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A numerical evaluation of the discrete path integral for pure lattice gravity, with and
without higher derivative terms, and using the lattice analog of the DeWitt gravitational
measure, shows the existence of a well-behaved ground state for sufficiently strong gravity
(G = G¢). Close to the continuous critical point separating the smooth from the rough
phase of gravity, the critical exponents are estimated using a variety of methods on lattices
with up to 15 x 164 = 1572 864 simplices. With periodic boundary conditions (four-torus)
the average curvature approaches zero at the critical point. Curvature fluctuations diverge
at this point, while the fluctuations in the local volumes remain bounded. The value of the
curvature critical exponent is estimated to be = 0.626(25), when the critical point is
approached from the smooth phase. In this phase, as well as at the critical point, the fractal
dimension is consistent with four, the euclidean value. In the (physically unacceptable)
rough, collapsed phase the fractal dimensions is closer to two, in agreement with earlier
results which suggested a discontinuity in the fractal dimensions at the critical point. For
sufficiently small higher derivative coupling, and in particular for the pure Regge-Einstein
action, the transition between the smooth and rough phase becomes first order, suggesting
the existence of a multicritical point separating the continuous from the discontinuous phase
transition line.

1. Introduction

Recently there has been a renewed interest in discrete models for quantum
gravity. In this paper we shall concentrate on the simplicial formulation of quan-
tum gravity, also known as the Regge Calculus approach, and refine and extend
some of the results presented in refs. [1,2]. It is well known that at the classical
level the theory is completely equivalent to general relativity, and the corre-
spondence is particularly transparent in the usual weak-field expansion [3],
with the invariant edge lengths playing the role of infinitesimal geodesics in the
continuum. The correspondence between lattice and continuum quantities is
straightforward, and so is the interpretation of the terms in the action, as well
as the identification and separation of the measure contribution.
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In the limit of smooth manifolds with small curvatures, one can show that
the full continuous diffeomorphism invariance is recovered. In addition the
lattice model has a trivial piecewise diffeomorphism invariance, corresponding
to coordinate transformations within the flat simplices, as well as relabeling of
the vertices. Away from almost flat manifolds the continuous diffeomorphism
invariance is lost, and different configurations of edge lengths will in general
correspond to different manifolds. In this sense there is no gauge invariance in
simplicial gravity except in the smooth limit. On the other hand the theory is
formulated entirely in terms of coordinate invariant quantities, the edge lengths,
which form the elementary degrees of freedom in the theory [2,4,5].

Since quantum gravity is not well defined in the continuum, a number of
technical and conceptual difficulties, related to the gravitational measure factor
[6], the unboundedness of the Euclidean gravitational action [7], and the lack
of perturbative renormalizability above two dimensions [8], persist in the lattice
formulation as well (in fact in all known lattice formulations).

It seems clear that non-perturbative methods are necessary in trying to un-
derstate the nature of the ground state in quantum gravity. A description of the
construction of the action and measure for simplicial lattice gravity, inspired by
Regge’s original work [5], can be found in ref. [2]. It was shown some time ago
that, under suitable conditions, the gravitational measure and the cosmological
term stabilize the gravitational action, and lead to a convergent path integral,
even in the case of the pure Regge action. As the bare Newton’s constant is
varied, a continuous phase transition is found, separating a “smooth” from a
“rough” phase of gravity [2]. In the first phase the curvature is small and nega-
tive, and the fractal dimension is consistent with four. In the second phase the
simplices are collapsed, the curvature is large and positive, and the fractal di-
mension is much less than four, indicating the presence of finger-like structures,
reminiscent of the unbounded fluctuations in the conformal mode in the contin-
uum. Approaching the critical point from the only physically acceptable phase,
the smooth one, it was found more recently that the curvature vanishes with
an exponent § = 0.62(5) [1]. At the critical point the curvature fluctuations
diverge, leading to the possibility of defining a non-trivial lattice continuum.
This paper will be devoted to extending and refining the results presented in
refs. [1]. In particular more accurate results for the exponents will be obtained
on rather large lattices (up to 1 572 864 simplices, or 3276 800 hinges), a finite-
size scaling analysis will be described, and new results for the fractal dimension
will be discussed. At the end of the paper we will touch on some issues related
to the nature of correlations in simplicial quantum gravity.

On the lattice there is a lot of freedom in how one chooses to define the ac-
tion, the measure, the underlying lattice structure, and the correlation functions,
just as there are many ways of finite differencing a derivative. Given reasonable
geometric and positivity properties, universality is expected to lead to the same
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results for quantities like physical observables, exponents, anomalous dimen-
sions etc., in some continuum limit. In two dimension this has been verified
explicitly in the case of two-dimensional gravity [9], where good agreement is
found between the lattice gravity results and the conformal field theory predic-
tions.

It is possible to formulate simplicial quantum gravity on any type of sensible
lattice, including a random one. But a great simplification occurs if one adopts
a “regular” lattice (in the sense that the coordination number is fixed at each
vertex, but leaving of course the edge lengths arbitrary), since it is somewhat
easier to work with both from an analytical as well as a computational point of
view. The continuous lattice diffeomorphism invariance mentioned previously
is of course not lost by going to such a lattice. As in refs. [1,2], we will discuss in
the following results for a simplicial complex topologically equivalent to a torus
in four dimensions. One could adopt a different set of boundary conditions,
but in the end one expects short distance renormalization effects and critical
behavior (and therefore the lattice continuum limit) to be independent of the
boundary conditions and the topology.

Recently there also has been some work on three- and four-dimensional gen-
eralizations of the original dynamical triangulation model [10-13], using equi-
lateral tetrahedra and simplices, and performing the sum over triangulations
using Alexander moves [14]. This development represents an alternative and
complementary approach to what is being discussed here.

2. Gravitational action and measure

Following ref. [2], the four-dimensional pure gravity action on the lattice will
be chosen to be

252

A28
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hinges /2

where V), is the volume per hinge (triangle), A, is the area of the hinge and J;
the corresponding deficit angle, proportional to the curvature at /. Classically
the lattice action is bounded from below if 4a4 — k% > 0. The lattice curvature
squared term proportional to 5,% vanishes if and only if the curvature is zero
everywhere. In the following we will take the fundamental “lattice spacing” to be
equal to one; the appropriate power of the lattice spacing can always be restored
at the end by invoking dimensional arguments. Since the lattice is dynamical, the
average physical separation between sites will then be equal to this fundamental
“lattice spacing” times the average edge length (with our choice of coupling
constants and measure, there is typically a factor of two between the two). In
the classical continuum limit the above action is equivalent to the continuum
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action

k
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with a cosmological constant term (proportional to A1), an Einstein—Hilbert term
(k = 1/87G), and a higher-derivative term [15]. Here the dots indicate higher-
order lattice corrections.

One could consider the Regge action by itself (@ = 0), but then the euclidean
action would be unbounded from below, and problems might arise, depending
on the choice of measure (this point will be discussed further below). It should
be stressed that the Regge action is equivalent to the Einstein action only in
the continuum limit. As in any lattice theory, for finite lattice spacing there are
higher-order corrections O(k*), which can be arbitrarily modified by adding
extra terms (or by, say, replacing J by sind) without affecting the continuum
limit. In this respect the Regge action is not unique, and we expect many dif-
ferent but similar actions to lead to the same continuum limit, in the region of
parameter space where one can be defined (we will argue that the same should
be true for a wide class of measures over the invariant edge lengths). Renormal-
ization group arguments then suggest that in general the continuum limit should
be explored in this enlarged multi-parameter space. The higher-derivative lattice
term introduced here can therefore be regarded also as a way of parameterizing
the higher-order lattice corrections in the simplest way.

Different measures in the continuum give rise to different measures on the
lattice. The difference between various measures seems to be in the power of
/€ in the pre-factor, which corresponds to some product of volume factors on
the lattice. On the lattice these volume factors do not give rise to coupling terms
and are strictly local. DeWitt has argued that the gravitational measure should
be [6]

[duter = J Tt [T g (2.3)

uzv

On the simplicial lattice the invariant edge lengths represent the elementary
degrees of freedom, which uniquely specify the geometry for a given incidence
matrix. Since the induced metric at a simplex is linearly related to the edge
lengths squared within that simplex, one would expect the lattice analog of the
DeWitt metric to simply correspond to d/?. But it should be stressed that while
the metric tensor is coordinate dependent, all the edge lengths are manifestly
coordinate invariant (they should be thought of as lattice versions of elementary
infinitesimal geodesics). We will therefore write the lattice measure in general
as

/duf [/] / Ve dly F (11, (2.4)

edges ij
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where Vj; is the “volume per edge”, F¢[/] is a function of the edge lengths
which enforces the higher-dimensional analogs of the triangle inequalities, and
o = (d — 4)/4d for the lattice analog of the DeWitt measure. The parameter €
is introduced as an ultraviolet cutoff at small edge lengths: the function F; [/] is
zero if any of the edges are equal to or less than ¢; in the following we will set
o = 0and ¢ = 0 (DeWitt measure with no cutoff).

