a well-defined continuum limit exists (albeit trivial in
the absence of matter, with the scalar curvature playing the role of a scalar field).
These results are rather disappointing, since it would be desirable to have two
rather different, independent discretizations for gravity, with the same lattice
continuum limit. It is not clear yet at this point whether these results indicate a
fundamental flaw in the model (lack of restoration of broken diffeomorphism
invariance), or simply a perhaps surmountable technical difficulty in determining
exponents. For a clear recent review of some of these aspects in the dynamically
triangulated models we refer the reader to the last reference in [8].

In this paper we will present some first result on the properties of Regge’s
simplicial gravity coupled to a scalar field, as derived from numerical studies on
lattices of up to 24 X 16* = 1572864 simplices. The paper is organized as follows.
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First we discuss in sect. 2 the simplicial action and measure for the combined
gravitational and scalar degrees of freedom. Then we digress in sect. 3 on what is
known about the effects of scalar matter fields in the continuum, to the extent that
the results will be relevant for out later calculations. We then present in sect. 4 the
definition of physical observables which can be measured when scalar fields are
present, besides the purely gravitational ones introduced previously, and how these
can be related to effective low energy couplings. In sect. 5 we present our results
and their interpretation, and in sect. 6 we give a discussion on how other quantities
such as the curvature and volume distributions can be obtained close to the critical
point. Sect. 7 then contains our conclusions.

2. Action and measure for the scalar field

Following ref. [17], the four-dimensional pure gravity action on the lattice is
written as

Aj8;
LU= X |, —kdydy,+a——|, (2.1)
hinges A h

where V), is the volume per hinge (represented by a triangle in four dimensions),
A, is the area of the hinge and §, the corresponding deficit angle, proportional to
the curvature at 4. The term proportional to & is the original Regge action. In the
lattice weak field expansion, the last two terms both contain higher derivative
contributions [2,3] (in the last term it is the leading contribution). This is a simple
consequence of the fact that on the lattice finite differences give rise, when
Fourier transformed, to terms involving trigonometric functions of the lattice
momenta. The higher-order corrections are in general expected to be irrelevant in
the continuum limit, if one can be found, and unless the coefficient a is taken to
be very large in this limit. Whenever systematic studies have been done, there are
indications that this is indeed the case [12,3], as one would expect from the
experience gained in other, simpler model field theories. The results of ref. [7] in
four dimensions also suggest that the corrections are negligible in the lattice
continuum limit (k — k), and that the “ghost mass” associated with the higher
derivative corrections remains of the order of the ultraviolet cutoff, of the order of
the inverse average lattice spacing, m,,, . ~ 7//, (for a general discussion of some
of these points in simpler field theory models, see e.g. ref. [16]). In the context of
the present work the higher derivative terms will be considered as convenient
invariant regulators, in addition to the usual lattice cutoff.
In the classical continuum limit the above action is equivalent [2,3,17-19] to

Llg]= fd“x Ve [A - 3kR+ jaR,,,, R+ ...], (2.2)
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with a cosmological constant term (proportional to A), the Einstein—Hilbert term
(k =1/(8mG)), and a higher derivative term, and with the dots indicating higher-
order lattice corrections. In the following we will follow the convention of choosing
the fundamental lattice spacing to be equal to one; the correct power of the lattice
spacing needed to convert lattice to continuum quantities can always be restored
by invoking dimensional arguments (but we have to remember that due to the
dynamical nature of the lattice, the average distance between sites, in units of the
fundamental lattice spacing, will still depend on the bare couplings and the
measure). For an appropriate choice of bare couplings, the above lattice action is
bounded below for a regular lattice, even for a = 0, due to the presence of the
lattice momentum cutoff [2]. For non-singular measures and in the presence of the
A-term such a regular lattice can be shown to arise naturally. The higher derivative
terms can be set to zero (a =0), but they nevertheless seem to be necessary for
reaching the lattice continuum limit, and are in any case generated by radiative
corrections already in weak coupling perturbation theory. When scalar fields are
introduced, higher derivative terms are generated as well by the quantum fluctua-
tions of the scalar field. Renormalization group arguments then suggest that in
general the continuum limit should be explored in this enlarged multi-parameter
space. Some very interesting suggestions regarding properties of non-renormaliz-
able theories beyond perturbation theory have been put forward in ref. [20].

Next a scalar field is introduced, as the simplest type of dynamical matter that
can be coupled to gravity. Consider an n-component field ¢7, a =1,...,n;, and
define this field at the vertices of the simplices. Introduce finite lattice differences
defined in the usual way,

l"l+y. - d)la
(4,9°),= ———. (2.3)

li,i+p,

The index w labels the possible directions in which one can move from a point in a
given triangle, and /;;,  is the length of the edge connecting the two points. For
simplicity let us consider for now the case n;= 1. Then add to the above discrete
pure gravitational action the contribution

¢i_¢j
..

i

Wit 818 0 ] D R+ D60 + s 29

)

where U(¢) is a potential for the scalar field, and the term containing the discrete
analog of the scalar curvature involves

ViR,= ¥ 8,4,~ VgR. (2.5)

h>oi
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In the expression for the scalar action, V; is the volume associated with the edge
l;;, while V; is associated with the site i. There is more than one way to define such
a volume [17,21,22], but under reasonable assumptions, such as positivity, one
should get equivalent results in the continuum. The agreement between different
lattice actions in the smooth limit can be shown explicitly in the lattice weak field
expansion, but the calculations can be rather tedious and we will present the
results elsewhere. Here we will restrict ourselves to the baricentric volume subdivi-
sion [17] which is the simplest to deal with. The above lattice action then
corresponds to the continuum expression

Llg, ¢]= %f\/g[gwam@(p + (m*+ £R)?| + /\/EU(cb) +..., (26)

with the induced metric related in the usual way to the edge lengths [2,3]. As is
already the case for the purely gravitational action, the correspondence between
lattice and continuum operators is true classically only up to higher derivative
corrections. But such higher derivative corrections in the scalar field action are
expected to be irrelevant and we will not consider them here any further. The
scalar field potential U(¢) could contain quartic contributions, whose effects are of
interest in the context of cosmological models where spontaneously broken symme-
tries play an important role. For the moment we will be considering a scalar field
without direct self-interactions, and will set U = 0.

The lattice scalar action contains a mass parameter m, which has to be tuned to
zero in lattice units to achieve the lattice continuum limit for scalar correlations.
The dimensionless coupling & is arbitrary; two special cases are the minimal
(¢ =0) and the conformal (£ =1) coupling case. As an extreme case one could
consider a situation in which the matter action by itself is the only action
contribution, without any kinetic term for the gravitational field, but still with a
non-trivial gravitational measure; integration over the scalar field would then give
rise to an effective non-local gravitational action.

