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Simplicial higher-derivative quantum gravity is investigated in two dimensions for a mani- 
fold of toroidal topology. The manifold is dynamically triangulated using Regge’s formulation of 
gravity, with continuously varying edge lengths and fiied coordination number. Critical expo- 
nents are estimated by computer simulation on lattices with up to 786432 edges, and compared 
to the continuum conformal field theory results for central charge zero (pure gravity), one haif 
(Ising model coupled to gravity), one and two (massless scalar field coupled to gravity). The 
dependence of critical properties on the coefficient of the curvature squared term and the 
gravitational functional measure is investigated, suggesting universal critical behavior at least 
within a certain class of measures. In the case of pure gravity, we have computed the string 
susceptibility exponent for both the torus and the sphere, and our estimates agree with the exact 
result of KPZ. The fluctuations in the area density are consistent with the behavior expected for 
a massless scalar field, the Liouviiie mode. In the case of gravity coupled to a massless scalar 
field, we have computed what corresponds to the fractal dimension of the surface, and found it 
to be infinite. The critical exponents associated with the Ising model coupled to gravity on a 
torus are found to be the same as for the Ising model in flat space. 

1. Introduction 

Understanding properties of two-dimensional lattice quantum gravity is likely to 
be an essential step on the way to formulating a lattice theory of four-dimensional 
quantum gravity. In addition, two-dimensional quantum gravity is closely related to 
the theory of random surfaces embedded in D-dimensional flat space, as well as to 
the theory of bosonic strings. 

We will concentrate here on the simplicial formulation of quantum gravity 
developed by Regge [l-12], but it is known that there are other possible ap- 
proaches such as the random triangulation approach for two-dimensional surfaces 
[13-171, as well as the hypercubic lattice formulation [l&19]. It would not be too 
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surprising if these three approaches are someday shown to be equivalent, since 
after all they correspond to different discretizations of the same original theory. 
On the other hand, their quantum continuum limit could in principle exhibit rather 
different properties, and in particular there is certainly no general proof yet of the 
recovery of general coordinate invariance. 

One of the advantages of the simplicial Regge calculus approach lies in the fact 
that it can be formulated in any space-time dimension (including the physically 
relevant case of four dimensions), and in the fact that it can be shown to be 
classically equivalent to general relativity, as a consequence of several more or less 
rigorous convergence proofs for (arbitrarily) triangulated smooth manifolds 
[2-5,7,9,12]. In addition, the correspondence between the lattice and continuum 
quantities is clear, and therefore the interpretation of the terms in the action as 
well as the identification and separation of, for example, the measure contribution 
is unambiguous [6]. For a review of Regge gravity, and a more complete list of 
early references, we refer the reader to ref. [6]. 

Approximate general coordinate (or re-parametrization) invariance corresponds 
to variations in the edge lengths that leave the geometry of the underlying 
manifold unchanged. For the limiting case of flat space there are clearly infinitely 
many edge length assignments which reproduce equally well the underlying mani- 
fold. This situation can be contrasted to the case of a triangulation with fixed edge 
lengths and a varying incidence matrix, for which there is no reparametrization 
invariance (except for the trivial one, corresponding to a relabeling of the lattice 
vertices). As one moves away from flat space though, different edge lengths 
assignments will in general correspond to physically inequivalent manifolds. 

In continuum gravity the fundamental degrees of freedom are represented by 
the metric field g,,(x). In a two-dimensional piecewise linear space the elemen- 
tary building blocks are triangles, and the relative position of points on the lattice 
is therefore completely specified by the incidence matrix and the edge lengths, 
which in turn induces a metric structure on the piecewise linear space. In order to 
obtain non-degenerate simplicial complexes, the edge lengths have to obey triangle 
inequalities, which ensure that the triangles areas are positive. General coordinate 
transformations correspond (at least approximately) to variations of the edge 
lengths, as well as appropriate modifications of the incidence matrix. But since in 
general different complexes will correspond to physically distinct manifolds, one 
expects classically general coordinate invariance to be recovered only in the 
continuum limit, where a continuous smooth manifold can be covered by many 
different almost geometrically equivalent triangulations. In the quantum theory the 
hope is to find a non-trivial fixed point where general coordinate invariance is 
recovered. 