If a D-component scalar field is coupled to gravity the power ¢ has to be
changed, due to an additional factor of [, /2 in the continuum gravitational
measure,

D 4-d D
T = 2dd+ 1) 4d des 40 (2.5)

Eventually it would be of interest to explore the sensitivity of the results to the
type of gravitational measure employed. On the basis of universality of critical
behavior [16], one would expect though that different invariant lattice measures
should lead to the same lattice continuum limit. In two [9] and three [17] space-
time dimensions numerical studies seem to indicate that different measures,
within a certain universality class, will give the same results for infrared sensitive
quantities, like critical exponents. On the other hand the lattice path integral
might not be meaningful for certain values of ¢ for which the measure becomes
singular, and for which the simplicial lattice tends to degenerate into a lower-
dimensional manifold.

In general a simple scaling argument gives the following estimate of the average
volume per edge

2(1 + ad) N 1
Ad d=4,0=0 24’

if curvature terms in the action are neglected, and shows that the volume tends
to zero for a singular measure such as the scale-invariant one (gd = —1), unless
a cutoff is imposed for short edge lengths. (In four dimensions the numerical
simulations with ¢ = 0 agree to within a fraction of a percent with the above
formula; see discussion below).

Some useful identities can be obtained by examining the scaling properties of
the action and the measure. The couplings k£ and A in the above gravitational
action are dimensionful in four dimensions, but one can define the dimensionless
coupling k?/4, and rescale the edge lengths so as to eliminate the overall length
scale \/m As a consequence the path integral for pure gravity,

) ~ (2.6)

zGka) = [duetryeV, (2.7)
obeys an equation of the type
K\AM _ k2 k2
Z(A,k,a) = <1> Z(T’T’a)’ (2.8)
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where N, represents the number of edges in the lattice, and we have selected
here the d/? measure (¢ = 0). This equation implies, in turn, a sum rule for
local averages, which (for the d/2 measure) reads

AUV) - 2k(SA) = 2N;/Np. (2.9)

Here Ny represents the number of sites in the lattice, and the averages are defined
per site. For the hypercubic lattice we will use, N; = 15Ny, N, = 50Ny, N3 =
36Ny and Ny = 24N, [2]. The coefficients on the L.h.s. of the equation reflect
the scaling dimensions of the various terms, while the r.h.s. term arises from the
scaling of the measure (in d dimensions the coefficients become d, (d — 2) and
(d — 4), respectively). This last formula can be useful in checking the accuracy
of numerical calculations, since each term can be estimated independently.

3. Results in four dimensions

In order to explore the ground state of four-dimensional lattice gravity beyond
perturbation theory one has to resort to numerical methods. General aspects of
the method as applied to simplicial quantum gravity are discussed in refs. [1,2],
and will not be repeated here. In the numerical simulations presented below
the simple hypercubic lattice was employed, with six face diagonals, four body
diagonals and a hyperbody diagonal introduced to make the cube rigid. Lattices
of size between 4 x 4 x 4 x 4 (with 3840 edges) and 16 x 16 x 16 x 16 (with
983 040 edges) were considered. In all cases the measure was d/2 (g = 0, see eq.
(2.4)). Periodic boundary conditions (four-torus) were used, since it is expected
that for this choice boundary effects will be minimized. One could perform
the numerical studies with lattices of different topologies, but one expects that
universal infrared scaling properties of the theory should be determined by short-
distance renormalization effects, and should therefore in general be independent
of the specific choice of boundary conditions, so the four-torus should be as good
as any other choice of topology as far as critical properties are concerned.

The edge lengths are updated by a standard Metropolis algorithm, generating
eventually an ensemble of configurations distributed according to the action of
eq. (2.1), with the inclusion of the appropriate generalized triangle inequality
constraints arising from the nontrivial measure. A stringent test on the program
is that it correctly reproduces the analytic weak-field expansion to second or-
der [18]. The lengths of the runs typically varied between 10 — 40k Monte Carlo
iterations on the 4* lattice, 2 — 6k on the 8¢ lattice, and 0.5k on the 16* lattice.
On the larger lattices duplicated copies of the smaller lattices are used as start-
ing configurations for each k, allowing for additional equilibration sweeps after
duplicating the lattice in all four directions. This allows for a substantial savings
in run time, since the initial edge length configuration on the larger lattice is
already close to a representative configuration. In some special cases (close to k.
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fora = 0, and at k for a = 0.005) much longer runs were performed to increase
the accuracy of the results and have good control over the statistical errors. One
notices that in all runs the scaling relation of eq. (2.9) is very well verified (to
one percent or better), as one would expect if the edge probability distribution
is sampled correctly. Furthermore the average volume associated with an edge
agrees with the estimate of eq. (2.6) to better than one percent, for all values of
the couplings that we have investigated, and suggests that the average volume is
only very weakly dependent on k and g, being influenced mostly by the measure
and the cosmological term.

One should emphasize that at this point the nature of the results is still rather
preliminary, even though some effort has been made to control the systematic
errors by computing the critical exponents for four-dimensional gravity for dif-
ferent values of the (naively irrelevant) coupling a, and by a variety of different
methods, which presumably have different (and hopefully small) systematic
biases.

3.1. LOCAL AVERAGES

Quantities of physical interest which have been computed include the scaled
average curvature R

o m @544 | ([VER)
RLka) = (=555 TVE -1

and the average scaled curvature squared R?

45, 62421V}) (] V& RuvpoR*P)
R2(A k, = /[2\2< hChh ~ wp , 3.2
(hka) = =St G (3:2)

and as usual the sum over hinges /4 represents a sum over the triangles in the
simplicial lattice. In four dimensions it is known that for sufficiently large higher-
derivative coupling there is a continuous transition between the “smooth” (small
negative average curvature) and “rough” (very large positive average curvature)
phase of space-time [1,2]. The average curvature can be used (at least on the
four-torus) as an order parameter to distinguish between the two phases; other
possible order parameters will be discussed later. In addition one can define the
average scaled volume per site

V
VA k,a) = [<12>]—2@h—">. (3.3)
No
If all the lattice simplices collapse into lower-dimensional objects, then V will
become very small.
Besides R and R?, it is useful to consider the lattice analog of the fluctuation
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in the local curvature

= 1 2y _ 2
xrhkoa) = 5 [<<2§hjahAh>> <2thr5hAh>] (34)
-and of the fluctuation in the local volume
1
Ak, = = V)% — V,)2|. .
xr(ok,a) = = [((Zhj GRRDY W) (3.5)

As discussed in ref. [1], the divergence in the fluctuation is indicative of long-
range correlations (a massless particle), since the fluctuations are as usual related
to the zero-momentum component of the propagator. In particular fluctuations
in the curvature are sensitive to the presence of a spin-two massless particle,
while fluctuations in the volume probe only the correlations in the scalar channel.
Thus in the case of gravity a dramatic difference is expected in the two type of
correlations.
The derivative of the average curvature is then simply related to the fluctua-
tions in the curvature, since one has, from the definition of R in eq. (3.1),
2

or ~ M 9{0 4) A>. (3.6)

ok (Vy 0Ok
Only the second term on the r.h.s. is divergent as k approaches k., and this is
due to a divergence in 8{d A)/dk (the other derivatives can be shown to remain
quite small in comparison ). Similarly, the fluctuations in the total average action

(I = AV)Y= k(6 1) + als* 1*/V}) (3.7)

are dominated by the fluctuations in the curvature as well.

Figs. 1 to 4 show the local distribution of edge lengths, volumes and curvatures
throughout the lattice, as obtained for a system of size 164 (in this particular
case with action parameters A = 1, k = 0.244 = k. and a = 0.005). As can
be seen, the distributions are rather smooth and well behaved, at least up to
and including the critical point at k., to be discussed below. It is a legitimate
question to ask to what extent the distributions deviate from a simple form such
as a gaussian. In the case of the edge length probability distribution (see fig. 1),
one notices that it is essentially zero for small edge lengths, a reflection of the
presence of the triangle inequalities. Not unexpectedly, the measure controls the
behavior at small edge lengths, while the cosmological constant term provides
an exponential cutoff at large edge lengths. The shape of the distribution is well
approximated by the function

P(l) ~ Al%exp(—b |l - [|f). (3.8)

For small / the power dominates and one finds a steep rise, a ~ 6.5, while
for large / the decay is exponential with 8 ~ 3.2 (which is close to the naive
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Fig. 1. Histogram of the distribution of edge lengths, P(/), on a 16* lattice, for A = 1,
k = 0.244 = k¢ and a = 0.005 (DeWitt d/2 measure).

expectation of 4). Similar results are found for the average volume per edge (see
fig. 2), Vi ~ /& (X),
P(V) ~ A (V)*exp(=b Vi - W) (3.9)

and one finds o =~ 3.6, while for large / the decay is exponential with § ~ 2.5
(which is somewhat larger than, but still consistent with, the naive expectation
of 1). In both cases the location of the peak in the distribution is only weakly
dependent on k (< k¢) and a (> ag), a reflection of the fact that the shape of
the distribution is mostly affected by the measure and the cosmological constant
term (which here and in the following will not be changed), and are quite insen-
sitive for example to the bare Newton’s constant. It is clear that the former two
entities, and not the latter, that set the scale for the fundamental length scale in
the problem, the average edge length [y = /{/2).

