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ABSTRACT
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reviewed in view of possible applications to renormalizable asymptoti-

cally free higher derivative theories of gravity.
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1. Higher derivative gravity .
1.1 Introduction

It has been known for some time that if one attempts to quantize the Einstein
theory of gravity one encounters two major difficulties. The field equations for the metric
are derived from an action that is unbounded from below, and the path integral is therefore
mathematically ill-defined. Furthermore the coupling constant in Einstein gravity (New-
ton’s constant) has dimension of inverse mass squared {in units 2~ = ¢ = 1}, and this leads
to a non-renormalizable quantum theory, as can be verified by doing explicit Feynman
diagram perturbation theory{1—2),

One possible attitude is to hope that these problems will be cured in the context
of a grand unified theory like supergravity. Alternatively, one might argue that the above
problems hint to a fundamental incompatibility between gravity and quantum mechanics,
and any modification of the Einstein action will in general lead to new undetermined
parameters.

Of course the argument about naturalness and simplicity of the Einstein theory
can be turned around, in the sense that a quantum theory of gravity should just provide
the answer for why, starting with the most general microscopic theory consistent with
general invariance principles, some terms appear in the low energy effective Lagrangian
and others do not. The question then becomes of course a dynamical one. In other field
theoretic contexts this phenomenon is connected with the flow of the coupling constants
as the length scale at which the theory is probed is changed, and the concept of scaling
dimensions and operator relevance(%).

Within the framework of continuum local field theories, the alternative possibility
is thus to include in the action those terms that are generated by renormalization, and
see whether the resulting action leads to a tractable and perhaps meaningful quantum
theory(5). It turns out that only two additional terms, involving fourth derivatives of
the metric, need to be added to the Einstein action in order to obtain a perturbatively
renormalizable theory, and cure at the same time the unboundedness problem(®). More
remarkably, the resulting theory is asymptotically free in the new coupling constants (if
they are chosen with the right sign) and is thus ultraviolet stable(7—%). This suggests
that some class of higher derivative gravity theories with a cutoff can be defined, such
that a truly cutoff independent continuum limit exists, and can be constructed using the
renormalization group.

Unfortunately, as will be further discussed below, it appears that the theory has
some potential problems with unitarity. If one looks at the tree level graviton propagator
one finds that it exhibits a massive ghost pole. It has been argued that radiative corrections
restore the unitarity of the theory (by decoupling the ghosts), but it seems unlikely that
these and other questions (like the recovery of a Newtonian limit) can be answered within
the context of weak coupling perturbation theory. In fact the complexity of the theory
resembles Quantum Chromo-Dynamics, for which other tools (like the lattice regularization
and nonperturbative methods) are needed to control and understand the low energy, large
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It is in this spirit that one has decided to turn to a discrete formulation of quantum
gravity. The lattice is introduced as an aid to formulating and calculating the theory in
the same way that one uses finite differences both to define derivatives and to obtain
approximate numerical solutions of differential equations. For recent reviews of Yang-
Mills theories defined on a lattice see references (11). Gravity on a lattice was in fact
formulated some time ago by Regge('2), In his work he showed that lattice gravity can
be described by a simplicial net in which the elementary variables are the edge lengths
connecting the points in the net(13-18). The idea that continuum Riemannian geometry
should be defined by some limiting procedure on piecewise flat manifolds goes back to
Riemann himself. Here Regge’s formulation and its extension to higher derivative gravity
will be presented and discussed in some detail.

It is clear that if some class of higher derivative gravity theories is well defined
and has a sensible low energy limit, it should agree with the experimental evidence. This
suggests that the effects of the higher derivative terms should vanish in the low energy limit,
and that the observed smallness of the cosmological constant be explained in a natural way
as a consequence of renormalization effects. These are questions that presumably can best
be answered by studying the dynamics of the theory on a space-time lattice.

1.2 Unboundedness of the Einstein action

Consider the euclidean Einstein action without a cosmological constant term

— I 4
IE = 1670 d I\/ER (1.1)

where G is Newton’s constant, ,/g is the determinant of the metric g,, and R is the scalar
curvature. Here boundary terms have been dropped, and couplings to matter fields are
not considered. Variation with respect to the metric leads to the classical equations of
motion for the gravitational field in a vacuum

1
Ip=0 => Ry~ guR=0 (1.2)
If one attempts to write down a path integral of the form

Z = e 1z C(1.3)

geometries

{(which will in general depend on a specified initial and final three-geometry) one soon
realizes that it appears ill defined due to the fact that the scalar curvature can become
arbitrarily positive (or negative). The gravitational action is unbounded from below and
the functional integral strongly depends on how the unboundedness is cut off{1).

A second serious problem is connected to the fact that the coupling constant
G~! has dimension of mass to the power (d — 2) and suggests that the theory is not
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perturbatively renormalizable above two dimensions. It has been shown that close to four
dimensions in order to renormalize the theory at one loop, one needs to introduce higher
derivative terms, which are needed to cancel the divergences proportional (in dimensional
regularization) to(?
1 7 23

A= =g / B2y (g5 Rurgo BP + = R) (1.4)
A possible solution to the unboundedness problem has been described by Hawking (1),
who suggests performing the integration in a conformal gauge in which the Einstein action
is bounded from below, and then integrating over all conformal factors by distorting the
integration contour in the complex plane.

A second possibility is to add to the Einstein action extra terms, including higher
derivative ones like R2, in a carefully chosen combination which makes the total action
bounded from below. It turns out that only up to fourth derivative terms need to be
considered in order to cure the renormalizabilty problem. Thus one is led to consider the
extended gravitational action(”)

I= / 42\/5 (A~ KB + aRpurpe B + 2(6 = )R (1.5)

with a cosmological constant term (proportional to A), the Einstein term (k = 1/16#G is
proportional to the inverse of the bare Newton constant), and two higher derivative terms
with additional dimensionless coupling constants a~! and b~1. An action for pure gravity
of this form was first considered by Pauli(1?).

It is shown in the appendix that, even though there are four possible higher
derivative terms in four dimensions which do not give rise to topological invariants (pro-
portional to integrals of C2, _,R2, .. RZ, and R?), only two are found to be independent
if one uses some identities for the Riemann tensor and the integral expression for the Euler

charachteristic(18),

1.3 Renormalizable Asymptotically Free Theories of Gravity

" The higher derivative action of eq. (1.5) was shown to be power counting renor-
malizable (%) and, later, renormalizable to all orders in perturbation theory(®}. Pertur-
bation theory is usually performed around flat space, which requires A = 0. The theory
is asymptotically free in the couplings ¢ and b and the action is bounded from below for
a > 0, b > 0. To one loop order (small a—!,67!) the renormalization group equations for
the two higher derivative couplings are(”

da 1 133

— — _ o 1.6
dlnL L 1672 10 (1.6)
and ( / ) ; . ,
a(b/a 1,106 1836 1,
= —_ - — — _ . ]..7
¢ dlnL By aﬁ(I 1672 - 3¢2 10a 12 (1.7)
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where L is the cutoff in momentum space. The first equation gives an ultraviolet fixed
point at a=! = 0, and the second one shows that there is an ultraviolet fixed point at
b/a = {549 —+/302401) /200 ~ —0.0046. {remarkably, this number is rather small, and it is
not clear whether its finiteness could be an artifact of the one-loop computation. Note that
while a~! and 5~ are assumed to be small to start with, b/a is neither small nor large).
Therefore also the coupling b is asymptoticaly free, under the assumption b < 0, which is
also necessary for the correspondence with the Einstein theory in the spin-zero sector (see
below). The theory with the Weyl C? term alone (b = 0) is conformally invariant, but not
perturbatively renormalizable because of the conformal anomaly (7).

In order to see the problems with unitarity consider the graviton propagator for
higher derivative gravity in the weak field limit g, = 7., + hy,, with n,, = dieg(1,1,1,1)
and h,, small. Then the {ree propagator for A = 0 in momentum space can be written as

1 2P, (k) 2P, (k)  2PS,,(K)

2 < Ryphpy >i= =5 E7 2 m3 R+l + gauge terms (1.8)

where the spin projection operators P3¢ are functions of n,, — kuk./k? and k,k, /k>.
Their explicit form can be found in ref. (6). The higher derivative terms improve the
ultraviolet behavior of the theory since the propagator now falls of as 1/k* for large k2.
The P# contribution is the same as in ordinary Einstein gravity, whereas the P2 (massive
spin-two ghost) and the PC (massive spin O particle) contributions are new. The mass
of the spin-two ghost is given by my = u/y/a and the mass of the spin two particle by
mo = u/v/—2b where u = vk is the Planck mass.

