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Abstract 

We show how the Newtonian potential between two heavy masses can be computed in simplicial 
quantum gravity. On the lattice we compute correlations between Wilson lines associated with 
the heavy particles and which are closed by the lattice periodicity. We check that the continuum 
analog of this quantity reproduces the Newtonian potential in the weak field expansion. In the 
smooth anti-de Sitter-like phase, which is the only phase where a sensible lattice continuum limit 
can be constructed in this model, we attempt to determine the shape and mass dependence of the 
attractive potential close to the critical point in G. It is found that non-linear graviton interactions 
give rise to a potential which is Yukawa-like, with a mass parameter that decreases towards the 
critical point where the average curvature vanishes. In the vicinity of the critical point we give an 
estimate for the effective Newton constant. 

1. Introduction 

The lattice formulation presents a natural framework for determining the structure of  
nonperturbative effects in quantum gravity. Since Einstein gravity is not perturbatively 
renormalizable, the computation of  radiative corrections in the weak field expansion 
around a flat metric cannot be controlled until at least a partial resummation of  the 
perturbative series can be performed. Even then, contributions which are non-analytic in 
the coupling cannot be determined. From the analytical side there is some hope that an 
expansion in the coupling can be performed close to two dimensions, and thus provide 
some insight into the qualitative properties of  the theory, while a numerical approach 
has the advantage that it can attack the four-dimensional case directly, without having 
to rely on an expansion in a small parameter. 

Among the properties that should emerge from a consistent theory of  quantum gravity 
one can list the recovery of  almost fiat space at large distances, and the appearance of  an 
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attractive Newtonian potential between heavy bodies. In a consistent lattice formulation 
of gravity the computation of the Newtonian potential is in principle no more difficult 
than the determination of the static potential in QCD. The Equivalence Principle could 
then be tested by employing different sources for the gravitational field. 

A crucial question, which has up to now only been partially addressed, is the existence 
of a lattice continuum limit. As in any lattice field theory, a continuum theory can only 
be recovered if the lowest lying excitation of the theory (the graviton) can be made to 
vanish, at least in some region of bare parameter space. It is only in this region that the 
details of the underlying lattice structure are washed out and the long distance universal 
properties of the continuum theory start to emerge. In this respect the correct excitation 
spectrum of the weak field expansion represents only a necessary, but not a sufficient 
requirement. 

Even the existence of a continuum limit by itself (whose appearance would be sig- 
naled by the presence of long wavelength fluctuations in coordinate invariant fluctuations 
and correlations) does not prove that General Relativity is recovered at large distance 
until one is able to show that the behavior of correlations is associated with a massless 
spin-2 particle. There is some hope though that if the action and measure have the 
correct symmetry properties, and if the correct states propagate in the weak field limit, 
then the same should be true in the full nonperturbative treatment of the theory. In this 
respect the determination of the Newtonian potential provides a crucial ingredient, since 
its long distance properties (combined with the Equivalence Principle) are characteristic 
of General Relativity. 

Regge's formulation of gravity in terms of simplicial manifolds with varying edge 
lengths is the natural discretization for General Relativity [ 1 ]. At the classical level, it 
is the only lattice model known to reproduce in four dimensions General Relativity, with 
continuous curvatures, classical gravitational waves, and no graviton doubling problem 
in the weak field limit. The correspondence with continuum gravity is particularly trans- 
parent in the lattice weak field expansion, with the invariant edge lengths playing the role 
of infinitesimal geodesics in the continuum. In the limit of smooth manifolds with small 
curvatures, the continuous diffeomorphism invariance of the continuum theory is recov- 
ered [2,3]. But in contrast to ordinary lattice gauge theories, the model is formulated 
entirely in terms of manifestly coordinate invariant quantities, the edge lengths, which 
form the elementary degrees of freedom in the theory [4,2]. Of course in perturbation 
theory, the lattice theory remains non-renormalizable just as the continuum theory [ 5,6]. 
This does not exclude the possibility that the theory might exist non-perturbatively, and 
well-known examples of such a behavior exist for simpler models both in the continuum 
and on the lattice [7]. 

Recent work based on Regge's simplicial formulation of gravity has shown in pure 
gravity the appearance in four dimensions of a phase transition in the bare Newton's 
constant, separating a smooth phase with small negative average curvature from a rough 
phase with large positive curvature. For sufficiently large higher derivative coupling the 
transition is continuous, with the curvature vanishing at the critical point with a universal 
exponent which has been determined to be approximately t~ = 0.63(3) [8,9]. While the 
fractal dimension seems rather small in the rough phase, indicating a tree-like geometry 
for the ground state, it is very close to four in the smooth phase close to the critical 
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point. A calculation of the critical exponents in the smooth phase and close to the 
critical point seems to suggest that the transition is continuous (at least for sufficiently 
large higher derivative coupling) with divergent curvature fluctuations, and that a lattice 
continuum might therefore be constructed. 

If the model has any resemblance to General Relativity at large distances, it should 
give rise to an attractive potential between heavy particles which should fall off like 
l/r, with subleading classical relativistic and quantum corrections. In general this is only 
expected to happen in the vicinity of the critical point at Ge, where the lattice continuum 
limit is to be taken, following the general prescription of Wilson for determining the 
low energy properties of quantum cutoff theories [ 10]. In the context of the weak-field 
expansion, the problem of determining the potential from the correlations of world-lines 
associated with two heavy particles has been discussed recently by Modanese in Ref. 
[ 11 ], and part of our work can be regarded as an extension to the non-perturbative case. 

In this paper we will present some first qualitative result regarding the nature of 
the potential in simplicial gravity, as derived from numerical studies (on a lattice with 
24 × 164 = 1 572 864 simplices), and will begin by considering the determination of the 
potential from the correlations of Wilson lines in the framework of the weak field expan- 
sion. The paper is organized as follows. In Section 2 we introduce the simplicial action 
and measure for the gravitational degrees of freedom. We then discuss the formulation 
and properties of Wilson line correlations and the potential in QED (Section 3) and 
quantum gravity, in the context of the continuum weak field expansion (Section 4) and 
on the lattice (Section 5). In Section 6 we present our results and in Section 7 some 
discussion. In Section 8 we discuss a simple mean field model for quantum gravity, and 
finally Section 9 contains our conclusions. 

2. Act ion  and measure  

We write the four-dimensional pure gravity action on the lattice as 

2 2 2 Ig[l] = E Vh[ A-kAh~h/Vh +aAhSh/V~ ] '  (2.1) 
hinges h 

where Vh is the volume per hinge (which is represented by a triangle in four dimensions), 
Ah is the area of the hinge and 8h the corresponding deficit angle, proportional to the 
curvature at h. All geometric quantities can be evaluated in terms of the lattice edge 
lengths I/j, which uniquely specify the lattice geometry for a fixed incidence matrix 
(for a complete list of references on Regge gravity see for example Ref. [ 12] ). The 
geometry is varied by varying the lengths of the edges, while the topology is fixed 
by assigning the incidence matrix 1. The underlying lattice structure is chosen to be 
hypercubic, with a natural simplicial subdivision to ensure its overall rigidity [2,13-15]. 
In the classical continuum limit the above action is then equivalent to 

1 In the discrete dynamical triangulation model one keeps the edge lengths equal to one, and varies the 
incidence matrix. In this approach continuous diffeomorphism invariance is absent even for fiat space. It is 
unclear if such models have a lattice continuum limit above two dimensions [30,31 [. 
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4 ~ . . ~ , p ¢  . . . . . . .  (2.2) 

with a bare cosmological constant term (proportional to A), the Einstein-Hilbert term 
(k = 1/87rG), and a higher derivative term proportional to a [ 16-18]. For an appropriate 
choice of hare couplings, the above lattice action is bounded below, due to the presence 
of the higher derivative term. In the continuum one finds that the action is bounded below 
for a > 3k2/8,~, while for the regular tessellation of the four-sphere as represented by 
a 5-simplex one finds that the action is bounded below in the weak field expansion for 
a > 0.471 k2/a [ 13]. 

In the quantum case, for non-singular measures and in the presence of the A-term, 
a stable lattice can be shown to arise naturally for sufficiently small k [ 14,13,15], 
thus allowing a non-perturbative definition of the Euclidean path integral. The higher 
derivative terms can be set to zero (a = 0), but they nevertheless may be necessary 
for reaching the lattice continuum limit [9], and are in any case generated by radiative 
corrections already in weak coupling perturbation theory. They are also present in the 
weak field expansion of the Regge-Einstein action. 

The cosmological constant term with A > 0 ensures that the volumes are bounded, 
while the measure prevents any of the edge lengths from becoming too small. Without 
loss of generality, one can set the bare cosmological constant A = 1, in which case all 
lengths are measured in units of A -1/4. The theory then contains a natural ultraviolet 
cutoff, related to the average lattice spacing, l0 = V/(12}. It can be considered as a 
fundamental length scale [ 19], as an artificial device necessary in order to construct a 
lattice continuum limit, where it is sent to zero keeping physical quantities fixed, or as 
a quantity inherited from some more fundamental theory such as superstrings (where 
l0 = g ~ ) .  We should add that since the model is formulated in a finite box, one does 
not expect any infrared divergences as long as the box size is finite. The box size can 
then be considered as an additional parameter which can be varied in order to study the 
renormalization properties of the theory [ 21 ]. 

