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New results of a large-scale simulation of lattice quantum chromodynamics with three (u,d,s)
dynamical Wilson fermions on a 10X 10X 10X 30 space-time lattice are presented. The computa-
tions presented here confirm earlier results that indicated the presence of substantial effects due to
fermion vacuum-polarization loops. As a check on the results two values for the gauge coupling
constant are considered and some degree of scaling is observed. The quark mass dependence of the
physical pseudoscalar-meson mass is explicitly determined both in the case of equal-mass and
unequal- (heavy-light) mass systems, as well as in the case of light sea quarks versus heavy valence
quarks, with the latter situation being relevant for heavy-quark bound states. Further results in-
clude estimates for other lowest-lying hadron masses, for the (current-algebra) quark masses (m,,,
my, mg, and m.), and for the pseudoscalar-meson decay constants (., fx, fp, f,,c, and fg). Anes-

timate of the strangeness content of the proton is given. Relatively small mass values are found for
the light quarks (u,d,s). In the case of the decay constants the full lattice QCD estimates could give
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new predictions, since some of the experimental values are not known yet.

) L. INTRODUCTION

Considerable progress has recently been made in un-
derstanding nonperturbative effects in QCD using numer-
ical methods for the lattice formulation. Of great interest
in QCD is the hadrorn spectrum and the hadron’s wave
functions, since a wealth of experimental data has been
available for quite some time. Some decay constants
which can be computed with relative ease in lattice QCD
(fp» [, - -.) will soon be measured in accelerator experi-
ments? and thus provide a relatively stringent test for
the predictive power of (lattice) QCD. The values of the
quark masses® are also of substantial importance, since
they can impose constraints on the grand unified model
and provide a view on the properties of the ultimate con-
stituents of matter. Because of quark confinement these
masses can only be inferred indirectly from the observed
hadron states. Needless to say, a precise knowledge of
the quark masses is an essential ingredient in models that
attempt to predict the properties of yet-unobserved
quarks (such as the top quark) by resorting to simple
physical models of level mixing.*

Since most of the lattice QCD computations have been
done neglecting fermion vacuum-polarization contribu-
tions (see, for example, Ref. 5 and references therein, and
for reviews see Refs. 6 and 7), one of the outstanding
problems that has remained is the development of a set of
efficient algorithms to reliably include these effects in a
realistic study of the full low-energy spectrum of QCD.
In this work results will be presented (some of which
have already appeared in the second of Ref. 8) which ex-
tend previous computations done by the author on small-
er lattices (first of Ref. 8). Furthermore, only the Wilson
fermions (r =1) will be considered in the following. It
appears at the present moment that the pseudofermion
method’ is among the more promising methods for in-
cluding the effects of dynamical fermions and it is the
purpose of this paper to describe results obtained on a
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relatively large lattice when the effects of the fermion
loops are included this way.

II. GENERAL METHODOLOGY

Only a rather brief summary of the methods will be
presented here, since adequate and more detailed exposi-
tions already exist in the literature. The purpose of this
section is mainly to establish notation and comment on

possible sources of errors, to which later sections will
refer The total lattice QCD action!© consists of a gauge
contribution

S¢ = 3 TrU,

mp<v

+,“,Un+v, U ,tee (D

and a fermion contribution

Se=k 3 3§ U+, U0,
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+4 0,0 —y UL PT— 3 3 509,
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where the U’s are 3X3 complex matrix elements of the
group SU(3) and the ¥’s are Euclidean gamma matrices
({¥wv,}=28,,, y# ¥.). The gauge coupling g is as
usual related to B by B=6/g?, for simplicity the lattice
spacing a is set equal to one in most of the following, and
the lattice is taken to be periodic of size L XL XL XT.
In this paper L =10 and T" =30, and $=5.3 and B=5.4.
The number of fermion flavors n, will be taken to be 3, a
choice which appears reasonable if one wants to investi-
gate the properties of light hadrons composed of u, d,
and s quarks. For simplicity in the following all *“sea
quark” flavors are assumed to have equal mass.

The fields ¥ and ¢ are of fermionic nature and have to
be integrated over in order to be able to perform a nu-
merical simulation. In the pseudofermion method the
change in the effective action 85,4 (obtained by integrat-
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ing out the fermion fields) is first expanded to lowest or-
der in 8U, and terms of higher order in 8U are neglect-
ed.® (For more details on the procedure and the errors
the reader is referred to the discussions in Refs. 6—9 and
11.) Then one obtains
85 g=08Sg—n; 3, [{Talr +y, ¥, .,)8Us;
L

P~y W)U ]
+0(8U?) 3)

and the angular brackets ({ }) here denote averaging
over the fermion fields only, which is achieved by intro-
ducing auxiliary scalar (“pseudofermion”) fields. It also
replaces the currents in a given gauge field configuration
by their averages, which can be computed by a second,
separate Monte Carlo process. The procedure introduces
an error, the largest contribution being due to the fluc-
tuation in the currents, and which can be estimated to be
~en}t/ny with Ve parametrizing-the smallness of the
boson step size 8U. The error goes as 1/n,, where n is
the number of iterations needed to compute the currents,
since the statistical fluctuations in the currents decrease
as 1/4/n for large samples. In the following €=0.01
will be considered, and n; will vary between 50 and 100.
This choice has proven to be quite adequate for the range
of parameters (which include the quark masses and the
gauge coupling) explored in this paper, at least as far as
the statistical accuracy of the data is concerned. In the
future smaller values of ¢ will have to be explored to
check on the stability of the results, or to perform an ex-
trapolation to vanishing step size.

The masses of the lighter hadrons are obtained by com-
puting the appropriate correlation functions of composite
operators and by carefully analyzing their large-distance
behavior. In the cases of interest here (meson and baryon
states, respectively), they are given by the formulas

(Y FPO)) ;o= [ du(UITI[G (x,0|U)G (0,x| )] ,
— @)
(PPP(x)pppl0))
= [du(UTL[G (x,0| )G (x,01U)G (x,0|1)] ,

and color and spinor indices have been suppressed for
simplicity. Here G(x,0|U)=(x|AT![U]|0) is the in-
verse of the lattice Dirac operator A[ U] defined in Eq.
(2). The exact full measure du[ U] is given by

1
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where m 4 and mg- refer to baryons with opposite in-
trinsic parity. In this paper only the lowest-lying meson
and baryon states in each channel will be determined,
since higher accuracy is needed to determine also the first
excited states. In order to extract the hadron masses and

. which can be resolved if m

du(U)=2Z "' T] dU,,exp(—Sg+n TrInA[U]) . (5)
ny

The best methods available for computing G (x,0|U) for
large separations rely on an exact numerical iterative in-
version of the sparse matrix A[ U], one column at a time.
A necessary condition for convergence is that the matrix
A[ U] has no zero eigenvalues, which is satisfied for QCD
with massive quarks on a large lattice. In practice no
problem was encountered here with the propagator com-
putations since the quark mass was never too small.