The presence of massive states in the tree level graviton propagator indicates also
short distance deviations from the static Newtonian potential, which in higher derivative
gravity {in the weak field limit) has the form
1 [1 4™ ] egTMo"

hOO”" -

1
w'r 3 r 3 r (2.9)

In the absence of the Einstein term (k = 0) the potential is linear in r and the theory
is strongly infrared divergent, and it is not completely clear whether weak coupling per-
turbation theory around the tree level solution is trustworthy. The masses that give the
potentially dangerous exponential corrections to the 1/r behavior are of course bare masses,
and the full renormalized gauge invariant part of the potential should be computed nonper-
turbatively (as in QCD) before any meaningful comparison with experiment is attempted.
In fact the one loop result for the running coupling a (8, is the one loop coefficient of the
beta function for the coupling a)

a"l(r
a,_l(f) - ( 0)
1+ a_l(’f'o)ﬂa ln(ro/r)
suggests strongly that the asymptotic freedom (running) coupling constants grow indefi-

nitely in the infrared regime, and the massive ghost becomes increasingly heavy as ro/r
goes to zero (low energy limit), and possibly decouples completely

(1.10)

im ma(r) = —=—(1+a ro}faln —)% = 0o (1.11)
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Here r, is the cutoff scale, not to be confused with the inverse Planck mass. The same
reasoning can be applied to the massive spin-zero state. »

These considerations are in fact far from being rigorous, but one should keep in
mind that the one-loop result is qualitatively correct in A¢? and Yang-mills theories in
four dimensions. Also one should notice the fact that the graviton propagator as defined
above is not gauge invariant. This is analogous to the gluon propagator in QCD : the
perturbative massless gluons are in fact confined in massive glueballs and there is no gluon
state in the physical gauge invariant spectrum. (The situation in gravity has of course
to be different to some extent, since massless gravitons presumably do exist). Therefore
the real question to answer is whether the massive additional states contribute to gauge
invariant correlation functions in the low energy, large distance limit, in a way which is
consistent with present experimental evidence.

Another potential problem is connected with the cosmological constant A, whose
value is observed to be of the order of 107'22 or less, in units of the Planck mass. (Ex-
perimentally one has 1/vG = 1.2 x 101°GeV and X < (0.003eV)%). In higher derivative
gravity one would expect on dimensional grounds a quartic divergence

Ap = Ao+ el +e;L% + O(In L) (1.12)

(L ~ rg! is the ultraviolet cutoff), which has then to be canceled by fine-tuning the bare
cosmological constant to one part in 10122 a rather unnatural procedure.

The procedure of setting all quartic and quadratic divergences equal to zero, as
in dimensional regularization(?), seems somewhat formal and ad hoc, and clearly does not
provide a physical explanation. On the other hand it has been argued that the quartic
divergence for A is absent {¢4 = 0) for an appropriate choice of measure for the g, fields(7,
The local gauge invariant measure is

du(g) = [To~F ] douv (1.13)

Te4%

which is also scale invariant(1929). It is known that the measure can play a delicate role
in canceling some spurious divergences in loop diagrams that arise when a continuous
symmetry is explicitly broken.

For completeness we list here the quadratic one-loop divergences(7)

ko a L2
Ap =Ag + —(5 — — + Ofln L
R =Xo+ 5 (6~ ) g +Ollnl) (1.14)
1,106 L2 '
kr =kq + E( 3a —5) 1672 + O(IHL)

where the subscript R denotes renormalized quantities and O bare ones.

In conclusion it appears clear that further study of higher derivative gravity
requires non-perturbative methods. If the theory is correct, it should allow one to explain
the smallness of the cosmological constant and should give definite predictions {in units of
the renormalized, effective low energy Planck mass) for its value and the value of the masses

7



of gauge invariant states that set the scale for possible deviations from the predictions of
Einstein gravity. It is in this spirit that Regge’s lattice formulation of gravity is now
described.

2. Gravity on Piecewise Linear Spaces
2.1 Triangulations of Smooth Manifolds

The following sections are based on the description of gravity known as Regge
calculus (12-18) in which the Einstein theory is expressed in terms of simplicial decompo-
sitions of space-time manifolds. Its use in quanturn gravity is prompted by the desire to
make use of techniques developed in lattice gauge theories, but with a lattice which reflects
the structure of space-time rather than just providing a flat passive background. It also
allows one to use powerful nonperturbative analytical techniques of statistical mechanics
and numerical methods. A regularized lattice version of the continuum field theory is also
a necessary prerequisite for any rigorous study of the latter.

Most lattice formulations of gravity so far have been based on flat hypercubical
lattices(21), For such lattices, the formulation of R 2.type terms in four dimensions involves
constraints between the connections and the tetrads, which are difficult to handle. Also
there is no simple way of writing down topological invariants, which are either related to
the Einstein action (in two dimensions), or are candidates for extra terms to be included
in the action{!). A flat hypercubic lattice action has been written with higher derivative
terms which appears to be reflection positive but has a very cumbersome form. We shall
see how these difficulties need not be present on a simplicial lattice {except that it is not
known how to write the Hirzebruch signature in lattice terms(?2)).

In Regge gravity the infinite number of degrees of freedom in the continuum is
restricted by considering Riemannian spaces that are described by only a finite number of
variables, the geodesic distances between neighboring points. Such spaces are taken to be
flat almost everywhere and are called piecewise linear (33-26) The elementary building
blocks for d-dimensional space-time are simplices 0% of dimension d. A O-simplex is a
point, a 1-simplex is an edge, a 2-simplex is a triangle, a 3-simplex is a tetrahedron. A
d-simplex is a d-dimensional] object with d + 1 vertices and d{d + 1)/2 edges connecting
them. It has the important property that the values of its edge lengths specify the shape
(and therefore the relative angles) uniquely.

A simplicial complex can be viewed as a set of simplices glued together to each
other in such a way that either two simplices are disjoint or they touch at a common
face. The relative position of points on the lattice is thus completely specified by the
ineidence matriz (it tells which point is next to which) and the edge lengths, and this
in turn induces a metric structure on the piecewise linear space. Finally the polyhedron
constituting the union of all the simplices of dimension d is called a geometrical complex
or skeleton. The transition from a smooth triangulation of a sphere to the corresponding
secant approximation is illustrated in fig. 1.



Figure 1

A manifold can then be defined by its relationship to a piecewise linear space:
a topological space is called a closed d-dimensional manifold if it is homeomorphic to
a connected polyhedron, and furthermore, if its points possess neighborhoods which are
homeomorphic to the interior of the d-dimensional sphere(?3),

2.2 Description of Local Curvature in Terms of Deficit Angles

The curvature on a two-dimensional surface is defined locally by the ratio

rotation of vector
! (2.1

(curvature) = . .

area circumnavigated
and the area centered on the point one is considering is supposed to be small. A similar
definition applies in higher dimension, but with the difference that in d dimension there
are d(d — 1)/2 independent surfaces to be considered and d components for the rotated
vector. This leads in the continuum to a description of local curvature in terms of the
d?(d%? — 1)/12 components of the Riemann curvature tensor R,.50*"). The Riemann
tensor can be completely reconstructed from a set of independent sectional (gaussian)
curvatures (2830,

Curvature on the piecewise linear space is described in terms of deficit angles
6,(0%2) assigned to each simplex ('hinge’ h) 0%~% of dimension d — 2. In two dimension
one considers a number of triangles that meet on a common vertex. A dihedral angle 8, is
associated with each triangle at that vertex. The deficit angle 6 is then defined as

Sp=2r— Y 6 (2.2)

triangles
meeting on h
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Figure 2
The two-dimensional case is illustrated in fig. 2.
In three dimensions several tetrahedra meet on a common edge, and with each

tetrahedron a dihedral angle can be associated at the given edge. The three-dimensional
case 1s illustrated in fig. 3.

Figure 3

In four dimensions several four-simplices meet on a common triangle, and with
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each four-simplex a dihedral angle can be associated at the given triangle. This is illus-
trated in fig. 4.

Figure 4

Thus in d dimensions several d-simplices meet on a (d — 2)-dimensional hinge,
and the deficit angle is defined by

fh=2r— Y 8y (2.3)

d—simpiices
meeting on b

The sine of the dihedral angle is given by the formula(?7?)

d VgVi_s

2.4
d_' lVd_IV;_l ( )

sinf; =

where V;_» is the volume of the hinge, V; is the volume of the d-simplex, and Vy_;, V] _,
the volumes of the two (d — 1)-dimensional faces that meet on the hinge. But since the
sine does not determine the angle, another formula is needed which uniquely determines
the angle. This formula is given in the appendix.