The gravitational measure contains an integration over the elementary lattice degrees 
of freedom, the edge lengths. For the edges one writes the lattice integration measure 
as [ 13-15] 

cx) 

= Vq dlq F [ l ] ,  

edgesi j  0 

where Vij is the "volume per edge", F[l]  is a function of the edge lengths which enforces 
the higher-dimensional analogs of the triangle inequalities, and the power o" = 0 for the 
lattice analog of the DeWitt measure for pure gravity. The factor Vi~ 'r plays a role 
analogous the factor ( v~ )  2~ which appears for continuum measures [22,23]. A variety 
of measures have been proposed in the continuum [22-25] and on the lattice [26,27], 
some of which are even non-local. Since there is no exact gauge invariance on the 
Regge lattice away from smooth manifolds (nor in any other local lattice formulation of 
gravity), one cannot uniquely decide a priori which is the most appropriate gravitational 
measure. On the other hand, the above measure integrates over the invariant degrees of 



H. W. Hamber, R.M. Williams~Nuclear Physics B 435 (1995) 361-397 365 

f 
Fig. 1. Square Wilson loop in QED. 

freedom of the lattice theory, the edge lengths. Different gravitational measures which 
have been proposed differ only in the volume factors v ~  appearing in the measure. We 
regard therefore the above measure as the most natural one on the Regge lattice. 

We note that no  cutoff is imposed explicitly on small or large edge lengths, if a 
non-singular measure such as d/2 is used. We believe that this fact is essential for the 
recovery of diffeomorphism invariance close to the critical point, where on large lattices 
a few rather long edges, as well as some rather short ones, start to appear [9]. On the 
other hand, an effective ultraviolet cutoff is generated dynamically, due to the presence 
of the cosmological constant term (at large l), and from the measure (at small l). 
This cutoff is of the order of the average edge length, 10 = X/(/2). We also note that 
no gauge fixing is necessary in this approach, since the volume of the diffeomorphism 
group, which appears for smooth enough manifolds, cancels out between numerator 
and denominator when invariant averages are computed. The influence of the measure 
and the dependence of the results on the underlying lattice structure have also been 
systematically investigated recently in Ref. [28], where a one-parameter family of 
measures has been introduced in the Regge formalism. The results seem to indicate that 
the effects of changing the measure are small for appropriately scaled physical quantities 
such as the average curvature, as long as the basic form of Eq. (2.3) is preserved, and 
in particular the generalized triangle inequality constraints. 

3. Wilson loop and potential in QED 

In an ordinary gauge theory such as QED and QCD the static potential can be 
computed from the Wilson loop [32]. To this end one considers the process where a 
particle-antiparticle pair (an electron and a positron in QED, a quark-anti-quark pair in 
QCD) are created at time zero, separated by a fixed distance R, and re-annihilated at a 
later time T (see Fig. 1). 

In QED the amplitude for such a process associated with the closed loop F is given 
by the Wilson loop 
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W(F) = ( e x p { i e / a ~ ( x ) d x ~ } ) ,  (3.1) 

F 

which is a manifestly gauge invariant quantity. We recall here briefly the essential 
ingredients of the calculation in QED, in order to prepare for the perturbative quantum 
gravity computation in the next section. From the Euclidean QED action, 

I(A) = ¼ f d4x G,,fx)F'fx), (3.2) 
one obtains the photon propagator in real space 

1 8~  
Au~(x--y) = 4zr2 ( x _ y ) 2 .  (3.3) 

If the calculation is done with a lattice cutoff, then the photon propagator at the origin 
is finite. 2 Since the integrals over the fields appearing in the QED Wilson loop are 
Gaussian, one gets immediately 

(exp{ie/a~dx~})=exp{-le2//dx~dy~(a~(x)a~(y))} (3.5) 

F F F 

=exp{-½e2//dx~dy"A~,,,(x-y)}. (3.6) 

F F 

Two types of contributions arise (from x and y on the same side versus opposite sides). 
These involve the two types of integral, 

T T 
1 : 

dy _y)2_t_e  2 ~-• - 2 l o g - , •  
e 0 

where • ~ 0 is an ultraviolet cutoff of the order of the lattice spacing, and 

(3.7) 

T T 

dy dX(x_y)2+R2=2-Rarctan-R-log 1 + ~ -  7 . (3.8) 
0 0 

Adding all contributions together, and specializing to the case T >> R, one gets 

// ~ 1 T  1 ( T )  dx~dy%4~, (x - y) ~ (T + R) 2~" R ~-2 log , (3.9) 
F F 

2 On a hypercubic lattice one has 

d4p 1 

( 2 ~ )  4 4 ~ - ~  sin2(p~/2) 
= 0 .154933 . , .  (3.4)  
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and therefore for the Wilson loop itself 

(exp{ief a~dx~}) 
F 

367 

e 2 e2T e 2 (T)  
e x p { -  4--~e (T + R) + ~-~ ~ + ~-~2 log + . . - }  

(3.10) 

,-, exp[-V(R)  T) ] ,  (3.11) 
T>>R 

where use has been made of the fact that for large times the exponent in the amplitude 
involves the energy for the process times the time T. Then for V(R) itself one obtains, 
up to a constant, 

1 ( f }) e 2 V(R) = - lim log(exp ie A~dx ~ ,-, c s t . -  - -  (3.12) 
r-~oo T 47rR' 

F 

which is the correct Coulomb potential for two oppositely charged particles. 
To obtain the potential it is not necessary to consider closed loops. Alternatively, in a 

periodic box one can introduce two long parallel lines in the time direction, separated by 
a distance R and closed by the periodicity of the lattice, and associated with oppositely 
charged particles, 

(exp{ief a~,dx~'}exp{ief a~dy~}) (3.13) 
F F '  

 -(exp{-e2 fdx" f f f f f ...}), 
F F t F F F ~ F ~ 

(3.14) 

which gives 

{ e  2 eaT e a (T)  } 
exp -~-~eT + + log + ~ e -W(n) (3.15) . . . .  

and therefore the same result as before for the potential V(R). This second setup is 
quite useful in practical applications in lattice QCD [ 33 ], and provides for an efficient 
and accurate method for computing the potential, since the time T can be taken as large 
as the box size allows. 

4. Gravitational ease - Perturbation theory 

In the gravitational case there is no notion of "oppositely charged particles", so 
one cannot use the closed Wilson loop to extract the potential [34]. One is therefore 
forced to consider a process in which two separate world-lines for the two particles are 
introduced. 
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J 
R R 

Fig. 2. World lines for two heavy particles at rest and lowest order graviton exchanges. 

It is well known that the free fall equation for a heavy spinless particle can be ob- 
tained by extremizing the space-time distance travelled [ 37]. The length of the geodesic 
connecting the two points is then 

d~n = rrfin d(a,b[g),  (4.1) 
x~(r) 

where the distance along a path x~'(r) between the points a and b in a fixed background 
geometry, characterized by the metric g~a,, is given by 

r(b) 
f l g  dx~dx~ (4.2) d(a, blg) = dr ~,~(x) ~ dr 

r(a) 

Thus the quantity 

r(b) 

 fdrlg . dxgdx~ (4.3) 
,(x) ~ dr ' 

"r(a) 

where/z is the mass of the heavy particle, can be taken as the Euclidean action contri- 
bution associated with the heavy particle. 

Next consider two particles of mass /zl, /z2, propagating along parallel lines in the 
"time" direction and separated by a fixed distance R. We can consider space-time to 
be asymptotically flat in the time direction, but as we shall discuss below this is not 
necessary. We shall consider here a process of the type described in Fig. 2. Then 
the coordinates for the two particles can be chosen to be x ~' = (7", + R / 2 , 0 , 0 ) .  The 
amplitude for this process is a product of two factors, one for each heavy particle [ 11 ]. 
Each is of the form 

( f i g  dx#dx" } (4.4) L(O; /.q) =exp -/.tl d~- ~ , (x)  ~'r d~" " 

For the two particles we write the amplitude as 
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Amp. _= W(0, R; /~l,/z2) = L(0; /zi) L(R;  /x2). (4.5) 

For weak fields we set gu~ = 6 ~  + hu~, with huv << 1, and therefore 

dx ~ dx u 
guy(x )  dr  dr  = 1 + hoo(x).  