Here only meson states are considered which can be
created from the vacuum by the local currents
P %x)TyP%x), where T’ is a Dirac gamma matrix, and
similarly for the baryons. Nonlocal operators provide
important information about the wave functions and will
be considered in a separate publication. Choices of
different operators lead to different propagator ampli-
tudes, but are expected to give the same estimate for the
mass of the physical state. It is useful to denote by
Gp(x) and Gpy(x) the generic connected meson and
baryon propagators, respectively, averaged over the
gauge configurations

G (x)={PP(x)PP(0)) ,

Gy (x)= (PP lx)yp(0)) .

From the large-distance behavior of the propagators the
hadron masses are then computed by a judicious fit to the
appropriate correlation function, summed over spatial
hyperplanes to extract the zero spatial momentum state.
Since periodic boundary conditions are used, one then ex-
pects for the meson propagator the generic behavior

Gp(h=S Gpelx)
]

—1

(6)
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where my x is the mass of the first radial recurrence,
M*—m >>T "1, and T is the

M
temporal extent of the box. On the other hand for the

baryons one expects

T—1) —m_(T=1) -m__t

)+ H1—y)( 4, e +A, e

(8)

[
amplitudes, the correlation functions are fitted (at least in
the Wilson fermion case) to a sum of iwo hyperbolic
cosines for the mesons, and to two decaying exponentials
for the baryons. The physical region of very small quark
masses often has to be, at least with the presently avail-
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able lattice sizes, obtained by extrapolation using the
values of the hadron masses computed for larger quark
masses: the smallest quark mass used in the present
study corresponds to about 7 MeV. Results for even
lighter quarks are then obtained by extrapolation. One
should keep in mind that the gqualitative behavior for
small quark mass is presumably known from current
algebra, just as the behavior for small g2 is known from
perturbation theory, and one only needs to establish the
necessary matching. This point will be discussed further
below. For the light hadron masses, the simplest assump-
tion is that they are given by expressions of the type

M?*=M%,+B,m,+B;m,+B,m,+Cm?, 9)

where m is the average quark mass, B, = (pluulp?, etc.,
and the label p denotes here the relevant state (pion, rho,
proton,. ..). The constant C is expected to be 4 for
mesons and 9 for baryons. When fermion polarization
effects are included, it is known from chiral perturbation
theory that pion emission and readsorption gives rise to
nonanalytic corrections of the type ~n fm“Inm2 and
~n;m3%, with the second term absent for the pseudos-
calar mesons, as a consequence of their pseudo-Goldstone
nature.> i

The finite spatial extent of the lattice poses a limit on
the smallest pion mass that can be reached. In general
one should adopt a conservative cut ML > 3, which will
be roughly satisfied by the results presented below. This
is equivalent to the requirement that the pion wave func-
tion should fit inside the space-time box, or that the
masses in lattice units should lie between the ultraviolet
and the infrared lattice cutoff w/La <<M <<m/a. For
fixed gauge coupling, the hadron mass M can be made
smaller only if L, the spatial extent of the box, is made
larger. We partially circumvent this constraint here by
studying smaller quark masses at stronger gauge cou-
pling, and find surprisingly good agreement in the region
where the data from the two couplings overlap. But we
do not claim that the procedure used here is a substitute
for studying even larger lattices. Similarly, finite-size
effects coming from the gluons are expected to be con-
tained: for periodic boundary conditions the finite-size
corrections are exponentially in the linear spatial box
size, with a decay length given by the inverse mass gap in
the relevant channel. The mass gap has not been reliably
measured when fermion loops are present, but one ex-
pects it to be relatively close to the result without loops,
in physical units.

Finally the physical masses of the hadrons are ob-
tained, by extrapolating the results obtained at finite cou-
pling to the limit of zero coupling using the renormaliza-
tion group. For finite g2 one expects from asymptotic
freedom that for ratios for physical masses one has

3, ~ Casl1+0(A%a?)] (10)
and the lattice corrections should decrease rapidly for
small g%, since Aa ~exp(—1/28,8?%). Alteratively, if
physical quantities (renormalization-group invariants) are
expressed in physical units such as MeV, then one ex-

pects to get the same results for different values of the
gauge coupling. This indeed is what one finds for some of
the quantities measured below.

IIl. LATTICE RESULTS

Clearly one of the outstanding problems in the numeri-
cal study of QCD is the inclusion of fermion vacuum-
polarization effects in a realistic study of the mass spec-
trum on a large lattice. The present study extends previ-
ous calculations with Wilson fermions done on a
4X4X4X 16 lattice, as well as on a 10X 10X 10X 30 lat-
tice.® It confirms and substantially extends some of the
qualitative features of dynamical fermion loop effects de-
scribed there. In addition, some of the results presented
in Ref. 8 have recently been confirmed by the indepen-
dent computation of Ref. 12. Some of the newer results
presented here have appeared in preliminary form in Ref.
13. The case of Susskind fermions!! will not be discussed
here, since the results’ with fermion loops there are more
difficult to interpret due to the well-known fermion dou-
bling problem and the difficulty that arises in deciding
how many fermion flavors actually contribute to the loop
effects for finite gauge coupling.” Here the aim is, on the
one hand, to provide accurate data at a few values of the
coupling constant (for the full theory on a reasonably
large lattice), and at the same time gain some qualitative
insight into the effects of the fermion loops on the hadron
spectrum, the light-quark masses, and the QCD scaling
parameter, as well as other quantities.

Details on the actual numerical simulation are briefly
summarized as follows (further details can be found in
Refs. 7 and 8). Two completely independent sets of
configurations were generated on a 10X 10X 10X 10 lat-
tice, one starting from a pure gauge configuration
thermalized at 8=6/g%=5.6 (“hot start”), and another
set from a pure gauge configuration thermalized at
B=0.6 (“cold start”). The effects of the fermion deter-
minant were then included with 8=5.4 and n,=3, at five
values of hopping parameter k£ =0.156, 0.158, 0.160,
0.162, and 0.163. 45 fermion propagators were then com-
puted on the set of 45 configurations separated by 20
gauge iterations, and used in estimating the hadron
masses. The so-obtained gauge configurations were then
rethermalized with 300 gauge iterations at §=5.3 and

. ng=3, for four values of the hopping parameter

k =0.177, 0.178, 0.179, and 0.180. Again 60 fermion
propagators were then computed, on 12 configurations
separated by 40 gauge iterations (5 propagator evalua-
tions per configuration).

As pointed out before, when the fermion loop effects
are taken into account two new ‘“‘auxiliary” parameters
need to be introduced (apart from the number of flavors
ny and k or the fermion mass m): the step size used in
the gauge updating € and the number of pseudofermion
iterations needed to compute the fermion currents n .
In the limit that € goes to zero and n, goes to infinity,
the algorithm becomes exact.'” The pseudofermions
needed in the gauge field updating were thermalized each
time with 204100 iterations (with 5 hits per site) at
B=5.4 and 2050 iterations at 8=5.3, and the step size



was chosen to be €=0.01.

