
EI.SEV1ER 

23 June 1994 

Physics Letters B 329 (1994) A.~A A~ 9 

PHYSICS LETTERS B 

Dynamically triangulated Ising spins in fiat space 
Marco Veki6 a, Shao Liu a, Herbert W. Hamber b 

a Department of Physics, UC lrvine, lrvine, CA 92717, USA 
b Theory Division, CERN, CH-1211 Gen~ve 23, Switzerland 

Received 3 March 1994 
Editor: H. Georgi 

Abstract 

A model describing lsing spins with short range interactions moving randomly in a plane is considered. In the presence of 
a hard core repulsion, which prevents the Ising spins from overlapping, the model is analogous to a dynamically triangulated 
lsing model with spins constrained to move on a flat surface. It is found that as a function of coupling strength and hard 
core repulsion the model exhibits multicritical behavior, with first and second order transition lines terminating at a tricritical 
point. The thermal and magnetic exponents computed at the tricritical point are consistent with the exact two-matrix model 
solution of the random Ising model, introduced previously to describe the effects of fluctuating geometries. 

1. Introduction 

Following the exact solution of  the Ising model on 
a random surface by matrix model methods [ 1 ], there 
has been a growing interest in the properties of  random 
Ising spins coupled to two-dimensional gravity. More 
recently, work based on both series expansions [2] 
and numerical simulations [3,4] has verified and ex- 
tended the original results. It is characteristic of  these 
Ising models that the spins are allowed to move at ran- 
dom on a discretized version of  a fluid surface. In a 
specific implementation of  the model, Ising spins are 
placed at the vertices of  a lattice built out of  equilat- 
eral triangles, and the lattice geometry is then allowed 
to fluctuate by varying the local coordination number 
through a "link flip" operation which varies the local 
connectivity [ 3 ]. Remarkably the same critical expo- 
nents have also been found using consistency condi- 
tions derived from conformal field theory for a central 
charge c = ½ [5] ,  which should again apply to lsing 
spins. It is generally believed that the new values for 
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the Ising critical exponents are due to the random fluc- 
tuations of  the surface (or the world sheet in string 
terminology) in which the spins are embedded, and 
therefore intimately tied to the intrinsic fractal prop- 
erties of  fluctuating geometries. It came therefore as 
a surprise that non-random Ising spins, placed on a 
randomly fluctuating geometry but with fixed spin co- 
ordination number, exhibited almost the same critical 
behavior as in fiat space, without any observed "gra- 
vitational" shift of  the exponents [ 6] (in other words, 
any shift would have to be smaller than the statistical 
errors of  the calculation). 

The natural question is then to what extent the val- 
ues of  the critical Ising exponents found in the ma- 
trix model solution (or = - 1 , / 3  = ½, ), = 2, r/ = 2, 
v = 3 [ 1 ] ) are due to the annealed randomness of  the 
lattice, and to what extent they are due to the physi- 
cal presence of  a fluctuating background metric. The 
most straightforward way to answer this question is to 
investigate the critical properties of  annealed random 
Ising spins, with interactions designed to mimic as 
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closely as possible the dynamical triangulation model, 
but placed in flat two-dimensional space. We should 
add that it is well known that for a quenched random 
lattice the critical exponents are the same as on a reg- 
ular lattice [ 7 ], as expected on the basis of universal- 
ity, even though in two dimensions the Harris criterion 
(which applies to quenched impurities only) does not 
give a clear prediction, since the specific heat expo- 
nent vanishes, a = 0, for Onsager's solution. 

In this letter we present some first results concern- 
ing the exponents of such a model. A more detailed 
account of  our results will be the subject of  a forth- 
coming publication [ I 1 ]. 

2. Formulat ion of  the model 

In a square d-dimensional box of sides L with peri- 
odic boundary conditions we introduce a set of N = L a 
Ising spins Si -- 4-1 with coordinates x a, i = 1 . . . . .  N, 
a = 1 . . . . .  d, and average density p = N I L  d = 1. Both 
the spins and the coordinates will be considered as dy- 
namical variables in this model. Interactions between 
the spins are determined by 

l [ x , S ]  = - ~ J i j (x i ,  x j )  Wij SiS j - h y ~ W  i Si, 
i<j i 

(2.1) 

with ferromagnetic coupling 

{ 0  if lxi - xil > R (2.2) 
Jij(xi'xj) = i f r  < [ x i -  xjl < R ' 