Then for above geometry (two parallel world lines) the amplitude reduces to 

T T 

W(/Xl,b~2) = exp{-/zl i dr~/l + hoo(r) } exp(-lz2 fdr'v/l + hoo(r') }. 
o 0 

(4.6) 

Expanding the square roots, 

T T 

e-~"' exp{-½., fd. h~(.)+...} .-"' exp{-J., f..'..<.'~ +...}. 
0 o 

(4.7) 

and factoring out the metric-independent rest mass contribution one has 

T T 

...e-'"l+'<"'{l+',,~<,fd, id~-'hoo(,)hoo(,')+... } . ( 4 . 8 )  

o 0 

After averaging over the hu~ field (with (hu~) = 0) one obtains 

T T 

< ' < " . ' " > : ' -  
0 0 

(4.9) 

In momentum space the graviton propagator, in the DeWitt-Feynman gauge a~h~,~ = 0, 
is given by [38] 

A~#~(k) = 16~-G 8~u6#~+3~VS#u 
k 2 

and therefore in real space 

(4.10) 

(hal3(x)huv(y)  ) 4G 6 ~ S p v  + 6av6#~ - 6~#t~,~ 
- ~r ( x  - y ) 2  ( 4 . 1 1 )  

In our case we just need 

4G 1 
(hoo(r)hoo(r ' ) )  = ~r ( r -  r ' )  2 + R 2 ' (4.12) 
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and the averaged amplitude then becomes 

e - ( ~ l  +/~2)T 

T T 

{ , + . , . . 7 I . . i . .  ' } (7" - -  7") 2 + R 2 q- . . . .  
o 0 

(4.13) 

or, since G is assumed to be small, 

T T 

{ °S..S d, , ,~ exp -(/ . t l  +/x2) T +/.q/zz ~ (~-_ ~-,)2 + R  2 
0 0 

+} (4.14) 

The integrals are easily evaluated, 

T T 

1 = 2 T arctan T - l o g  1 + 
dr df'(T_r,)2+R2 R -~ 

0 0 

T T 
¢r - 2 log + 

T>>R . . . .  

(4.15) 

and thus the averaged amplitude is given by 

(W(0, R; /Xl,/~2)) = exp{ -T  (/zl +/zz-G/~...____~2 ) + . . . } .  (4.16) 

Since the amplitude gives, for large times, the energy E for the state, <Amp) ,-~ e -zr ,  one 
finds that the potential has indeed the expected form, V(R) = - G  lxli~2/R. Incidentally 
we note that, had we done the calculation in d dimensions, we would have obtained 
for the coefficient of the R-dependent part 2(d - 3 ) / ( d  - 2)R 3-d which vanishes, as 
expected, in d = 3 [39]. 

The contribution involving the sum of the two particle masses is R independent, 
and can be subtracted, if the Wilson line correlation is divided by the averages of the 
individual single line contribution. For one particle one has to lowest order in the weak 
field expansion 

(L(0; /xl)) - (exp{-/zl f / dxudx~ e -mr .  (4.17) 

One can then compute the correlation between (closed) Wilson lines of length T, 
separated by an average distance R, and extract the Newtonian potential from 

V(R) = - lira 1 (W(0, R; /Zl,/~2)) ~ - G/xl/z2 (4.18) 
r+oo T log (L(0; #z,))<L(R; /z2)) R 

If one is only interested in the spatial dependence of the potential, one can simplify 
things a bit and take the two masses to be equal, #Zl =/~2 =/z. 

To higher order in the weak field expansion one has to take into account multiple 
graviton exchanges [40], contributions from graviton loops and self-energy contributions 
to the heavy particles. The first two modify the shape of the Newtonian potential, while 
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Fig. 3. Lowest order graviton exchange contributions to the Wilson line. 

the latter has the effect of  renormalizing the mass of  the heavy particles which enter 
in the potential. According to the Equivalence Principle, one would then expect the 
potential to involve these effective, renormalized masses only 3. To see this effect, it is 
instructive to compute the average of  o n e  Wilson line, 

T 

exp{-lz i dTVII + hooO') }, (4.19) 
0 

for which the lowest order diagrams are shown in Fig. 3. 
Expanding again the square root, 

T T 

e-'exp{-J, f d. boo(.) + ~. id- h'oo(.) +..}, ( 4 . 2 0 )  

0 0 

one gets 

T T 

~e-"r{1-½~ f drhoo(,)+l~ fdrh~o(Z) 
o o 

T T 

+l/z2 i dr S d: hoo(z)hoo(.')+... }. (4.21, 
o o 

One then averages over the h~. field ((h~.)  = 0),  using the graviton propagator given 
previously. 

Next one ne~ts the regulated integral (e  --~ 0) 

T T 

i'.S"...,'.,+ " " (") c ~ E2 = 2 - •  arctan--E--log 1 + ~ - ~  

o o 

3 We thank E Menotti for a discussion on this point. 
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rr T 
"~ -- T - 2log - ,  (4.22) 

T>>e E E 

and the expectation value then becomes 

e-Ur{l+gl~T 4G +~Ix24G[~T-21°gT] + O ( G 2 ) } - r r e  2 - --rr , (4.23) 

or  

(L(O;m))=exp{-p'T[ 1G#G27re 2 2~- + (9 ( ~ ) ] }  

jz2G/'a" 
~" ( T )  e-~T'  (4.24, 

where we have introduced the effective mass/2, 

( G ~G ) 
/2 =/~ 1 2rre 2 2--7- + . . . .  (4.25) 

A partial resummation of the perturbation expansion can be done without having to 
rely on the weak field expansion. Introduce the operator associated with the exponent 
of one Wilson line operator 

f / dx~ dx ~ (4.26) E'r=]drV&zv(x)-dTr dr' 
1" 

where F is the path associated with the heavy particle. We have paths in mind that are 
close or equal to geodesic and are very long (of lengths comparable to the box size) 
and separated from each other by a large distance. Then we can write 

(e - # l  •rt e-mZ:rz ) (4.27) 

1 2 1 2 
= (( 1 -/~1£1-1 + ~ . tZ lE l . lE& + . . . ) ( 1  - / z 2 E / -  2 + --t*2ErzEr=2! + ' "  ")) , (4.28) 

or  

(1 - t* l12r,  - IXz£r, + tX l lX2£r l  I2& + l l * 2 1 2 r l £ r l  + ll*29£r2£& + 0(~3)) 
" 2 .  2 .  " 

(4.29) 

Next we write the part that does not involve correlations between the lines F1 and /'2 
as 

1 2 1 - ~I(LFI} -1- ~.Iz1(LrzLr~) +... ~- e -#~r , (4.30) 

which should be valid if the path F1 is very long. We shall also assume here that the 
two very long paths have comparable lengths T. Here/21 =/.tl + 6/xl is the effective, 
renormalized mass. Then the whole expression above in Eq. (4.29) can be factored as 
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1 2 1 2 

x (1 +/xl/z2(Lr, Lr2) -/zl/z2(Er,)(£l'2) + . . . )  , (4.31) 

which one can exponentiate, 

_~ exp {-/2t T} exp {-/22T} exp {+/21/22 (£r~ £r2)e + . . . }  , (4.32) 

where (...)e denotes the connected correlation. Higher order terms will then involve 
triple correlations of the type (£r~ Lr~ £15). In the front of the last correlation we have 
also replaced/z by/2. Thus 

T V(r) = -/21/22 { (Lr,£r:)  - (£r,)(Lr:) } + . . . .  (4.33) 

where r is some average separation between the two particle paths. This last equation 
shows that the potential itself is related to the connected line-line correlation function. If 
the correlation is positive, then the potential should be attractive. The above expansion 
shows therefore the correspondence between the potential and the connected correlation 
between line operators. In the weak field expansion it of course just reproduces the 
result obtained previously, namely 

T T 

TV(r)=-gl/~E(( f dzv/l +hoo(,) f d,'~/i +hoo(,')) 
0 0 

T T -qd.,l, + + 

0 0 

T T 

0 0 

G 
= -T/z l /z2- - .  (4.34) 

F 

5. G r a v i t a t i o n a l  c a s e  - L a t t i c e  t h e o r y  

At this point, the prescription for computing the Newtonian potential for quantum 
gravity should be clear. For each metric configuration (which is a configuration of edge 
lengths on the lattice) one chooses a geodesic that closes due to the lattice periodicity 
(and there might be many that have this property for the topology of a four-toms), with 
length T (see Fig. 4). One then enumerates all the geodesics that lie at a fixed distance 
R from the original one, and computes the associated correlation between the Wilson 
lines. After averaging the Wilson line correlation over many metric configurations, one 
extracts the potential from the R dependence of the correlation of Eq. (4.18). Indeed, 
by this method it should be even possible to check for homogeneity and isotropy of the 
underlying random lattice. 
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Fig. 4. Correlations between Wilson lines closed by the lattice periodicity. 

On the lattice one can construct the analog of the Wilson line for one heavy particle, 

L ( x ,  y, z) = exp{- /z  ~ l i } ,  (5.1) 
i 

where edges are summed in the "t" direction, and the path is closed by the periodicity 
of the lattice in the t-direction. Since we envision the simplicial lattice as divided up in 
hypercubes according to the prescription of Ref. [2], the points x, y, z can be taken as 
the remaining labels for the Wilson line. 

For a single line we expect 

(L(  x ,  y, z))  = (exp{-/z ~ li} ) "~ e -~T , (5.2) 
i 

where T is the linear size of lattice in the chosen t direction, T = (V) 1/4, where (V) is 
the average volume of the space-time lattice. The correlation between Wilson lines at 
average "distance" R is then given by 

l log [ ( L ( x , y , O ) L ( x , y , R ) )  ] ,,, V ( R ) .  (5.3) 

In practice it is better to assume that for large R >> l0 the potential has the form 

e - m R  
V ( R )  ~ - G ( R )  /Zl/Z2 - - ,  (5.4) 

R >> m -1 R 

corresponding to a Yukawa potential, allowing for the possibility of a small graviton 
"mass" m. This is suggested by the fact that in anti-de Sitter space the graviton propaga- 
tor has an exponential tail at large distances, which should reflect itself in the behavior 
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of the potential [41,42]. And in fact the "smooth phase" of lattice gravity, which is 
the only physically acceptable phase in this model, has (R) < 0 up to the critical point 
at Ge [9]. Classically, the characteristic "mass" appearing in this case is related to the 
non-vanishing scalar curvature R < 0 of anti-de Sitter space, 

rn= l /a0,  with R = - 1 2 / a  2. (5.5) 

This happens in spite of the fact that no explicit mass is given to the graviton, and 
therefore presumably no Ward identities need to be violated in the quantum case (a 
similar situation arises in three-dimensional gravity, where the transverse-traceless mode 
(the graviton) can acquire a mass without violating gauge invariance [43] ). On the 
other hand, such a behavior should not be unexpected given the presence of the infrared 
cutoff a0 that appears in an anti-de Sitter space. 