In the case of the curvature distribution (figs. 3 and 4), there are clear devia-
tions from gaussian fluctuations, and one has for d, 4, ~ \/gR(x)

P(SpAy ~ A |04 exp(=b |04, — rolf) (3.10)
with a negligible power contribution (o ~ 0), and § ~ 1.4. In the case of the
curvature, the constant ry vanishes at the critical point (k = k). The deviations

from a gaussian distributions are seen even more clearly when one considers the
log of the probability distribution (see fig. 4). Since the power is close to one,



356 H.W. Hamber / Phases of simplicial quantum gravity

120000 T T T T T T T T T

100000

80000

60000 |-

P(V)

40000

20000 -

0 1 ) 1 1 1 —l d

0 005 01 015 02 025 03 035 04 045 05

|4
Fig. 2. Histogram of the distribution of local volumes per hinge, P(V}), for the same parameters
as in fig. 1.
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Fig. 3. Histogram of the distribution of local curvatures, P(A,dy), for the same parameters as in
fig. 1.
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Fig. 4. Same as fig. 3, but using a vertical logarithmic scale in order to show the deviations from
gaussian behavior.

In P(dA) exhibits an almost linear behavior for large | A|. (Had one chosen to
look at the distribution of d,4,/Vj ~ R(x), the results would be rather similar.
One finds in this case § =~ 1.2, compatible within errors with the exponent for the
d, A, distribution). Our results at this point are not accurate enough to suggest
whether there might actually be a non-analyticity in the curvature distribution
at zero curvature, in the sense that the above exponents are expected to describe
more accurately the asymptotic falloff of the distribution when the curvatures
are large in magnitude. In any case such a singularity would be rather unusual.
Close to a critical point it is possible that some of the local averages, as well
as their fluctuations, will develop a singularity in k in the infinite-volume limit.
This is certainly true close to two space-time dimensions. In the 2 + € expansion
of Einstein’s gravity one sets k~! = 87 G and performs a double expansion in
G and ¢ [8]. The dimensionful bare coupling is written as Gy = 4%>~4¢G, where
A is an ultraviolet cutoff, for example of the order of the inverse average lattice
spacing, 4 ~ m/{/?)1/2, and G a dimensionless bare coupling constant. Close to

two dimensions one finds for the beta function
B(G) = 06 _ ¢ - BoG? + O(G3 G%,Ge?),  (3.11)

with By = %(25 - D), where D is the number of massless scalar fields (for pure
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gravity D = 0). To lowest order the ultraviolet fixed point is at

& = £ 1+ o) (3.12)
Bo

Integrating eq. (3.11) close to the non-trivial fixed point in 2 + ¢ dimensions

one obtains

= Aexp| - ¢ —-—dGl ~ A[G—G*{'l/ﬂ’(G") AIG—G*WE
o = p B(G) | G- 3 13’)

where g is an arbitrary integration constant with the dimension of a mass, and
the derivative of the beta function at the fixed point is

B(G*) = — = —1/u. (3.14)

The possibility of algebraic singularities in some of the vacuum expectation
values (like the average curvature and its derivatives) close to the fixed point is
then a natural one, at least from the point of view of the 2 + ¢ expansion.

This result also illustrates how in principle the lattice continuum limit is to be
taken: it corresponds to 4 — oo, G — G* with ug held constant; for fixed lattice
cutoff the continuum limit is approached by tuning G to G*. Away from G* one
will in general expect to encounter some lattice artifacts, which reflect the non-
uniqueness of the lattice transcription of the continuum action and measure,
as well as its reduced symmetry properties. In the present model things are
complicated further by the fact that we also have a second, higher derivative,
coupling a, which is presumably asymptotically free, and should lead to non-
trivial scaling properties for large a [15].

3.2. CURVATURE CRITICAL EXPONENT

The results obtained for the average curvature R(k), defined in eq. (3.1),
are shown in figs. 5-11. Four values of 4, 0, 0.005, 0.02 and 0.1, have been
studied, and 4 = 1 was held fixed (since A only sets the overall scale in the
action). Due to the long runs and the large lattices employed the results have
relatively small uncertainties. Since different edge length starting configurations
are used for different k’s, one has that for different values of k the results for the
curvature are completely statistically uncorrelated. In spite of the fact that the
lattice volume is not very large, the statistical errors are quite small since there
is a rather large number of hinges (triangles) per site, namely 50L*%, where L is
the number of sites in each lattice “direction”. The statistical errors in R (k) are
estimated by the usual binning procedure, and represent one standard deviation.

In refs. [1,2] it was found that as k is varied, the curvature is negative for
sufficiently small k& (“smooth” phase), and appears to go to zero continuously
at some finite value k.. For k > k. the curvature becomes very large, and
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Fig. 5. Average curvature R as a function of k, for A = 1 and @ = 0.005 (d/? measure). The
squares refer to L = 4, the diamonds to L = 8, and the triangles to L = 16. The dotted line
represents the fit to an algebraic singularity.

the simplices tend to collapse into degenerate configurations with very small
volumes ({V)/{I?)? ~ 0). This “rough” or “collapsed” phase is the region of the
usual weak-field expansion (G — 0); in the continuum it is characterized by the
unbounded fluctuations in the conformal mode (see discussion below). For k
close to, but less than, k. one writes for the average curvature

R(k,a) ~ —Ar(a) (k(a)—k)° (3.15)
k—kc(a)
and average curvature fluctuation
~ _ 161
ir(k,a) @ Ay (a) (ke(a) — k)™, (3.16)

where J is the universal curvature critical exponent (introduced in ref. [1]),
characteristic of the gravitational transition. In the case of higher-derivative
coupling @ = 0.005 and a = 0.02 (see figs. 5 and 7) the interpretation of the
data is quite straightforward: the assumption of an algebraic singularity is well
supported by the results. After performing a simultaneous fit to R (k) in Ar, k.
and the exponent J, and using close to k. the data on the largest lattice available,
one finds the results summarized in table 1. It is quite remarkable that the two
estimates for 6 agree very well with each other, in spite of the fact that the
curvature changes by about a factor of five between the two values of a.
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Fig. 6. Average curvature R raised to the power 1/6 =~ 1/0.626, using the data on the largest
lattice available (L = 8 and 16) for a = 0.005; other parameters are the same as in fig. 5. The
linearity is quite striking.
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Fig. 7. Same as fig. 5, but for a = 0.02.
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Fig. 8. Same as fig. 6, but for ¢ = 0.02.
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Fig. 9. Same as fig. 5, but for a = 0. The dashed line represents a fit to an algebraic singularity with
a small power (J = 0.30), while the dotted line corresponds to a purely logarithmic singularity
(see eq. (3.23)).
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Fig. 10. The quantity exp[Ar /R (k)], using the data of fig. 9 on the largest lattice available
(L = 8) for a = 0. Behaviour is close to linear for this particular combination, in agreement
with the assumption of a logarithmic singularity in k for a = 0.

TABLE 1

Estimates of the critical amplitude Az, the critical point k¢ and the critical exponent J, for
different values of a.

a L Ar ke o x2/d.of
0.000 4-8 22.93(16) 0.060(2) 0.30(3) 2.40
0.005 4-16 3.794(41) 0.2443(11) 0.624(6) 0.34
0.020 416 0.732(10) 0.4244(36) 0.628(20) 0.29
0.100 48 0.065(6) 1.17(4) 0.76(12) 1.32

Furthermore one would expect that the data for [-R (k) ]/? should lie close
to a straight line. This appears indeed to be the case, as shown in figs. 7 and 9,
and the data is strikingly close to a straight line over a wide range of k values,
providing further support for the assumption of an algebraic singularity.

For a = 0.1 the statistical accuracy is much lower than in the previous two
cases, and the results are presented only for comparison. In this case the average
curvature is quite small, even away from k¢, and finite-volume effects are starting
to become important. In general one would expect that in order to obtain results
relevant for the continuum limit (in the sense that the finite volume corrections
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Fig. 11. Average curvature R as a function of kc — k on a log-log scale, from a = 0 (top) to
a = 0.005, a = 0.002 and a = 0.1 (bottom). The data is the same as in figs. 5-10, but presented
on a different scale. The dotted line at the top corresponds to a logarithmic singularity, while the
remaining three straight lines correspond to § = 0.626. As before, 1 = 1 and the measure is dr2.

should be small), the scale of the curvature should be much smaller than the
average lattice spacing, but much larger than the size of the system,

1o |Btk.a) ! (3.17)

(12) (12) (1I%)L? '
(here L is a characteristic linear size of the system, in units of the average edge
length, L = V'1/4). Stated equivalently, in momentum space the physical scales
should be much smaller that the ultraviolet cutoff, but much larger than the
infrared one.