and infinite energy for I x i -  xjl < r, giving therefore 
a hard core repulsion radius equal to ½r. As will be 
discussed further below, the hard core repulsive inter- 
action is necessary for obtaining a non-trivial phase 
diagram, and mimics the interaction found in the dy- 
namical triangulation model, where the minimum dis- 
tance between any two spins is restricted to be one lat- 
tice spacing. For r ~ O, Jij = J[ 1 - 8( Ixi - xjl - R) ]. 
The weights Wq and Wi appearing in Eq. (2.1) could 
in principle contain geometric factors associated with 
the random lattice subtended by the points, and involve 
quantities such as the areas of  the triangles associated 
with the vertices, as well as the lengths of the edges 
connecting the sites. In the following we will consider 
only the simplest case of unit weights, Wq = Wi = 1. 

On the basis of universality of critical behavior one 
would expect that the results should not be too sen- 
sitive to such a specific choice, which only alters the 
short distance details of  the model. 

The full partition function for coordinates and spins 
is then written as 

Z =  H ~ dx a e x p ( - l [ x , S ] ) .  (2.3) 
i=1 Si='4-1 a=-I 0 

In the following we will only consider the two- 
dimensional case, d = 2, for which specific predic- 
tions are available from the matrix model solution. 
It should be clear that if the interaction range R is 
of order one, then, for sufficiently large hard core 
repulsion, r ---, v ~ / 2  < R, the spins will tend to lock 
in into an almost regular triangular lattice. As will be 
shown below, in practice this crossover happens al- 
ready for quite small values of r. The critical behavior 
is then the one expected for the regular Ising model 
in two dimensions, namely a continuous second order 
phase transition with the Onsager exponents. Indeed 
for the Ising model on a triangular lattice it is known 
that Jc = ½v~ln3  = 0.9514 . . . .  On the other hand if 
the hard core repulsion is very small, then for suffi- 
ciently low temperatures the spins will tend to form 
tight ordered clusters, in which each spin interacts 
with a large number of neighbors. As will be shown 
below, this clustering transition is rather sudden and 
strongly first order. Furmermore, where the two tran- 
sition lines meet inside the phase diagram one would 
expect to find a tricritical point. 

In order to investigate this issue further, we have 
chosen to study the above system by numerical simu- 
lation, with both the spins and the coordinates updated 
by a standard Monte Carlo method. The computation 
of thermodynamic averages is quite time consuming 
in this model, since any spin can in principle inter- 
act with any other spin as long as they get sufficiently 
close together. As a consequence, a sweep through 
the lattice requires a number of  order N 2 operations, 
which makes it increasingly difficult to study larger 
and larger lattices. On the other hand, we should add 
that we have not found any anomalous behavior as far 
as the autocorrelation times are concerned, which re- 
main quite comparable to the pure Ising case. 

In the course of the simulation the spontaneous 
magnetization per spin 
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M=l~lnZIh=o=l(l~Sill, (2.4) 
i 

was measured (here the averages involve both the x 
and S variables, ( ) - ()x,s),  as well as the zero field 
susceptibility 

1 a 2 1 1 
X - -  ~ - ~ "  In Zlh=0 = ~ ( E  Sisj)  -- -~(I E S i l )  2. 

ij i 
(2.5) 

It is customary to use the absolute value on the r.h.s., 
since on a finite lattice the spontaneous magnetization, 
defined without the absolute value, vanishes identi- 
cally even at low temperatures. In addition, in order to 
determine the latent heat and the specific heat expo- 
nent, we have computed the average Ising energy per 
spin defined here as 

E = - l a - -  ~ In Z,,=0 

= - 1 - - - ( ~ - ~ J q ( x i ,  x j )  Wij SiSj),  (2.6) 
J N  

i<j 

and its fluctuation, 

1 a 2 
C - N aJ  2 In Zlh=O. (2.7) 

3. Resul t s  and  analys i s  

In the simulations we have investigated lattice sizes 
varying from 52 = 25 sites to 202 = 400 sites. The 
length of our runs varies in the critical region ( J ,,~ Jc) 
between 1M sweeps on the smaller lattices and 100k 
sweeps on the largest lattices. A standard binning pro- 
cedure then leads to the errors reported in the figures. 