A similar result is found in the weak field expansion around flat space [38,45], where 
the presence of a cosmological term gives rise to a "mass" for A < 0, 

m 2 = - 2 a / k  = - R / Z ,  (5.6) 

although arguments based on the weak field expansion about flat space in the presence 
of a cosmological constant should be taken with care, due to the presence of the tadpole 
term, linear in the weak field hu~. For de Sitter space (R > 0), it is known that no such 
mass term can arise, and in fact it has been argued recently that (Minkowski) de Sitter 
space is inherently unstable [44]. 

In the anti-de Sitter case the Einstein equations for the vacuum become 

-OZg~,,, - 2Agu,, = 0,  (5.7) 

with A related to the Ricci scalar via R = 4A = 4 h / k .  Thus for negative scalar curvature 
the mass is real. The range associated with the potential is then ,,~ h i ( m e ) .  In the real 
world this number must be very small. From the fact that super-clusters of galaxies 
apparently do form, one can set a limit on the range, > 1025cm, or m < 10-3°eV [45]. 

6. Numerical results 

Let us now discuss the numerical methods employed in this work and the analysis of 
the results. As in our previous work, the edge lengths are updated by a straightforward 
Monte Carlo algorithm, generating eventually an ensemble of configurations distributed 
according to the action of Eq. (2.1) and measure of Eq. (2.3). Further details of  the 
method as applied to pure gravity are discussed in Refs. [ 14,9], and will not be repeated 
here. In this work the edge length configurations already generated in Ref. [9] were 
used as a starting point. 

For computing the potential, we considered lattices of size 16 x 16 x 16 x 16 (with 
65 536 sites, 983040 edges, 1 572864 simplices). Even though these lattices are not 
very large, one should keep in mind that due to the simplicial nature of the lattice there 
are many edges per hypercube with many interaction terms, and as a consequence the 
statistical fluctuations can be comparatively small, unless measurements are taken very 
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close to a critical point, and at rather large separation in the case of the potential. The 
results we present here are rather preliminary, and in the future it should be possible to 
repeat such calculations with improved accuracy on a much larger lattice. 

As usual the topology is restricted to a four-toms (periodic boundary conditions). We 
have argued before that one could perform similar calculations with lattices employing 
different boundary conditions or topology, but the universal infrared scaling properties 
of the theory should be determined only by short-distance renormalization effects. The 
renormalization group equations are in fact expected to be independent of the boundary 
conditions, which enter only in their solution as it affects the correlation functions 
through the presence of a new dimensionful parameter, the linear system size L = (V) I/4. 

In this work the bare cosmological constant ,t appearing in the gravitational action 
of Eq. (2.1) was fixed at 1 (this coupling sets the overall scale in the problem), and 
the higher derivative coupling a was set to 0 (pure Regge-Einstein action). For the 
measure of Eq. (2.3) this choice of parameters leads to a well behaved ground state for 
k < kc ,-~ 0.060 for a = 0 [9,28]. The system then resides in the "smooth" phase, with a 
fractal dimension close to four; on the other hand for k > kc the curvature becomes very 
large ("rough" phase), and the lattice tends to collapse into degenerate configurations 
with very long, elongated simplices [ 14,13,15]. For a = 0 we investigated six values of 
k (0.00, 0.01,0.02, 0.03, 0.04, 0.05). The case a = 0, which we have chosen to analyze 
first, represents the simplest situation, where explicit higher derivative terms are absent. 
In the future we plan to investigate the behavior of the potential for a small but nonzero, 
and in particular in the regime a > 3k2/8~, where the Euclidean action is bounded below 
in the continuum. 

From physical considerations it seems reasonable to impose the constraint that the 
scale of the curvature in magnitude should be much smaller than the average lattice 
spacing, but much larger than the size of the system, or in other words 

(125 << (12)17~1 -~ << (v) '/2. (6.1) 

This corresponds to the statement that in momentum space the physical scales should 
be much smaller that the ultraviolet cutoff, but much larger than the infrared cutoff. It 
also corresponds to the fact that in ordinary lattice field theory we usually require 

L -1 < m  < t o  1 , (6.2) 

where L is the linear size of the system, m a typical mass, and 10 the lattice spacing. 
This fact prevents us from studying values of k close to the critical point ke, where the 
curvature becomes small and the correlation length (or inverse graviton mass) becomes 
larger than the system size. Conversely, far away from kc the curvature becomes rather 
large in magnitude, and the results become sensitive to the details of the ultraviolet 
cutoff. The above constraint then requires that k be rather close, but not too close, to 
ke, so as to be located within the "scaling window" of Eq. (6.2), where results relevant 
for the continuum theory should hopefully be obtained. 

Another source of error comes from the fact that on a finite lattice there will be 
fluctuations in the critical value of k, kc. We have considered lattices where the number 
of degrees of freedom is of order 106 . The energy density is not fixed, and there are 
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fluctuations of order N -1/2. For k close to kc in a rough approximation kc - k is 
proportional to the energy E, and one expects fluctuations in kc from configuration to 
configuration, with a Gaussian distribution and a width proportional to A E / E  ,,~ N -1/2, 

7:'(k) ~ exp [ -A(kc  - k ) 2 N / k  2] , (6.3) 

where A is some numerical coefficient. One must therefore stay in a region where 

Nconf ( (  exp [A(kc - k)2N/k2c] , (6.4) 

where Nconf is the number of configurations one is considering. This means in particular 
that one cannot get too close to kc on a small lattice, or otherwise one will encounter 
an instability [46]. 

On the 164 lattice we generated 1100 consecutive configurations at a = 0, for each 
value of k. The results for different values of k can be considered as completely sta- 
tistically uncorrelated, since they originated from unrelated configurations. Results for a 
larger statistical sample are in progress and will be presented elsewhere. 

We computed the potential following the method described in the previous sections, 
using several values for k close to kc. Before one computes the potential, a choice has 
to be made for the mass of the heavy particle/x. In principle one would like to make/.~ 
as large as possible. On the other hand, when /z is very large, the average of a single 
Wilson line becomes very small and one runs into numeric precision problems; for 
example fo r / z  = 1 the Wilson line on a 164 lattice is of order 10 -16. So one is forced 
to consider smaller values o f / z  such that they can be handled by the precision of the 
machine. We have tried initially three values for/x, 0.5 0.25 and 0.125, and have found 
roughly consistent results for the scaled potential V ( r ) / t z  2 (see discussion below). In 
the following (except in one case) we will use /z = 0.5 for which we believe that 
double precision (<16  decimals) is adequate. For this choice of bare heavy mass the 
renormalization effects for the mass itself are rather small. We find for all values which 
we have studied 81z ,.o -0 .026  to -0.036,  with the renormalization effect increasing 
slightly towards the critical point. In the following we shall neglect such a small effect 
and present the results for the potential in scaled form by dividing by /x  2 = 0.25. 

Figs. 5-12 present our results for the potential. As discussed previously, the expec- 
tation is that the potential in the quantum theory close to the critical point should be 
attractive (V(R) < 0), that it should decrease like 1/r  close to the ultraviolet fixed point 
at Gc, and that it should scale like/22, for ~1 =/x2 = ix. The first encouraging result 
is that close to the critical point the potential is indeed clearly attractive, V ( r )  < 0. At 
very short distances, comparable to one or two average lattice spacings, we expect the 
potential to show some oscillations due to the underlying lattice structure, and this is 
indeed what is observed, like in the case of the curvature-curvature correlation [47]. 
The oscillations could be reduced by using a larger bin width for the distance and 
averaging the potential within the bins, but then only few points would be left to dis- 
play. This could be useful on a larger lattice. In fact, we have chosen to average the 
potential at distances of zero and one lattice spacing and present one single point at 
r = lo/2 ~ 1.18, since at such short distance we expect to see mostly lattice artifacts. 
As usual the errors in the potential are estimated by using a standard binning procedure. 
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Fig. 5. Computed scaled potential -V ( r ) / t z  2 for h = 1 and a = 0, and k = 0.03 ( x ) ,  0.04 ( A ) ,  and 0.05 
(o).  (kc ~ 0.060). The lattice has 164 sites, and the average lattice spacing for this range of parameters is 
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Fig. 6. Potential V(r) for k --0.05 (o) only. The continuous lines represent best fits to the data of  the form 
cexp( -mr) / r  (with m = 0.12), while the dotted lines represent fits to c/r cr (with o" = 1.67). 
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Fig. 7. Potential V(r)/iz  2 on a linear scale, again for A = 1 and a = 0, and k = 0.03 ( x ) ,  0.04 ( A ) ,  and 
0.05 (o) .  (kc ~ 0.060). The lines represent best fits to the data of  the form - c / r  for r > l0 = 2.36. 
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Fig. 8. Ratios of  potentials V(21~)/V(I~ ) for three different choices for the heavy masses 
(/z = 0.125,0.25,0.5) at k = 0.04. For a mass-squared dependence one expect the ratio to approach 4, 
independent of  distance. 
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Fig. 9. Graviton mass parameter m squared versus bare coupling k = 1/(8¢rG). 