Having discussed the action, let us turn now to the measure. The discretized
partition function can be written as

Z=fd,u,[l] dulé] det{—L,[1]1-1,[1, ¢]}. (2.7)

It is well known that the continuum gravitational measure is not unique, and
different regularizations will lead to different forms for the measure. DeWitt has
argued that the gravitational measure should have the form [23,24]

Jdulel= [TTg@ 9+ [ dg,,. (28)

nzv
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The main difference between various euclidean measures seems to be in the power
of \/E in the prefactor, which on the lattice corresponds to some product of
volume factors. On the lattice these volume factors do not give rise to coupling
terms, and are therefore strictly local. It should also be clear that since diffeomor-
phism invariance is lost in all lattice models of gravity, at least away from smooth
manifolds (the very definition of a lattice breaks local Poincaré invariance), there is
no clear criterion at this point to help one decide which measure should be singled
out. We have argued before that the power appearing in the measure should be
considered as an additional, hopefully irrelevant, bare parameter [17].

On the simplicial lattice the invariant edge lengths represent the elementary
degrees of freedom, which uniquely specify the geometry for a given incidence
matrix. Since the induced metric at a simplex is linearly related to the edge lengths
squared within that simplex, one would expect the lattice analog of the DeWitt
metric to simply correspond to d/? [4]. We will therefore write the lattice measure
as [6,17,25]

faulil= T1 [V aizrn), (29)

edgesij ”0

where V}; is the “volume per edge”, F,[/] is a function of the edge lengths which
enforces the higher-dimensional analogs of the triangle inequalities, and o = 0 for
the lattice analog of the DeWitt measure for pure gravity. The parameter € is
introduced as an ultraviolet cutoff at small edge lengths: the function F.[/]is zero
if any of the edges are equal to or less than e. In general it is needed for
sufficiently singular measures; for the ¢ =0 measure such a parameter is not
necessary since the triangle inequalities already strongly suppress small edge
lengths [7], and so we will set it to zero. Note therefore that no cutoff is imposed
on small or large edge lengths, if a non-singular measure such as d/? is used. This
fact is essential for the recovery of diffeomorphism invariance close to the critical
point, where on a large lattice a few rather long edges, as well as some rather short
ones, start to appear [1]. Eventually it is of interest to systematically explore the
sensitivity of the results to the type of gravitational measure employed. This has
been done to a certain extent in two [12] and three [3] dimensions. The conclusion
seems to be that for non-singular measures the results relevant for the lattice
continuum limit (i.e. the long-distance properties of the theory, as characterized
for example by the critical exponents) appear to be independent of . From a
general point of view it is difficult to see how local volume factors, which involve
no gradient terms, can possibly affect the nature of the continuum limit, which is
expected to be dominated by shear-wave-like distortions of the geometry of
space-time. The experience gained so far seems to indicate that the volume factors
coming from the measure will only affect the overall lattice scale and the shape of
the distribution for the edge lengths, and will lead therefore to different renormal-
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izations of the cosmological constant, but will leave the long-wavelength excitation
spectrum, which is determined by the relatively small fluctuations in the edge
lengths about the lattice equilibrium position, unaffected. But of course these
arguments cannot be taken as a substitute for a systematic investigation of this
issue in four dimensions.

In the presence of matter, similar considerations apply. If an »n-component
scalar field is coupled to gravity the power o appearing in the measure has to be
changed, due to an additional factor of IT (/g )*/? in the continuum gravitational
measure. On the lattice one then has o = n;/30, since with our discretization of
space-time based on hypercubes there are 2¢ — 1 = 15 edges emanating from each
lattice vertex. The additional measure factor insures that

27

ne/2 v
— = t., (2.10
e ) ] const., (2.10)

[T1{a0(4z)""") exo( 1m [ Ve 0?) - [(

or that for large mass, the scalar field completely decouples, leaving only the
dynamics of the pure gravitational field.

3. Effects of matter fields

As long as the scalar action is quadratic, one can formally integrate out the
matter fields and obtain an effective lagrangian contribution written entirely in
terms of the metric field,

fd/.L[(b] exp(—%f\/é?¢M[g]¢)

- [TI {do(ve)""} exp{ - %/\/E¢M[g]¢}

~ {det M[g]} "? ~ ¢ Lenls], (3.1)
Here we have from the scalar field action
(x|M[g]ly)=(-3*+ER+m?) 8(x—y), (3.2)

where 92 is the usual covariant laplacian,
2 1 v
9% = E%\/Eg” d,¢. (3.3)

The fuli effective action, with terms from eq. (2.2) included, can be obtained from
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the results of ref. [27] (after introducing a proper-time short-distance cutoff of the
order of s,~ 1/A?). One finds then

Lalg]= [Ve [N = k'R + 5a'R,,,, R + .|, (3.4)

with effective couplings (for one flavor, n;= 1)

1 1
N=A+ A — Z)2 4 Sln A2+ ...,
642 32m2 " T eamgz "
k'=k+16wz(§—%)A2+16wz(§+%)m21nA2+...,
L e 5
f=g 4+ —— + ... .
T =T 1920 72 (3-5)

For a fixed cutoff these corrections are quite small in magnitude compared to the
corresponding gravitational radiative corrections computed in the 2 + ¢ expansion
[14,15] or in higher derivative theories [28]. We will see later that this is also clearly
the case for the lattice results. As in ordinary gauge theories, matter vacuum
polarization effects are small unless one has a large number of matter fields (in
which case even a new phase might appear). To the extent that the lattice scalar
action is equivalent in the lattice continuum limit to the corresponding continuum
scalar action, the above perturbative results, valid for small curvatures, should be
relevant for the lattice model as well.

The effects of matter fields are small also from the point of view of the 2 + ¢
perturbative expansion for gravity [14,15]. One analytically continues in the space-
time dimension by using dimensional regularization, and applies perturbation
theory around d = 2, where Newton’s constant is dimensionless (it is not entirely
clear if this approach makes sense beyond perturbation theory). In this expansion
the dimensionful bare coupling is written as G, = A>"“G, where A is an ultraviolet
cutoff (corresponding on the lattice to a momentum cutoff of the order of the
inverse average lattice spacing, A ~m/{I?)'/*) and G a dimensionless bare
coupling constant. A double expansion in G and e then leads to a nontrivial fixed
point in G above two dimensions, where some local averages and their fluctuations
are expected to develop an algebraic singularity in G. Close to two dimensions the
gravitational beta functions is given to one loop by

G)= oG G- 2(25 G? 3.6
B( )=6—log—A_€ —5(25-n)G + ..., (3.6)
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where n; is the number of massless scalar fields. To lowest order the ultraviolet
fixed point is at

G* +0O(e?). (3.7)

€
2(25—ny)

Integrating eq. (3.6) close to the non-trivial fixed point in 2 + € dimensions we
obtain

¢ dG’ o
_ _ - _ x| —1/BGH L/
p.O—AeXp( f B(G,))Gﬁc*mc G*| AlG—-G*|'¢, (3.8)

where p, is an arbitrary integration constant, with dimension of a mass, and which
should be identified with some physical scale. The derivative of the beta function
at the fixed point defines the critical exponent v, which to this order is indepen-
dent on ny,

B (G*)=—e=—1/v. 3.9)

The possibility of algebraic singularities in the neighborhood of the fixed point,
appearing in vacuum expectation values such as the average curvature and its
derivatives, is then a natural one, at least from the point of view of the 2 + €
expansion.