As it stands, the model contains three coupling pa- 
rameters, the ferromagnetic coupling J, the interac- 
tion range R and the hard core repulsion parameter 
r. We have fixed R -- 1; comparable choices should 
not change the universality class. As we alluded pre- 
viously, for small r we find that the system undergoes 
a sharp first order transition, between the disordered 
phase and a phase in which all spins form a few very 
tight magnetized clusters. On the other hand, for suf- 
ficiently large r, the transition is Ising-like, between 
ordered and disordered, almost regular, Ising lattices 
(for our choice of range R, the transition appears to be 
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Fig. I. Latent heat along the first order transition line, plotted 
against the hard core repulsion parameter r. The tricritical point 
is located where the latent heat vanishes. 

very close to regular Ising-like for r ~ 0.6 and larger, 
see below). 

A determination of the discontinuity in the average 
energy of Eq. (2.6) at the critical coupling J¢ shows 
that it gradually decreases as r is increased from zero. 
Fig. 1 shows a plot of  the latent heat versus r at the 
transition point Jc. In general we do not expect the la- 
tent heat to vanish linearly at the endpoint, but our re- 
sults seem to indicate a behavior quite close to linear. 
From the data we estimate that the latent heat vanishes 
at r = 0.344(7), thus signaling the presence of a tri- 
critical point at the end of the first order transition line. 
Beyond this point, the transition stays second order, as 
will be discussed further below. The phase transition 
line extends almost vertically through the phase dia- 
gram; for r -- 0 we found on the largest lattices Jc = 
0.19(2), while for r = 0.6 we found J~ = 0.93(3).  

To determine the critical exponents, we resort to a 
finite size scaling analysis. In the following we will 
be mostly concerned with the values for the critical 
exponents in the vicinity of the tricritical point. In the 
case of the spin susceptibility, from finite-size scaling, 
we expect a scaling form of the type 

X (  N ,  J )  = Ny/2~ 7((Nl/2~lJ- J~l). (3.1) 

To recover the correct infinite volume result one needs 
,~(x) ,-~ x -y  for large arguments. Thus, in particular 
the peak in X should scale like/W/2~ for sufficiently 
large N. In Fig. 2 we show the evolution of the com- 
puted peaks in X as a function of In N, for r = 0.35. 
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Fig. 2. Peak in the magnetic susceptibility, Xr~x, versus the number 
of Ising spins N, for fixed hard core repulsion pamnctcr r = 0.35. 

Despite the fact that the lattices are quite small, as 
can bc seen from the graph a linear fit to the data at the 
tricritical point is rather good, with relatively small de- 
viations from linearity, X 2 / d.o.f.= 8.8 × I0 -3. Using 

least-squares one estimates T/P = 1.27(7), which is 
much smaller than the exact regular Ising result "y/P = 
1.75. From scaling onc then obtains the anomalous di- 
mension exponent 77 = 2 - 7/P = 0.73(7). To further 
gauge our errors, wc have computed the same expo- 
nent in the regular Ising limit, for r = 0.6. In this casc 
we indeed recover the Onsagcr value: we find on the 
same size lattices and using the same analysis method 
T/~' = 1.70(8). Wc also note that the shift in the criti- 
cal point on a finite lattice is determined by the corre- 

lation length exponent P, namely Jc(N) - Jc(OO) ,,~ 
N -I/2". This relationship can be used to estimate P, 

but it is not very accurate. From a fit to the known 
values of J~(N) we obtain the estimate z, = 1.3(2). 

A similar finite size scaling analysis can be pcr- 
formed for the magnetization. Close to and abovc ./, 
wc expect M ,~ (J - J,)~, and, at the critical point 
on a finite latticc, as dctcrmined from thc peak in 
the susceptibility (which incidentally is very close 
to the inflection point in the magnetization versus 
J), M should scale to zero as MN(Jc) "~ N ~/2~'. In 
Fig. 3 wc show the magnetization M computed in 
this way for different size lattices close to the tricriti- 
cat point. In spite of the larger errors the results again 
clearly exclude the pure Ising exponents, and give 
,8/z, = 0.30(I0), to bc compared to the exact regular 
Ising result ,8/P = 0.125. A similar analysis in thc 
pure Ising limit (more precisely, for r = 0.6) gives 
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Fig. 3. Finite size scaling o f  the magnetization at the inflection 
point, Min~, versus the total number o f  lsing spins N, for fixed 
hard core repulsion parameter r = 0.35. 