A detailed description of the construction of the action for simplicial lattice 
gravity without and with matter fields can be found in the literature [5,6,9,11], and 
therefore only a brief summary will be presented here. Ref. [9] addressed the 
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specific case of pure gravity in two dimensions, and discusses some analytic and 
numerical results related to the phase diagram of pure gravity. We recall the 
geometric correspondence between continuum and lattice quantities in two dimen- 
sions [5,9], 

/d*Xdg(X)R*(X) +4c6;/Ai, 
i 

where ai is the deficit angle at the vertex i, 

6,=2~- C e, 

(1.1) 

(1.2) 
triangles 

meeting on i 

and 19, is the dihedral angle associated with the triangle at that vertex. Ai is the 
area associated with the site i [5,9], which is not unique since the lattice can be 
subdivided in more than one way, for example using a dual lattice or a baricentric 
subdivision. Given reasonable geometric and positivity properties, universality is 
expected to lead to the same results in the continuum. Note that in the simplicial 
lattice formulation, as in the continuum, the local curvature R(x) - 26,/A, is a 
continuous function of the relevant edge lengths and can take on any real value, 
positive or negative. In two dimensions the discrete analogue of the Gauss-Bonnet 
theorem holds 

C6,=2?rx, (1.3) 

where x is the Euler characteristic of the surface (two minus twice the number of 
handles). In this paper we will consider only simplicial complexes topologically 
equivalent to the torus and the sphere. 

The guiding principle in constructing physical quantities in simplicial gravity is 
that they should have geometric significance. It will distinguish objects which are 
lattice structure independent for a given physical manifold (at least for sufficiently 
smooth manifolds in some continuum limit) from other functions of the edge 
lengths which have no particular geometric meaning, and whose limiting values will 
therefore depend on the specific way in which the triangulation is refined. The 
Euler characteristic in two dimensions, expressed as a function of the edge lengths, 
is a clear and illustrative example of what is meant by this statement. Another 
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clear example is the total area of the simplicial complex: if it is defined as the sum 
of the triangle areas (where these are very specific functions of the edge lengths), 
then as the triangulation is refined its limit is well defined, and agrees with the 
continuum definition of what is meant by the total physical area of the manifold. 

Having made some general considerations regarding the action for gravity, let us 
now turn to the issue of the measure. The form of the measure for the grV fields in 
continuum gravity appears not to be unique, and the topic has been discussed 
recurrently in the literature [20-231. The reason for the ambiguities appears to be 
a lack of a clear definition of what is meant by l7, in the functional measure. Thus 
it is expected that the ambiguities will persist in any lattice formulation of 
quantum gravity, unless an exact lattice invariance is found, which then uniquely 
selects one privileged measure. However, as will be discussed below, different 
measures differ by the power of fi in the prefactor, which corresponds to some 
product of volume factors on the lattice. 

One popular (pure) gravitational measure in the continuum is the Misner 
scale-invariant measure [20], which in d space-time dimensions takes the form 

dl.L[ g] = .g-(‘+‘)‘* fl dg,” . 
x *aI, 

(1.4) 

The above measure is unique if the product in eq. (1.4) is interpreted over 
“physical” points, and invariance is imposed at one and the same “physical” point. 
On the other hand, if one introduces a super-metric over metric deformations, 
then another measure arises naturally for pure gravity [21]. Considering the 
simplest local form for the norm-squared of the metric deformation 

~/ddn~GI”“,“pSg,,6g,,, (1.5) 

then, according to Dewitt, the functional measure is given by 

(1.6) dp[ g] = n [det GP“*UP]1’2 n dgPY, 
x I.1)” 

where the determinant of the super-metric G is given by 

[det Gp”vCrP ]I’* = ( -qd-*(I - +-qgWXd+W. (1.7) 

If matter fields are present, then the gravitational measure has to be further 
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modified. Other forms of the measure for the gravitational field have also been 
suggested, inspired by the canonical quantization approach to gravity [22]. 

On the simplicial lattice the edge lengths are the elementary degrees of freedom 
which uniquely specify the geometry for a given incidence matrix, and over which 
one should perform the functional integral [5,6,8,9]. This is supported by the fact 
that the induced metric on a simplex i with edges li,i+p is given by g,,(i) 

= t[‘fi+p + ltfi+v - l?+p,i+v 1. In addition, one might want to sum over complexes 
with varying local coordination number. But it would seem that any smooth curved 
manifold can be arbitrarily well approximated by a simplicial complex with fixed 
coordination number by adjusting the edge lengths and refining the grid, thus 
presumably saturating the functional measure. This would suggest that the last 
step is then perhaps redundant, at least within our formalism. 