In piecewise linear spaces curvature is detected by going around elementary loops
which are dual to a (d — 2)-dimensional subspace. Still the area of the loop is not well
defined, since any loop inside the d-dimensional simplices bordering the hinge will give the
same result for the deficit angle. On the other hand the hinge has a content (the length
of the edge in d = 3 and the area of the triangle in d = 4), and there is a natural volume
associated with each hinge, defined by dividing the volume of each simplex touching the
hinge into a contribution belonging to that hinge, and other contributions belonging to
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the other hinges on that simplex(3Y), The contribution belonging to that simplex will be
called dihedral volume V4. The volume Vj, associated with the hinge h is then naturally
the sum of the dihedral volumes V; belonging to each simplex

Vi= >V (2.5)
d—simplices
meeting on b
The dihedral volume associated with each hinge in a simplex can be defined using dual
volumes, a baricentric subdivision(?3®) or some other natural way of dividing the volume of
a d-simplex in d(d + 1)/2 parts. If the theory has some reasonable continuum limit, then
the final result should not depend on the detailed choice of volume type. This assumption
is the analog of the statement that the value of the Riemann integral is independent of the
particular choice of the subdivision of the interval of integration occurring in the Riemann
sum.

There is a well-established procedure for constructing a dual lattice for any given
lattice(3?), This involves constructing polyhedral cells, known in the literature as Voronoi
polyhedra, around each vertex, in such a way that the cell around each particular vertex
contains all points which are nearer to that vertex than to any other vertex. Thus the
cell is made up from (d — 1)-dimensional subspaces which are the perpendicular bisectors
of the edges in the original lattice, (d — 2)-dimensional subspaces which are orthogonal to
the 2-dimensional subspaces of the original lattice, and so on. Formulas for dual volumes
are given in Appendix B. In the case of the baricentric subdivision, the dihedral volume is
just 2/d(d + 1) times the volume of the simplex.

This leads one to conclude that there is a natural area Ar, associated with each

hinge
Vi
Area of loop = Ar, x = (2.6)

h

obtained by dividing the volume per hinge (which is d-dimensional} by the volume of the
hinge (which is (d — 2)-dimensional}.

2.3 Regge Action and Equations of Motion

Before discussing the construction of higher derivative terms, the lattice analogue
of the Einstein action will next be introduced. In a d-dimensional piecewise linear space-
time, the expression analogous to the Einstein action was given by Regge(1?) as

In= Y A% (2.7)

hinges h

where A‘fz_z is the volume of the hinge and § is the deficit angle there. The action is the
equivalent for a simplicial decomposition of the continuum expression

Ie = / iz /GR (2.8)
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and indeed it has been shown(25:26:32-35%) that Ir tends to the continuum expression as
the Regge block size (or the average edge length) tends to zero. In two dimension the
discrete analogue of the Gauss-Bonnet theorem holds

IR“—_“ZéhZZWX (29)
h

where x is the Euler characteristic (two minus twice the number of handles of the surface).
This remarkable identity ensures that two-dimensional lattice B gravity is as trivial as in
the continuum, since the variation of the local action density under a small variation of an
edge length [, is still zero (more precisely, it can be written as a boundary term)

Y b6 =0 (2.10)

hCly,

Here the sum is over hinges that are affected by the change of the edge I,. In higher
dimensions variation of Iy with respect to the edge lengths gives the simplicial analogue
of Einstein’s equations, whose derivation is particularly simplified by the fact that the
variation of the deficit angle is zero in any dimensions

§Ir =Y §(AF )6y (2.11)
h

(In the continuum one also finds that to first order the variation of the curvature gives a

total derivative).
This then implies the equations of motion é;, = 0 Vh in three dimensions. In four

dimensions variation with respect to I, yields(!?)

1
5 b Y bncotpn =0 (2.12)
h2Dl,

where the sum is over hinges (triangles) labeled by i meeting on the common edge p, and
f,r is the angie in the hinge h opposite to the edge p. This is illustrated in fig. 5.

A solution to the skeleton equation can then be found by adjusting the edge
lengths. Since the equations are non-linear in the edge length variables, the existence
of multiple solutions cannot in general be ruled out. Several authors have discussed the
applications of the Regge equations to problems in classical general relativity such as
the Schwarzshild and Reissner-Nordstrom geometries, the Friedman and Tolman universes
(36,37)_and the problem of radial motion and circular (actually polygonal) orbits(3®).

2.4 Local Gauge Invariance and Bianchi Identities

Consider the two-dimensional flat skeleton shown in fig. 6. It is clear that one
can move around a point on the surface, keeping all the neighbors fixed, without violating
the triangle inequalities and leave all curvature invariants unchanged.
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Figure 5
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Figure 6

In d dimensions this transformation has d parameters and is an exact invariance of
the action. When space is slightly curved, the invariance is in general only an approximate
one, even though for piecewise linear spaces piecewise diffeomorphisms can still be defined
as the set of local motions of points that leave the action, the measure and the lattice
curvature invariants unchanged. In the limit when the number of edges becomes very
large, the continuum diffeomorphism group should be recovered.

Before discussing the Bianchi identities, it is useful to interpret some of the above
definitions and results in terms of the parallel transport of a test vector around a small
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loop. Consider a closed path I' encircling a hinge & and passing through each of the
simplices that meet at that hinge. In particular one may take I' to be the boundary of the
polyhedral dual area surrounding the hinge.

For each neighboring pair of simplices 7,7 + 1, we may write down a Lorentz
transformation L, which describes how a given vector ¢, transforms between the local
coordinate systems in these two simplices

¢, = [L(7,7+1)], o (2.13)
(Note that it is possible to choose coordinates so that L, is the unit matrix for one pair
of simplices, but it will not then be unity for other pairs). The Lorentz transformation is
related to the path-ordered (P) exponential of the integral of the connection (T'»)} = '},
by

path

I‘,\dIA
L“V = [Pe between simplices d

by (2.14)

The connection here has support only on the common interface between the two simplices.
The product of these Lorentz transformations around a closed elementary loop I' is then
given, for smooth enough manifolds, by

[ T LG+ = R ™y (2.15)

pairs of
simplices o T

where (R:,,)% = RY,,, is the curvature tensor and L7 is a bivector in the plane of T, with
magnitude equal to 1/4/2 times the area of the loop I'. (For a parallelogram with edges
a® and b, £ = 1(a%b? — a?b7).

The total change in a vector ¢, which undergoes parallel transport around I is

then given by
()b’p, = ¢, + 5(}5,_; = [ H L(j'-'j + 1)]:91514 (2°16)

pairs of
simplices on T

which reproduces to lowest order the usual parallel transport formula

Ad’# = Ripazpa‘ﬁv ' (217)

On the Regge skeleton the effect of parallel transport around I is described by

[H L7+ 1) = [V ] (2.18)

where U ,Eﬁ) is a bivector orthogonal to the hinge h, defined in 4 dimensions by

1
U}E};) = me.“-uﬂol?ﬂ.) ?b} (219)
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and lfa) and [ '(Db) are the vectors forming two sides of the hinge h. Note that the validity
of the simplicial parallel transport formula given above is not restricted to small deficit
angles.

Comparison of equations {2.15) and (2.18) means that we may make the identi-
fication

Rp,.upcrzpo — 6hU}£ﬁ) (220)

It is important to notice here that this relation does not give complete information about
the Riemann tensor, but only about its projection in the plane of the loop T orthogonal
to the hinge. In fact the deficit angle divided by the area of the loop can be taken as a
definition of the local sectional curvature K (28)

Sn Ruvpoeheregey

K=
Ar, (9ppGve — uodu,p)ehereted

(2.21)

which represents the projection of the Riemann curvature in the direction of the bivector
e; N\ ey.

For a continuous space of constant curvature the K’ are independent of the di-
rection of the bivector and one has

R,u.upa = K(g,uvgpo' - gupgucr) (2'22)

This is analogous to the expression suggested in ref. (31) for the Riemann tensor at a

hinge,
O
R R)pr(h
R(® = E;:U;,)Ug,) (2.23)

and one is possibly neglecting terms in R,,,, which vanish when projected in the plane
of the loop I'. This is a reason why one encounters problems if one tries to use (2.23) as
a formula giving full information about R,,,, in Regge calculus. (This point is further
discussed in section 3.3). Note however that (2.23) does have all the correct symmetries
of the Riemann tensor.