For distances greater than five average lattice spacings ( r  > 12) the errors become quite 
large and we would need higher statistics to get useful results. Not unexpectedly, the 
potential is more difficult to determine at large distances, where it becomes small and 
tends to be drowned in the statistical noise. Also for k < 0.03 the potential becomes 
very small (which makes it difficult to measure accurately) and for k close to zero it 
turns positive at large distances (corresponding to a repulsive potential). This is not 
completely unexpected, since, at least in the weak field expansion, the potential changes 
sign when k < 0. But of course the weak field expansion loses much of its validity 
when we move away from almost flat space, which corresponds to k ~ kc. Here we 
seem to find that this happens at a slightly larger value of k ~ 0.02. We will return to 
this issue later in the paper. 

In Fig. 8 we show the heavy mass dependence for the potential as obtained at one 
value of k and for a small statistical sample (100 configurations of the edge lengths), 
but using always exactly the same set of configurations for ~ = 0.5, 0.25, 0.125. As 
can be seen from the graph, the results are quite consistent with a / z  z dependence of 
the potential ( if  we fit the mass dependence to a power by averaging over all points at 
distance 0-14, we find that this power is about 1.94 + 0.40, quite close to the expected 
value of 2). 

To further analyze the behavior of the potential, one can attempt to fit it at "large" 
distances, here meaning r >> 10, to an exponential decay, as indicated by the Yukawa 
form of Eq. (5.4), 

e m m r  
V ( r )  = - c  - -  (6.5) 

r 



H.W. Hamber, R.M. Williams/Nuclear Physics B 435 (1995) 361-397 381 

0.5 

0.45 

0.4 

0.35 

I I I I I 

I 

0.3 - 

m 0.25 [] 

0.2 0   0001 
0 I I I I 

0 0.5 1 1.5 2 2.5 3 

Fig. 10. Graviton mass parameter m versus the average curvature ~ (o). For comparison we show the same 
mass parameter extracted from the invariant curvature-curvature correlations at fixed geodesic distance (from 
Ref. [471) (V1) for a = 0 (points at large ~ )  and for a = 0.005 (points at small ~ ) .  

Alternatively, one can try to fit them to a power law close to the critical point at ke 

1 
V ( r )  = - c  - - .  (6.6) 

ro- 

I f  the potential  is fitted to an exponential decay, one finds that the behavior is consistent, 
close to kc, with a small mass that decreases as one approaches the critical point. This is 
shown in Fig. 5. We clearly do not have at this point a lot of  points which would allow 
us to give a precise estimate for this mass or its error. Close to this critical point  let 
us write for the mass of  the particle, which is expected to determine the long distance 
behavior of  the potential,  

m 2 ~ Ap ( k e -  k )  . (6.7) 
k~k¢ 

We find some evidence for a decrease in the mass towards the critical point, and for the 
ampli tude we estimate Ap = 1.09(60) .  Here we are making the implici t  assumption that 
the mass will indeed go to zero at the same critical point. The results for the potential 
are certainly consistent with this assumption, but the accuracy of  the results and the 
systematic errors associated with the fact that the distances r are still rather small do 
not allow one yet  to determine in a clean way i f  this is indeed what is happening. We 
will leave a more accurate determination of  the mass parameters for future work. 

The motivation for using the mass squared in the preceding equation is as follows. 
In our previous work we estimated the critical exponent ~,, which determines how the 
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dynamical graviton mass approaches zero at the critical point, m ~ (ke - k )  ~, and found 
that it was close to 1/2 (our best estimate, from Ref. [9] gave u _~ 0.41 for a = 0.005). 
(Also it should be added for the sake of  clarity, that the values we quote refer to 
"physical" masses, and not to masses in units of  the lattice spacing, which would be 
larger by about a factor of  two, since, as we mentioned previously, the average lattice 
is not one, but about 10 ~ 2.36). 

Alternatively, we can plot the mass m versus the average curvature. In general this 
procedure is quite useful since it avoids the problem of  having to rely on an accurate 
determination of  the critical point in k. Naively one would expect on the basis of  
dimensional arguments that 

m 2 N ApR 17~[, (6.8) 
7~---,0 

but we cannot exclude that a non-trivial exponent appears in this case as well. Clearly 
again our results are not accurate enough at this point to determine the exponent with any 
accuracy. We shall return to the issue of  the exponents later. Under the above assumption 
we estimate in this case Apl¢ ~- (0.06) 2, which seems a rather small number. On the 
other hand, one gets a number closer to one if one uses a more natural scale, the effective 
average anti-de Sitter radius (see Eq. (5.5)) ,  defined here by a0 = lov/ -~/ITCl) ,  as a 
scale instead of  the average curvature. We find here m '~ 0.49/a0. We should add that 
a hard breaking of  diffeomorphism invariance should induce a graviton mass of  the 
order o f  the ultraviolet cutoff, m ~ 7r/lo, which at this point is inconsistent with all our 
results. On the other hand, a first order transition cannot be excluded, where the ground 
state would become unstable before the mass (or the average curvature) reaches the 
value zero. 

When the mass of  the particle is rather small, it becomes difficult to distinguish an 
exponential decay from a pure power behavior. Close to the critical point one can fit the 
potential to a pure power instead, and one finds the quality of  the fits to be comparably 
good (for a comparison see for example Fig. 6). In Fig. 11 this effective power is 
plotted versus k, and one finds that it is somewhat greater than one, reflecting the fact 
that the potential falls off more rapidly in distance as one moves away from the critical 
point. From Fig. 11 we estimate the power at the critical point to be about o- = 0.99(68) 
(the smallest power we actually measure at k = 0.05 is about 1.67, so we get the smaller 
values only by following the general trend and extrapolating to k _~ 0.60). 

I f  we exclude from the potential the point at r = 1.2 which corresponds more or less 
to the "origin", one finds that the decrease in distance r is not very far from a 1 / r  
behavior. In Fig. 7 we show a fit to the potential which is purely 1 / r  for r > 10, and it 
seems that also this fit is rather good close to the critical point. This would give further 
support to the claim that the potential is very close to 1/r  in the vicinity o f  the critical 
point, with some small mass or other correction. A radical possibility would be that 
the mass is actually zero, but this would seem unlikely in the presence of  an average 
negative curvature, and would be at variance with the fact that the curvature-curvature 
correlation appears to be exponentially decaying close to the critical point [47].  At 
the present moment our results are not sufficiently accurate to determine inequivocably 
what those corrections are, and we can only give estimates for the size of  the corrections 
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Fig. 11. Power o" characterizing the decay of the potential versus bare coupling k = l/(81rG). The dotted line 
represents a linear fit, while the horizontal line corresponds to a 1/r dependence (er = 1). 

given an assumed form. Needless to say, if we try to fit the potential to a function with 
more than two parameter such as - c e x p ( - m r ) / r  ~, we run into the problem of  not 
having enough statistically significant points to constrain the parameters sufficiently. 

In conclusion, our first results are not inconsistent with the expectation that close to 
the critical point the potential between heavy particles should be proportional to the 
mass squared of  the particles, and that it should decreases like 1 / r  at short distances. 
A careful study of  the above issues should give further support to the argument that 
coordinate invariance is indeed recovered in this model at large distances, and that the 
correct low energy theory is recovered in the vicinity of  the fixed point. 

7. Discuss ion 

It is of  interest to extract the effective Newton constant in the vicinity of  the critical 
point. In general we expect that the Newton constant will depend on the distance r, and 
so we should write G ( r )  for it. Furthermore, we should take into account the fact that all 
our dimensionful quantities are measured in units of  some unit cutoff (it was set to one 
in Eq. (2 .1) ) ,  and that our average lattice spacing l0 is not quite equal to one (this is a 
small effect). At short distances r ,~ l0 we measure the coupling at scales close to the 
ultraviolet cutoff, while at larger distance we should see some renormalization effects, if 
they are there (Some time ago in a very nice paper the short distance behavior of  pure 
Einstein gravity was discussed, exploiting the invariance of  the classical Einstein action 
under dilatations [48] ). Since we only have a few points in r for the potential at any 
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Fig. 12. Three methods of estimating the effective short distance Newton constant at the critical point. The 
effective Newton constant versus the bare coupling k is computed using three different methods for extracting 
it; by fitting the potential to a form c/r ~ (o), c/r (I-q), and cexp(-mr)/r ((>). The value estimated in the 
vicinity of the critical point at k = kc is represented by the horizontal line. 

given k, we will restrict here our attention to the behavior of  G at short distances, close 
to the fixed point. Let us define here Geff = c as the coefficient of  the potential obtained 
from the three fitting procedures used previously ( - c e x p ( - m r ) / r ,  - c / r  ~, and - c / r ) .  
In the end we shall only be interested in the values in the close vicinity of  the critical 

point. 
As a function o f  k, the three sets of  coefficients are shown in Fig. 12. One notices, not 

unexpectedly, that the values for Geff defined in the above way start to differ significantly 
as one moves away from the critical point, a reflection for example of  the fact that the 
assumption of  almost pure l / r  behavior is only valid in the vicinity of  the critical 
point, and possibly only at rather short distances. On the other hand, all three estimates 
seem to converge more or less to one value at kc, which we estimate to be about 0.14 
i f  we look at the results in Fig. 12. It is certainly encouraging that the value for the 
effective Newton constant at short distances in the vicinity of  the fixed point is not zero 
or infinite in lattice units. Both values are close to the bare value, Ge = 0.63. Indeed the 
effective Newton constant we computed contains necessarily the cutoff, so we can write 
Geff = 0.15 = Go(lois)  2, where Go is comparable to Ge and s is a number of  order one 
( i t  is zr if  we use a momentum cutoff on a regular hypercubic lattice).  In our case a 
discrepancy between Gc and Go can be resolved by taking s ~ 4.84. 