One can argue that the edge lengths, being invariant quantities, are not referred 
to any specific coordinate systems. On the other hand, they provide for an explicit 
coordinatization of the manifold, once the incidence matrix is specified as well. It 
is clear from looking at the example of flat space that there can be an infinite 
number of edge length assignments that correspond to the same physical manifold. 
Therefore in the continuum limit the edge lengths cannot really be considered as 
invariants under some (approximate) lattice diffeomorphism group. 

Previously [5,6,8,9] we have employed the measure 

(1.8) 

where &[I] is a function of the edge lengths with the property that it is equal to 
one whenever the triangle inequalities are satisfied, and zero otherwise. A parame- 
ter E can be introduced as an ultraviolet cutoff at small edge lengths: the function 
F,[I] is then chosen to be zero if any of the edges are equal or less than E; in the 
following we will take E = 0. The above measure is correct in the weak-field limit 
[2,91, where all continuum measures agree as well. 

It is of interest though to explore the sensitivity of the results to the type of 
gravitational measure employed. Another class of pure gravity measures is ob- 
tained by considering the “volume associated with an edge” ~j, and writing in two 
dimensions 

with (T= - 4 for the lattice analog of the Misner measure, and U= - i for a 
lattice analogue of the Dewitt measure. Note that the “Misner” and dl/l measure 
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share the property of being scale invariant. Most of our results will be based on the 
measure dl/l. But we will explore the properties of these two other lattice 
measures as well, and shall return to the issue of the measure when we discuss the 
coupling of gravity to a scalar field, and how the results depend on the form of the 
measure and on cr. Our results suggest that different measures, within a certain 
universality class, will give the same results for infrared sensitive quantities, like 
correlation functions at large distances and critical exponents. We believe though 
that the lattice path integral might not be meaningful for certain values of V. We 
have found in particular that if CT is too negative, then the measure factors tend to 
favor configurations of triangles which are long and thin, with a small area and a 
large perimeter. In this case the lattice tends to degenerate into an almost 
one-dimensional manifold, a situation far from the desired continuum limit, and 
which one would like to avoid. 

In two dimensions a measure for gravity has been given by Polyakov [24-271, 
following the Dewitt approach. In pure two-dimensional gravity, and for vanishing 
renormalixed cosmological constant A + A,, one can write for the path integral 

with the Liouville action contribution I, arising from the conformal anomaly 

(1.11) 

Here g,,(x) = ~,Jx> e’+‘(x), and g,,(x) is some reference metric. Thus for vanish- 
ing renormalized cosmological constant one expects the relevant gravitational 
degrees of freedom to be represented by a free scalar field. On the lattice the 
conformal factors correspond to local area fluctuations, eq@) = V(x)/Va. In the 
following sections we will discuss some of the properties of the density fluctuation 
field 50 in simplicial gravity, which are in agreement with the continuum predic- 
tions. 

Let us now turn to presentation of our results. In sect. 2 we will discuss 
properties of pure gravity, including the critical exponent 7, for the torus and the 
sphere, and the Liouville field susceptibility. Then we will present results for a 
model of gravity coupled to a D-component massless scalar field, and make 
contact with models of random surfaces (here without extrinsic curvature terms). 
We will consider the cases D = 1 and 2, as well as the case D = 0, which 
corresponds an absence of feedback of the matter fields on the geometry. Finally 
we will compute the critical exponents for an Ising model coupled to gravity on a 
torus. Sect. 5 presents our conclusions. 
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2. Pure gravity 

709 

We will begin by considering a higher-derivative lattice action for pure gravity in 
the form 

[ 
2 

I=C AA;-k*i+n~ . 
i il (2.1) 

For a detailed description of the construction of curvature terms on the simplicial 
lattice we refer to ref. [5]. In the following we will, adopt a baricentric subdivision 
for assigning area elements to the lattice sites and edges. One could use a dual 
lattice subdivision as well, but it would lack some desirable positivity properties for 
the dual areas in some cases [5]. In the limit of small fluctuations around a smooth 
background, the above lattice action can be shown to correspond to the continuum 
action 

I 
. (2.2) 

For a manifold of fixed topology the term proportional to k can be dropped. The 
higher-derivative term proportional to a can be useful in controlling the fluctua- 
tions in the intrinsic local curvature, although it is expected to be irrelevant as far 
as critical properties are concerned. While it prevents the appearance of conical 
singularities where the gaussian curvature might become very large, it does not 
prevent “folding” singularities, corresponding to singular structures in the mani- 
fold which appear in embedding space only (to control the latter an extrinsic 
curvature term seems to be required). For a + CQ the manifold approaches a flat 
limit, whereas for a --) 0 local fluctuations in the curvature become more pro- 
nounced. In ref. [9] it was shown that no sensible ground state exists for a < 0 
(unless there are additional terms in the action), and in the following we will 
therefore only discuss the case a 2 0. 