Finally in fig. 10 the average curvatures are shown on a log-log scale. Even
though the curvature is changing by as much as an order of magnitude, the results
at g = 0.005, a = 0.02 and, to some extent, even at a = 0.1, are consistent
with one universal critical exponents characterizing the transition. An average
of the lattice results so far then gives the estimate

6 = 0.626(25), (3.18)

in good agreement with previous estimates on smaller lattices (up to 8*) § =
0.62(5) [1]. In table 1 we summarize the results obtained so far under the
assumption of an algebraic singularity in R (k).
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The results for the average curvature R are not inconsistent with known re-
sults within the weak-field expansion in the continuum (at least for small ).
Substituting k~! = 871Gy, where G is the dimensionful bare Newton’s constant,
setting k. = cA2, where c is a constant independent of k, and A the ultraviolet
cutoff (here of the order of the average inverse lattice spacing, ~ (/2)~1/2), one
obtains from eq. (3.15)

R(Go) ~ —dr _10)5 [1—c./1287z(;0]'S

8§nG

—1 ¢ 5

87:_(;0) [1+5c/1 (-87Gy)

5(6—1)
2

N_AR(

(cA?)? (~87Go)* + -+ |,
(3.19)

so perhaps R(Gy) is possibly not even analytic at Gy = 0. Furthermore an
expansion in powers of Gy involves increasingly higher powers of the ultraviolet
cutoff A, as expected from a theory which is not perturbatively renormalizable
in Gy [8].

We note that the vacuum expectation value of the curvature can be used as
a possible definition of the effective, long-distance cosmological constant (or
equivalently as the definition for a length scale Ry associated with some large
average curvature radius),

( f V& R) 4),
RO.ka) ~ Vo (k )eff. (3.20)
As one approaches the fixed point at k;, (A/k).r — O and this length scale
becomes very large. If the system is of finite extent, with linear dimensions
L = V'/4, then the scaling laws for R give the volume dependence of the effective
cosmological constant at the fixed point,

k k é/v
(I)eﬁf(L)_ (I)(IO) L, (TL(;) : (3.21)

Here 6 /v = 1.54, and (k/4) ({y) is a ratio of bare coupling constant, at the scale
of the average lattice spacing /[y = m . (The volume dependence of the results
is a topic by itself, and will be discussed more in detail below). Therefore at the
fixed point the effective cosmological constant, which is of order one at scales of
the order of the cutoff, relaxes to zero as the overall volume is increased. Phrased
differently, the curvature is large in magnitude at short distances, and fluctuates
wildly, but its average becomes very small if large regions of space-time are
considered.

For a = 0, corresponding to the pure Regge action with no explicit higher-
derivative lattice contribution, however the situation appears not to be as clear.
First of all the path integral is still well defined (at least for sufficiently small

+
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|k|), since the deficit angles are bounded, and the edge lengths fluctuate around
some average value, which is determined by the interplay of the measure and the
cosmological constant term. Alternatively, one can think of the fluctuations in
the conformal mode as becoming bounded (again at least for sufficiently small
|k|) when a momentum cutoff of order z/+/{/2) is dynamically generated. But
in any case the assumption of an algebraic singularity for the average curvature
leads to a value for the curvature exponent which is much smaller than the
preceding estimates, d ~ 0.30(4). Since it is difficult to distinguish a small
power from a logarithm, this suggests the ansatz

Rika) _~ —dr(@) (ke(@) k) [“In(ke(@) = k)], (3:22)

and one then finds 6 = 0.01(2) and § = 1.05(6), with a lower chi-squared. The
smallness of the new J would seem to suggest that the singularity in the average
curvature for ¢ = 0 is in fact purely logarithmic,

-1
R(k,a) @ —Ar(a) [~In(k(a) - k)], (3.23)

corresponding to 6 = 0 and § = 1 in eq. (3.22). One finds in this case Ax =
28.3(5) and k. = 0.059(2), which is close to the algebraic singularity result of
table 1. Fig. 9 shows the curvature data with both the pure power (§ = 0.30)
and the pure logarithmic fit; the latter one is significantly better. Fig. 10 displays
the combination exp[ A% /R (k) ], which shows indeed close to linear behavior,
in agreement with the suggestion of a purely logarithmic singularity. A more
conservative conclusion about the ¢ = 0 case would be that the exponents are
certainly different from the previous cases (by several standard deviations), and
that the results are at least suggestive of a logarithmic singularity (J ~ 0).
From the analysis of the curvature fluctuation y (k) (defined in eq. (3.4))
one obtains similar values for § and k., but with somewhat larger errors, since
the fluctuations are more difficult to compute accurately than the averages. (Al-
ternatively, one can calculate the fluctuations as derivatives of the averages, but
this procedure would lead to estimates similar to the ones obtained before from
the curvature, since it is the same data that is being analyzed in a different way;
the errors are larger since a derivative of numerical data has to be taken first).
The results for the fluctuations computed directly are shown in figs. 12-14. If
one tries to fit the curvature fluctuation to an algebraic singularity, as in eq.
(3.16), the results for the exponents turn out to be completely consistent with
the previous estimate for J, but have a larger error. Therefore we only show in
the figures the fits obtained if we assume the values for J obtained previously
from the average curvature (J ~ 0.626 for a = 0.005 and 0.02). On the other
hand for a = 0 the previous discussion suggests that the singularity in R (k) is
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Fig. 12. Curvature fluctuation y  measured directly, as a function of k and for a = 0.005. The
line is a fit to the data assuming an algebraic singularity, with the exponent determined from
R(k), namely 1 - § ~ 0.374.
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Fig. 13. Same as in fig. 12, but now for a = 0.02.
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Fig. 14. Same as in fig. 12, but now for a = 0. The line represents a fit assuming a purely
logarithmic singularity in R (k) (see egs. (3.23) and (3.24) in the text).

close to being purely logarithmic; for the curvature fluctuation this would imply

rrtka) o~ Ay(@) (ke(@) —K)7" [~Intke(a) = k)], (3.24)

which is certainly quite consistent with the numerical results (see fig. 14).
Close to the transition at k. the average volume per site V;, expressed in units
of the average lattice spacing /; = /{/?), shows no appreciable singularity when
the critical point is approached from the smooth phase (k < k), as can be
seen from fig. 15. On the other hand in the rough phase (k > k) the volume
per site seems to approach smaller and smaller values as the lengths of the
runs are extended. In fact it would seem that in the rough phase the volume
per site can be made to approach zero, at least for some simplices. One could
therefore alternatively refer to this phase as the “collapsed” phase. Furthermore
the relaxation times become very long, with the system getting stuck in some
configurations without being able to get out of it again. Also, it is difficult to
see how the collapse of the simplices could be averted by choosing a different
lattice structure (for example a random lattice), since its properties seem to
be unaffected by changes in the measure or the action, at least to the extent we
have investigated them [2,9,17]. Indeed the collapsed phase appears even in the
simplest models based on a regular tessellation of the four-sphere [2,4]. Of course
the existence of such a diseased phase is not completely unexpected, and seems
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Fig. 15. Average volume per site, in units of the average edge length \f(ii), as a function of k
and for a = 0.005. The line is a polynomial fit to the data. There is no sign of a singularity for
k < ke = 0.244,

to be a reflection of the unbounded fluctuations in the conformal mode expected
for sufficiently large k. Indeed unbounded fluctuations in the conformal mode
in the continuum correspond to rapid fluctuations in the simplicial volumes,
and this is what is observed on the lattice for k > k., namely a rapid variation of
simplicial volumes when going from one simplex to a neighboring one (this does
not happen in the smooth phase). This phase is somewhat reminiscent of the
collapsed phase found in two-dimensional gravity in the Regge model (as well
as in the DTRS model) for sufficiently large D > 1 [9], and which corresponds
physically to branched polymers or trees. The analogy will become clearer below
when we discuss the fractal dimension in this phase (which was found to be less
than four [1]).

If one computes the volume susceptibility x (see eq. (3.5) and fig. 16), one
finds quite clearly that it approaches a finite value at k., suggesting the absence
of critical volume fluctuations, for all values of ¢ investigated. This situation
should be contrasted with the two-dimensional case, where volume fluctuations
(corresponding to the Liouville mode) are found to be massless, as expected
from continuum arguments, and is more similar to the three-dimensional case,
discussed in ref. [17]. Such a result is not unexpected in the case of gravity,
since fluctuations in the volume correspond in the continuum to fluctuations in
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Fig. 16. Volume fluctuation y, measured directly, as a function of & and for a = 0.005. The

line is a fit to the data assuming an algebraic singularity. There is no sign of divergence for
k < ke =~ 0.244; the volume fluctuations approach a constant at the critical point.

the square root of the determinant of the metric tensor, which couples to scalar
modes only (and therefore not to the graviton). Up to now we have seen no sign
of excitations that could be associated with a scalar particle. Critical fluctuations
in the curvature at the critical point, accompanied by the lack of any sign of
critical fluctuations in the volume, seem consistent with the appearance of a
massless graviton.