The parallel transporters around closed elementary loops satisfy the lattice ana-
logues of the Bianchi identities. In the continuum the Bianchi identities read

aR,uvpo‘ " aR;AVAp " aR,uva)\
éz» = 9z° dze

. =0 (2.24)
On the simplicial lattice the Bianchi identities are derived by considering closed paths in
four dimensions that can be shrunk to a point without entangling any hinge. The product
of rotation matrices associated with the path then has to give the identity matrix{1%16),
Thus, for example, the ordered product of rotation matrices associated with the triangles
meeting on a given edge has to give one, since a path can be constructed which sequentially
encircles all the triangles and is topologically trivial

[T %=1 (2.25)

hinges b
meeting on edge p
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Other identities might be derived by considering paths that encircle hinges meeting on
one point. Regge has shown that the above lattice relations correspond to the continuum
Bianchi identities('?). These equations also parallel the lattice Bianchi identities in lattice
gauge theories.

3. Formulation of Higher Derivative Terms

3.1 Construction of R3-type Terms

Next generalizations of the Regge calculus equivalent of the Einstein action will be
constructed. First consider a cosmological constant term, which in the continuum theory
takes the form A f d%z,/g. The expression for the cosmological constant term on the lattice
involves the total volume of the simplicial complex. This may be written as

Viotal = Z Vsimpl‘ices (3'1)

d—simplices

or equivalently as

Vtotal = Z -Vh (3.2)

hinges h

where V}, is the volume associated with each hinge, as described above. Thus one may
regard the invariant volume element \/Eddx as being represented by either Vj, or Vyimpies-

Secondly, one wishes to find a term equivalent to the continuum expression
1 [ d%z,/gR?, and the remainder of this section will be concerned with this problem(3%).
It may be objected that since in Regge calculus where the curvature is restricted to the
hinges which are subspaces of dimension 2 less than that of the space considered, then the
curvature tensor involves é-functions with support on the hinges, and so higher powers of
the curvature tensor are not defined(®®23), (This argument clearly does not apply to the
Euler characteristic

1 RAWT _RVKM w
and the Hirzebruch signature
1
T= s / d*2\/gRyv pe RS €975 (3.4)

which are both integrals of 4-forms). However it is a common procedure in lattice field
theory to take powers of fields defined at the same point, and there is no reason why one
should not consider similar terms in lattice gravity, Of course one would like the expresstons
to correspond to the continuum ones as the edge lengths of the simplicial lattice become
smaller and smaller.
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Since the curvature is restricted to the hinges, it is natural that expressions for
curvature integrals should involve sums over hinges as in {2.7}. The curvature tensor, which
involves second derivatives of the metric, is of dimension L~2. Therefore 1 [ dz,/gR" is
of dimension L%=2?". Thus if one postulates that an R? term will involve the square of
Ap6p, which is of dimension L3(¢~2) then one will need to divide by some d-dimensional
volume to obtain the correct dimension for the extra term in the action. Now any hinge
is surrounded by a number of d-dimensional simplices, so the procedure of dividing by
a d-dimensional volume seems ambiguous. The crucial step is to realize that there is a
unique d-dimensional volume associated with each hinge, as described above.

If one regards the invariant volume element \/Eddz as being represented by V;,
when one performs the sum over hinges as in equation (2.7), then this means that one may
regard the scalar curvature R as being represented at each hinge by 2436, /Va

1 d Ahéh _
"2-/d I\/§R —3 Z Vh Vh = Z Ah6h (3.5)

hinges h hinges h

It is then straightforward to see that

R R W AC DI AT S

hinges h hinges h

If one takes equation (2.23) for the Riemann tensor on a hinge and contracts one obtains

)
R =g " (3.7)
Ty

which agree with the form we have used for R, and shows that the numerical factors have
been chosen correctly in (2.23).

3.2 Convergence to the Continuum;: the Regular Tessellations of S®

It is of interest to see how the formulae (3.2), (3.5) and (3.6) for an R2-type
term compare with the continuum values for the regular tessellations of the two-sphere,
the three-sphere and the four-sphere. (These correspond to the regular polyhedra in three,
four and five dimensions(3g)). For regular tessellations, the volumes Vj take a very simple
form since each d-dimensional simplex has its volume divided into p equal parts, where p
is the number of hinges per simplex. If q d-simplices meet at each hinge, then V3, is just
the sum of q of these contributions

Vi=21v (3.8)
p
where V' is the volume of the d-simplex. Then in 2 dimensions, {p, q}, with p and q as
defined here, is just the Schléfli symbol. In 3 dimensions, the Schlifli symbol is {a,b, q},
where {a, b}, is the Schlafli symbol of the 2-dimensional simplex used to build the 3-
dimensional ones. (Thus {a, b}, determines the value of p as defined above).
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For regular tessellations, the dihedral angles §; also take particularly simple
forms. For example, the dihedral angle #; at the (d — 2)-dimensional hinge in a d-

dimensional simplex satisfies

1
cosfy = 7 (3.9)

The results for the regular tessellations of 82, S3 and S* are listed below. The scale for -
each tessellation is set by requiring the edge lengths ! to give the same total volume as a
sphere in that dimension, of radius r. The scalar curvature for S® is n{n — 1)/r2{41), The
full analytic expressions and more details can be found in ref. (31,40).

Table I Regular Tessellations of S2

62

Eh bn 2oh VI,’;
Tessellation No Volume . (=1 [d*zgR) (= 1 [ d*z,/gR?)
Tetrahedron as 4 /302 4r fﬁ%z = iz
Octahedron fs 6 2v3!2 4r 3%; = iz
Cube Y3 8 612 a7 %’{; ) = %—’-}
Icosahedron 12 5\/3!‘ 2 47 513’3_’;2 25 i
Dodecahedron 20 L2-(1+ V5)¥U? 4x . 53/5’(2115\/“5)3/212 =4
Continuum - 4nr? Y ar

-

Table I shows the simplicial lattice predictions for the various tessellations of $2.
In two dimensions the number of hinges is equal to the number of sites No. The second
expression in the last column is the form taken by the first expression there when the
length scale is set in the way described above. For S2, the Regge calculus equivalent of
the Einstein action is exact, as indeed it must be by the Gauss-Bonnet theorem. Note that
the Regge calculus expression for % f d“’:z:\/§R2 is also exact in this case!

In table II the results for the regular tessellations of S2 are listed. As the number
of vertices increases, the values of Y, Ix6, and Y, (262 /V; tend towards the continuum
expression 3 f d®z,/gR and } f d®z,/gR%

For both operators the approach to the continuum is very close to an No_z/ 3 (or
N{ # ®) behavior. These results are further evidence that the formula (2.18) is indeed the
appropriate representation for an R2-type term in the lattice action.
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Table II Regular Tessellations of S2

: : 3 eE

sites hinges o ninbn S
Tessellation No Ny (= 1 fd®z,/gR) (= i [d3z,/gR?Y)
5-cell 5 10 8.4617%r 35.7897%r 1
16-cell 8 24 7.2317%r 26.14472%r 1
Tessaract 16 32 6.8807%r 23.6817x%r 1
24-cell 24 96 6.4557r%r 20.8367%r 1
600-cell 120 720 6.1217%r 18.7357%r—1
120-cell 600 1200 8.0777%r 18.4677%r 1
Continuum - - 6.0007%r 18.00072r 1

The convergence of the numerical results for 84 shown in table III is not as im-
pressive as for S2. The problem lies in the fact that there are no other regular tessellations
of 8%, and ones with 6, 10 or even 32 vertices are certainly very crude approximations to
the continuum. Hence one cannot expect in this case strong evidence from the regular
tessellations on the convergence to the continuum of the simplicial lattice expressions.

Table I1I Regular Tessellations of S4

fr g

sites hinges Yoh Anby >on ’—“é;ﬂ
Tessellation No N (=1 [d*z,/gR) (= 1 [d*z./gR?)
as 6 20 28.0472r2 294972
Bs 10 80  21.087%r2 166.672
~s 32 80 20.7072r2 160.072
Continuum - - 16.0072r2 96.0072
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3.3 Other Higher Derivative Terms

So far the inclusion of only one of many possible higher derivative terms in the
lattice action was discussed. As shown in appendix A, there are six fourth derivative terms
in four dimensions, two of which are topological invariants, the Euler characteristic and
the Hirzebruch signature. Let us consider these last two quantities first.