For the gauge fields 4 hits were done at 8=5.4 and 8
hits for §=35.3. In the above range of parameters, the ac-
ceptance rate per link updating was about 73% for
€=0.01 and 819 for €e=0.005. We also checked that the
results were unchanged, within our errors, when the
number of pseudofermion iterations was increased to 100
and 200. With the given fixed choice of parameters, we
have found the pseudofermion algorithm to be quite
stable, even at the smaller values of the quark masses.
We do not of course claim that the method will not be
affected by critical slowing down as the quark mass is re-
duced even further, but we were unable to do so here be-
cause of the smallness of our lattice.

The same set of gauge configurations were than also
. used to estimate the masses and wave functions of had-
rons in.the case of light sea versus heavy valence quarks,
a situation that applies to the charmed-quark states such
as the 7., the J /%, and the D. In this last case a total of
20 propagators for each combination of the k’s listed in
the tables were computed and averaged.

Thus the gauge configurations at different values of k
can be taken as almost completely stastically indepen-
dent, with fwo independent sets for each k. The lattices
were then triplicated in the time direction to give a
10X 10X 10X 30 lattice, and the fermion propagators
were subsequently evaluated (for different values of k or
the quark mass) to high accuracy by a checkerboard
Gaussian relaxation method with up to about 200 itera-
tions. As in previous computations, both residual vector,
individual matrix elements at the largest time separation,
and hadron propagators were monitored to ensure accu-
racy in the matrix inversion for all values of the quark
mass. If ¥ denotes the sought-for-fermion propagator, we
verified that for each inversion the relative residual vec-

tor always satisfied |MX—8, x 840,844, /IX| S5X107%

For each separate gauge configuration the location of the
8 function on the lattice was chosen randomly to decrease
correlation effects. The accuracy in the matrix inversion
is quite satisfactory, contributing to less than 19 of the
error in the masses quoted (the uncertainty in the fit and
the statistical fluctuation are by far the largest source of
error). We also checked that, as in previous computa-
tions, the replication of the gauge configuration did not
introduce any appreciable error in the hadron propaga-
tors. This is expected since the correlations are always
much smaller here than the spatial lattice extent. Period-
ic boundary conditions were adopted for both the gauge
fields and the fermions.

Statistical errors in the propagators and masses were
estimated first by the usual binning procedure. Because
of possible correlations in Monte Carlo time among
different configurations, we also repeated the analysis
with alternate or more configurations omitted, depending
on the estimated correlation effects. In order to estimate
the statistical correlations in the sample, we attempted to
determine the autocorrelation effects (in Monte Carlo
time) of the hadron propagators and masses using the
standard methods. The autocorrelation time appears to
be quite difficult to measure with our limited statistics,
but we have obtained the following estimates regarding
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the pion propagator at separation 10-15, where most of
the fits are performed.

If the autocorrelation of the pion propagator is nor-
malized to one at zero relative Monte Carlo time, then
for B=5.3 we obtain for the autocorrelation after 40
sweeps with €=0.01 the values

k=0.177:0.12, k=0.178:0.17,
k =0.179: 0.35, k£ =0.180: 0.08 .

After 80 sweeps the autocorrelation is difficult to measure
because of our limited statistics, and for the same reason
we quote the above values with no error at this point.
For B=5.4 we obtain for the same autocorrelation after
20 sweeps with €=0.01 the values

k =0.156: 0.11,
k =0.160: 0.35,
k =0.162: 0.47, k£=0.163:0.11,

k=0.158: 0.13,

with again significantly smaller values after 40 sweeps.
Similar autocorrelations are found for the other propaga-
tors and/or states. Theoretical arguments can be given
to suggest that autocorrelations should decay exponen-
tially with a characteristic time related to the correlation
length or inverse mass gap through a dynamical critical
exponent. Furthermore they should increase for smaller

_ quark masses, but our estimates at this point are not ac-

curate enough to demonstrate this trend. Thus it appears
that, for our choice of parameters and in particular
€=0.01, after about 100 sweeps the correlations are con-
tained (for smaller values of € this of course is no longer
true and more sweeps will have to be used).

The availability of two completely statistically indepen-
dent gauge configurations for each parameter combina-
tion, which could therefore be analyzed independently
and compared, provided a further relatively stringent
check on the errors. We also applied the “jack-knife”
method (see second of Ref. 14 for a discussion) to the
correlation functions to further check our errors, and
found good agreement between the various error deter-
minations. The correlation function fits were obtained
using a nonlinear least-squares fit to the last four and five
points (¢ =11—15) using the Levenberg-Marquardt
method. In addition, a double-exponential fit was also
tried for all propagators, (S-wave states only) to check
systematic effects. Errors were estimated by comparing
the answer from the fits to the last three t-dependent
mass estimates. Figure 1 illustrates a typical correlation
function fit, together with the relative deviation.

The systematic uncertainty in the mass resulting from
the fits and the statistical fluctuations in the correlation
functions leads then to the errors quoted in Tables I-IV.
It should be emphasized that since all hadron masses are
extracted from the same set of fermion propagators
(which are evaluated exactly on the same gauge

configuration), the errors quoted are correlated among
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FIG. 1. The pion propagator for 8=5.3 and kK =0.179. The
average is over 70 quark propagators. Data in this and the fol-
lowing figures refer to e=0.01. The continuous line is obtained
from the least-squares fit at large distances (¢ =11-15), while
the dotted line represents a cubic spline interpolation to the
data. For this specific case, the pion mass is estimated at about
0.52(3), in lattice units.

different states for the same set of gauge configurations,
and the spin splittings are determined more accurately
than one might have expected from the uncertainty in the
masses themselves. In the tables we have therefore
presented also the values for the spin splittings directly.

Tables I-IV list the results for the hadron masses in
lattice units. The symbols P and V refer to the pseudos-
calar and vector mesons, respectively, while ¥ and A
refer to the s =1 and s =2 baryons. The results for the
pseudoscalar- and vector-meson masses are also displayed
in Figs. 2(a), 2(b), and 3(b) (the lines in these figures are
only intended as a guide to the eye). As mentioned be-
fore, in Tables I and II the mass of the “sea’ quarks gen-
erating the vacuum-polarization effect is taken to be the
same as the mass of the ““valence” quarks that enters into
the external propagators. The results therefore apply to
the spectroscopy of light-quark (u,d,s) bound states.