3.3. VOLUME DEPENDENCE

Since the critical exponents play such a central role in determining the exis-
tence and nature of the continuum limit, it appears desirable to have an inde-
pendent way of estimating them, which either does not depend on any fitting
procedure, or at least analyzes a completely different set of data. By studying
the dependence of averages on the physical size of the system, one can inde-
pendently estimate the critical exponents. Finite size scaling tells us that at the
critical point &k = k. the coherence length saturates at a value comparable to the
linear system size, ¢ = m~! ~ L. Thus if we set m ~ (k.—k)?, we should obtain
R ~ (ke — k)% ~ L=%/”_ Similar arguments can then be repeated for other ob-
servables. As discussed previously, the dependence of the results for the average
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Fig. 17. Volume dependence of the average curvature at the critical point, R{k), for a = 0.005
and k¢ = 0.244. For large L the slope of the line corresponds to § = 0.626, as obtained from the
curvature (figs. 5 and 7).

curvature on the size of the system is quite small except close to the critical point,
where the correlation length becomes comparable to the linear system size. A
more careful analysis in the vicinity of the critical point for a = 0.005 shows
that the average curvature at k. =~ 0.244 decreases as the system size is increased
(see fig. 17). In the figure the data points correspond to L = 4,6,7,8,10, 16;
we prefer not to use results for smaller lattices since the higher-derivative term
(proportional to a) contains next-nearest neighbor couplings. The lengths of the
runs varied between about 60k iterations on the L = 4 lattice to 0.6k on the
L = 16 lattice; the largest lattices were obtained originally by duplication from
the smaller previously thermalized lattices. If we describe the decrease of the
average curvature R at k. as a function of L = V'1/4 (here VV = N, is simply the
number of sites in the system) by a critical exponent o,

R(L),, et o/l L7, (3.25)

then we find ¢; = 3.3, c; ® —9.4, and ¢ =~ 1.55(18). Ideally one would have
hoped for a straight line in fig. 17, but this cannot be expected for such small sys-
tems, and the regular pre-factor has to be included to account for the transients.
Standard scaling arguments at a second order phase transition would suggest
that o is related to d by ¢ = dd/(l + ), which gives § = 0.63(11), indeed
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Fig. 18. Volume dependence of the curvature fluctuation at the critical point, y (k¢), again for
a = 0.005 and k. = 0.244. The lines indicate the expected slope corresponding to 1 —J = 0.374,
as obtained from the curvature (figs. 5 and 7).

completely consistent with the previous determination of 4.

A similar analysis can be performed for the curvature fluctuation. For a finite
system one does not expect any real divergence, but rather a peak that grows
sharper as the lattice volume is increased. As the infinite-volume limit is taken,
the height of the peak should grow like some power of the lattice volume. Thus
one expects again

xR~ (e + /L) L%, (3.26)

The numerical results are shown in fig. 18. Again there is some curvature in the
data, and we see indications of some transients.The same type of transients were
also found in three dimensions, where the estimates for ¢ from fits to R (k) had
much smaller errors than the finite size scaling estimates [17]. Here one finds
c; = 0.16, ¢ ~ 1.11, and ¢’ = 0.64(11). Again standard scaling arguments
at a continuous phase transition suggest that ¢’ is also connected to § by the
relation ¢'=q/v=d (1 — d)/(1 + &), which would give § = 0.72(4), which
is quite consistent with the estimate J =~ 0.63 obtained previously, given the
uncertainties of the method. Furthermore one would expect ¢’ + 20 = d = 4,
and we obtain for the sum 3.74(36) which is adequate. It is interesting to note
that if the transitions had been first order, with a finite correlation length at the
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TABLE 2
Summary of the results for the critical exponents of pure four-dimensional simplicial quantum
gravity

Method Observable a Measure J v alv

Fit R(k) 0 (di?) 0.01(2) 0.25(3) 4.0(2)
R (k) 0.005 (di2) 0.62(2) 0.41(1) 0.93(6)
R (k) 0.02 (di?) 0.63(3) 0.41(1)  091(7)
R (k) 0.1 (di?) 0.76(12) 0.44(3) 0.55(33)

Finite size RL 0.005 (di?) 0.63(11) 0.41(3) 0.91(31)
XL 0.005 (di?) 0.72(4) 0.43(2) 0.65(10)

Average (a > 0) 0.67(8) 0.42(3) 0.79(21)

Ist order 0 1/4 4

1-c scalar I 1/2 0

critical point, one would have expected ¢’ = d = 4 [20], which is ruled out by
many standard deviations for a = 0.005. For a scalar field in four dimensions,
o’ = 0, which is also ruled out by our results (in particular ¢’ = 0 would
correspond to d = 1, which is inconsistent with all the previous results).

An alternative way of determining the size dependence is via the use of a
scaling function. One writes R (k,/)L%/" = f((k.—k)L'") close to k. and for
large L, where the critical point and the exponents are free parameters. Using a
scaling function of the form a 4+ bx¢, one finds fora = 0.0055 = 0.64(3) ingood
agreement with the previous determinations. Finally it is expected that the value
of k. itself should depend on the size of the system. Indeed such a dependence
is found when comparing k. (as obtained from the algebraic singularity fits
discussed previously) on different lattice sizes. One writes

ke(L)  ~ ke(o0) +c L7V, (3.27)
For a = 0.005 and using lattice sizes in the range L = 2 — 16 one finds v =
0.49(22). Again the estimate is not very accurate, but is consistent with the
scaling expected at a second order critical point (from § = vd — 1, one gets
o = 0.96(88)).

In conclusion the estimates for  obtained from finite size scaling at a = 0.005
are in agreement with the results quoted previously from the fits to R(k) at
a = 0.005 and a = 0.02. On the other hand the finite-size scaling estimates
fail to be more accurate than the fit results, since there is some curvature in the
data of fig. 17 and 18. The results from the fits to R(k) for a = 0.005 and
a = 0.02 appear for now to give by far the best estimates for J, with the smallest
statistical errors and with the least systematic uncertainties. Table 2 summarizes
the results for the critical exponents obtained so far.

It would seem that in the smooth phase the system develops a mass gap, since
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one does not observe any critical fluctuations for k < k., and the correlation
length seems to be finite there. One can determine the scaling exponent for
this dynamically generated mass from § by a simple scaling argument (if the
transition is continuous, as it seems to be for sufficiently large a), and one can
attempt to calculate this mass scale directly by computing an invariant corre-
lation function. If one calls the dynamically generated mass m, then one has
m ~ (ke — k) ~ (=R(k))"/?, with v = (1 + §)/d, and with a calculable
constant of proportionality close to k.. After restoring the correct dimensions
for R, which has dimensions of an inverse length squared, one obtains

R ~ —c A*%V mdlv, (3.28)

where c is a dimensionless constant dependent on the higher-derivative coupling
a, and A the ultraviolet cutoff. The dynamically generated mass can be calculated
in principle from the edge or curvature correlation functions at fixed geodesic
distance (to be discussed below). Alternatively it can be extracted from the
physical size dependence of averages of local operators. For example on the
torus one expects in the presence of a mass gap

Rr(k) — Roo(k) ~  m(k)V2 732 e mL, (3.29)

L>1/m(k)

where here L = V'!/4 is the physical “linear size” of the system, and m (k) is a
physical mass. If the boundary conditions are not periodic, then the finite-size
corrections are not exponential in the system size, and the above formula is no
longer valid. In fig. 19 we show results for the mass parameter extracted from
the finite-size corrections to R (k) at a = 0.005. Not unexpectedly the errors are
large, but the results are roughly consistent with the expected decrease as k. is
approached. The exponent though is presumably known, since v = (1 +6)/4 =
0.41. For k close to, but less than, k. one can write

m(k,a) qu(g)Am(a) (ke(a) —k)*, (3.30)

and from fig. 19 one estimates 4,, ~ 1.9(3) (in the graph, the mass is in units
of lattice spacings (= 1), which have to be multiplied by the average edge length
lo = +/{I%) ~ 2.25 in order to obtain “physical” distances).

The dimensionless ratio of mass squared to curvature is then given simply
in terms of the average curvature and the ultraviolet cutoff, with an exponent
related to J,

m2 _ _( R)(l—é)/ZJ. (3.31)

R A2
Close to the fixed point, the ultraviolet cutoff can be traded for a renormalized,
effective Newton’s constant Geg ~ A4>~¢ (which can be extracted in a number of

different ways, for example from the renormalized propagators at fixed geodesic
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Fig. 19. Mass parameter (defined in eq. (3.29)), as determined from the volume corrections to
the average curvature, as a function of k; — k for 4 = 0.005. The line indicates the expected slope
corresponding to an exponent ¥ = 0.407, as inferred from the curvature (figs. 5 and 7).

distance [1,2], or from correlations of Wilson lines). So the above relation
between the mass scale, the curvature and Newton’s constant becomes
2 (1-0)/25
%~ —C (R Gur) /

In ref. [1] G was estimated to be a number of order one in lattice units (Gegr ~
0.13), which would imply that the constant of proportionality in eq. (3.32) is
also of order one, C ~ 12). For our calculated value of J, the exponent on
the r.h.s. is about 3/10. If the average curvature and the physical G are small,
then this mass scale is exceedingly small. Of course at the fixed point, where
the continuum limit is recovered, both m and R are zero, while G appears
to approach a finite limit. We shall leave further investigations of this issue for
future work.