The Euler characteristic x for a simplicial decomposition may be obtained from a
particular case of the general formula for the analogue of the Lipschitz-Killing curvatures
of smooth Riemannian manifolds for piecewise flat spaces(26). In two dimensions, the
formula of Cheeger, Mitller and Schrader reduces of course to

1
- N5 .10
X 2“% h (3.10)

which is the exact equivalent of the Gauss-Bonnet theorem
, i )
x= - | ¢oViR (3.11)

In four dimensions the formula becomes

x=3 11— > 02— Y 09+ Y (0,2)(24)] (3.12)

a2 DO'O ot 360 o4 :)0-2 300

where ¢! denotes an i-dimensional simplex and (¢, 7) denotes the (internal) dihedral angle
at an i-dimensional face of a j-dimensional simplex. Thus, for example, (0,2) is the angle
at the vertex of a triangle and (2, 4) is the dihedral angle at a triangle in a 4-simplex (The
normalization of the angles is such that the volume of a sphere in any dimension is one;
thus planar angles are divided by 2, 3-dimensional solid angles by 47 and so on).

Of course there is a much simpler formula for the Euler characteristic of a sim-

plicial complex

X = Z(_l)iNi (3.13)

where N; is the number of simplices of dimension i. However, it may turn out to be useful
in quantum gravity calculations to have a formula for x in terms of the angles, and hence
of the edge lengths, of the simplicial decomposition. In practice, an obstacle to the use of
(4.3) is that there is no simple formula for (0, 4), the solid angle at the vertex of a general
4-simplex. This is equivalent to the long-standing problem of the volume of a spherical
tetrahedron(4?). For a regular 4-simplex, it can be shown that (0,4) = —f + 5=cos ™! 1.
Furthermore, there seems to be no equivalent formula for the Hirzebruch signature for a
simplicial decomposition.

Formula (3.12) does not appear to be bilinear in the deficit angles, as one would
have expected from our general arguments about R? type terms. However this may be
due to the fact that the Euler characteristic is a total divergence, and so this formula
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is probably equivalent in some sense to evaluating the surface integral of the curvature
two-form times the connection one-forms.

Let us now look in more detail at the other possible higher derivative terms
mentioned at the beginning of this section. In fact in two dimensions, as shown in the
appendix A, there is only one independent higher derivative term, so the R® term, which we
have already written down, is the only possible term of dimension four. In three dimensions
one needs to find also an expression for [ ¢®z,/gR,, R*“. In 4 dimensions there are two
independent higher derivative terms, which can be taken to be f d‘*x\/ﬁRWpaR"”P" and
f d4z\/§R2.

If one considers the expression for the Riemann tensor on a given hinge

)
R™) o = A: vihu® (3.14)
h
one finds that the higher derivative terms are all proportional to each other
1 v 1 v 1 )
;_R(h)me(hw - ER“‘)WR(’”“ = §R(h)2 - A’* (3.15)
r,

Furthermore if one uses the above expression for the Riemann tensor to evaluate the
contribution to the Euler characteristic on each hinge one obtains zero, and it is therefore
clear that one needs cross terms involving contributions from different hinges. Even then
it seems unlikely that one would obtain the correct integer value for a particular simplicial
decomposition by this method, and formula (3.12) or (3.13) has to be used.

Thus one is faced with the puzzling situation that only one higher derivative term
can be constructed at a given hinge, while in the continuum there appear to be two terms
in four dimensions. The regular tessellations of S™ are not able to distinguish between
different terms since one has in this case

1
Ruvpe R*7%7 o Ry R* o« R? « — (3.16)

2
for a sphere of radius r.

The next step is then to construct the full Riemann tensor by considering more
than one hinge. The simplest possibilities would be to consider all the hinges that are the
faces of a simplex or, alternatively, all the hinges that have one point in common. On
the other hand one notes that since the value of (3.14) depends on the coordinate system
used, one should consider, in this formulation, terms only from those hinges which can
be covered by the same coordinate system. Define the Riemann tensor for a simplex as a
weighted sum of hinge contributions

6
(Ruver] o= Y WJQ[EU#VUP(,]Uz (3.17)

o2 Ccr“

where the w,: are dimensionless weights, to be determined later. After squaring one
obtains

-6 ; )
[praﬁwpa}ﬁ: Z Z WﬂzwozfiEquUpaJaz [EUWUWLM (3.18)

g2 Co-e O’QfCU';
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Consider two hinges labeled by 7 and j. By using formula (2.19) for the bivectors Uy, the
product of the last two square brackets can be worked out(43),

: RV eT 6 T )
R }uvpch(J) = [EUMVUPO’J (f)[‘“A";UWUW} ()
§:6; 1 (3.19)

s[(a-c)(b-d) = (a-d)(b-¢)]"

AF,'AFJ' 444;244.]

where ¢ and b are two edges in hinge 7, and ¢ and d are two edges in hinge 7. For the
square of the Ricci tensor one needs the expressions

{ Y24 _ 6 6 v
R, RO =[Z;U£Up,] (i)[ZFU”Ua](,-)
56, 1

T Ar,Ar, 16A%A?
x [a%e?(b- d)® + a?d*(b-c)? + b c*(a - d)® + b*d*(a - ¢)?
—2[a®(b-c)(c-d)(d-b) +b*(a-d)(c-d)(d-a) +c*(a-b)(b-d)(d-a)
+d*(a-b)(b-c)(c-a)] + 2{(a-b)(c-d)[(a-e)(b-d) +({a-d)(b-c)]]]

(3.20)
and for the scalar curvature squared
REORU) = [-E-U*“’U } [_ﬁ_UWU }
= A[‘ uy (.;) AI‘ foleg (J)
6.6, (3.21)
=4 —
Ar,Ar;
and the Euler characteristic
R(’:)#y O‘R(J-)K.AMTG“VKAE,QO'Q)T = [—'(S_vaUpcr} . [-‘S—UK,,\UMT] ) f,uu.-c)\epcrwr
P Ar (Ot Ap (7)
6:6; 1 (3.22)

(ppoatb”cPd®]?

B Ar; Ar; A?A?

and finally for the Hirzebruch signature

z_ A p,y A . 6 5 47 K‘}.
R( ).uvpch(J) €7 = [XF_U#VUPU} (i)[A_rU'u UKA](J')EW

5,;5' i ,
= AP{A]I} ZAEA? Ep,ypo'aﬂ'b cpdo‘ [(a . C)(b . d) _ (a . d)(b . C)]
(3.23)

In the above formulae A; and A; are the areas of the triangles i and j, respectively.
The question of the weights w,2 introduced in equation (3.17) will now be ad-
dressed. Consider the expression for the scalar curvature of a simplex defined as

Rl .= ) wo [2Ai]dz (3.24)

oot r
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It is clear from the formulae given above for the lattice curvature invariants (constructed
in a simplex by summing over hinge contributions) that there is again a natural volume
associated with them : the sum of the volumes of the hinges that form the faces of the
simplex

Voe= > Ve (3.25)

Where V,: = Vj is the volume defined in equation (2.5). Summing the scalar curvature
over all simplices, one should recover Regge’s expression

DVedR] =) Y wee] 2— Z&,m,- (3.26)

g4 o2 o4

which implies
6 6
N3 4Vawga A"2 = NpaV, w2822

2
r,q o

= §2A,2 (3.27)

where N3 4 is the number of simplices meeting on that hinge. Therefore the natural choice
for the we:ghts is
2 Ve V,a

7 N2,4Vo" N2,4 262 Cod Vo'2

Thus the weighting factors that reproduce Regge’s formula for the Einstein action are just
the volume fractions occupied by the various hinges in a simplex, which is not surprising. Of
course the above formulae are not unique, since one might have done the above construction
of higher derivative terms by considering a point ¢° instead of a 4-simplex 4. The Riemann
tensor is then constructed by averaging with the appropriate weights the contributions of
different hinges meeting at one point, and the volume V,: becomes the sum of all hinge
volume contributions coming from the hinges touching the point.