Classically the continuum equations of motion lead to a constant curvature 
solution R,(x) = f dv, (there being no real solution for A < 0). On the torus 
on the other hand, the only consistent classical solution is R,(x) = 0, an identity 
which remains true for the average when quantum fluctuations are included, as a 
consequence of the Gauss-Bonnet theorem. 

In ref. [9] the canonical ensemble (with fixed bare cosmological constant A) was 
considered. On the other hand, in order to compare with the exact results of KPZ 
[26], it is useful to consider an ensemble where the total area A is kept fixed 
instead. In such an ensemble the limit A + 00 corresponds to h --) A, in the 
canonical ensemble. One approaches the limit A + 00 by letting the number of 
sites N + QJ for fixed elementary triangle areas (to approach the continuum limit 
with a fixed total physical area, the elementary triangle areas would have to be 
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scaled to zero as N is increased, which is not what we shall do here). We will 
therefore consider the lattice analogue of 

Zl4 = /dpiM( /6 -A)exp( -I[gl), (2.3) 

which for large area is expected to behave asymptotically as 

64 - Am3+yxexp(-(h -&)A), 
A-r= 

(2.4) 

where A, affects the renormalization of the cosmological constant. The exponent 
7, = &C-y - 2) + 2, with y = #D - 1 - \/( D - l)( D - 25) ), is the “string sus- 
ceptibility” exponent [26-281. Note that the exponent y, is not truly universal, 
since it depends on the boundary conditions through x. Pure gravity without 
matter fields then corresponds to the case D = 0, and in particular on the torus 
one has the prediction y, = 2, independent of D. 

It is easy to see that the exponent 7, can be related to a finite-size correction. 
By doing an infinitesimal scale transformation on Z[A], with the action given by 
eq. (2.21, one obtains the identity 

aInZ[A] 1 
aA 

a (/tiR2)A +A’ 
=-A+4 A 

-A 
0 1 (2.5) 

where A’, depends, among other things, on the specific form of the measure. Using 
eq. (2.4) for Z[A] one then has 

a ( jfiR2), 2 - Y* 
4 A 

- const - - 
A-m A +*“* P-6) 

Thus the critical exponent y, can be obtained by investigating the area depen- 
dence of the expectation value of R *. In particular on the torus one has the 
prediction that the correction proportional to l/A must have a vanishing coeffi- 
cient. On the lattice the appropriate quantity to measure is 

(l/N){ cia,Z/Ai) 1 ( /hR2)A 

(l/N)(CiAi) - 4 A ’ (2.7) 

where N is the total number of sites. Without loss of generality one can choose the 
total area such that N =A. 

We have computed the coefficient of the finite-size correction to R* by investi- 
gating both the torus and the sphere, using as a background space a network of 
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Fig. 1. Two equivalent triangulation of a smooth manifold, using a lattice of coordination number six. 

unit squares divided into triangles by drawing in parallel sets of diagonals, as 
shown in fig. 1. (For the sphere the two poles have to be treated separately in the 
program due to the presence of a coordinate or incidence matrix singularity.) 
Ideally one would like to use a random lattice [30], but this presents additional 
computational problems, so we have opted for the moment for the simpler 
approach of using a regular lattice. The random lattice might appear more 
satisfactory from a conceptual point of view, since it incorporates, for smooth 
manifolds, the invariance under “large” lattice diffeomorphisms, whereas in the 
regular lattice only “small” lattice diffeomorphisms are allowed. Thus the two 
different lattices induce quite a different cutoff structure in orbit space. Eventually 
we hope to redo all our calculations for such a random lattice. On the basis of 
universality one would expect the results to be independent of the specific lattice 
structure chosen. Our results indicate that the expected result is clearly obtained 
for the torus, and with somewhat larger errors for the sphere as well, with a choice 
of fixed coordination number and varying edge lengths. 