On the other hand, in Tables III and IV the sea quarks
are taken to be lighter than the valence quarks. There
the results of interest for the spectroscopy of heavier
quark (c,b) bound states, as wiil be discussed further
below. As can be seen from the data, the fermion
vacuum-polarization contribution of the light quarks
significantly decreases the mass of the heavier-quark
bound states. It can be interpreted as a consequence of
the reduction of the overall QCD scale in units of the
cutoff, caused by the light-quark loops and consistent
with the continuum asymptotic-freedom prediction. As
in the case of n =0 (Ref. 5), the vector-meson mass and
the baryon mass are not well fitted, for small quark

masses, by a linear function of 1 /k (or equivalently of the
quark mass m), whereas the quality of the fit improves
when the masses squared are used (as in fact is quite
clearly the case for the pion). Thus here all extrapolated
values are quoted assuming linear behavior in 1/k for all
masses squared and mass squared differences.

1IV. LIGHT HADRON MASSES

The inverse Wilson hopping parameter 1/k is related
to the quark mass. More precisely, one defines in the
Wilson fermion case the lattice quark mass as

11 1_1
k

=1 1
ma =In 1+2 Pl 3 (11)

1
c k—k 2

From the values in Tables I and II, one sees that the
pseudoscalar-meson mass squared is well fitted by a linear

" function of 1/k [see Figs. 2(a) and 2(b)]. One then finds,

for small rm and three light flavors,

7 7T
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FIG. 2. (a) Pseudoscalar- and vector-meson mass squared in
lattice units as a function of the parameter 1/k (related to the
bare quark mass) at g2=1.132 (8=5.3) for Wilson fermions
and ny=3. Here my, =my,, always, and the data are from
Table I. Squares: pseudoscalar-meson mass squared; diamonds:
vector-meson mass squared; circles: square root of mass
squared difference, as tabulated in Table I. The dotted line
represents a cubic spline interpolation. Here and in the follow-
ing the lines are only intended as a guide to the eye. (b) Same as
in (a), but at g2=1.111 (8=15.4) (data from Table II).
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FIG. 3. (a) Pseudoscalar-meson mass for §=35.3 [same as in
Fig. 2(a)], but now combining data points for m ., =m,yence (di-
amonds) with points for which m, <<mM, e (Squares along
lower line). Both the case of equal-mass and unequal-mass
quarks are displayed, and 1/k=(1/k,+1/k;)/2 here. Note
that all points for m,., <<M . en.e lie close to one single curve.
The squares correspond to the choice kg, =0.180. The data are
from Tables I and III. (b) Pseudoscalar-meson mass for f==5.4
[otherwise the same as in Fig. 2(b)], again combining data points
for me,=myyence (diamonds) with points for which mg,
<< Myplence (Circles and squares along lower curve). Both the
case of equal-mass and unequal-mass quarks are displayed,
and 1/k=(1/k,+1/k;)}/2 here. Note that all points for
My <M gpence lie close to one single curve. The circles corre-
spond to kg, =0.162 and the squares to kg, =0.163. The data
are from Tables Il and IV.

M2i=(Apa~YYym +0(m?) . (12)

with A4p=12.6(10) and 6.5(6) at f=5.3 and B=5.4, re-
spectively. The slopes are determined here in the case of
Mo =M yaience- 1N the graphs a cubic spline interpolation
is also presented for comparison to the simplest, but pos-
sibly biased, straight-line fit.

The lattice spacing can be determined, for example,
from the p (vector-meson) mass. One way of doing it is to
compute the quantity (M3 —M32)'/? and extrapolate it to
the chiral limit. From phenomenology one knows that
this quantity is almost constant in going from the p,K to
the J /1. Indeed the lattice QCD results seem to repro-
duce this trend. One concludes that the lattice spacing in
the Wilson fermion case for n,=3 is much smaller than

for n;=0 (Ref. 8):
ay'(B=5.3, n;=3)=1130(50) MeV ,
ay'(B=5.4, n,=3)=2600(200) MeV ,
ay(B=5.4, n,=0)=980(100) MeV ,
ap(B=6.0, n;=0)=1950(200) MeV .

(13)

All the estimates with fermion loops refer to €=0.01, as
mentioned before. Alternatively one can fix the lattice
spacing by extrapolating M), linearly in the quark mass
(for small mass), obtaining a lattice spacing of about 1100
and 2100 MeV at $=5.3 and 5.4, respectively. In the fol-
lowing the previous values will be used, but a certain ex-
trapolation ambiguity has to be kept in mind. Of course
on a larger lattice it should be possible to go to a smaller
value of the quark mass and thus substantially reduce the
uncertainty.

Thus the lightest pseudoscalar-meson mass considered
here is about 330 MeV at $=5.3, while the largest mass
is about 2600 MeV at B=5.4. The lattice spacing itself is
about 0.18 fm at 8~=5.3 and 0.08 fm at 8=15.4, while the
linear lattice size is consequently 10 times larger.

When comparing the results at =35.3 with the ones at
B=S5.4, one notices that the change in the lattice spacing
ay roughly compensates for the change in the lattice
pion slope Ap. As a consequence the slope in physical
units is about the same for the two values of the gauge
coupling considered here. It should be added that one
unsatisfactory feature of the Wilson fermion formulation
is the fact that k., is quite sensitive to € and that the
masses in lattice units are expected to change as € is de-
creased further. On the other hand the precise value of
k. is not related to any observable (the light-quark masses
are, for example, determined from the slope in 1/k) and
different (small) values of € appear to give the same values
for physical dimensionless ratios, as was also observed in
Ref. 12.

In Figs. 3(a) and 3(b) similar results for the pseudosca-
lar are displayed, including values for the case of heavy-
light and heavy-quark systems with light sea quarks
(applicable to the case of the ¢u and ¢ pseudoscalars, re-
spectively, with light u-, d-, s-quark loop contributions).
In Fig. 4 the same computed values are redisplayed, com-
bining $=35.3 and B=75.4, in physical units which are de-
rived utilizing the above quoted values for the cutoff ¢ ~!
in MeV,

The effect of vacuum-polarization loops introduces log-
arithmic corrections to the simple formula of Eq. (12). In
the chiral limit the leading nonanalytic correction to the
pion jnass is given by chiral perturbation theory!*!6

mi=g, 1+52—7T12}—2; a,,ln%z’i—-%a,,m% (14)
with
o,=itm,+m )7t |gulz™) ,
ox=im,+m K |aulKk*), " (15)

o,=il40g—0,),
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TABLE 1. Hadron masses (S waves) in lattice units at g2=1.132 (8=5.3) for Wilson fermions and
ny=3. Here €=0.01 and m ., =m ;.. always. Extrapolations are discussed in the text.

k 0.177 0.178 0.179 0.180 0.1804(2)

m L. 0052 .. 0037 . 0021 . . 0006 0.000 .
Mp 0.82(2) 0.69(3) 0.52(3) 0.29(3) " 0.00
My 1.04(3) 0.95(4) 0.84(4) 0.73(4)
(M} —M3ZN7? 0.64(3) 0.65(3) 0.66(3) 0.67(3) 0.67(3)
My 1.53(7) 1.37(11) 1.18(¢12) 0.97(9)
(M3 —2.8M3)'? 0.68(9) 0.73(13) 0.80(12) 0.84(12) 0.86(9)
My/M, 1.47(11) 1.44(19) 1.40(23) 1.33221)
M, . 1.66(9) 1.52(13) 1.37(13) 1.20(11)
(M3 —Mj)? 0.65(7) 0.67(6) 0.69(5) 0.71(6) 0.71(5)
fe 0.18(2) 0.17(2) 0.15(2) 0.12(4)
fp/My - 0.17(2) 0.18(2) 0.182) . 0164 0.17(2)

TABLE II. Hadron masses (S waves) in lattice units at g?=1.111 (3=35.4) for Wilson fermions and

ny=3. Asin Table, €=0.01 and m, = m . always. Extrapolations are discussed in the text.