We should keep in mind that even at the critical point  where the curvature vanishes the 
lattice is by no means regular, and l0 = V ~  only represents an "average" cutoff. We 



H.W. Hamber, R.M. Williams~Nuclear Physics B 435 (1995) 361-397 385 

should also perhaps recall here the fact that a bare cosmological constant A, which could 
appear in the original action (as indicated in Eq. (2.1)) has been scaled out, when we 
set it equal to one by rescaling all the edge lengths. If  we put it back in, then the effective 
Newton's constant would have to be multiplied by that scale, Geff = Go( lo / s )2 / x / '~ ,  and 
Go and s are the numbers discussed previously. As far as the distance dependence of 
the coupling G ( r )  is concerned, we have nothing to say, based on our results so far on 
the potential. Of course if the potential decreases exponentially at large distances, one 
should factor out this dependence before determining the distance dependence of the 
coefficient G( r ) .  

Let us now return to a discussion of the fact that the potential seems to vanish when 
k gets close to k = 0. From our results in fact we estimate that as we move away from 
the fixed point the potential becomes very small close to k = 0.02, and turns repulsive 
beyond that value. If  we look at the weak field expansion for the graviton propagator (see 
Eq. (4.11)),  we see that there are two contributions of opposite sign, the one with the 
wrong (repulsive) sign being associated with the trace part -Sa138~,v/x 2 of the metric. 
In the Landau gauge a similar situation arises, since the graviton propagator contains 
two terms of opposite sign, one associated with the spin-2 part, and one associated with 
the spin-0 part, z l ( x )  = [p(2) _ ½P(O)]/x2 ' where p(2) and p(0) are spin-2 and spin-0 
projection operators [49]. Let us assume here that this description based on the weak 
field expansion is more or less reliable in the vicinity of the fixed point, where the 
average curvature is very small and (almost) fiat space is recovered on the average. 

But we know that as we approach the value k = 0 the Einstein term switches off and 
there cannot be any propagating gravitons (or their non-perturbative counterparts), at 
least for a = 0. The only remaining term in the action is the cosmological term, which 
contains no derivatives. On the other hand, the lattice gravitational measure (Eq. (2.3)) 
contains a residual interaction between the volumes which is due to the generalized 
triangle inequality constraints. These constraints will be present for almost any sensible 
local lattice measure, irrespective of the detailed form of the overall volume factors that 
enter it. The triangle inequality constraints will induce a residual interaction between 
the volumes and edges, which will be non-vanishing when k = a = 0. Indeed when the 
correlation function between volumes at fixed geodesic distance is computed directly, 
one finds that such a correlation is nonzero at k = 0 [47,29], and the corresponding 
mass is about 0.44(3). Based on the previous discussion one would therefore expect 
that the potential should become repulsive in this case, since the spin-2 kinetic term in 
the action is completely absent in this limit. 

A possible interpretation of our results for the potential is therefore the following: At 
k = 0 only the trace part of the metric propagates, and the potential is repulsive. Away 
from, but close to, k = 0 the spin-2 part starts to propagate, with a mass that is roughly 
m ~ l log kl/ lo,  since the amplitude for moving n steps on the lattice is proportional to 
k n = e x p ( - n  I logkl) in this limit. As we approach the fixed point k ~ kc the spin-2 
part starts to propagate over larger distances, since its mass is decreasing. The potential 
eventually turns attractive, as it should, and for k close to kc the correct admixture of  
spin-2 and spin-0 is recovered as determined by general covariance for fluctuations in 
the vicinity of almost fiat space. We should stress that there is no reason to expect that 
the spectrum of excitations will come out correctly at infinitely strong coupling (k = 0); 
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after all this certainly does not happen even in lattice QCD. One would expect that the 
potential, as well as any other coordinate invariant correlation function, would start to 
scale properly only when the mass of the two particles (spin 0 and spin 2) becomes 
comparable, and in turn comparable to the natural curvature scale, l /a0  = ~ lo 1. 
From the results on the potential, the correlations and the average curvature we estimate 
that at k = 0.03 these three scales become comparable m ,,~ l /a0 ~- 0.3. 

Let us now return to the issue of the critical exponents for gravity. In statistical 
field theory one associates the singularities in the thermodynamic functions and in the 
correlations with the divergence of a correlation length (or inverse mass) at the critical 
point [ 10]. In the lattice gravity case we can follow a similar line of reasoning. The 
natural candidate for the correlation length in the gravitational case is the inverse of  
the graviton mass, m = s ~-1. Let us assume that the singular part of the free energy 
.T" = - V  -1 log Z scales like (-d~, where dn is a (perhaps fractal) dimension, which we 
expect to be close or identical to four. The first derivative with respect to k of the log 
of the partition function should then scale like 

7"Z ~ -ATz (kc - k) 8, (7.1) 
k~k¢ 

up to a constant (which we find to be zero, at least for sufficiently large a) ,  with an 
exponent 8 = d n v  - 1 (Josephson scaling law), if we define the exponent v by the usual 
relation [ 10] 

m ~ Am (kc - k) ~. (7.2) 
k~k~ 

The fluctuations in the curvature, obtained from the second derivative of the log of the 
partition function should in turn scale like 

Ax~  (kc - k) ~-l (7.3) X~ k -~  

The relationship expected on the basis of scaling, v = (1 + ~ ) /de ,  also implies for a 
continuous phase transition where the curvature vanishes, 

T~ ~ m d ' - l /~  ~ m dM(dn~-l)/dnv. (7.4) 
k--* kc 

In Refs. [ 8,9] the exponent t5 was estimated, in the presence of a small higher derivative 
term (a  = 0.005 in Eq. (2.1)) to control the fluctuations in the curvature, at about 6 = 
0.63(3),  which then gives vdn = 1.63, and for the power in Eq. (7.4) about 0.39 x dn. 

For a = 0 a smaller value was found, but with a much larger error, 8 --0.0-0.3. A variety 
of methods can be used in principle to determine accurately the values of the critical 
exponents (such as direct determinations, finite size scaling [ 10,21,9], and real-space 
renormalization group methods based on block-spin ideas [ 13] ). 

Now if dn = 4 then we get v = 0.41(1), in which case the power appearing in 
Eq. (7.4) would be 1.55 4. In principle v and therefore dH could be determined either 

4 It is amusing to note that a similar value (v = 0.401) was found, using real space renormalization group 
methods, in the Abelian U( 1 ) lattice gauge theory in four dimensions [50]. We thank G. Parisi for reminding 
us of this result. 
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directly from Eq. (7.2) or from Eq. (7.4), but our results so far are not sufficiently 
accurate to determine this power independently. It is amusing to note that if R ,-~ m 2 
(as assumed in Eq. (6.8), see also Fig. 10.) then dH -- 1/1: = 2, which would imply a 
fractal dimension slightly above four, dH ~ 5.20 and u --- 0.31. (We also note that in this 
case the inverse mass m becomes precisely (up to a constant) the anti-de Sitter radius, 
m ~ ao  l).  To a certain extent we can exclude very large values for dH, since these 
would imply (given the known value of dt4p = 1.63(3) ) that the power in Eq. (7.4), 
0.39 × dH is very large. But this does not seem the case if we look at Fig. 10. More 
accurate results would help in resolving this issue. 

Let us recall here that a relationship like the one written in Eq. (7.1) and Eq. (7.2) 
is also suggested by the perturbative expansion for pure gravity about two dimensions. 
In the 2 + • perturbative expansion for gravity [51,52] one analytically continues in the 
spacetime dimension by using dimensional regularization, and applies perturbation theory 
about d = 2, where Newton's constant is dimensionless. For the non-linear sigma model 
this is a completely sensible procedure, which gives reasonably accurate quantitative 
predictions in three dimensions [53]. It is not clear yet whether this approach makes 
sense for gravity beyond perturbation theory due to the unboundedness of the conformal 
mode, but it provides for a nice framework in which one can do controllable analytic 
calculations. In this expansion the dimensionful bare coupling is written as Go = A2-dG, 
where A is an ultraviolet cutoff (corresponding on the lattice to a momentum cutoff of 
the order of the inverse average lattice spacing, A ~ 1/10). A double expansion in G 
and • = d - 2 then leads in lowest order to a nontrivial fixed point in G above two 
dimensions. Close to two dimensions the gravitational beta function is given to one loop 
order by 

aG 
f l ( G )  =- = ( d - 2 )  G -  f l o g  2 + . . . .  (7.5) 

a log A 

with fl0 > 0 for pure gravity. To lowest order the ultraviolet fixed point is then at 
Gc = 1 / f l o ( d -  2). Integrating Eq. (7.5) close to the non-trivial fixed point one obtains 
for G > Gc 

m = A exp - fl--~l) : G--,G~ 

A I G -  Gel l/(d-2) , (7.6) 

where m is an arbitrary integration constant, with the dimensions of a mass, and which 
should be associated with some physical scale. It would appear natural here to identify 
it with the graviton mass, or the scale of the average curvature. The derivative of the 
beta function at the fixed point defines the critical exponent p, which to this order is 
independent of rio, 

f l ' (Gc) = - ( d  - 2) = - 1 / I : .  (7.7) 

The possibility of algebraic singularities in the neighborhood of the fixed point, ap- 
pearing in vacuum expectation values such as the average curvature and its derivatives 
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(Eqs. (7.1) and (7.2), is then a natural one, at least from the point of view of the 2 + 
expansion. 