The above formulae for higher derivative terms are still rather involved. Of course
in dealing with the quantum theory one could consider the two simpler expressions which
contain some of the structure of the previous terms

w (3.28)

. 6
/ ViRurg R ~ 23 Vor (-] 2)” (3.29)

which vanishes if and only if the Riemann tensor projected on all the hinges vanishes (it is
in fact a rewriting of the expression (3.6} for the ’naive’ higher derivative term constructed
in the previous section), and

Y 1 1 6
/ \/-g-(Ry,u)\oR’u Ao _ §R2) ~ 6 EV0.4 Z (wo, waz,[z]:“] 02,)2 (3.30)
ot _

02 2 !c0.4

which introduces a short range coupling between deficit angles. Note that this interaction
term has the remarkable property that it requires neighboring deficit angles to have similar
values, but it does not require them to be small.
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Alternatively, of course the summation can be done over the ¢%’s, instead of the
¢%’s, as in the expression (3.12) for the Euler characteristic. The second choice (sum over
sites) appears in fact more natural when one considers the coupling of gravity to matter
fields, which will be represented here for simplicity by a scalar field ¢(z}. In the continuum
an invariant action, up to terms quadratic in @, is(®

Inatter = /d4$\/_[ #yap(bau‘}ﬁ + m2¢2 + 91R¢2 + ng#Ua“¢6V¢ =+ ] (3'31)

On the skeleton define the fields &, living on the sites. If R is defined on the sites, then
the third interaction term (proportional to g; is just a point coupling term. As far as the
first term is concerned, introduce lattice (forward) derivatives

Ai‘)ﬁn = (¢n+i - ¢n)/ln,n+i (332)

where ¢ labels the possible directions in which one can move from a point in a given simplex
(there are d of them in d dimensions), and [,, »; is the length of the edge connecting the
two points. The metric g;; at point n in a simplex is

gij( ) (lrzr. ng + ln. T+ li—f—z n-i—J) (3'33)

and /g is proportional to the volume of the simplex. The lattice analogue of the first term
in the action In.aseer Of eq. (3.31) is then, in four dimensions,

D D Veig?(00,0*)AidgoAjoo (3.34)

ol o5l

and double-counting can be avoided by summing only over simplices with sides pointing
in the positive lattice direction. In two dimensions the corresponding expression is

Y Vieag(00,0%) Aidoo Bjdgo (3.35)

g g2e0

On a regular triangular lattice as the one in fig. 6 one can associate with each point n two
adjacent triangles in the positive (1,2) direction, which can be labeled by v = 1,2. Then
the action is simply

ZZV”’ A1)? + (Az6,)? + 2cos aly  A16nAzén] (3.36)

where o, , is the (dihedral} angle between the two edges I, and I2 coming out of the
point n in the triangle labeled by ~.
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3.4 Expansion Around Flat Space

One of the simplest possible problems that can be attacked in quantum Regge
calculus is the analysis of small fluctuations about a fixed flat simplicial geometry(34). The
Regge action for R-gravity will be considered for simplicity. It was shown above that the
first variation of the Regge involves only the variation of the area of the hinge. The second

variation is thus a4 36 .
5% = by ZE g 3.37
r=_ (O =603 560 (3.37)
o2 o° c?
where 6, is the deficit angle, not to be confused with the variation symbol.

Next a flat lattice is chosen as background geometry. A mnatural choice is to
choose a flat hypercubic lattice which is made rigid by introducing face diagonals, body
diagonals and hyperbody diagonals. This implies that there are 2¢ — 1 = 15 fields per
point corresponding to the edge lengths emanating from one vertex.

The edge lengths are then allowed to fluctuate around the equilibrium point /¢

=12(1+¢) (3.38)

The second variation of the action then becomes a quadratic form in the small fluctuation
vector €; with 15 components per site

5213 = ZEIM,'J'GJ' (3.39)
ty

and M is the small fluctuation matrix whose inverse determines the graviton propagator.
The matrix M can more easily be computed by going to momentum space. One finds that
the matrix M has four zero modes corresponding to periodic translations of the lattice, and
a fifth zero mode corresponding to periodic fluctuations in the hyperbody diagonal. After
block-diagonalization it is found that 4 modes completely decouple and are constrained
to vanish, and thus the remaining degrees of freedom are 10, as in the continuum, where
the metric has 10 independent components. After gauge fixing and the introduction of
the appropriate ghost terms the remaining 10-dimensional matrix can be reduced to the
form(34)

(matriz of numbers) x [2 Z(I — cosky)| + gauge terms (3.40)

i

which shows the correct 1/k? behavior for the lattice graviton propagator at small k2.

4. Quantum Gravity Beyond Perturbation Theory
4.1 Choice of Underlying Lattice Structure

In principle a natural setting for lattice quantum gravity calculations would be
a random lattice, in which the coordination number at each site is itself a random vari-
able. Unfortunately such a lattice is rather difficult to deal with, both analytically and

numerically(44).
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Another possibility is to use the regular tessellations of the n-sphere(%!. Since

the maximum number of edges allowed in such tesselations is not very largeé, a refinement
of the same could be achieved by considering further regular subdivisions, such as the
barycentric one. Thus the degree of irregularity is kept at a minimum.

A third possibility is to start with a hypercubical lattice, which can be made
topologically equivalent to that of a hypertorus, by identifying opposite faces. Finite
volume effects are minimized for this lattice, since the boundary is formed by a replica of
the same lattice. The advantage of the hypercubic lattice lies in the fact that the number
of edges can be increased arbitrarily, keeping the local incidence matrix unchanged. If
the theory has some reasonable continuum limit, then this limit should not depend on the
detailed lattice structure at short distances. Of course different topologies can be obtained
by changing the boundary conditions.

The lattice actions for gravity written in the previous sections do not contain
terms which allow tunnelling from one topology to another. Thus initially one would like
to keep the topology fixed, and vary the metric within the given sector. Eventually it will
be important to verify that the results obtained do not depend on the particular topology
chosen(#%). This is likely to happen for correlations of local operators over distances that
are much smaller then the size of the system. In fact the renormalization properties of the
lattice operators can be extracted by looking at the dependence of the low energy effective
hamiltonian (and its correlation functions) on the ultraviolet cutoff. Here by low energy
one means energies that are still above the infrared cutoff set by the finite box (universe)
size.

It is not clear at the present moment how the integration over topologies should
be performed, and how the weighting should be assigned. For a discussion of this point
see reference {45). Arguments have been given for suggesting that a sum over topologies
in Regge calculus cannot give a finite functional integral, because the number of manifolds
with a given topology increases too rapidly as a function of the number of simplices(49),
In fact the problem of enumerating all possible manifolds constructed out of a given finite
number of edges is likely to be NP-complete.

The asymptotic freedom of higher derivative gravity further restricts the short
distance fluctuations in the metric, implying that the field configurations become smooth
at the scale of the ultraviolet cutoff{?). Furthermore it seems unlikely that a unitary theory
can be defined by summing over topologies. The time-slice factorization property of the
functional integral needed o construct a time evolution operator no longer holds if this
summation is performed, even if the action is reflection positive(47), This is connected with
the fact that the weighting factors for individual topologies, being necessarily topological
invariants, are only globally defined.

In the following only results obtained with the hypercubic lattice will be discussed.
The two-dimensional square lattice with diagonals was shown in fig. 6. In fig. 9 a single
hypercube is drawn, with the relevant body principals, face diagonals, body diagonals
and hyperbody diagonals. The diagonals have to be introduced to make the lattice rigid.
Otherwise the values of the edge lengths do not determine the angles, and therefore the
geometry, uniquely. The hypercube is then replicated in four directions to construct the
full skeleton.
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4.2 Functional Integral and Definition of the Measure

After having chosen an appropriate lattice, the next step is to define and evaluate
the functional integral for simplicial quantum gravity restricted to a manifold of fixed
topology, say a hypertorus.

Z= /d,ume—fi” (4.1)

In the following the scale invariant form of the measure

[ dull] = H / ‘”25* 0 (4.2)

will be used, where F¢[l] is a rather complicated function of the edge lengths which is
non-vanishing when the triangle inequalities for the simplicial complex are satisfied, and
zero otherwise. These inequalities ensure that the edge lengths, triangle areas, tetrahedron
and four-simplex volumes are positive. The positive real parameter ¢ is introduced as an
ultraviolet cutoff at small edge lengths : the function F¢{{] is zero if any of the edges is
equal or less than e.

Of course the measure suggested above is not unique, but is certainly the most
attractive one since it is local and scale invariant as the continuum measure(®). Other
measures one might consider would involve an integration over edge lengths divided by
some volume to the appropriate power, such that the total measure is scale invariant.
However there are several volumes that are touching a given edge, and the measure then
becomes rather complicated, involving some odd powers of volumes in the denominator.

A possible approach to evaluate the functional integral is by using numerical
Monte Carlo methods that do not rely on an expansion in a small parameter. Then the
edges of the skeleton are varied individually (or in small groups) by a small amount, and the
difference in action is compared. If the action is lowered, the new edge value is accepted,
if it is raised then the new edge length is only accepted with a probability given by the
exponential of the action difference. The same procedure is then applied to another edge,
and so on. After many edges have been changed, the probability distribution for the edges
approaches the equilibrium one. For a more detailed discussion of the procedure see ref.

(11).