.k 0.156 0.158 0.160 0.162 0.163 0.1643(3)

m 0.150 0.114 10.079 0.042 . 0.024 0.00

Mp 1.01(5) 0.90(3) 0.75(2) 0.52(3) 0.40(4) 0.00
My 1.08(5) 0.97(3) 0.82(3) 0.61(3) 0.50(5)
(ME—MZ)? 0.37(3) 0.35(3) 0.33(3) 0.31(4) 0.30(3) 0.29(2)
My L719)  1.54(6) 1.30(4) 0.93(7) 0.76(9)
(M} —2.8M3)'"? 0.27(5) 0.31(6) 0.33(5) 0.34(5) 0.35(7) 0.36(5)
My /My 1.58(17) 1.59(11) 1.59(11) 1.52(19) 1.52(37)
M, 1.74(10) 1.58(7) 1.34(5) 0.99(8) 0.83(11)
(M3 —M})'7? 0.32(5) 0.35(4) 0.33(5) 0.33(4) 0.33(6) 0.33(4)
fp 0.14(2) 0.12(1) 0.09(1) 0.06(1) 0.05(1)
fe/My 0 0.131) 0.12(1) 0.11(1)  0.0(1)  o.0() 0.11(1)

TABLE III. Masses of light-heavy- (first four columns) and heavy-heavy-quark mesons (last four
columns, *) (all S waves) in lattice units at g2=1.132 (8=5.3) for Wilson fermions and n;=3, and
€=0.01. Here m, =mg, in the light-heavy-quark bound-state case. # is the quark mass correspond-
ing to k=(1/k,+1/k;)/2, with 1 and 2 referring to the two valence quarks.

klight =ksea =(.180

Kheavy 0.160 0.165 0.170 0.177

o . 0165 . . . . 0.123 . 0.083 -0.028 .
M, 1.08(2) : 1.01(2) 0.93(2) 0.64(3)
M, 1.223) 1.17(4) 1.12(3) 0.92(4)
(M2—M32)? 0.57(2) 0.60(3) 0.62(2) 0.66(3)
fr 0.22(2) 0.19(2) 0.19(2) 0.16(2)
fp/My 0.18(2) : - 0.16(2) , 0.17(2) 0.17(2)
k.., =0.180

Kneavy 0.160* 0.165* 0.170* 0.177*

m 0.302 . 0229 ... ..0155 .. . 0050
M, 1.35(2) 1.21(2) 1.05(2) 0.84(2)
M, . 1.43(2) 1.32(3) 1.20(3) 1.05(3)
(ME—ME)? 0.47(2) 0.52(3) 0.58(3) 0.63(3)
fr 0.24(2) 0.22(2) 0.17(2) 0.16(2)

fo/My  017Q) _ 0.172) _0.142) _0.15(2) .




35 PROPERTIES OF HADRONS iN LATTICE QUANTUM. .. 903

TABLE IV. Masses of light-heavy- (first three columns) and heavy-heavy-quark mesons (last three
columns, *) (all S waves) in lattice units at g2=1.111 (8=5.4) for Wilson fermions and n r=3, and
€=0.01. Here mg, =my,, in the light-heavy-quark bound-state case.

T ——

K ight =K gea =0. 162

Kheavy 0.144 0.152 0.156 0.144* 0.152* 0.156*
i '0.212° 0.135 0.098 0.357 0.220 0.150
M, 0.85(4) 0.66(3) 0.57(3) 1.24(3) 0.89(3) 0.71(3)
My 0.88(5) 0.70(3) 0.61(4) 1.26(4) 0.92(4) 0.74(4)
(M}—ME)}? 0.24(2) 0.23(2) 0.22(2) 0.23(3) 0.24(3) 0.22(2)
fe : 0.075(7) 0.069(7) 0.068(7) 0.132(6) 0.088(5) 0.082(7)
fr/My 0.085(7) 0.098(7) 0.111(7) 0.105(6) 0.096(5) 0,111(7
klight =ksa=0. 163 .
Kheavy 0.144 0.152 0.156 0.144* 0.152* 0.156*
7] 0.204 0.127 0.089 0.357 0.220 0.150
M, 0.81(3) 0.65(3) 0.56(3) 1.19(3) 0.87(3) 0.71(3)
My 0.85(4) 0.70(4) 0.62(4) 1.214) 0.91(4) 0.75(4)
(ML —M3)7? 0.27(2) 0.27(2) 0.27(2) 0.24(3) 0.26(3) 0.25(2)
fr 0.077(6) 0.072(6) 0.069(5) 0.120(7) 0.093(5) 0.088(6)
fp/M, 0.091(7) 0.103(7)

0.113(7) 0.0998) 0.102(5) 0.117(7)

and all matrix elements are evaluated for renormalized
operators in the chirally synimetric limit of the QCD
Hamiltonian. op is essentially equal to the quantity
Apa~!'m defined above, expressed in physical units.
Similar formulas hold for the K and 7 mesons.'® While
the coefficient of the leading nonanalytical contribution
to the pseudoscalar mesons is fixed by chiral perturbation
theory, the parameter p is not, and requires a nonpertur-
bative calculation. It is difficult to see such a small loga-
rithmic correction in the lattice QCD data, which has
large statistical errors as well as errors coming from the
approximate nature of the fermion algorithm. But from
the results for m, <60 MeV cne obtains consistency with
the above corrections provided that one has approximate-
ly u=900 MeV. If the slope is allowed to vary slightly in
the fit, the estimate for the scale in the logarithm remains
almost unchanged. More accurate and reliable data is
clearly needed though to determine this small correction
more precisely.

Equivalently, one can say that the argument of the log-
arithm is close to one for a quark mass m =50 MeV,
which, as will be shown below, corresponds roughly to
the strange-quark mass. Thus perhaps the correction due
to the logarithm is quite small and does not significantly
affect at this point the estimates for the pion slope given
above. Note that the smallness of this correction could
provide an indirect evidence for chiral-symmetry restora-
tion with the Wilson fermions [at strong coupling the
pion-scattering amplitude does not vanish for zero
momentum, and the current-algebra low-energy theorems
for pion scattering, implicitly assumed in the derivation
of Eq. (14), are not valid].