The previous results also illustrate how in principle the lattice continuum limit
should be taken [16]. It corresponds to A — o, G = G* with u, held constant; for
fixed lattice cutoff the continuum Ilimit is approached by tuning G to G*.
Alternatively, we can choose to compute dimensionless ratios directly, and deter-
mine their limiting value as we approach the critical point (we will show examples
of this later). Away from G* one will in general expect to encounter some lattice
artifacts, which reflect the non-uniqueness of the lattice transcription of the
continuum action and measure, as well as its reduced symmetry properties.

Let us conclude this section by mentioning that the Nielsen—Hughes formula
[29] for the one-loop beta function associated with a spin-s particle in four
dimensions provides for a physical interpretation of the fact that the matter
contribution is so small compared to the gravitational one. It appears that this
result is related to the fact that the spin of the graviton is not a small number.
Considering only spin 0 and 2, the formula gives the lowest-order result for the
beta function coefficient as

16728, = — L (—1)*[(25)* = 3| = = 3(47—ny), (3.10)

making the matter contribution quite negligible unless the number of flavors is
large. In higher derivative theories one finds similar large coefficients. It is
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encouraging that similar results are found from the lattice calculations to be
described below. Furthermore, for a sufficiently large number of flavors one would
expect eventually a phase transition (if these lowest-order results are taken
seriously), due to the change of sign in the beta function.

4. Observables

When we consider gravity coupled to a scalar field, we can distinguish two types
of observables, those involving the metric field (the edge lengths) only, and those
involving also the scalar field. Quantities such as the expectation value of the
scalar curvature, the fluctuations in the curvatures or the curvature correlations
belong to the first class, while scalar field averages and scalar correlations belong
to the second class.

Following ref. [6], we define the following gravitational physical observables,
such as the average curvature:

e

Z(A, k, a) ~S—L, (4.1)
)
and the fluctuation in the local curvatures,
2 2
R — R 1 az
xaz(A, k, a) ~ =—In Z. (4.2)

<f g> TV ok?

The lattice analogs of these expressions are readily written down by making use of
the correspondences [17,25]

[dfg» T Vi, (4.3)

hinges 7
Jd*xVgR-2 ¥ 5,4, (4.4)
hinges &
f d*xVg R,  R¥?7 >4 Y V,(8243/V2). (4.5)
hinges A

On the lattice we prefer to define quantities in such a way that variations in the
average lattice spacing y{/?) are compensated by the appropriate factor as
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determined from dimensional considerations. In the case of the average curvature
we define therefore the lattice quantity % as

<225hAh>

R =Py —f———— (4.6)

(Tw)

and similarly for the curvature fluctuation. The curvature fluctuation is related to
the (connected) scalar curvature correlator at zero momentum,

Jd'x [d*y (Vg R(x) Vg R(¥))c
foi]

A divergence in the fluctuation is then indicative of long-range correlations (a
massless particle). Close to the critical point one expects for large separations a
power law decay in the geodesic distance,

Xw ™~ (4.7)

1
(VeR(x)VgR(y)) ~ PN (4.8)

Ix—ylow |x —y

which in turn leads to the expectation y, ~ L%~ 2", where L ~V''/4 is the linear
size of the system. In refs. [6,7] it was found that y . diverges close to the critical
point as
Xg;k:k:L_de(l—a)/(HS)’ (4-9)
where & is the curvature critical exponent introduced in ref. [6], and therefore
n=28d/(1+8)=d—1/v, with the exponent v defined as »=(1+8)/d. Note
that for a scalar field in four dimensions one would expect v = 1/2, whereas we
find 8 = 0.63 and therefore v = 0.41.
It is of interest to contrast the behavior of the preceding quantities, associated
with the curvature, with the analogous quantities involving the local volumes (or

the square root of the determinant of the metric in the continuum) only. We can
consider therefore the average volume (V'}, and its fluctuation defined as

RGN

Soain Z (4.10)

<f\/§> Vo

XV(/\’k’ a) ~
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The latter is then related to the connected volume correlator at zero momentum,

de“xjfd“v(\/;z(x) ve(v) ).
i

We have argued before [6] that fluctuations in the curvature are sensitive to the
presence of a spin-2 massless particle, while fluctuations in the volume probe only
the correlations in the scalar channel. In the case of gravity a dramatic difference
is therefore expected in the two type of correlations. Indeed the numerical
simulations show clearly a divergence in the curvature fluctuations, but at the same
time no divergence in the volume fluctuations. Other, more complex invariant
correlation functions at fixed geodesic distance can be written down and measured
[71.

Let us turn now to the observables involving the scalar field. Due to the form of
the action, the average of the scalar field is always zero, but one can compute the
discrete analog of the following coordinate invariant fluctuation:

Xy~ (4.11)

dix [d*v/g(x Q(x);z§i§j¢()’)>
o

- {atelely ot (fatulzl o)

o)

X =

(4.12)

(again, for the gaussian scalar action we will be considering, the second term on
the r.h.s. will be zero). On the lattice such an expression can be written as

(Tvowe) (£rs)(Evs)
Xo~ -

<Z V,-> - <Z V,-> : (4.13)

Since x, is the zero-momentum component of the scalar particle propagator, it is
expected to diverge like m ~2 for small mass, up to anomalous dimensions. Also of
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interest are the local coordinate invariant averages

o P25
0

P )
o)

For free fields one expects the following dependence on the scalar field mass:

(4.14)

(67 d*k 1 1 e 21 A%+ m? 415
¢ _f(27'r)4 Krm: 16w | T T (4.13)
d*k 1 1 A%+ m? m

=
+

<({b4> = 2[ (277_)4 (k2 +m2)2 = 8772

2
-1 4.16
m? A%+ m? J’ ( )

where A is the ultraviolet momentum cutoff. In the interacting case one antici-
pates, among other effects, a multiplicative renormalization of the mass parameter
m. In the presence of gravity, the behavior of these quantities will be discussed
below.

We can write schematically the propagator for the scalar field in a fixed
background geometry specified by some distribution of edge lengths as

G(d) =<yl | x>, (4.17)

PR
where d is the geodesic distance between the two space-time points being
considered. Now fix one point at the origin 0, and use the discretized form of the
scalar field action of eq. (2.4). Then the discrete equation of motion for the field ¢,
in the presence of a d-function source of unit strength localized at the origin gives
us the sought-after Green function. For ¢ = (0 we write the equation as

b= %(Eiw,.j@wm), (4.18)

with the weights W given by
m? 1 Vi
Wi=2(7+_ Vi, W,=-. (4.19)

2 2
jEL lij' lii
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Here the sums extend over nearest-neighbor points only, V), is the volume
associated via a baricentric subdivision with the edge i, and §,, is a delta-function
source localized at the origin on site 0. The above equation for ¢, can be solved by
an iterative procedure, taking ¢, =0 as an initial guess. After the solution ¢; has

been determined by relaxation, at large distances from the origin one has
¢~ G(dy) ~A\/m/di30 exp(—md,), (4.20)

which determines the geodesic distance d,, from lattice lattice point 0 to lattice
point i. This method is more efficient and accurate than trying to determine the
geodesic distance by sampling paths connecting the two points as was done in ref.
[7], but is of course equivalent to it [30].