An alternative procedure to evaluate the functional integral is to introduce in
four dimensions a fictitious fifth time ¢ and solve the stochastic differential equation (for
pure R-gravity without a cosmological constant term)

1 dl,(t)
() dt

- %k 12() 3 6a(t) cot 8,h(2) + V2n,(t) (4.3)

hDl,

where the sum is over hinges (triangles) labeled by A meeting on the common edge p, and
0pi is the angle in the hinge i opposite to the edge p. The field n,(t) is a gaussian white
noise with zero mean and unit variance. The constraint that the triangle inequalities be
satisfied implies that the force term is infinite when they are violated. Averaging over the
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noise 17,(t) reproduces then the averages computed by the functional integral method, in
the limit of large times.

4.3 Numerical Results : Two Dimensions

In two dimensions the action of pure higher derivative gravity is
67
Ile AAp + kép + @ 4.4
[ ] - [ h T ACR Ah] ( )

We do not consider here the case of long-range interactions of the type
1

Izr[l] = Z&h —————-—z]h h'6h' (4.5)
h = A+m

where A is the nearest-neighbor covariant lattice Laplacian, and m? is a mass regulator.
This interaction term corresponds to the continuum contribution

2/d2zd2yR\/_(z < z|— 2|yr > R+/9(y) | (4.6)

considered {for m? = 0) by Polyakov(*®) in the context of the problem of random surfaces

embedded in higher dimensional space(4°).

The coupling k is irrelevant as long as the topology is fixed. In the following only
the torus will be discussed, and k£ = 0 will be set. The triangular lattice (as in fig. 6) is of
size N x N with 3N? edges (later only N = 32 will be considered}. Integration over the
edge lengths is cut off at small edge lengths

I; > ¢ (4.7)

and the two couplings have dimensions [A\] ~ ¢~2 and [a] ~ ¢*. The cosmological constant
in two dimensions has at most a quadratic divergence

/\R-T-)\0+62L2+601DL+"' (4.8)

with L ~ e~1 the ultraviolet cutoff, while Newton’s constant does not get renormalized.
Consider now the path integral

ZX\ a6 = / duell]e " (4.9)

Because of the scale invariance of the measure, the lengths can be rescaled /; — (f’-) Y 411-

and one obtains
Z[\,a,¢l = Z[Vax, VaX ()”“% (4.10)
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I € can be sent to zero, then Z dep.ends only on vaA, once all lengths are expressed in
units of the length scale I = (%) /4
The following expectation values are of interest

1
< A >=-——N < E Ay >
kR N
IR
. 6;3 {4.11)
<« R*>=_ <« E RN
Ny, — A

where N = N? is the number of hinges. Dual volumes are used in the following. A
numerical evaluation of the path integral by Monte Carlo methods leads to the following
results. For a = 0 the results are trivial

0, ifA>0;

oo; if A<0. (4.12)

<a>={

and < R? >= oo for both signs of A. These results are valid as the cutoff ¢ is sent to zero.

For strictly positive a the path integral exists for positive A, while for negative A
one has results similar to ¢ = 0 (no nontrivial equilibrium distribution of edge lengths). A
typical equilibrium distribution of edge lengths is shown in fig. 7 for e = 1 and A = 0.2.
It is insensitive to a small edge length cutoff ¢, unless A is very large.
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Figure 7

From now on a will be kept fixed and ¢ sent to zero. As A goes to zero for fixed
a the distribution flattens out. The expectation value of the total volume of space-time
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< A > diverges as A approaches zero from the positive side, while the average curvature
squared < R? > goes to zero. For the case ¢ = 1 the results are shown in table IV.
There v/< I? > denotes the square root of the average edge length squared, and < A >
and < R? > were defined before. v/< {2 > here plays the role of the lattice spacing, the
fundamental unit of length. p denotes the 'mass’ of the ghost.

Table IV Results for the 2-dimensional Model

e d

A V<iZ> <A> Az 1<R*> £z m
0.4 1.28(3)  0.96(5) 0.292(5) 0.408(3)  0.42(3)  0.99(8)
0.3 1.52(3)  1.34(5) 0.289(5)  0.396(3) 0.30(1)  0.64(8)
0.2 1.78(3)  1.82(5)  0.287(5)  0.371(3) 0.20(1)  0.62(8)
0.1 2.34(3)  3.12(5) 0.285(5)  0.324(3) 0.10(1)  0.69(8)
0.0 o0 0 0.288 0 0 0

Thus the phase boundary appears to be at A = 0 for any a, and the cosmological
constant has no quadratic divergence {the renormalized cosmological constant is zero if
the bare one is zero). This behavior is connected to the strong infrared divergence of the
’graviton’ propagator in two dimensions. (Higher derivative gravity is super-renormalizable
in two dimensions). For small k2 the inverse of the quadratic fluctuation matrix around
flat space in momentum space is proportional to

1 A 1/4
AR MT (E) / (4.13)

and is thus strongly convergent for large k2. (Of course tha flat space expansion is not
really justified in the presence of a cosmological constant term).
For ¢ = 0 one has from scale invariance the exact identity

2
<Rk > _2 (4.14)
a

i<A>
which is well satisfied, as can be seen from the table. Also, the average area of a triangle
divided by the average edge length squared is independent of A. One finds

< A> 3
=0.288:::\/_

2<% > 6 (4.15)
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which shows that the triangles are not equilateral. {For equilateral triangles the ratio is

V3/4 = 0.433).
In the region of A and ¢ considered the space-time volume and the integrated
curvature squared can be reasonably well fitted by simple functions of the form

2
B+ Cln

a 2
S < RPo=—_ =
4 B+Cin 3

A< A>=
(4.16)

with B = 4.0 and C = 1.0, but other fits are equally possible at this point.

The 'mass’ of the ghost can be extracted by looking at the large distance decay
of correlation function. A natural choice is the volume-volume correlation at geodesic
separation d(h, k) ‘
Gy(d) =D < VWV 6(d(h,h’) ~ d) > (4.17)

Akt

As can be seen from fig. 8 {there A = 0.3 and @ = 1) < V,V} > itself is not positive as
a function of the flat lattice distance {h — h’| (the distance on the original flat space with
edges of length one, which does not account for the fact that the lattice spacing is not
equal to one and space is not flat), indicating a violation of unitarity already at this level.
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Figure 8

In this particular case the correlation function is fitted rather well by a pure k*
propagator with finite ‘'mass’ u = 0.64. A more careful computation of the correlation
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function would involve the evaluation of the correlation function (4.17). Assuming that
the fits in this case are truly reliable, one obtains '

Avv
n= C(E) F(v Aa) (4.18)
with C = 1.0(15) and v = 0.25(5) and F =1, independent of A, within errors. An estimate
of the physical 'mass’ of the ghost can be obtained by multiplying the ’lattice mass’ by the

unit of length v < {? >
Hphysical = V < 1? g (419)

As a is sent to zero for fixed A the ghost becomes infinitely massive.

In conclusion it appears that the phase diagram of a model of higher derivative
gravity can be worked out with relative ease, even though the detailed dependence of
physical observables on the bare parameters is more difficult to determine and would
require further work. The lack of unitarity of the theory in two dimensions {where no R
term is generated by radiative corrections) can be seen by analyzing the decay of physical
correlation functions in real space.

4.3 Numerical Results : Four Dimensions

In four dimensions the action for pure higher derivative gravity on a simplicial
lattice was described in section (3.3). The full action is

Azzézn
I =) [AVya — 2kA 2652 + 26 2]
o
o (4.20)

a bp2Aq2 bg2,A02,\ 2
e 3 (R - e
0

2,020l

with Vyo = > . ~o0 Voz. The complexity of the interactions is clearly an order of magni-
tude greater than in the two-dimensional case.
As in the two-dimensional case, the lattice is chosen to be regular and built out

of rigid hypercubes, one of which is illustrated in fig. 9.

The lattice is of size N x N x N x N with 156N? edges, and up to now only
N = 4 (3840 edges) has been considered. Periodic boundary conditions are used, and the
topology is therefore restricted to a hypertorus. Again integration over the edge lengths
is cut off at small edge lengths {; > ¢, and baricentric volumes are used.

For @ = b = 0 the action is unbounded from below, and the path intergal does

not converge.