Tables I and I list also the values for the nucleon mass
and the quantity (M3%—2.8M3)!/%, where My and M,
are the nucleon and pseudoscalar-meson masses, respec-
tively. In the chiral limit this last quantity still reduces to
the nucleon mass. The reason for this specific choice is

twofold. Firstly the nucleon mass is rapidly increasing as
a function of the quark mass and therefore difficult to
determine for m,=0. By subtracting a multiple of the
pion mass one obtains a quantity which is less rapidly
varying. Secondly the two masses are correlated and the
above difference is computed more accurately than the
individual errors might suggest (the same procedure is
quite reliable for obtaining the m-p splitting, as discussed
above). As a function of Euclidean distance ¢, it is a rap-
idly decreasing function. The factor 2.8 is the approxi-
mately determined ratio between pion and nucleon
slopes. It is about the same with and without quark
loops, both for Wilson and Susskind fermions.>® The fol-
lowing estimates would not change if that number was
taken to be say 3.0 instead. In fact from the data one sees
that the above-mentioned difference is not quite constant
(it slowly increases in the chiral limit). One way of es-
timating the systematic error is to compute the distance-
dependent ratio (of spin splittings)

R(t)=[MZ(t)—2.8M3(O 1 [ ML) —M3()]'/% .

Again this procedure exploits the fact that the quantities
in the numerator and in the denominator are statistically
correlated. The physical mass of the nucleon (we do not
distinguish proton and neutron here} is then estimated us-
ing this first procedure at

M, =970(140) MeV (5=35.3),
My =970(210) MeV (B=35.4),

{16)

which includes the uncertainty in the value of the lattice
spacing and should be compared with the experimental
value of 940 MeV. One should add though that in the
case of B=5.4 a substantial extrapolation in the quark
mass has been done.

The above values and errors refer to the case in which

the nucleon mass squared is assumed to be linear in the
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quark mass, as suggested in Ref. 3. Alternatively one
might try to extrapolate the nucleon mass itself in the
quark mass. From the data in Tables I and II one then
obtains from the two smallest values of the quark mass,
by linear extrapolation, the estimates

My, =980(180) MeV (B=5.3),
My =1130(200) MeV (B=5.4) .

(17

(If all the data points had been used in the fit, the extra-
polated result would have been still higher.) Finally, stiil
regarding the nucleon, one can try to determine instead
the dimensionless ratio My /M, in the chiral limit.
Again from the data in the table one finds that this ratio
(which has large errors) tends toward the right value at
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FIG. 4. (a) Pseudoscalar-meson mass in physical units (GeV)
versus the (valence-) quark mass, also in physical units. The
scale (here given by the lattice spacing @ ') is obtained from the
physical p-m mass splitting. Both full data sets for #=5.3 and
B=>5.4 are combined; the good overlap between the two data
sets should be noted. In the continuum one expects a universal
curve (up to a small anomalous dimension factor correction for
the quark mass). Data points for 7., =m ,4ence are indicated by
diamonds, while points for which Mg, <<Myuence are indicated
by squares. Both the case of equal- and unequal-mass quarks
are displayed here together, as in Figs. 2(b) and 2(c). The circles
correspond to 8=6.0 and n,=0 (no fermion loop effects). (b)
Enlarged view of the small quark mass region displayed in the
previous figure.
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B=5.3[ =1.3(2)], but is stable at 1.5 at the weaker cou-
pling B=5.4. This situation Is quite unsatisfactory, but
might just reflect the fact that this ratio is more rapidly
varying, and that in the latter case the quark mass is not
small enough to see any decrease. In any case the quality
of the data for the nucleon does not allow one to discrim-
inate between the various extrapolation procedures. Of
course on a larger lattice it should be possible to go to a
smaller value of the quark mass and thus substantially
reduce the uncertainty.

The accuracy of the results for the nucleon is
insufficient at this point to detect the leading nonanalytic
corrections in the quark mass which are presumably due
to the surrounding pion cloud, as discussed in Refs. 3 and
16. This in spite of the fact that the correction is believed
to be larger in this case, due to the nonvanishing (in fact
quite large) pion-nucleon coupling in the chiral limit: fol-
Towing Ref. 3 the effects of the pion cloud contribute a
ponanalytic m 3/? correction in the nucleon case

384 M,
My =M3+Bm——A"0 03 4 (18)
] 16mfy
where we have set m =(m,+my)/2 and
B =3{plddlp}=3(plaulp} , (19

and assumed m, =m,. For the lightest-quark mass con-
sidered here, the correction is comparable to the quoted
error in the nucleon mass. Also it is unclear at this point
what the size of the higher-order corrections in this mod-
el is,

Another quantity of interest that can be, in principle,
computed with relative ease is the strangeness content of
the proton {p|Ss|p ). It can be derived from the proton-
mass slope versus the quark mass. Since in the numerical
simulation the sea- and valence-quark masses can be
varied independently, two independent slopes can be
determined. The hadron masses are actually computed
as a function of k, but 8/3m, =18/08(1/k) for small m.
One finds, for a gauge coupling 5=5.3,

’ 2
£_=21.3(4.2)a” !,
amsea

aM;} _
. et —=14.3(2.7)a ’
"amvalence

and for f=5.4,

20

M2
——4t_=9.2(2.2)a !,
amsea

AM?
—f =8 7(1.2)a7!.
a’nvalence

21

The strangeness contribution to the proton mass comes

entirely from the sea-quark effects, and one obtains for

the dimensionless fraction
{plssip)

{pl(au +dd +35)lp ) :

the values 0.20(5) and 0.17(5) at B=5.3 and B=5.4, re-

(22)



spectively. The first estimate is more reliable since it cor-
responds to much smaller quark masses, as described
above, and the second value should only be considered
for reference, given the substantial quark mass extrapola-
tion involved. The lattice QCD result can then be com-
pared to the indirect experimental estimate of =0.21,
and to the Skyrme-model result % =0.23 (Ref. 14). But
due to the many sources of uncertainty in the fermion-
loop calculation as a whole, the lattice results can only be
~ regarded as preliminary and qualitative at this point.

Turning to the other baryons, the A-nucleon spin split-
ting is computed as

M3 — M2 =[800(100) MeV]* (8=5.3),

(23)
M2% —M}=[860(180) MeV]* (8=5.4),

again in good agreement with the experimental value of
805 MeV. Contrary to the situation in the strong-
coupling region, there is no indication here that the spin
splittings are smaller than the experimental values.

"The hadron mass values quoted are in qualitative
agreement with the experimental values, but the errors
are unfortunately still quite large (and substantially worse
than in the quenched approximation), and the extrapola-
tion to small quark mass is still to a certain extent a ques-
tion of subjective judgment. We believe that we have
shown here that under reasomable assumptions no gross
inconsistency with the observed spectrum has been found
yet.