In quantum gravity it is of great interest to try to determine the value of the
low-energy, renormalized coupling constants, and in particular the effective cosmo-
logical constant A and the effective Newton constant G, = (87k )~ '. Equiva-
lently, one would like to be able to determine the large-distance limiting value of a
dimensionless ratio such as A;GZ%;, and its dependence on the linear size of the
system L =1'/% (In the real world one knows that G = (1.6160 X 107 cm)?,
while A G2 ~1071% is very small). The vacuum expectation value of the scalar
curvature can be used as a definition of the effective, long-distance cosmological
constant

In the pure gravity case one finds that there is a critical point in k£ at which the
curvature vanishes, and for k <k_ one has

(4.21)

e .

7z ~ —Ag(k,—k)® (4.22)

and thus (A /&) — 0 in lattice units. The location of the critical point k. and the
amplitude in general depend on the higher derivative coupling a and other
non-universal parameters, but the exponent is expected to be universal, and was
estimated previously to be about 0.63; more details can be found in refs. [6,7].

One immediate consequence of this result is that in the smooth phase with
k <k (or G > G, = G*), the gravitational coupling constant G must increase with
distance (anti-screening), at least for rather short distances. Introducing an arbi-
trary momentum scale w, one has close to the ultraviolet fixed point the following
short-distance behavior for Newton’s constant:

ANV
G(w) —G*=[G<A)—G*1(;) (4.23)
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with A the ultraviolet cutoff; the exponents & and v are calculable and are related
to each other via the scaling relation v = (1 + 8) /4 = 0.41. The opposite behavior
(screening) would be true in the phase with & > k_, but such a phase is known not
to be stable and leads to no lattice continuum limit [7].

If the system is of finite extent, with linear dimensions L = V74 then the
scaling laws for &% should also give the volume dependence of the effective
cosmological constant at the fixed point. For pure gravity one finds at the critical

point:
1 8/v
H~ ~ | = 4.24

L>1, ( L ) ’ ( )

with [, of the order of the average lattice spacing, /, = m ,and 8 /v = 1.52. The
critical point here is defined, as usual, as the point in bare coupling constant space
where the curvature fluctuations diverge in the infinite volume limit. Similarly for
the dimensionless coupling G in a finite volume, one expects the scaling behavior

1 1/v
G ~ G, +|— . 4.25

(”)L,l/,L>>10 N (/.LL) ( )
These results are all direct consequences of the scaling laws and the values of the
critical exponents [7]. An important issue is how these results are affected by the
presence of dynamical matter. This will be addressed later in the paper.

The gravitational exponent & determines the universal scaling behavior of a
variety of observables. Among the simplest ones which are relevant for simple
cosmological models one can mention the FRW scale factor a(¢), as it appears in
the line element

2

ds?= —dr*+ az(t){ +r?(d6’ +sin’0 d¢>2)}, (4.26)

1—kr?

and which we would expect to scale at short distances according to the equation

2 8/v
) (t) (4.27)

a*(to) i1\ I

with ct, = ;. It is amusing to note that in this model the scale factor cannot exhibit
a singularity for short times, ¢ ~ ¢,. For such short distances the strong fluctuations
in the metric field and the curvature prevent this from happening. We should add
though that the scale factor itself is essentially a semiclassical quantity, linked to a
specific ansatz for the (classical) metric at large distances. In the presence of
strong metric fluctuations it is no longer clear that it remains a well-defined
concept.
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The bare Newton constant also describes the coupling of gravity to matter at
scales comparable to the ultraviolet cutoff. Consider the classical equations of
motion for pure Einstein gravity with a cosmological constant term,

R, — %gwR +Ag,, =87GI,,. (4.28)
Here we have followed the usual conventions by defining A =87 GA (not to be
confused with the ultraviolet momentum cutoff introduced earlier). In the pres-
ence of higher derivative terms and higher-order lattice corrections this is of
course not the right equation (the equations of motion for higher derivative gravity
are substantially more complex), but at sufficiently large distances it should be the
appropriate equation if the average curvature is small and a sensible continuum
limit can be found in the lattice theory. If we have only one real scalar field, the
energy—momentum tensor is given by

T, =0,00,0 — 38,,(8,0"d + m*¢$?) (4.29)
(we will consider from now on only the case ¢ = 0). Taking the trace we obtain
R=4A - 87TGT} = 4A + 8w G[(3)" + 2m*¢?). (4.30)

Now consider the effects of quantum fluctuations, and separate the pure gravity
and matter contributions to the scalar curvature, by writing for the average
curvature {R) = (R, ity ) + {Rpayer )» Where (R) is the average of the total scalar
curvature in the presence of matter, and (R, is the same quantity in the
absence of matter. More specifically, by the expectation value (R, ;> we will
simply mean the averages obtained in the absence of any matter fields, as
computed in ref. [7]. We will see below that (R, ,..,) represents a rather small
contribution, unless there are many scalar fields contributing to the vacuum
polarization. In the presence of quantum fluctuations, we can write therefore for
the matter correction

(Rpaer) = 87G{(30)” + 2m*?) = 87G[2(1,) + mX($>].  (4.31)

In other words, the change in the average value of the scalar curvature that arises
when matter fields are included is proportional to Newton’s constant G, and it is
expected to be positive. This is indeed what will be found in the numerical
simulations discussed below, even though the magnitude of the correction is quite
small (in agreement with the perturbative arguments presented in the previous
section). To the extent that the feedback of the scalar degrees of freedom on the
gravitational degrees of freedom appears to be rather small (almost to the point of
being difficult to measure), we shall argue below that gravity is indeed ‘weak’, at
Ieast for the type of scalar action we have investigated here.
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5. Numerical procedure

In order to explore the ground state of four-dimensional simplicial gravity
coupled to matter beyond perturbation theory one has to resort to numerical
methods. As in our previous work, the edge lengths and scalars are updated by a
standard Metropolis algorithm, generating eventually an ensemble of configura-
tions distributed according to the action of egs. (2.1) and (2.4), with the inclusion
of the appropriate generalized triangle inequality constraints arising from the
nontrivial gravitational measure. Further detail of the method as applied to pure
gravity are discussed in ref. [32], and will not be repeated here, since the scalar
action contribution can be dealt with in essentially the same way.

We have not included here a term coupling the scalar field directly to the
curvature (£ =0), since the continuum perturbative results discussed previously
appear rather similar for different values of £ # 1, and the scalar action becomes
significantly simpler for £ = 0. Also we note that, in the absence of matter, (R}
itself vanishes at the critical point [6,7]. In mean-field theory, we can replace the
term R¢? by R{(¢?). Since {$?) is finite at the critical point (see discussion
below), we expect the inclusion of this term to mostly affect a renormalization of
the critical coupling k. (related to the critical value of Newton’s constant by
k.= 1/(8wG.)), which should not change the universal critical behavior.