This is shown, for 2k = 1, in fig. 10, where the evolution of the total space-time
volume {circles} and of the lattice analogue of the integral of R (the term multiplying 2k
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in the action) (triangles) is shown as a function of the iteration number, starting from a
flat space configuration with body principals equal to one{*3). (The initial volume per site
has been normalized to one at the beginning) The cutoff ¢ in this particular case was set
equal to zero. A detailed analysis of the phase diagram with couplings A, k&, a,b different
from zero has not been done yet, but appears to be well within reach of present computers
capabilities.
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Appendix A
Some formulae in Riemannian geometry

The square of the line element is defined by
ds* = g,,dz*dz” (A.1)

where the metric g,, is a symmetric positive definite tensor field. General coordinate
transformations act on the metric as

az* oz
ro_
gpy - 6£,pgA0' ax’y (A.Z)
The connection is given by
1 39, 0g,x dg
ro’ - - oX 12 . _ 224 .
=397 %0 * o o) (4.3)

Under an infinitesimal general coordinate transformation éz, = n,(z) the metric and the
connection change as{!®

9% w2 0n” L on*

Sa*¥ = — __ il
g T e T T A (4.4)
5T* -_-_n"iri‘i_rﬂ ?IL_TP _‘?.Tﬁ_f_r)\ on® _ *n’
K ar? wA 3z vAQgu T HYard  Qredzv
The covariant derivative of an arbitrary vector V# is then
oV #
D\VH# = 5o + I8 Ve (A.5)
and the parallel transport formula for a displacement dz" is
§VHE = T4 dz"V* (A.6)
Parallel transport around a closed loop rotates a vector by
AV, = —R%,,,do"*V, (A.7)
where RY,,, is the Riemann tensor, and do¥* = 3 [ z¥dz? is the area of the loop. In
terms of the connection
ar? or?
A v o A )
Ryo = 8;’ - 6::: +I,. 15, - T, (A.8)
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Covariant differentiation is symmetric

oV

(D,,D,) _Vf=R: VT . (A.9)
The Riemann tensor satisfies the symmetry relations
R,ul/)\cr = _Ru,uz\cr = _R,u.ucr)\ = Rup.cr)\

Ryu)\a = Rz\cruu
Ruu.\a + R,u.Acw + R,u,cru/\ =0 (A]-O)

With one contraction one obtains the Ricci tensor R,,,, and with two the scalar curvature

R
RHJ/ = gAGR)\MdV R = gﬂugAaR‘,&)\ua (A.].l)

The conformal curvature or Weyl tensor is constructed from the Riemann tensor as

1

3Rg,\ipg,,o.] (A.12)

Cuvre = Ruvro — R,\[;.Lgvaj + Ra[pgv)\] +
The square brackets denote antisymmetrization. The Weyl tensor is traceless
g)\ac,\“ay = g#VgAUC,u.Auo* =0 (A13)

The scalar curvature R and the volume element d“z:ﬁ, where g is the determinant of
the metric, are invariant under general coordinate transformations, and so are the action

contributions
/ d4a:\/§

(A.14)
[d"‘:z:\/ﬂ?
Possible terms quadratic in the curvature are!!8)
[d“:c\/g_ R?
/dd‘r\/ﬁ R, R*
fd4x\/§ R“VAO_R,U.V)\O‘
(A.15)
[ d4$\/§ C“VAG_C“V‘AO‘

]d“:rﬁ R#VpaRichwrepyacACpaw‘r — 12811’2)(
/ d*2/9 Ryuvpo REY P75 = 96727
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where y is the Euler characteristic and 7 the Hirzebruch signature. Not all these quantities

are independent. In two dimensions one has the identity »
wrioc 1 uv 2 wirde
Ry o R = iRﬂyR =R CuvreC =0 (A.16)

and in three dimensions
R,uy/\ch'uUAo = 4R,uuR“W - R2 C,u.y)\crcuy/\a =0 (A17)

and finally in four dimensions
1
R,u.u)\aR”VAd = ,uVAcC'uuAa + 2RpuR#U - §R2 (AlS)

Furthermore the expression for the Euler characteristic can be rewritten as .

1
X =303 d*z\/g [Ruvro R¥**° — 4R, R* + R?] (A.19)

and thus only twe curvature squared terms for the action are independent in four dimen-
sions. |

To get more a feeling for the difference between different higher derivative terms
consider the following example. A particular case of Riemannian manifold is one of dimen-
sion d which is locally isometrically embedded in (d + 1)-dimensional euclidean space with
the canonical euclidean metric. If the manifold is locally convex, the principal curvatures
k) are of the same sign everywhere. Then the manifold is the called a locally convex
hypersurface(®?). Every point of the manifold admits a neighborhood in which the vectors
tangent to the lines of curvature form an orthonormal frame such that

Ry.upcr = kyky(éypé,ua - 61/0'6}-&10) (A20)
Define K, = k,k,. Then one derives in four dimensions

R =2(K12 4+ Kiz+ Kyy+ Koz + Koy + K34)
R? 24(K12+K13+K14+K23+K24+K34)2 (A.Zl)
RuxoBR* =2(K}, + Ki, + K, + K33 + Ki, + K3,

and therefore 1

1
E(R“VAUR,W/AJ _

Cuu.\ac“y'\a ~ ng)

[(K12 ~ K13)2 + (K12 — K14)? + (K12 ~ K23)* + (K12 — K24)? + (K12 — K34)?

+ other 10 terms]

L2l Wt

(4.22)
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This simple example shows some of the difference between R, R:, . and CZ, . While

R2,,, tries to make all K,,’s small when inserted in the functional integral, CZ,,, tries

to make all K,,’s equal to each other.

Appendix B
Some useful formulae in Regge calculus

Consider an n-dimensional simplex with vertices 1, 2, 3, ... n+1 and square edge
lengths 12, = {2,, ... . Its vertices are specified by a set of vectors v = 0, vy, ... vn. The
matrix{(14:26)

gij =< vilv; > (B.1)

with 1 < 7,7 < n is positive definite, and in terms of the edge lengths I;; = |v; — v;| it is
given by

1
g5 = 5["8{ +18; - 1] (B.2)

The volume of an n-simplex is then given by the generalization of Tartaglia’s formula for
a tetrahedron

1
Vo= L Vaete, (B.3)

Figure 11
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An equivalent form is

0 1 1
1 0 2,
(=1)2 | 1 l%, 0 ...
n T T von/a 1 I3 ETR (B.4) -
1 i3 £
1 li+1,1 lﬁ+1,2

In the particular case of a triangle with sides of length {y,{2,/s the formula becomes

(ML

1
Atriangle = Z [z(lftg + lglg + l%ﬁ) - rli - lg - lg] (BS)
For the tetrahedron with edge lengths I, ---l5 one has
Vietrahedron = [4l l (12 lg + 12)2 - lg(lf + li - lg)z (B 6)

i
2

HIEUE -G+ + (G -G+ + 18 -1 - 15 +13)]
For a 4-simplex with edge lengths I; -+- 110 {(see fig. 11) define the quantity (42

1

K(A,V,V,) = 288V, V,

(164203 — 13, +13) ~ 2830% — B +12)(1% — 13 + 13)
-8} -+ R+ 1)+ (-2 +1D)

(03 -+ -8 + 0T - B+ -3+ )]
(B.7)
where A is the area of the triangle with edge lengths {,,15,{3, and V| and V., the volumes
of the tetrahedra with edge lengths I1,1,13,14,i5,1l6 and {;,12,13,17,1s, 1o Tespectively. ;g
corresponds then to the edge in the simplex which is opposite to the triangle. Then the
dihedral angle at the triangle with edge lengths {1,12,/3 is given by

cos g = K({A,V,V?) (B.8)

and the volume of the simplex is

3V;Vov/1 — K2

Vsimple:: = 44 (BQ)

In two dimessions the formula for the dihedral angle is of course

2 g2 _ g2
cosfy = hrlp -1 (B.10)



where [3 is the length of the edge opposite to the vertex considered. For the same vertex
the dihedral dual volume contribution is

Ay = ﬁ[zg(lf +13) - (12 =13)?] (B.11)
The baricentric dihedral volume is simply Az = A/3. In four dimensions first introduce
the quantity(31) .

Sty 2,13, la, s, le) = —20F35+ 1313 (13— 12 +12) 22 (12— 12 112) + 1212 (12 +12—12) (B.12)

which is characteristic of the tetrahedron with edges (123)456 containing the hinge (tri-
angle) with edges 123. Then the dihedral dual volume attached to the triangle with edge
lengths 4,152,153 is given by

1

Vy= 28,3,V Vo — K(Z2V.2 4+ 22y 2 B.13
d (384)2A2V1V2V3implez{ 1B2ViVe = K2V + T2Vy) (B.13)

where £, and X, relate to tetrahedron (123)456 and (123)789 respectively. The dihedral
baricentric volume is Vg = Vmpiez/10.
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