(3.32)

3.4. FRACTAL DIMENSIONS AND PHASE DIAGRAM

Some further insight into the nature of the two phases of quantum gravity can
be obtained by exploring correlations which are of a purely geometric nature.
Previously we found indications that some geometric properties of the discrete
simplicial manifold appear to be close to euclidean in the smooth phase [1,2],
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Fig. 20. Growth of the surface volume of a three-sphere as a function of geodesic distance from the

center, in the smooth phase (k < kc) (squares), at the critical point (k = k¢) (diamonds), and

in the rough (collapsed) phase (k > k¢) (triangles). The continuous line corresponds to fractal
dimension dy = 4.0, the dotted line to dy = 2.6.

in spite of the fact that the curvature fluctuations diverge at the critical point.
Continuing the investigation of ref. [1], we have considered how the number
of points within geodesic distance d and d + Ad (where Ad is of the order of
the average edge length) scales with the geodesic distance itself. This quantity
is equivalent, up to a constant dependent on the average lattice spacing m,
to the physical extent of the “surface” within geodesics distance d and d + Ad.
Finding the shortest path between two points on the curved lattice is quite time
consuming, but for relatively small distances one finds

N(d) ~ d%, (3.33)

with dy = 3.1(1) for k < k., (smooth phase), d, = 3.2(2) at £k = k., and
dv ~ 1.6(2) for k > k. (rough phase). The actual data is displayed in fig.
20. As discussed in refs. [2,4], in the rough phase the lattice tends to collapse
into a degenerate configuration with many thin elongated simplices of small
volume. This situation is reflected in the fact that d, is much smaller than 3,
the euclidean value. We conclude that this phase does not lead to a physically
acceptable continuum limit. In the smooth phase on the other hand, as well as
at the fixed point, the fractal dimension of space time is consistent with the flat
space value of four (dy = d — 1 = 3). It appears therefore that in this model lies
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a suggestion for the mechanism by which a nearly flat space-time can emerge
from the strong short-distance fluctuations of the metric in quantum gravity.

Turning to the phase diagram, we observe that for different values of a the
curvature vanishes along some line in the (k, a) plane, and for some small neg-
ative a = ag = —0.0011 a stable ground state ceases to exist (in other words,
one crosses over into the rough phase). This not unexpected, since for suffi-
ciently negative a the higher derivative term can completely cancel some of the
higher-order lattice corrections present in the Regge action (which in turn is
only an approximation to the pure Einstein action for small curvatures). This
phenomenon is already seen in the weak-field expansion, which gives the cor-
rect order of magnitude for ay. The leading higher-order corrections O (k*) have
small coefficients in the Regge-Einstein action, while the corresponding terms
have a relatively large coefficient (O(400)) in the higher-derivative action con-
tribution [18]. On the other hand the higher-order lattice and radiative correc-
tions to the pure Regge—Einstein action (@ = 0) seem to stabilize the theory, at
least for the d/? measure.

Quantitatively ag can be estimated in the following way. For different values of
a the average curvature vanishes along a line in the (k, a) plane which resembles
quite closely a parabola, at least for small a,

alke) = ag+ap kZ + -+ (3.34)

Assuming this form, one finds ap = —0.0011(5) and a; = 0.119(6). Alter-
natively one can try to determine gy by assuming that the average curvature
amplitude (close to k.) diverges for small a like

Ar(a) ~ Ao (a—ap)™° (3.35)

From the results in table 1 one finds g9 = —0.0011(6) and ¢ = 1.47(9), in
good agreement with the previous estimate for ag.

It is also of interest to consider what happens for large a. The results of ref. [15]
would suggest that, for sufficiently large a, the scaling laws should be determined
by asymptotic freedom in a. Thus for a typical mass scale 4 (a) one would expect
the asymptotic freedom scaling predictions

ula) ~ exp(—B; 'a + O(lna)) (3.36)

where By = 133/(160xz?) is the one-loop beta function coefficient for a, com-
puted in [15]. As a consequence, one would perhaps expect that the curvature
amplitude should follow the same law,

Ar (@) ~ (@ ~ g [exp(~foa +O(na))]” (337

The results for Az (a) are shown in fig. 21. For now it appears that there is no
sign of any exponential scaling for large a, even though the rapid decrease of the
amplitude for large a is not inconsistent with such a scaling, with Ag = 0.48. It
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Fig. 21. Curvature amplitude Ax (a) (defined in eq. (3.15)), as determined as a function of a.

The dotted line corresponds to the power law of eq. (3.35), while the straight line corresponds to

the exponential asymptotic freedom prediction of eq. (3.37). There is no sign (yet) of exponential
scaling.

remains to be seen whether even larger values of @ (which can only be studied
on larger lattices) will show an onset of exponential scaling behavior.

Returning to the discussion of the phase diagram, we can illustrate our con-
clusions so far by referring to fig. 22. We have discussed previously that for
a = 0.005 and a = 0.02 the estimates for the critical exponents rule out a first-
order phase transition by several standard deviations. There are a number of
ways of characterizing a first-order transition. The criterion of ref. [20] suggests
that the leading thermal exponent should be proportional to the dimensionality
of space time (or ¥ = 1/d) along the fluctuation-induced first order transition
line. So one would expect § = 0, v = 1/4 and a/v = 4, which seems to be
completely excluded for ¢ = 0.005 and a = 0.02 (and presumably also for
a = 0.1).

On the other hand for a = 0 the situation is quite different, and the results
discussed previously suggest indeed that the transition is close to first order,
since & ~ 0. In general it is difficult to entirely exclude the presence of a weak
first-order phase transition, if it has a very small latent heat. Indeed for k ~ 0 and
a ~ —ag a sharp discontinuity in the average curvature develops in our model
(it jumps from zero to infinity). But the results we have found in the pure Regge
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Fig. 22. Phase diagram for pure four-dimensional simplicial gravity with a higher-derivative
coupling a (for fixed A = 1). The squares correspond to computed values of k;(a). The curve
therefore represents an estimate for the phase transition line a(kc), along which the curvature
vanishes and the curvature fluctuations diverge, and which separates the “smooth” from the
“rough” (or collapsed) phase of gravity. Along the continuous line the curvature is infinite. Along
the dotted line the transition is continuous, with a well defined lattice continuum limit; along the
dashed line the transition appears to be first order, with no continuum limit. The point marked
by a star represents the approximate location of a multicritical point.

gravity case (a = 0) suggest the presence of some sort of multicritical behavior,
with a line of first-order transitions (leading to no lattice continuum limit, since
the correlation length is finite at the critical point) separated from a line of
second order transitions by a tricritical point located somewhere betweena = 0
and a = 0.005. We should stress that while the critical exponents in general are
universal quantities, the location of critical points is not universal. Therefore the
location of critical lines, multicritical points etc. refers to our specific action and
the d/? measure. In particular our results do not preclude that with a different
measure or a modified action the first-order transitions can be turned into second
order ones. But within the context of our model, with its action and measure, a
non-trivial continuum limit is only obtained if a small higher-derivative term is
added to the pure Regge action. On the other hand this is no loss, since we have
argued that the lattice gravitational action is not unique.



H.W. Hamber / Phases of simplicial quantum gravity 379
3.5. CORRELATIONS

The previous discussion has dealt almost exclusively with averages of invari-
ant local operators such as the volume, the curvature and their fluctuations. We
have shown that a great deal of information about the theory can be obtained by
considering just these local quantities. But in general the information obtained
is restricted only to the leading long-distance properties, and higher-order cor-
rections as well as additional information can only be obtained by considering
correlations between operators separated by some geodesic distance. In gravity
complications arise since the distance between two points is a fluctuating quan-
tity, and the Lorentz group used to classify spin states is meaningful only as a
local concept. In addition the simplicial formulation is completely coordinate
independent, and the introduction of the local Lorentz group requires the defi-
nition of a vierbein within each simplex, and the notion of a spin connection to
describe the parallel transport between flat simplices.

For a set of local operators O, we consider the connected correlations at fixed
geodesic distance d,

Gap(d) = (0u(x) Op(y) 0 (|Ix —y| - d))e. (3.38)

A suitable set of local operators in the continuum is represented for example
by the (fourteen) algebraically independent coordinate scalars which can be
constructed from the components of the Riemann tensor

R(x), R;w/laR‘uMG(-x)a RMVRIW(X); ‘ (3.39)

On the lattice one can construct discrete approximations to these operators [2].
Since the deficit angles are proportional to the gaussian curvatures associated
with the hinges, in general more than one hinge has to be considered and the
corresponding lattice operators are not completely local, in the sense that they
can involve a number of neighboring hinges as well as the angles describing their
relative orientation

VER(X) ~ Y Gydy,
hDx
VERuw1sR*Y (x) ~ > (6pdn)* Vi ... (3.40)
hDx
But one can argue that the lattice theory is already formulated exclusively in
terms of coordinate invariant quantities, the edge lengths, and all the possible
angles which are uniquely determined from them (the underlying lattice “struc-
ture” is reflected only in the local coordination number). It is therefore legitimate
to consider for example connected correlations between edges or curvatures of
the type

GHd) = (B(x) B d(x—yl—d))e
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GB(d) = (8ada(x) SpAg () 5(Ix — v - d))e (3.41)

Here the indices o,f label the edges and hinges (triangles) within a hypercube
respectively, but more complicated extended operators can also be considered.
With the specific simplicial lattice subdivision we are considering, Gc(.ia) (d)isa