Let us point out here only the fact that, while the scalar field action of eq. (2.4)
looks rather innocuous, due to the simplicial nature of the lattice a large number
of interaction terms are involved at each site: at each vertex there are 15 edges
emanating in the positive lattice ‘directions’, and 15 in the negative lattice
‘directions’ [2]. In the update of the scalar field each of the 30 edge volumes Vi
has to be re-computed, by adding together the contributions from all the four-sim-
plices that meet on that edge. For the edge volume one has

Viss X W (5.1)

simplices s Dif

since there are ten edges per simplex in four dimensions. Here the volume of an
n-simplex with edge lengths /;; is given as usual by the determinant

0 1 1 vz
1 0 12,
(= 1)+ l TES 0
Vo= — | 1 L £ (5.2)
)
1 lr%-#—l,l 13+1,2
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and corresponds to the determinant of a 6 X 6 matrix in the case of a four-simplex;
when expanded out it contains 130 distinct terms. Furthermore the number of
four-simplices meeting on a given edge depends on the type of edge. With our
simplicial subdivision of the four-dimensional hypercubes that make up the lattice,
we have four body principals, six face diagonals, four body diagonals and one
hyperbody diagonal per hypercube [2]. For a body principal or hyperbody diagonal
there are 24 four-simplices meeting on it, while for a face or body diagonal there
are 12 four-simplices meeting on it. When updating one scalar field by the
multi-hit Monte Carlo or heat bath method, the 30 neighboring link contributions
need to be computed once, with their associated link volumes, and special care has
to be taken of the order of the edge lengths appearing in the simplex formulae.
When updating a given edge length, all the scalar field action contributions
involving that particular edge have to evaluated, in addition to the purely gravita-
tional part. For a body principal and hyperbody diagonal there are 65 such
contributions that have to be added up, while for a face or body diagonal 35 such
contributions have to be added up. By assigning then special fixed values to the
edge lengths, one can perform a number of checks against the expected analytical
result to verify that the volumes are computed and added up correctly. Even
though the program is quite computing intensive, it is well suited for a massively
parallel machine. In the two parallel versions of the program we have written, a
large number (64-256) of independent edge and scalar variables are all updated
simultaneously in parallel.

We considered lattices of size between 4 X 4 X 4 X 4 (256 vertices, 3840 edges,
6144 simplices) and 16 X 16 X 16 X 16 (65536 vertices, 983040 edges, 1572864
simplices). Even though these lattices are not very large, one should keep in mind
that due to the simplicial nature of the lattice there are many edges per hypercube
with many interaction terms, and as a consequence the statistical fluctuations are
comparatively small, unless one is very close to a critical point. In all cases the
measure over the edge lengths was of the form d/*F,*/* times the triangle
inequality constraints (see eq. (2.9)). We shall restrict here our attention to the
case n, = 1; results for larger values of n; will be presented elsewhere.

The topology was restricted to a four-torus (periodic boundary conditions), and
it is expected that for this choice boundary effects on physical observables should
be minimized. One could perform similar calculations with lattices of different
topology, but the universal infrared scaling properties of the theory should be
determined only by short-distance renormalization effects, independently of the
specific choice of boundary conditions. This is a consequence of the fact that the
renormalization group equations are independent of the boundary conditions,
which enter only in their solution as it affects the correlation functions through the
presence of a new dimensionful parameter L. Thus the four-torus should be as
good as any other choice of topology, as long as we consider the universal
long-distance properties.
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Let us give here a few details about the runs performed to compute the
averages. In the presence of matter fields, the lengths of the runs are much shorter
than in the pure gravity case [7], since the scalar field update is rather time-con-
suming. The couplings A and « in the gravitational action of eq. (2.1) were fixed, as
in the pure gravity case, to 1 and 0.005, respectively. For pure gravity this choice
leads to a well-defined ground state for k < k_ = 0.244 (the system then resides in
the smooth phase, with a fractal dimension very close to four). In the presence of
matter, we also restricted most of our runs to this physically more interesting
phase, where the curvature is small and negative. We investigated five values of &
(0.0, 0.05, 0.1, 0.15, 0.20), and for each value we looked at a scalar mass of 1.0, 0.5
and 0.2 in lattice units. In addition, we have accurate results for infinite mass from
the previous pure gravity calculations. Besides the results on lattices with L = 4 for
all the above values of & and m, we also have accurate results on lattices of size
L =8 and 16 for m = 0.5, and of size L =8 for m = 0.2. For these values of the
scalar mass, the scalar correlations only extend over a few lattice spacings, and
finite-size effects should therefore be contained (we have checked that this is
indeed the case for the quantities we have measured). In general we are interested
in a regime in which the scalar mass is much larger than the infrared cutoff, but
much smaller than the lattice ultraviolet cutoff, or

—_——

Y3 <m <y, (5.3)

in order to avoid finite lattice spacing and finite volume effects. Similarly, one
should also impose the constraint that the scale of the curvature in magnitude
should be much smaller than the average lattice spacing, but much larger than the
size of the system, or

Py <2<V, (5.4)

It is equivalent to the statement that in momentum space the physical scales
should be much smaller that the ultraviolet cutoff, but much larger than the
infrared one.

The lengths of the runs typically varied between 2-6k Monte Carlo iterations
on the 4* lattice, 1 — 2k on the 8* lattice, and 0.6—-0.9 & on the 16* lattice. The
runs are comparatively longer on the larger lattices, since it was possible in that
case to use a fully parallel version of the program. As input configurations, we
used the thoroughly thermalized configurations generated previously for pure
gravity. These configurations are rather ‘close’ to the ones that include the effects
of matter, since the feedback of matter turns out to be rather small. On the larger
lattices duplicated copies of the smaller lattices are used as starting configurations
for each k, allowing for additional equilibration sweeps after duplicating the
lattice in all four directions. This allows for a substantial savings in time, since the
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initial edge length configuration on the larger lattice is already quite close to a
representative configuration. We have found that in the well behaved phase
(k < k) the autocorrelation times are contained, of the order of at most about one
hundred sweeps. When we duplicate the smaller lattice to a larger lattice, almost
no drift in the averages is observed during later re-thermalization, which indicates
that for our parameters the finite-size corrections are small. On the larger lattices,
because there are so many variables to average over, the statistical fluctuations
from configuration to configuration are of course much smaller.

6. Results

In the pure gravity case, one finds that for fixed positive a and A (the latter can
be set equal to one without loss of generality, since it determines the overall scale)
and sufficiently small k, the curvature is small and negative (smooth phase), and
goes to zero at the critical point k (a), where the curvature fluctuation diverges. In
the pure gravity case we write therefore, for k less than k_

R(k,a) ~ —Ay(a)(k(a)=k)", (6:1)
xa(k,a) ~ A(2)(kda)=k)"", (6:2)

c

where 8 is a universal curvature critical exponent, characteristic of the gravita-
tional transition [6]. Here we will only consider the case a = 0.005, for which the
phase transition is second order, leading therefore to a well-defined continuum
limit at least in the pure gravity case [7]. For k > k_ the curvature is very large
(rough phase), and the lattice tends to collapse into degenerate configurations with
very long, elongated simplices (with (V) /{/ 232 < 0). (In ref. [7] several values for
a were studied, and it was found that the model actually exhibits multicritical
behavior. While for a = 0.005 one finds a second-order phase transition, for a =0
the singularity appears to be in fact logarithmic (8 = 0), suggesting a first-order
transition with no continuum limit for sufficiently small a, with a multicritical point
separating the two transition lines.)