~/ , ,  = 0 .15(7) .  
The results for the peak in the Ising specific heat C 

at the tricritical point as a function of J and lattice size 
L are shown in Fig. 4. One expects the peak to grow 
as C ,., N~/2% but the absence of any growth implies 
that a / l ,  < 0 (a weak cusp in the specific heat). If  
we insist on fitting the peak in the specific heat to a 
power of N, we get a / u  ~ -0 .11 (5),  a negative value 
due to the decrease of the peak with increasing system 
size. On the other hand we should add that, in general 
close to a critical point, the free energy can be decom- 
posed in a regular and a singular part. In our case the 
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Fig. 4. Plot o f  specific heat C versus ferromagnetic coupling J 
at r--0.35, showing the absence o f  a growth in the peak with 
increasing lattice sizes, in contrast to the behavior o f  the magnetic 
susceptibility. The errors (not shown) are smaller than the size o f  
the symbols. 

0.10 
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singular part does not seem to be singular enough to 
emerge above the regular background, leading to an 
intrinsic uncertainty in the determination of  an a < 0, 
and which can only be overcome by determining still 
higher derivatives of  the free energy with respect to the 
coupling J. A better approach would seem therefore 
to determine the correlation length exponent ~, instead, 
and use scaling to relate it to a = 2 - 2~. In the regu- 
lar Ising case one has in a finite volume a logarithmic 
divergence C ,~ In N (and a / 2 ~  = 0), and we indeed 
see such a divergence clearly for r = 0.6, which cor- 
responds to the almost regular triangular Ising case. 

One can improve on the estimate for Jc by consid- 
ering the fourth-order cumulant [9] 

(m4) (3.2) 
UN(J)  = 1 3/m2)2, 

where m = ~--~i Si /N.  It has the scaling form expected 
of  a dimensionless quantity 

U~( J)  = O( NI/2~lJ - Jcl). (3.3) 

The curves UN(J ) ,  for different and sufficiently large 
values of  N, should then intersect at a common point 
Jc, where the theory exhibits scale invariance, and U 
takes on the fixed point value U*. We have found that 
indeed the curves meet very close to a common point, 
and from the intersection of  the curves for N = 25 
to 400 we estimate Jc = 0.48( 1 ), which is consistent 
with the estimate of  the critical point derived from 
the location of  the peak in the magnetic susceptibility. 
We also determine U* = 0.47(4) ,  to be compared to 
the pure Ising model estimate for the invariant charge 
U* ~ 0.613 [ 10]. 

One can estimate the correlation length exponent p 
from the scaling o f  the slope of  the cumulant at Jc. 
For two lattice sizes N, N '  one computes the estimator 

~'efr(N, N ' )  = l n [ N ' / N ]  (3.4) 
21n[ U~,( Jc) /U~(  Jc) ] ' 

with U~ =- OUN/OJ. Using this method, we find ~, = 
1.3(3).  

In Table 1 we summarize our results, together with 
the exponents obtained for the two-matrix model [ 1 ], 
for the Onsager solution of  the square lattice Ising 
model, and for the tricritical Ising model in two di- 
mensions [ 8 ]. As can be seen, the exponents are quite 
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Table I 
Estimates of the critical exponents for the random two-dimensional 
lsing model, as obtained from finite size scaling at the tricritical 
point 

~,/,, ~/~ ,~/~ ~, 

This work 1.27(7) 0.30(10) < -0.11(5) 1.3(2) 
Matrix model 1.333... 0.333... -0.666... 1.5 
Onsager 1.75 0.125 0.0 1.0 
Tricritical Ising 1.85 0.075 1.60 0.555... 

close to the matrix model values (the pure Ising ex- 
ponents seem to be excluded by several standard de- 
viations). 

4. Conclusions 

In the previous sections we have presented some 
first results for a random Ising model in flat two- 
dimensional space. The model reproduces some o f  the 
features of  a model for dynamically triangulated Ising 
spins, and in particular its random nature, but does not 
incorporate any effects due to curvature. Due to the 
non-local nature of  the interactions of  the spins, only 
relatively small systems could be considered so far, 
which is reflected in the still rather large uncertain- 
ties associated with the exponents. Still a rich phase 
diagram has emerged, with a tricritical point separat- 
ing first from second order transition lines. We have 
localized the tricritical point at Jc -- 0 .48(1)  and r = 
0.344(7).  The thermal and magnetic exponents deter- 
mined in the vicinity o f  the tricritical point (presented 
in Table 1 ) have been found to be consistent, within 
errors, with the matrix model solution of  the random 
Ising model. Our results would therefore suggest that 
matrix model solutions can also be used to describe a 
class of  annealed random systems in fiat space. 
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