The previous results also illustrate how in principle the lattice continuum limit should 
be taken [ 10]. It corresponds to A ~ ~ ,  G --~ Gc with m held constant; for fixed 
lattice cutoff the continuum limit is approached by tuning G to Go. Alternatively, one 
can choose to compute dimensionless ratios directly, and determine their limiting value as 
one approaches the critical point. Away from Gc one will in general expect to encounter 
some lattice artifacts, which reflect the non-uniqueness of the lattice transcription of the 
continuum action and measure, as well as its reduced symmetry properties. 

In four dimensions we define the exponent v by 

m "~ A I G -  Gc]", (7.8) 
G---*Gc 

where m is proportional to the graviton mass. Knowing v is then equivalent to knowing 
f i t(Go) = - 1 / v .  The value of v determines the running of the effective coupling G(/z), 
where /~ is an arbitrary momentum scale. The renormalization group tells us that in 
general the effective coupling will grow or decrease with length scale 1//z, depending 
on whether G > Ge or G < Gc, respectively. For G > Go, corresponding to the smooth 
phase, one expects 

G(lz)=Gc+ (-~)I'"+(.9((-~)2'"). (7.9, 

There are indications from the lattice theory that only the smooth phase with G > Gc 
exists (in the sense that spacetime collapses onto itself for G < Go), which would 
suggest that the gravitational coupling can only increase with distance, as indicated by 
Eq. (7.9) [9]. 

Let us digress on possible corrections to the above formulae, which we have in general 
no reason to exclude. Let us assume that close to the ultraviolet fixed point at Gc one 
can write the following expansion: 

/~(G) = _ 1  (G - Gc) - c (G - Go) 2 + (.9( (G - Gc)3) ,  (7.10) 
p 

We are assuming here that at least the beta function is analytic at Gc, which is usually 
the case. After integrating as before, one finds for the structure of the correction 

( A )  ' / " =  ( G - G c )  - cl:( G -  Gc)2 + O(  ( G - G e ) 3 )  . (7.11) 

The hope of course is that these corrections are small (c << 1), at least in the vicinity 
of the fixed point; the higher order term is unimportant if (G - Ge) << 1/ (cp) .  For the 
effective running coupling one then has the corresponding relation 

G ( l ~ ) = G c + ( ~ ) l / ~ + c v ( ~ ) 2 ' " + O ( ( ~ ) 3 ' " ) .  (7.12) 

One cannot exclude in principle more pathological behavior. If the leading term in 
the beta function in the vicinity of the fixed point vanishes, 

f l (G)  = - c ( G  - Go) ~ + . . . .  (7.13) 
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(with tr > 1), one obtains an essential singularity in the mass gap, 

A m { 1 c ( t r -  } =exp 1) ( G -  Gc)I-~ . (7.14) 

It is not clear what should be the mechanism for such a cancellation in gravity, but if 
we consider such a possibility then one obtains instead of a power law a logarithmic 
scaling for the effective coupling (similar to what happens in QCD), 

G(l~) = Ge + [c( o- - 1 )  log ~] -l/(~r-1) (7.15) 

But we should point out that this does not seem to happen in the 2 + e expansion, 
nor is there any evidence that it happens in the lattice model, but for now one should 
leave such a possibility open. We would like to add that even in the flat case one does 
not have in the Regge case anything resembling a regular lattice, although, contrary 
to lattices with random coordination number [54], the coordination number here stays 
fixed. It is known that already for flat random lattices novel critical behavior can arise, 
under certain conditions [55,56]. 

The mass m determines the size of scaling corrections, and plays therefore a role 
similar to A~-g in QCD. It cannot be determined perturbatively (as it appears here as an 
integration constant). It separates the short distance, ultraviolet regime with characteristic 
momentum scale IZ >> m, or, more precisely, since we have an ultraviolet cutoff, 

lo 1 >>/~ >> m , (7.16) 

from the large distance, infrared region 

m >>/~ >> L -1 , (7.17) 

where L = (V) 1/4 is the linear size of the system. 
In quantum gravity it is of great interest to try to determine the value of the low energy, 

renormalized coupling constants, and in particular the effective cosmological constant 
A(/~) and the effective Newton's constant G(/~) = 1/(8~rk(/~)). Equivalently, one 
would like to be able to determine the large distance limiting value of a dimensionless 
ratio such as ,~(/~)G2(~), and perhaps even its dependence on the linear size of the 
system L = V 1/4 (which is another parameter in the model). (In the real world one 
knows that at laboratory scales Geff = (1.6160 x 10-33cm) 2, while AeffG~e ff ,-~ 10 -120 
is very small). In the continuum, these issues have been addressed in the context of 
Feynman diagram perturbation theory [57]. 

If v is positive, then the beta function has a negative slope at the fixed point. This 
seems to be the case in the lattice theory. The increase or decrease in coupling as a 
function of scale is determined by what phase one is in. But on the lattice only the 
smooth phase is found to have an apparently sensible continuum limit. One immediate 
consequence of this result is that in the smooth phase with G > Gc the gravitational 
coupling constant G must increase with distance (anti-screening), at least for rather 
short distances. The opposite behavior (screening) would be true in the phase with 
G < Go, but such a phase is known not to be stable and leads to no lattice continuum 
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limit [9]. On purely physical grounds one would expect gravity to anti-screen (since it 
couples to everything with the same sign), and it is therefore not surprising that in the 
lattice theory the rough phase, where the opposite would be true, is pathological. 

In conclusion, one then obtains for the dimensionful Newton's constant the following 
scale dependence, valid for short distances,/x >> m, 

G(/z) ~>>,n 12 ~l-I/2 Gc + (7.18) 

(where Gc is a pure number and 1Iv ~_ 2.46 if dr/ = 4). Here again l0 is of the 
order of the average lattice spacing, and we have restored the correct dimensions for 
G(/z) (length squared) and re-introduced the bare cosmological constant A, which was 
previously set to one in Eq. (2.1) (it only sets the overall length scale). 

As discussed in Ref. [8], the vacuum expectation value of the scalar curvature can 
be used as a definition of the effective, long distance cosmological constant, 

7 ~ ( f v ~ R )  ( 4 A )  (7.19) 
( f  'V~) ,'-a T eft" 

One can also introduce a classical anti-de Sitter radius a0, by setting IZel = 12t2o/a~. 
If the curvature vanishes at kc (see Eq. (7.1)) this radius diverges at ke, and thus 
(A/k)eff ~ 0 in lattice units. The exponent 6, which is expected to be universal, was 
estimated previously to be about 6 _~ 0.63 [8,9]. The standard scaling arguments 
discussed previously then tell us that 6 and v are related via 8 = dr/v - 1, where v is the 
correlation length exponent appearing in Eq. (7.8), and dr/ is the effective dimension 
of space (here close to four). 

A more suitable definition of the running cosmological constant A(/~) is as follows. 
Introduce a sphere /2 of size r, and compute the magnitude of the average curvature 
within that region 

(I fnCr) V ~ R[) 
T~lg(r ) r , J  (fa(r) ~ (7.20) 

At short distances (small spheres) the curvature fluctuates wildly and ~a(r)  is of the 
order of the ultraviolet cutoff, ~ lo 2. At larger distances (larger spheres) the curvature 
decreases, since the fluctuations tend to average out, and ~a(r)  approaches some average 
curvature value 7-~, which is determined by the chosen values for the bare parameters 
k, h and a chosen in Eq. (2.1). Thus away from the critical point one expects 

7"~tl(r) N ~ + Clo 2 e -mr  , (7.21) 

whereas very close to the critical point, where both Ro and m should go to zero, we 
expect that the exponential decay should turn into a power law decay 

7"~a(r) ~ 10 2 (lo/r) ~ , (7.22) 

with an exponent y = 6/v = d r / -  1Iv. Thus for the cosmological constant itself we 
obtain 
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,~(/x) ,~m IO4 (/0/x)'t"-l/~ A [1 + O ( m / I z ) ]  , (7.23) 

(with again dn  - 1 / v  ~_ 1.54 if dn  = 4), and we have restored the correct dimensions 
for A(/x) (inverse length to the fourth power). For the dimensionless ratio AG 2 one 
then obtains, from Eqs. (7.18) and (7.23), 

(AG2)(/x) ,,~ G2c (lotz) d ' - l / v  [1 + O ( m / l z ) ]  . (7.24) 
/z>>m 

In conclusion, it seems that the dimensionless product G2a can be made very small, 
provided the momentum scale /~ is small enough, or, in other words, at sufficiently 
large distances. We should add also that the fixed point value for the dimensionless 
gravitational constant, Gc, is in general non-universal, and depends on the specific 
way in which an ultraviolet cutoff is introduced in the theory (here via an average 
lattice spacing). In our model it is of order one for very small a, but for larger a it 
decreases in magnitude. It would be of course of some interest to determine the scale 
dependence of the average curvature 7~a(r), and verify directly the behavior described 
above. Alternatively, one could study the behavior of deficit angles associated with large 
loops. Since the average curvature becomes very small close to the critical point. One 
would expect these deficit angles (which correspond to physical processes in which 
coordinate vectors are parallel transported around large, macroscopic loops) to be rather 
small. 