When including the effects of the scalar field, one finds that the largest changes
are in the average volumes (which decrease by about three percent for a scalar
mass m = 0.5) and the average edge lengths. But such changes are somewhat
uninteresting, since they correspond effectively to a shift (here actually an in-
crease) in the bare cosmological constant (also by about the same percentage, since
8V /V ~ —8A/A). We note here incidentally that such a small effect is consistent
with the perturbative result of eq. (3.5), which predicts an increase in the effective
cosmological constant A by about one percent, for a cutoff A ~x/l;~ 1. Indeed
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Fig. 1. Average curvature # as a function of the mass of the scalar field m, for different values of

k =1/87G. From top to bottom k = 0.0, 0.05, 0.1, 0.15, 0.2. The values for pure gravity (z = 0) are

included for comparison, and drawn also as lines of constant %. The values for m = 1.0 (z = 0.5) and

m=0.2 (z=0.962) are from a relatively small lattice with L =4 and are therefore for reference only,

while the values for m = 0.5 (z = (0.80) are averages from the L =8 and L =16 lattices, with much

smaller uncertainties. The slight but clear decrease in the magnitude of the curvature in the presence of
the scalar field should be noted.

before we have chosen to define observables in such a way that these effects are
largely compensated, by rescaling by an appropriate power of the average lattice
spacing, as in eq. (4.6). Physically more interesting are the results for the average
curvature in the presence of the scalar field. As can be seen from fig. 1, the effects
of the feedback of one scalar field on the curvature are quite small. It is useful to
display the results as a function of z =1/(1 + m?), since this allows us to put the
results for infinite mass (no scalar feedback, from ref. [7]) on the same graph. The
most accurate results in the presence of the scalar field are for m = 0.5, where we
have relatively accurate results for three different lattice sizes (L =4, 8, 16) and
the highest statistics. The points for m = 1.0 are for reference only, since they are
from an L =4 lattice only. For m =0.5 and m = 0.2 the results show a small but
clear systematic decrease in the magnitude of the average curvature in the smooth
phase for all values of k, at the level of a few percent; to see such a small effect
long runs were needed. The results are in qualitative agreement with the expecta-
tion that the presence of the scalar field should give a positive contribution to the
average curvature. In any case, for all values of the mass we have considered, the
effects are rather small.

As should be clear from the discussion in sect. 5, we are interested in how the
critical behavior of the theory is affected in the neighborhood of the critical point



484 H.W. Hamber, RM. Williams / Gravity coupled to scalar matter

2.5 T T — T T T T T T T

1.5

—R(k)

Pure Gravity B~
Scalar Matter Ko

0.5

L 1 i 1 1

0.1 0.15 0.2 0.25 0.3

0 1
-0.2 -0.15 -01 -0.05 0

k -——Oi(}EBWG
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The line corresponds to a fit of the pure gravity results to an algebraic singularity, as discussed in the
text.

by the presence of the scalar field. We will write therefore again for the average
curvature, now in the presence of the scalar field,

A~ — Ak, —k)°, (6.3)
-k
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Fig. 3. Minus the average curvature % raised to the power 1/8 =1/0.63. Parameters and data are the
same as in fig. 2. The straight line is a fit to the pure gravity results. The linearity is now quite striking.
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where now we expect 4, k., § to depend also on the number of scalar flavors,
n;. In the presence of the scalars we have to look at the scaling limit m — 0, which
in practical terms corresponds to a mass much smaller than the inverse average
lattice spacing. It is not clear if m = 0.5 (where we have our most accurate results)
in our case corresponds already to such a scaling region, but our results should not
be too far off, if the experience in other lattice models can be used here as a guide.
If we adopt the same procedure as for pure gravity, and fit the average curvature
for m = 0.5 to an algebraic singularity, we find A = 3.68(5), k.= 0.243(2) and
8 = 0.61(6). This should be compared to the estimates for pure gravity (and for the
same value of a = 0.005), A, = 3.79(4), k_=0.244(1) and & = 0.63(3) [7]. In fig. 2
we compare the results for the average curvature (k) with and without the
presence of the scalar fields. In fig. 3 the same data is used to display [ —#(k)]'/?
instead, which as can be seen from the graph deviates very little from a straight
line behavior in k, if one uses & = 0.63.

We conclude therefore that, within our errors, switching on the scalar fields
leaves the exponents almost unchanged, and the critical point moves very little; our
results suggests that k_ decreases when we include the effects of the scalar field.
Again we notice that such a small shift is not unexpected on the basis of the
perturbative result of eq. (3.5), which also suggests a small decrease in the effective
k, for a cutoff A ~mw/l,~1. For small non-integer n; we can expand the
amplitude, critical value of k and the exponent in powers of the number of flavors
R,

Ay =Ay+n; A, +0O(n7)
ko=ky+nik, + O(nf)
8 =8¢ +n;8,+0(ni), (6.4)
and for the average curvature itself we get

A, 8k
L 2 s, In(k,— k)

R~ —Ag(ky—k)>{1+
o ol ko ) { Ry A, ke—k

ny—

+ O(n%)}, (6.5)

which shows that the k; renormalization is dominant for very small n,. Since the
results for n;=1 indicate that the corrections due to the scalar field are quite
small, we would tend to conclude that coefficients of the n; terms must be rather
small, and that the pure gravity theory is already a good approximation to the full
theory including scalars, provided »; is not too large.

Let us assume for the moment that k; and &8, are so small that they can be
neglected to a first approximation when we consider a single scalar matter field (in
the 2+ € expansion the matter corrections are certainly very small, and the
exponent is independent of the number of matter fields to leading order in e).
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values for pure gravity).

Then the difference between the average curvature in the presence of the scalar
field and in pure gravity determines the ratio of curvature amplitudes A4,/A4,,

‘%malter _ ‘%gravitz +matter ‘g?)zravitv A 1 (6 6)
‘%gravity %gravity k—k, A 0

The difference in the numerator is of course quite small, and requires a very
accurate measurement of the average curvature in both cases. At the same time it
provides a direct determination of the physical effects of dynamical matter fields,
on a quantity that represents a direct physical observable, since the average
curvature can in principle be measured by performing parallel transports of vectors
around large closed loops. The calculated difference %, ity +matter — Fgravity 19
shown in fig. 4, together with a fit to a behavior ~ (k_—k)?, treating only the
amplitude as a free parameter. To reduce any systematic effects coming from
finite-volume corrections, it is advisable to subtract the average curvatures on the
same lattice size. In addition, such a subtraction can be done without any
assumption about the (singular) behavior of the curvature at k.. One then
estimates approximately for the ratio 4,/4, = 0.053 /3.79 = 0.014; we will leave a
more accurate quantitative determination of this ratio for future work. We note
though that the sign of the matter correction to the curvature is consistent with the
fact that the effective Newton constant gives rise to an attractive interaction
(G > 0), thereby adding a positive contribution to the pure gravity average
curvature.
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For an explanation for the smallness of such a ratio, we can look again at the
formula (3.10). There the relative smallness of the matter contribution is simply a
consequence of the particle’s relative spin. For spin zero and spin two, as we have
here, the ratio of the matter over gravity contributions is ~ 1 /(4s* — 1) =0.021,
indeed of the same order as the ratio we computed. One can go perhaps as far as
turning this argument around, and argue that the smallness of the vacuum
polarization effects compared to the purely gravitational contribution is an indirect
indication of the spin-two nature of the graviton (if we were to treat the value of
the graviton spin as an unknown parameter, we would obtain a value very close to
two, s ~ 2.5).