15 x 15 matrix, while G((f;) (d) is a 50 x 50 matrix if we restrict ourselves to
variables within one hypercube. The correspondence between the length of the
edge connecting point g to point b, and the continuum metric g,, (x) is

b
_ _ dx#dx¥ 1,2
= /a ds = / dr(guw (x )47 dr) (3.42)
so in the first case one is considering correlations in the metric of the type
d dn#dn?
/dr (800 (&) L LTy 172 12 /da 2 (1) SN2 25 (1x = ] — d))e
dr d‘r do do (3.43)

and the integrations are restricted to small regions surrounding x and y. In the
second case we use the fact that for a small closed loop

UL ~ 8uo f rgdxt (3.44)

where U,,(,',’) is a bivector perpendicular to the hinge 4 (we follow here the notation
of ref. [2]). Therefore the second correlation function in equation eq. (3.41) is
equivalent to

(Acf;(l"jdfl)l(x) Ac }i (Iydn®) () d(x —y|—d)). (3.45)

where C and C’ are two small contours of area A¢ and A, respectively, and the
symbol 1 indicates here that the two corresponding parallel transport matrices
are to be projected along the bivector perpendicular to the hinge (in other words,
in the direction of U). Of course rather similar correlations are obtained if
exp(d) — 1 is considered instead of J itself. (Also, for very small loops we can
rewrite the integral over the affine connection in terms of a projection of the
Riemann tensor in the plane of the loop). If the deficit angles are averaged over
a number of contiguous hinges which share a common vertex, we obtain

() ondn D OwdAn 6(1x —y|—d))c (3.46)
hDx h'Dy

which corresponds to correlations in the scalar curvature,

~ (VER(x) VER(Y) 6(|lx —y|—d)) (3.47)

In general the above correlations will contain particles of different spin (0,2,..),
but at large distances the lightest (massless) state with spin two, the graviton,
should dominate, if the theory reproduces classical general relativity at large
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distances. (Spin one is excluded, since the elementary lattice parallel transporters
are represented by real matrices). For purely massive excitations one would
expect

Gap(d)  ~ Top(d) exp(-md) + T,p(d) exp(-m'd) +---
a>1/m (3.48)

where m and m' are the masses associated with the lowest excitations (m < m'),
and in general the matrices T will have some power-law dependence on 4 like
T ~ d~3/2. The simplest way to extract the lowest mass is perhaps from the
moments of the correlation function

M, = /oodxx” G(x), (3.49)
0

and then for example one has m ~ [(15/4)M,/M,4]'/?. At the critical point
k = k. (where the graviton mass presumably vanishes) the leading behavior
should become a power law

C

Gap(d) ~ Top 7 (3.50)

where T is some numeric matrix with entries of order one, C is a constant that
sets the overall scale, and ¢ an integer power which depends on the scaling di-
mensions of the chosen operators. There are some indications that at the critical
point the correlations in the edge lengths, as well as in the curvature, behave
according to a power law [1,24]. Furthermore one expects that correlations in
the volume should behave very differently from correlations in the curvature
(this is what was found for the zero momentum components, the fluctuations
discussed previously ). Indeed by expanding around flat space, and in the gauge
9,h*" = 0, one obtains for the graviton propagator in momentum space [15]

4p 2P
kD0 (p) = prio pvdo 3.51
wia (P) P2+ (2ajk)p* | —p? + 1@k (351)

and therefore schematically on has, in the weak-field limit,

' po
-~ —ip{x—yy___ _*
(V& (x)/g()) /dp e —p2 + (ajk)p*
' . 4P
- —ip(x=y) —_——
(VER(xX)VER()) /dp e /dq R 4) o Gamp
4p2)

R
XR(p.0) 37 (2a/k)(p — q)* (3.52)

where R represent some momentum-dependent vertices. This result would seem
to imply no propagation of the volume density fluctuations, due to the wrong sign
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of p? (“anti-ferromagnetic coupling”) in the scalar component of the propagator.
Some of the preceding analysis might be simplified if we take into account the
fact that close to the critical point the physical geometry of space-time appears
to be close to euclidean. While there are strong fluctuations in the curvature,
the average separation between lattice points has a finite variance at the critical
point, and the almost vanishing average curvature should allow us to introduce
a global Minkowski metric at large distances.

From the preceding arguments one would expect that, for example, the largest

eigenvalue A (d) of the edge—edge correlation matrix G(il) (d) should decay

like 1/d? for large geodesic distances d. The quantity C; = 472d?A{), (d) should
approach a constant, which can be taken as a possible definition of the effec-
tive Newton’s constant in units of the ultraviolet cutoff, 1/keg = 872Gy = C).
Alternatively, one can compute G directly from the invariant curvature corre-
lation function (eq. (3.46) and (3.47)). It would seem from our results that this
quantity tends to a finite value as k tends to k.. From the curvature-curvature
correlations for a = 0.005 and close to k = k. = 0.244, one finds 1/kes ~ 8.3
in lattice units, which is comparable to the bare critical value 1/k =~ 4.10. More
generally, our results seem to indicate that while the average curvature in units
of the ultraviolet cutoff tends to zero as one approaches the fixed point, the
effective Newton’s constant approaches some finite value, which is of the same
order as the cutoff.

Alternatively one could determine 1/k.s by computing the analogs of corre-
lation between Wilson lines. Integrating the parallel transport equation for an
arbitrary vector S,

Fr (399
along some path C connecting x and y, we get
¥
S,() = [Pexp/ I(z)dz4)," S, (x) (3.54)

In general we can compare two vectors at different locations only if one of them
is first parallel transported; the same procedure has to be followed in order to
define correlation functions involving two coordinate vectors U and V'

y
Gov(d) = (U*(x) [Pexp [ T3(2)422], Vo) 8(x =yl = ).
x (3.55)

The correlation between the world lines of two point particles separated by an
invariant distance d corresponds to the choice U# = dx* and V# = dy#, and
is given by the expression

y
{ mdx“ dy, [Pexp/x I'i(2)dz"] ") (3.56)

W,
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For a single closed path C we obtain the Wilson loop
WI[C] = (Tr[PexpfF.;,dx" - 1)) (3.57)
c

Like the deficit angle d;, this quantity is of course coordinate independent. In
gravity the Wilson loop does not have the same interpretation as in gauge theo-
ries, since it is not associated with the newtonian potential energy of two static
bodies. In ordinary gauge theories at strong coupling the Wilson loop decays
like the area of the loop, due to the strong independent fluctuations of the gauge
fields at different points in space-time and ensuing cancellations. In gravity the
situation is quite different since the connections cannot be considered as inde-
pendent variables, and the fluctuations in the deficit angles at different points in
space-time are strongly correlated. Some of the above correlation functions have
also been discussed recently in the context of continuum weak-field perturbation
theory [21].

Since the interior regions of the simplices are flat, the elementary lattice par-
allel transport matrices can have non-vanishing support only at the interface
between two simplices. The effect of parallel transport around a closed loop C
is then described by

[I;[L(j,j + 1)]W = [exp {5hU__<h)}]W (3.58)

where L(j, j + 1) is the elementary parallel transport matrix between contiguous
simplices j and j + 1, and U,f,},' ) is a bivector perpendicular to the hinge 4,
1

(h)
Uss = 537 ewpollorlly (3.59)

with /¢ and [f,) the two vectors forming two sides of the hinge /. Comparison
of equations (3.54) and (3.58) means that for small loops we may make the

identification
Rups EP° ~ S,UP (3.60)

where 279 is the area bivector of the loop. This relation emphasizes the fact that
the deficit angle gives only information about the projection of the Riemann
tensor in the plane of the (small) loop C orthogonal to the hinge.

The parallel transporters around closed elementary loops satisfy the lattice
analogs of the Bianchi identities, which are easily derived by considering closed
paths which can be shrunk to a point without entangling any hinge [5]. Then the
product of rotation matrices associated with the path has to reduce to the identity
matrix. Thus, for example, the ordered product of rotation matrices associated
with the triangles meeting on a given edge has to give one, since a path can
be constructed which sequentially encircles all the triangles and is topologically



384 H.W. Hamber / Phases of simplicial quantum gravity

trivial

I ["] =1 (3.61)

v
hinges A 4
meeting on edge p

These relations are simply a reflection of the fact that simplicial gravity (irre-
spective of the specific form of the lattice action) is entirely formulated in terms
of invariants.

It is convenient to consider planar loops, which are spanned by the geodesics
tangent to a plane at some point in the center of the loop. On the simplicial lattice
the Wilson loop is computed by evaluating the deficit angle, (and its moments),
associated with a large planar loop,

((6c)") = (O 6;—2m)") (3.62)
sCC
where s labels the simplices traversed by the loop, and 8, is the appropriate
internal dihedral angle. Using the definition of the bivector U,, and eq. (3.58),
one finds

WIC] = (Tr[Pexp/x rdx’ — 1)) ~ ((6¢c)?) (3.63)

While it is easy to compute the average deficit angle for one triangle, for a
large loop the average deficit angle will fluctuate around a rather small value,
due to the smallness of the average curvature. Indeed for a small loop, with area
bivector 27, the change in a vector S is proportional to the local average value
of the Riemann tensor

AS, = R*, Z% S, (3.64)

which will be small (~ R) close to the critical point. The Wilson loop measure-
ment requires therefore great accuracy in the asymptotic region (7, L > 1), and
in particular close to the critical point (k ~ k.) where, as discussed previously,
the fluctuations in the curvature diverge in the infinite-volume limit.