How can one fix the fundamental lattice spacing l~ (or l~/v/'~, if A is not equal to one 
in the original action) in this model? While there are apparently large fluctuations in the 
curvature at short distances, these fluctuations tend, as we said, to average out at large 
distances, if one is sufficiently close to the fixed point (otherwise the interactions are 
short ranged, and there is no noticeable gravitational potential). At such large distances 
it seems reasonable to assume that the only surviving contribution to the macroscopic 
energy E is represented by the average curvature. Within a very large region of size a0 
the macroscopic action is then given only by the R term, Eao = -(16zrG)  -1 f v~R. Let 
us estimate this contribution. The integral should be restricted to a region of size a0, since 
the gravitational interaction apparently falls off exponentially beyond distances of the 
order of a0. Thus Eao ~ G - l ( a 0 ) a  4 × ao 2, and since G(a0) ~ l~ one obtains E ~ lo2ao. 
In other words, the macroscopic energy only grows linearly with size. Solving for 10, 
one obtains an estimate for the lattice cutoff 12o ~ ao/E,  and for Newton's constant at 
"short" distances, r << ao, G ~ Gcao/E,  where Gc is a dimensionless number of order 
one. 

Let us add that the larger Go, the smaller the distance dependence of G(r ) ,  since one 
has for the distance variation the (lowest order) result 

6 G ( r )  v -1 6r 
G ( r )  - Gc ( m r ) - U v  + 1 r ' (7.25) 

(we have set r = 1//x), so in practice Ge cannot be too small, and m has to be very 
small. 

We conclude that a possible interpretation of our results up to now is that in this 
model the effective gravitational coupling close to the ultraviolet fixed point grows with 
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distance. For the gravitational coupling our results suggest an infrared growth away 
from the fixed point of the type G(/z) ,-~/z -z/~, while for the cosmological constant 
we have found a decrease in the infrared, A(/z) ,-~ tz d"- l /~ ,  with an exponent v given 
approximately by v -~ 0.41 if dH --~ 4, and perhaps only weakly dependent on the matter 
content [58]. The scale that seems to separate the short from the long distance behavior 
is m, which should be very small close to the fixed point, of the order of the inverse 
anti-de Sitter radius a0. 

8. Mean field theory 

In this section we will describe a simple mean-field approach to quantum gravity, 
which contains some (but not all) of the essential features observed in the numeri- 
cal simulations. Write for the effective action (or effective potential) for the average 
curvature R,  neglecting the metric degrees of freedom entirely, 

/reff(~'~) = (kc - k)VT"~-~- a V ( - T ~ )  ~ . (8.1) 

Classically one has of course kc = 0, but fluctuations will give rise to a nonzero value 
for the critical coupling that separates the smooth (k < kc) from the rough phase 
(k > kc). The last term can be thought of parametrizing the lattice and continuum 
higher derivative terms, and the effects of radiative corrections, which also include the 
measure contribution. In the smooth phase of gravity ~ < 0, so we can write R = - I ~ 1  
in this phase. As we mentioned, a physically acceptable phase with R > 0 (rough 
phase) does not seem to exist [9]. Then 

01~ 
= (kc - k ) V  - a a V  ( _ ~ ) ~ - i ,  (8.2) 

07"¢. 

with stationary point at 

7"44) = --(a , t )  -1 / (a- l )  (kc - k )  1 / ( '~ -1 )  , (8.3) 

and we therefore identify the curvature critical exponent 8 with 8 = 1/(,~ - 1). This in 
a sense justifies the original form for/eft, since it is known that the average curvature is 
non-analytic at kc, (see Eq. (7.1)),  with 8 universal, and kc and Ara dependent on a. 
The fluctuation in the curvature is then given by 

X R 0  ----- ( a A )  I / ( A - 1 )  (~- - -  1)  - 1  (kc - k )  - ( a - 2 ) / ( h - l )  , ( 8 . 4 )  

with an exponent a = 2 - dHv = (,~ -- 2 ) / (A  - 1), where v is the correlation length 
exponent, 

m ~ Am ( k c -  k) p, (8.5) 
k--* kc 

with m the graviton mass and dH the effective dimension of space-time, which, as we 
mentioned, should be close or perhaps identical to the physical space-time dimension. 
Classically one has A = 1 and therefore 8 = 1, but it is known that in three and four 
dimensions 8 < 1 [9]. As long as 7~ < 0 the above solution is stable, since 
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a21eff = +aVA(A - 1) (-Teo) a-2 a ~  2 (8.6) 

= aVA(A - 1) (aA) -(~-2)/(~-1) (ke - k) (a-2)/(~-l) , (8.7) 

which also requires A > 2 (6 < 1 or v < dt~/2) for the second derivative of leff to be 
finite at the origin ~ = 0. In this approach there is always only one minimum for k < ke 
and the transition can never be first order (which requires two non-degenerate minima). 
For ~ > 0 the effective action is complex, as it should, since no stable ground state is 
found in the lattice theory for 7~ > 0. Two further predictions arise out of this model. 
The first one is that the amplitude of the average curvature should diverge when a is 
small, 

A~ ,--~a -1 / (a- l )  . (8.8) 

(From the numerical results in four dimensions it is unclear whether this happens 
precisely for a = 0, close to the critical point in k.) The second one is that the minimum 
becomes increasingly shallow as a ~ 0, which can lead to large fluctuations in the 
average curvature, unrelated to the approach at the critical point at kc. This is also 
apparently observed, since it has been quite difficult to extract the critical exponent 8 
when a is very small (or zero). Indeed it is possible that the model becomes unstable 
close to the critical point when a = 0, and that the transition is first order in this case 
[9]. Of course one does not expect this mean field theory to be quantitatively accurate, 
just as it is not for scalar field theories in low dimensions. It only represents an effective 
theory for the curvature, which is represented here as a single scalar quantity, neglecting 
the metric degrees of freedom entirely. 

9. Conclusions 

In the previous sections we have presented some first results regarding the properties 
of the Newtonian potential in the context of a model for quantum gravity based on 
Regge's lattice formulation. We have proposed a method for determining the potential 
which is based on the computation of Wilson line correlations. We have shown that 
the Wilson line correlations give the expected result to lowest order in the weak field 
expansion. Later we have then presented some first numerical results which seem to 
indicate that the correct qualitative features of the potential should emerge close to 
the critical point. In particular it was found that the potential is attractive close to the 
critical point, in agreement with previous results which also indicated the presence of 
an attractive interaction between dynamical scalar particles [58]. Our numerical results 
have been rather limited since we investigated for simplicity only the case a -- 0 (no 
explicit higher derivative terms), and we have not performed yet a systematic study 
of the lattice continuum limit for the potential. As for any correlation in gravity, the 
accurate determination of the potential as a function of distance is a difficult task, since 
at large distance the correlations are small and the statistical noise becomes large, Still, 
our preliminary results suggest that the potential has more or less the expected classical 
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form in the vicinity of the critical point, both as far as the mass dependence and the 
distance dependence are concerned. 

Away from the critical point our results suggest that the potential is Yukawa-like, 
with a "mass" that decreases with the average curvature. We have not been able to 
determine with any precision how this mass scales with the curvature as the curvature 
approaches zero. We have argued that the appearance of such a mass is natural in the 
quantum analog of Euclidean anti-de Sitter space, and is likely to be a consequence of 
the non-linear interactions of gravitons with a non-fiat fluctuating background, and the 
presence of a natural infrared cutoff in an anti-de Sitter space. In any case a systematic 
study of the potential should provide one more quantitative handle on the approach to 
the lattice continuum limit: the mass associated with the potential has to scale to zero 
close to the critical point in order for the theory to describe gravity. Based on previous 
work, where curvature fluctuations were found to diverge close to the continuous critical 
point, there is hope that this will happen when the accuracy of the present calculations 
will be improved. 

We have not been able to determine in this work the distance dependence of the 
effective Newton's constant, although we expect on the basis of the phase diagram and 
the values of  the critical exponents that in the smooth phase with G > Gc gravitational 
interactions will increase slowly with distance. We have argued that the scale for such 
deviations from scale independence is set by the average curvature, which is very 
small close to the fixed point. Let us add that it would be very interesting to compute 
the Newtonian potential in three dimensions, where the leading spatial dependence is 
expected to be logarithmic, but with a vanishing coefficient (for zero cosmological 
constant). 
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