Let us turn now to a discussion of the renormalization properties of the
couplings G and A. It is clear from the preceding discussion that the effects of
scalar matter are quite small. In the following we shall therefore not distinguish
between the cases with and without matter fields, assuming that if there are only a
few matter fields, the exponents will not change drastically.

As we indicated previously, using the methods of finite size scaling [33], one can
translate the dependence of the curvature on k£ — &, into a statement about the
volume dependence of the curvature at the critical point k.. In a finite volume, of
linear size L, finite-size scaling (from egs. (4.21) and (4.24)) gives

10 4—-1/v
GA L S e , 6.7
(@), ~_ 1% 7] (67)
since essentially the correlation length ¢ saturates at the system size, &€ ~ (k_—
k)™¥ ~ L. Combining this result with eq. (4.25), one obtains for the dimensionful
Newton constant the following scale dependence, valid for short distances 1/pu <«
L:

G ~ 1B}G.+1?
eff(/*l‘) L1, 0~ec 0

1\
#_L) (6.8)

(with 1/v = 2.46), and for the dimensionful cosmological constant

1 1/v
TL)
(with 4 — 1 /v = 1.54). Here again [ is of the order of the average lattice spacing,
and we have restored the correct dimensions for G,y (Iength squared) and A g

(inverse length to the fourth power). For the dimensionless ratio G?A we then
obtain the cutoff-independent result
1 1/v
TL) '

-1

Mea(B)  ~  Ig¥(mly)*™”

G .+
Ll/u> 1y

(6.9)

G, + (6.10)

G2 ~ 1) ™"
( )eff(M)L,l/u»lo('u 0)
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As a check, it is immediate to see that the exponent associated with G is indeed
what one would expect from the form of the Einstein part of the gravitational
action in eq. (2.2) and the value of the curvature critical exponent 9§, irrespective of
whether matter fields are present or not (the specific values of § and v will
depend of course on how many matter fields are present).

In conclusion, it seems that the dimensionless ratio G2A can be made very
small, provided the momentum scale u is small enough, or, in other words, at
sufficiently large distances. We should add also that the fixed point value for the
dimensionless gravitational constant, G, is in general non-universal and cutoff-de-
pendent, and depends on the specific way in which an ultraviolet cutoff is
introduced (here via an average lattice spacing). In our model it is of order one for
very small a, but for larger a it decreases in magnitude. One notices that the
smaller G, the smaller the distance dependence of G(r), since one has for the
distance variation the result

8G(r) v! or
G(r) G(L/)"+1r

(6.11)

(we have set r=1/u), so in practice G, cannot be too large. For small G, I3
becomes substantially larger than the Planck length. It should be pointed out here
that there is apparently no reason why in this model the effective coupling G,
should turn out to be of the same order as the ultraviolet cutoff /; !, and indeed it
does not. The previous results seem to indicate that the situation is more subtle.
Let us add also that we do not expect the results to depend significantly on the
form of the lattice scalar action we have used. In particular the presence of
additional higher derivative terms involving the scalar fields should not affect the
results close to the continuum limit, since the corrections should be suppressed by
inverse powers of the ultraviolet cutoff.

Another simple way of interpreting the results related to the scalar field is as
follows. Close to the critical point, the average curvature approaches zero, and at
large distances it is therefore legitimate to write g, =1, + h,,, where 7, is the
flat metric, and h,, is a small correction. Then the scalar field action of eq. (2.4)
is, again at large distances, close to the action describing a free scalar, and its
coupling to gravity is correspondingly weak. At short distances the geometry
fluctuates wildly, and the coupling between gravity and matter is strong, while at
large distances the fluctuations eventually average out to zero, effectively reducing
the coupling.

Turning to the behavior of the scalar field itself, we show in fig. 5 the results for
(¢}, in fig. 6 those for (¢*) (see eq. (4.14)), and in fig. 7 for x, (defined in eq.
(4.13)). The behavior of these three quantities is qualitatively rather similar to their
free field behavior (egs. (4.15) and (4.16)), and is not too sensitive, at the level of
our accuracy, to the value of k. We note in particular that {¢$?) approaches a
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constant at m = 0, while both {¢*) and X, diverge at m =0, in agreement with a
multiplicative mass renormalization (no shift in the critical point for the field ¢,
which remains at m = 0).

Let us conclude this section with a brief, qualitative discussion of the phase
diagram, reconsidered in light of the results obtained in the presence of scalar
matter. In the case of pure gravity, the phase diagram shows a line of critical points

Fig. 6. Same as in fig. 5, but for the scalar field average {¢*).
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Fig. 7. Same as in fig. 5, but for the scalar field fluctuation x,.

in the (a, k) plane separating the smooth from the rough (or collapsed) phase of
gravity. The curvature vanishes along this line when it is approached from the
smooth phase, and for some sufficiently negative @ <a, <0 a stable ground state
ceases to exist entirely. For @ = 0 or very small positive a, the transition from one
phase to the other is first order, with no continuum limit, while for larger a is
becomes second order, with a well-defined lattice continuum limit, as we indicated
previously. These findings in particular would seem to indicate the presence of a
multicritical point, where the two transition lines intersect [7].

In the presence of scalar matter fields, and for sufficiently large a, our new
results presented here seem to suggest that a continuum limit still exists. In
addition, we have found that in the smooth phase the average curvature decreases
in magnitude by a small but calculable relative amount. A quantitative estimate for
the amount of this decrcase gives A%Z/# ~A,/A,~=0.014. As the number of
(degenerate) scalar fields increases, we expect this trend to continue, until A% /&
~n;A, /A, ~ 1, at which point a new phase transition might take place, in the
sense that the smooth phase disappears altogether (we expect that the critical
value k. will continue to decrease, and might even become negative at some
point). The appearance of a new phase in the presence of matter, with the
geometry resembling branched polymers, is a well-known fact in two dimensions
[34]. In fig. 8 we have sketched what a possible phase diagram in the (k, n;) plane
might look like. Presumably this new phase is nothing but the rough phase found
for n;=0 and sufficiently large k. It is characterized by very long elongated
simplices, with very small volumes, and a fractal dimension much smaller than
four, reminiscent of a tree-like structure of space-time. Given our rather limited
results, a crude estimate for the critical number of flavors at which this is expected
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Fig. 8. A possible schematic phase diagram for gravity coupled to n; scalar fields. The presence of the
scalar fields shifts the critical point k. =1/87G_ towards smaller values as the number of scalar flavors
is increased, until the smooth phase disappears entirely for some large number of flavors.

to happen would be n;~ 71, a rather large number. But such an estimate is not
inconsistent with the perturbative estimates of egs. (3.6) and (3.10), which also give
such large numbers (24 and 47, respectively). And of course for such large values,
we expect deviations from linearity in n;, and we will have to leave a direct
investigation of this issue for future work. Finally let us remark that since the
effects of fermions can be mimicked by having scalars with negative n,, the above
conclusions would be rather different in that case, and their presence should
rather impede the appearance of this new phase transitions. While scalars tend to
make the geometry rougher, fermions should make it smoother.