Finally an entirely new set of questions can be addressed if a scalar field
¢(x) is introduced, in order to mimic the effects of dynamical matter fields (as
opposed to static, infinitely heavy ones, which appear in some of the correlations
discussed previously). One adds to the gravitational action the contribution

161 = 3 SV (BT + UG (3.65)
(L) i

which introduces matter vacuum polarization contributions. Here ¢, is defined

on the sites, Vj; is the volume associated with the edge /;;, while V; is associated

with the site i. Again there is some freedom in how these volumes are defined

on the lattice (baricentric or dual subdivision [2]), but one expects that univer-

sality will lead to the same long-distance properties in the continuum limit. It
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is expected that the critical exponents will be affected by the presence of matter
fields; if the magnitude of the matter contribution to the beta function in 2 + ¢
dimensions (see eq. (3.11)) can be taken as an indication for the size of the dy-
namical matter corrections in four dimensions, then such corrections should be
rather small (we should point out though that not all calculations of the one loop
perturbative beta function agree on its magnitude [8]). As an extreme case one
could consider a situation in which the matter action by itself is the only action
contribution, without any kinetic term for the gravitational field, but still with
a non-trivial gravitational measure; integration over the scalar field would then
give rise to a non-local gravitational action. The potential U (¢) could contain
quartic contributions, whose effects are of interest in the context of cosmological
models where spontaneously broken symmetries play an important role.

4. Conclusion

We have seen in the previous sections that pure simplicial quantum gravity,
without dynamical matter fields, leads already to a rich phase diagram and a
number of interesting features. In some regions of the bare coupling constant
space one does not recover a sensible four-dimensional theory (“rough” or “col-
lapsed” phase), while in other regions (“smooth” phase) one finds a well defined
ground state. In the smooth phase the lattice continuum limit is characterized by
a set of universal critical exponents, describing the nature of curvature fluctua-
tions close to the fixed point. At the fixed point the curvature vanishes, suggesting
the emergence of flat Minkowski space-time at large distances, in spite of strong
short distance fluctuations in the metric and curvatures. The appearance of the
two phases of gravity is not unexpected, if one recalls the arguments about the
unboundedness of the conformal mode fluctuations in the continuum, at least
for sufficiently small G. The results are very different from what is found in two
dimensions in all lattice models of gravity, including the present model (where
fluctuations in the volume diverge instead [9]), and resemble somewhat the
three-dimensional case discussed in ref. [17]. There a phase transition is found
for some k.(a), again between a smooth and a rough phase of gravity. Similar
phase transitions have also been found in the context of the dynamical triangu-
lation model in three [11], and more recently in four dimensions [12,13].

The interplay between measure and cosmological constant contribution de-
termine the distributions of edge lengths and simplex volumes on the lattice,
and the latter are shown to be well behaved up to the transition point at k..
The shape of the curvature distribution close the critical point suggests that
there are significant deviations from gaussian fluctuations. For sufficiently large
higher-derivative coupling the transition is continuous, with a curvature critical
exponent § =~ 0.626. These results indicate therefore that the lattice continuum
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limit for simplicial quantum gravity exists, and is non-trivial (in the sense that
the exponents do not fall into a known universality class). The nature of the
divergent fluctuations at the critical point is precisely what is expected from a
massless graviton (divergent curvature fluctuations, no divergence in the vol-
ume correlations ), even though we should caution that only a very limited set of
observables have been computed. For the pure Regge—Einstein action the tran-
sition seems to be first order, which implies no lattice continuum limit unless
a small lattice higher-derivative term is added (in other words the continuum
limit cannot be taken along the axis a = 0).

A finite-size analysis confirms (with large errors) part of the previous conclu-
sions. Since there is a very large number of hinges (triangles) per site (50), the
lattices cannot made large enough to improve on the accuracy of the exponents
obtained from the fits to the average curvature (which has in comparison rather
small errors), but the exponents are certainly consistent.

In the smooth phase there is evidence that the lowest lying excitation which is
responsible for critical behavior has a mass; this would presumably correspond
to a dynamically generated graviton mass in the presence of a non-vanishing
average curvature. At the fixed point the:results are consistent with a vanishing
mass. The fractal dimension of space-time is consistent with four in the smooth
phase up to and including the critical point. In the rough or collapsed phase the
fractal dimension drops to about two, indicating that in the lattice there appears
to be a proliferation of long, elongated simplices with small volumes. Finally
we have argued that while the average curvature approaches zero at the critical
point, the effective Newton’s constant is most likely finite there, when expressed
in units of the ultraviolet cutoff.

There is a close qualitative, and in some cases even quantitative, similarity
between our results and results obtained recently with the dynamical triangu-
lation models in four dimensions [12,13]. (The hypercubic lattice model of
refs. [22,23] also seems the indicate the presence of some sort of a phase tran-
sition, whose nature should be further investigated). These models represents a
somewhat simplified version of Regge’s original formulation, in the sense that
all edge lengths are taken to be equal, and the only dynamics left is in the inci-
dence matrices. Even classically the relationship with gravity is not completely
clear, since a weak-field expansion such as the one discussed in refs. {3] and
[17] is still lacking, and the models lack the classical continuous diffeomor-
phism invariance eéven in the flat limit. On the other hand in two dimensions
reparametrization invariance seems to be recovered in all models at the quantum
level, which represents a rather remarkable result. The loss of continuous diffeo-
morphism invariance in the smooth limit in these models is partly compensated
by the fact that at least the calculation of curvatures and volumes becomes sim-
ply a bookkeeping problem, and leads for example to a significant simplification
of the programs. The question there remains whether the physical continuous
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diffeomorphism, which is explicitly broken on the lattice, is recovered in some
continuum limit which is non-trivial (the identification of the continuum dif-
feomorphism group with simply the permutations of vertices on the lattice, as
advocated in ref. [13], is difficult to justify). But it appears to be a common
feature of all lattice models of gravity that some local invariance is lost by going
on the lattice (and some is retained exactly), and that at least some models,
including the Regge discretization, suggest the possible full restoration of the
diffeomorphism group in the vicinity of the non-trivial fixed point, as signaled
by long-range fluctuations in the physical curvatures.

In the dynamical triangulation model a phase transition separating the “smooth”
from the “rough” phase of space-time was found recently, very similar in nature
to the one discussed here, as well as in refs. [1,2]. This would represent a very
encouraging result, since it would suggest that the two discrete lattice models
belong, as perhaps expected, to the same universality class, and therefore have
the same lattice continuum limit. It appears that there is even some quantitative
agreement, as far as the critical exponents are concerned, between the results
of ref. [12] and the results presented here and in ref. [1]. The importance of
having two entirely different regularization schemes which give rise to the same
lattice continuum limit need not be emphasized here. On the other hand the
largest lattices used in ref. [13] to estimate the critical exponent ¢ are compara-
ble in size to the smallest one employed in this work, and a detailed quantitative
comparison might therefore be premature at this point (while the systematics
of the two models might be quite different, we find that our results would be
inconclusive on such small lattices). In addition the curvatures are continu-
ous in the Regge model, while they are discrete in the dynamical triangulation
model, and one would therefore expect the approach to the continuum limit to
be slower in the latter case. Also, in the present case periodic boundary condi-
tions are used, which are known to minimize boundary effects (see discussion
in the previous sections); for the topology of the sphere boundary effects could
be larger. One should also be reminded that no solution to the classical Einstein
equations with a cosmological term exist on the torus, and no solutions without
one exist on the sphere. It should not come as a surprise therefore that different
models employing different boundary conditions lead to different values for the
average curvature at the critical point; it is not obvious after all that the average
curvature at the critical point should be a universal quantity.

Many questions have remained open. We have not investigated yet in detail
how the results depend on the choice of invariant measure. In two and three
dimension the detailed features of the invariant measure over the /2’s seem to
play no role as far as the continuum limit is concerned [9,17], and one might
expect a similar result to remain true also in four dimensions. Indeed on the basis
of universality of the lattice continuum limit one would expect that the results
for exponents and other infrared sensitive quantities should not be affected, as
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long as the measure does not become singular (or non-local). In addition we
mentioned in the previous section why it would be of interest to investigate
some of the issues discussed in the present paper in the presence of dynamical
matter fields. Finally, the results we have presented for correlation functions at
fixed geodesic distance have been very limited and rather preliminary, due to
the technical difficulty of computing these correlations accurately. We hope to
return to these questions in a future publication [24].

The author has benefited from conversations with B. DeWitt, J. Hartle, P.
Menotti, G. Parisi and R.M. Williams. The present research was supported in
part by the National Science Foundation under grant NSF-PHY-8906641. Nu-
merical computations were performed at the NSF-sponsored NCSA, PSC and
SDSC supercomputer centers.
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