V. MESON DECAY CONSTANTS

The meson decay constants are obtained from the am-
plitude of the large-distance decay of the relevant Eu-
clidean correlation function and provide direct informa-
tion on the decay widths of the mesons. Earlier computa-
tions of these constants were incomplete, in the sense that
they did not include the effects of fermion loops (see, for
example, Ref. 17 and references therein). It is of some in~
terest to see whether the results with fermion loops are
substantially different from the ones without loop effects.
We will find indications that this is not the case, within
the accuracy of the present computation. Define the
pseudoscalar decay constant [, by

V2 fpMp={0ldysvoth|P) . (24)

An alternative procedure would be to define fp using the
PCAC (partial conservation of axial-vector current) rela-
tion

‘/ifPM1§=(m1+mz)<0l$1?’"5¢’zlp) (25)

but we have chosen not to do so here, even though the re-
sults for small quark masses would agree to a few per-
cent, or within the errors. In a nonrelativistic potential
model fp is related to the modulus of the pseudoscalar-
meson wave function at the origin

172

fr (26)

- | M
ly(0)| = [ p

and the experimentally measurable two-photon decay
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width/rate is then given by

487ra

D(P—yy)=—"rr (QZ>I¢(0)I2 @7

In a general nonrelativistic potential model with potential
V(r)=br?, the S-wave meson wave function at the origin
can be obtained from Schrodinger’s equation

cb3/(2+a) 3/(2+0) 28)

|(0)]2= L

where ¢ is a numeric constant and u is the reduced mass

-(29)

with mgy and m, the mass of the heavy and light quarks,
respectively. In the following we will assume that, for
heavy pseudoscalar mesons, the above result is qualita-
tively correct as far as the dependence of fp on the heavy
quark is concerned. It is clearly inadequate as far as the
dependence on the light-quark mass is concerned, a situa-
tion which is usually ascribed to the fact that relativistic
and nonperturbative effects presumably play an impor-
tant role in the dynamics of the bound state. The values
for the pseudoscalar decay constants fp are reported in
Tables I-IV. Actually the ratios of the decay constant
over the vector-meson mass, fp/Myp, are given, since
they represent dimensionless numbers and are therefore
less sensitive to fluctuations in the overall scale deter-
mined by the cutoff @ ~!. The use of My, instead of M,
is motivated by the fact that the latter choice, while ade-
quate for heavy quarks, would lead to a divergent ratio in
the chiral limit.

Results are available both for the case m, =m gjence
(Tables I and II) and m, <<m ... (Tables III and IV).
In the latter case results are given both for mesons com-
posed of quarks of equal mass, as well as for mesons
made out of quarks with unequal mass. To give an idea
of the quark mass range involved, as can be seen from the
values quoted in Table IIl (8=5.3) and in Table IV
(=5.4), in the unequal-mass case the (lattice) light-
quark mass is about 70 MeV (k =0.163) or 125 MeV
(k =0.162) for B==5.4, and about 7 MeV (k =0.180) for
B=5.3. Similarly, the heavy quark weighs at most about
1060 MeV (k =0.144, B=5.4). We shall restrict here the
discussion about the decay constant results to the case
B=5.4, since the values for f, at $=5.3 are clearly too
large, a situation that is encountered also in the case

=0 for too strong coupling. It can be ascribed to the
fact that the wave function is more sensitive than the
mass to finite-lattice-cutoff effects, which are expected to
be larger at smaller £3.

At first it would seem that one needs to extrapolate in
the mass of the light quark in order to extract a value for
fp» say in the case of the D (Cu) meson, since the u quark
is very light. In order to do so, two values for the light-
quark mass (related to ky,, ) were considered in Table
IV. But in spite of the light-quark mass decreasing by

about a factor of 2, the values for the decay constant fp
remain about the same (within the errors), indicating the
absence of a rapid change when the light-quark mass goes
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to zero, at least within the framework of the present com-
putation. From the data for fp/m, given in Table IV
(8=5.4) and Fig. 5, one obtains, therefore, for the pseu-
doscalar mesons the continuum estimates

f»=100(15) MeV, fr=110(15) MeV ,
fp=200(20) MeV, f,,c=320(25) MeV ,

{30)

which are in good agreement, in the known cases
(feSfx ), with experiment. (With the above definition,
the experimental value of f,=93.5 MeV.) In the above
estimates we have included a perturbative correction re-
lating the lattice decay constants to the continuum ones,

$=ZpfE" with Z,=0.84. This finite-renormalization
factor arises because of the explicit chiral-symmetry
breaking inherent in the Wilson fermion formulation.'®
Indeed these constants have also been evaluated nonper-
turbatively by looking at an appropriate three-point func-
tion (second of Ref. 5), but only in the case n,=0 and for
a different gauge coupling. Since in the pseudoscalar case
the difference between the perturbative answer and the
nonperturbative one is comparable to our errors, we will
not include further discussion of it in the following, and
use the perturbative estimate, but keep in mind that our
estimate might still be a few (10-207)% too high. The
dependence of fp on the meson or quark mass appears to
be in good agreement with the few known experimental
values (see Fig. 5). The vector-meson decay constant
were also computed (f,,f4,fy) and, once the perturba-
tive lattice correction is again included (the local vector
bilinear fermion operator was used in the computation),
one finds values that are about 15% higher than the ex-
perimental numbers, but with the correct trend as a func-
tion of the quark mass. This can provide a further check
on the systematic effects that could affect the quoted re-

O.Mv».xl..‘.'..'.T.ﬁ".—.

O Lattice QCD, Equal Mass
O Lattice QCD. Unequal Mass
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FIG. 5. The dimensionless ratio f»/M,, where fp is the
pseudoscalar decay constants and M, the corresponding
vector-meson mass, as a function of Mp, the pseudoscalar-
meson mass, in physical units. Except for the smallest mass
value, the data points were,obtained in the case m ., << ,4ence
(see Table IV). In the heavy-light-quark meson case (“unequal
mass”), all points appear to lie close to one universal curve. The
crosses correspond to the experimental values for the =, K, 7,
and 7, mesons. A

. Flmy)
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sults. On the other hand the errors in this case are larger,
and higher statistics would be needed to draw definite
conclusions. In reference to the experimental situation,
in the case of f; the above value is just below the bound
of fp <290 MeV (90% C.L.) obtained by Mark III (Ref.
2). The above computation indicates that perhaps the de-
cay D+ —pu™ v, should be seen soon.