7. Volume and curvature distributions

In this section we will discuss the properties of volume and curvature distribu-
tions, and how their behavior close to the critical point, which defines the lattice
continuum limit, can be related largely to the critical exponents discussed previ-
ously. Let us assume that close to the critical point A, one has for the average
volume a singularity of the type

9 v,

<V>E<f\/g_>~——an

~ ———+re 7.1
A A—=ac (A —AY) & (7.1)
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with @ # 1, and “reg” denotes the regular part. For the volume fluctuation one
then expects close to A,

92 wVy

VY —(VY¥~—InZ ~ —————
VD=~ mn 2~ o

+ reg, (7.2)
and it follows that the partition function close to the singularity is given by

Zi (N [lax Yo e (1.3)
. ~ exp{ — —_— ) .
° (W-a)”
Now let us introduce the quantity N(J') defined by
N(V) = [dulg] a(ff— V) e~ 118), (7.4)
It can be evaluated from
N(V) = — [ "™da Z(2) & 75
=— e .
(V) =5 ) daz(y e, (75)

to give, in the saddle-point approximation, the following expression for the density
of states:

NW)~V* 3 exp{A V(1 +b/VV*)}, (7.6)

where b is a constant involving w, V;, and A_, and the exponent y parameterizes a
possible power law correction. Let us denote by (... ), the averages obtained in
the fixed volume ensemble. Then it is easy to see, from the transformation
properties of the fixed-volume partition function under a change of scale, that one
has

dInNY) 1 <f‘/§R>V

k
——t =t 7.7
v Vv 4 2 V (77)

which can be combined with the previous equation to give the result, valid for large
volumes and in the fixed volume ensemble [6],

(7.8)
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We have not calculated the above average in the fixed volume ensemble, but in the
canonical ensemble, where the volume is allowed to fluctuate, one finds the
following result close to the critical point [7]:

i
(T

with 6 = 0.63. It is reasonable to assume that the exponent w is the same in the
two ensembles, in which case one gets w = 2.60. But this result then implies that
the volume fluctuations cannot drive a continuous phase transitions. If this were
the case, then the specific heat exponent a =2 —4v =1+ w would have to be
a<lorv>1/d=1/4, otherwise the transition is expected to be first order [35],
in which case one would not be able to define a lattice continuum limit. Indeed a
direct determination of the volume fluctuations shows that they are always finite,
and in particular do not diverge at the critical point at k, indicating that the mass
associated with the volume fluctuations (the conformal mode) is of the order of the
ultraviolet cutoff [6,7].

Let us look for completeness at the analogous result for the curvature distribu-
tion. Again the exponents appearing in this case can be related to the curvature
critical exponent 8. Let us assume, as seems to be the case, that close to the
critical point k_ one has

VeR
<f - > Lz~ ~ A (k,—k)°. (7.10)

W~ TV Yl

(see eq. (6.1)). Then for the curvature fluctuation one expects close to k.

(7.9)

R(k) =

1 92 5A,

N;Wln Zk:k (k __k)l_a'. (711)

X%

Here we are interested in the singular part of the free energy. Close to the
singularity the partition function is then given by

Zng(K) ~exp{—Vf"dk' Ag(kc—k’)5+reg}. (7.12)
Now let us introduce the quantity N(R) defined by

1 i kR
N(R)=mf__ dk Z(k) e*®, (7.13)
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with R = — V% (R is therefore a positive quantity, related to the magnitude of the
curvature, in the smooth phase where # < 0). In the saddle-point approximation
the density of states is given by

Y 1/6
N(R) ~exp{ch—ﬁ—5R[R/(VA‘%,)] } (7.14)

We find therefore that the full probability distribution for R has an algebraic
singularity close to R = 0 of the type

In P(R)= —kR +In N(R) ~ (k,— k)R — %ER[R/(VAH?)]W, (7.15)

Again there will also be a regular part, which we have omitted here. One can verify
that the stationary point of the distribution P(R) gives indeed the singular
behavior of eq. (6.1).

8. Conclusions

In the previous sections we have presented some first results regarding the
effects of scalar matter on quantized gravity, in the context of a quantum gravity
model based on Regge’s simplicial formulation. It was found that the feedback of
the scalar fields on the geometry is quite small on purely gravitational quantities
such as the average curvature, in agreement with some of the perturbative
predictions in the continuum, which also seem to suggest that the scalar vacuum
polarization effects should be rather small. The qualitative features of the phase
diagram for gravity, and in particular the appearance of a smooth and a rough
phase, seem unchanged, at least as long as one does not have too many matter
fields. It appears therefore that the approximation in which matter internal loops
are neglected (quenched approximation) could be considered a reasonable one,
and that quantities such as the critical exponents should not be too far off in this
case. To the extent that the coupling between the scalar and metric degrees of
freedom is weak close to the critical point, we have argued that gravity is indeed
weak, and have presented a procedure by which the effective low-energy Newton
constant can be estimated independently of the renormalized cosmological con-
stant, which is determined from the scaling behavior of the average curvature close
to the critical point. Our results suggest that in this model the effective gravita-
tional coupling close to the ultraviolet fixed point grows with distance, and is
expected to depend in a non-trivial way on the overall linear size of the system. For
the gravitational coupling we have found an infrared growth away from the fixed
point of the type G(u) ~ = 1/”, while for the cosmological constant we have found
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a decrease in the infrared, A(u) ~ p*~1/*, with an exponent v given approximately
by v = 0.41 and only weekly dependent on the matter content.

Finally let us add that our results bear some similarity with the results obtained
recently from the dynamical triangulation model in four dimensions [36], where the
scalar field also seems to give a rather small contribution. On the other hand the
matter contribution does not seem to improve on the fact that in these models,
which only allow discrete local curvatures, the average curvature does not show the
correct scaling behavior close to the critical point, which is a necessary condition
for defining a lattice continuum limit (in these models at the critical point the
curvature diverges in physical units). Clearly more work is needed in both models
to further clarify these issues.

The numerical computations were performed at the NSF-sponsored SDSC,
NCSA and PSC Supercomputer Centers under a Grand Challenge allocation
grant. The paralle]l MIMD version of the quantum gravity program was written and
optimized for the CM5-512 with Yasunari Tosa of TMC, and his invaluable help is
here gratefully acknowledged.
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