For heavier quarks (i.e., the b) the decay constants
have to be obtained here by extrapolation. To accurately
study the b mesons a smaller lattice spacing is needed,
which requires therefore a weaker gauge coupling and a
larger lattice (such that the mass of the state is smaller
than the ultraviolet cutoff @ ~!). Alternatively one could
consider (in the heavy-light-quark bound-state case) the
“hydrogenic” case separately, but these last two ap-
proaches are beyond the scope of this work. By looking
at the data in Fig. 5 one notices though that the decay
constants in the equal and unequal cases behave indeed
differently for largef quark mass, as suggested by the sim-
ple nonrelativistic potential model result. From the data
one estimates for large meson masses, in the heavy-light
(h-1) and heavy-heavy case (h-h), respectively,

[0 ~[430(40) MeVP?My 12,

(31
FHm _[0.102(10)]M ) ,

where M} is the vector-meson mass; both of these curves
are shown in Fig. 5 for large quark mass. Therefore the
best lattice QCD estimate at this point would be

f3=130(20) MeV, £, =950(90) MeV . (32)

Note also that an additional (small) error is being made
here since the number of light-quark flavors for the B sys-
tem is presumably closer to four (u-, d-, s-, c-quark loops)
than to three.

In QCD the nonrelativistic prediction [Eq. (24)] is ac-
tually modified, for heavy-light systems, by logarithms in-

‘v6lving the mass of the heavy quark.'® To leading order

in a, one has

f(mQ:) -

,’ 172
mg a{mg)
ag(mgy)

—6/(33—2n,)
J (33)

mQ'

This relationship therefore suggests that one should try
to determine instead the quantity £ in the equation

—6/(33—2n,)
= 172 |y, e i
As

with Agz=125(10) MeV for ny=3 (Ref. 8) where MS
denotes the modified minimal subtraction scheme. De-
pending on the choice for mg (“constituent-” or
“current-algebra” quark mass), one obtains from the
computed values in the D-meson region f &3~=350(50)
MeV and therefore again about f,=130(20) MeV. The
relative “insensitivity” of fp to the logarithmic correc-
tion can be ascribed to the fact that the theoretical esti-
mates have large errors, and that the logarithm is slowly
varying in the region considered. It will be interesting to
see how close these and future more refined estimates for
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fp> Fgsand f n,» are to the {yet to be determined) experi-
mental numbers.

VL. QUARK MASSES

The (lattice) quark mass m (a) is obtained indirectly
- from the functional dependence of the pseudoscalar-
meson mass (or vector-meson mass) on the former, as
defined in Eq. (12). For small quark mass it is clear that
an accurate determination of the slope A4p is necessary.
But, as can be seen from Figs. 3(a) and 3(b), the slope is
not the same for Mg, =m yece and My <M yu1ences at
least in the region of quark masses studied. In the latter
case, at S=>5.4 there is a region for larger quark mass
where the slope is much smaller (by about a factor of 2).
One should also note the substantial deviations from
linear (current-algebra) behavior for m,, <<m ... and
M ence 8reater than about 60 MeV. This situation
affects particularly the charmed-quark mass estimate, for
which the larger slope estimate, corresponds to the as-
sumption M, =M aence> 18 inappropriate. Because both
physical situations are considered here we were able to
encompass a range of quark masses that ranges from the
u, d, to the ¢ quark.

"Figures 4(a) and 4(b) show the pseudoscalar-meson
mass squared as a function of the quark mass, in physical
units (GeV), both for the case mg,=m ... and for
M geq <<Myplences @5 Well as in the case n,=0 (no fermion
loops) as obtained with Wilson fermions at $=6.0 (Ref.
5). The present analysis substantially refines the one pre-
viously presented in Refs. 7 and 8, where the case
M oq <M ypience Was only marginally discussed because of
the lack of computed data. Also, in the following the re-
sults for n,=2 (u,d quarks) will be estimated by interpo-
lation between n,=0 and n,=3.

Before quoting the values for the quark masses, some
correction factors have to be taken into account. The
previously published results were based mostly on the
more plentiful data at $=5.4. The new data at 8=5.3 is
completely consistent (within the errors) with the results
at $=5.4. In fact the substantial overlap of the iwo data
sets is a partial check on the overall procedure, the size of
finite lattice corrections, the size of finite-volume correc-
tions, and on the approximate scaling in the gauge cou-
pling. A renormalization-group-invariant quark mass #i,
can be obtained by including the appropriate anomalous
dimension factor
4/9

g, =mgy(a) |In (35)

aAﬁg

with Agz=125(20) MeV for n,=3 at the weaker cou-
pling (8=5.4) [which should be compared to Ayg
=110(10) MeV for n,=0 and f=6.0]. In turn /m, can
the be related to the quark masses at any scale by the

equation
Coy—4r9 .
my(p)=m, ln-/-\/:fj] . (36)

Ms

Including a further lattice correction [due to the different

renormalization properties of the fermions on a lattice
and in the continuum,?® which in the pure gauge case at
B=6.0 is estimated to give a reduction by Z~0.70
{Refs. 5 and 7}] one finds m (u=1 GeV)=~1.14m (a), or

m,(1 GeV)=~1.4 MeV, my(1 GeV)~2.5 MeV ,
m (1 GeV)~50 MeV, m,(1 GeV)~970 MeV ,

(37

with a total error that is estimated at about 20%. We
have used here the well-established result m,;/m, =1.8
(Ref. 3). In the charmed-quark mass region it appears
reasonable to assume that one has three light flavors.
The charmed-quark mass quoted above is extracted from
the experimental D and 7, charmed-meson masses. The
two values deviate by less than 5% from each other and
we use the average here. Note in particular that due to
the lightness of the strange quark, one obtains a relatively
large estimate for the invariant ratio m, /m,~20. Furth-
ermore it appears that for all three light quarks (u,d,s)
one has m, << Ay, and this in turn would justify the use
of ny;=3. These values for the quark masses quoted
above should be compared to the best estimates for n,=0
(Refs. 5 and 7):

m,(1 GeV)=3.0 MeV ,
my(1 GeV)==5.2 MeV , (38)
m, (1 GeV)=100 MeV ,

with errors again around 20%. It is somewhat surprising
that such a relatively strong flavor dependence goes into
the estimates for the light-quark masses. Part of this
effect is due to the quark loops causing substantial devia-
tions from linearity in the (valence-) quark mass. We
quote for comparison the (continuum QCD sum-rule) es-
timates of Gasser and Leutwyler’:

m,(1 GeV)=5.1 MeV, my(1 GeV)=8.9 MeV ,
m (1 GeV}=175 MeV, m_ (1 GeV)=1350 MeV .

(39)

In conclusion, in the present lattice computations the
quark masses turn out to be quite small, even allowing for
substantial lattice errors and systematic effects due to the
fermion algorithm.

VII. CONCLUSIONS

The results presented here for light hadron spectrosco-
py at B=5.3 and B=5.4 appear to be in reascnable
agreement with experiment and have not yet uncovered
any substantial disagreement with the computations done
without loops, partly due to the fact that the results
presented here can still only be considered as qualitative.
Future work will have to, among other things, reduce the
systematic effects due to the fermion algorithm and refine
the results presented in this paper. Surprisingly the
light-quark masses have turned out to be quite small, and
future calculations will have to check whether the results
remain stable for even smaller quark masses and weaker

coupling.
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