In both cases the lattices considered contained from 48 to 12288 edges (corre- 
sponding to lattices with 42, 52, 62, 82, 102, 122, 162, 322 and 642 sites). The 
lengths of the runs varied between 4700k sweeps on the small lattice and 20k 
sweeps on the largest lattice. The high accuracy was needed in order to reliably 
extract the finite-size correction. The coupling CI was set equal to 1, and we used 
the measure dl/l of eq. (1.8). The results for R2 versus l/A are shown in table 1, 
and in figs. 2 and 3. In the case of the torus the results for the coefficient of the 
l/A term are quite accurate, and consistent with zero to within a few percent: we 
obtain from a straight line fit approximately 2 - 7, = 0.025(7) from lattices 8 - 64, 
and 2 - 7, = 0.047(13) for lattices 10 - 32, leading to a combined estimate 2 - 7, 
= 0.025(22). We therefore conclude that for the torus 2 - 7, is very close to, and 
given our statistical errors almost consistent with, zero. Note that if we were 
describing a free massless scalar field for example, the nature of the finite-size 
corrections would be quite different. 
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TABLE 1 
Average of the curvature squared as a function of the total area for the torus and the sphere 

A torus sphere 

16 
25 
36 
49 
64 
81 

100 
121 
144 
196 
256 
576 

1024 
2304 

0.40977(19) 
0.41155(17) 
0.41088(19) 

0.40968(08) 

0.40963(08) 

0.40982(09) 

0.40983(09) 

0.41010(09) 

0.40995(10) 

1.10286(48) 
0.74376(65) 
0.60415(35) 
0.53100(34) 
0.48931(38) 
0.46446(17) 
0.45000(10) 
0.44145(22) 
0.4358503) 
0.42982(08) 
0.42753(29) 
0.42469(11) 
0.42290(26) 
0.4205406) 
0.41843(22) 

0.4120 

0.4116 

0.4110 

0.4105 

0.4100 

0.4095 

0.4090 
0 0.02 0.04 0.08 0.08 

Fig. 2. Average curvature squared for the torus as a function of the lattice area for a = 1.0. 
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Fig. 3. Average curvature squared for the sphere as a function of the lattice are for a = 1.0. 

2000 

1500 

1000 

500 

0 
-4 -2 0 2 4 

Curvature 

Fig. 4. Distribution of curvatures ai - &It on a lattice with 512’ = 262 144 sites. 
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In fig. 4 we show as an example the distribution of curvatures si (corresponding 
to the continuum Rfi) on a lattice with 262 144 sites, with a = 0.001. Note that 
the distribution is a rather smooth function, as is the distribution of edge lengths 
and triangle areas. 

Let us now turn to a discussion of the case of the sphere. Our choice of 
coordinates is such that we triangulate everywhere the sphere by a regular mesh of 
coordination number six (just like in the case of the torus), except at the two poles 
where we allow <fi> edges to meet at one point. We continue to use the same 
expression for the curvature and action at those points, since the lattice formulae 
are entirely geometric, and should therefore be valid irrespective of the local 
coordination number (in the measurements we of course include the pole contribu- 
tion as well). On this (almost) regularly triangulated sphere, the results for 7, are 
not quite as accurate as for the torus, since the coordinate singularities introduced 
at the poles, where many (fi> edges meet at one point, introduce a finite-size 
correction proportional to Am3i2, which is absent in the case of the torus. This 
could be avoided by using a different triangulation for the sphere which does not 
exhibit this feature. Still, by fitting the results for R2 to c0 + c,/A + c2/A3j2 we 
have obtained c0 = 0.423(2), c, = -2.55(22) and c2 = 53.6(1.2), and from the 
coefficient of the l/A term the estimate y = -0.55 f 0.22, to be compared to the 
expected KPZ answer of y = - f. 

Let us say a few words about how these estimates and errors are obtained. The 
x2 in the fits in general varies between 10 and 200. The error estimates are 
obtained by comparing fits that include all or only part of the data points, with 
proper weighting in the x2 function to take into account the statistical uncertainty 
in the Monte Carlo data. Thus if we include all the data points (L = 4 - 64) we get 
for example c, = -2.57, while if we remove the points at L = 4 and L = 64 we get 
c, = -2.75. If other points are removed we get estimates in the same range. If a 
lower statistics point (10k iterations) at L = 128 is also included in the fit, we 
obtain c, = -2.55, showing presumably a trend in the right direction for even 
larger lattices. We have checked that our results are stable when we add an 
additional term, +cJA’, for whose coefficient we find cq = 1.20.31, indeed a 
relatively small correction in the range of A considered. In this case a fit including 
all points from L = 4 to L = 64 gives c, = -2.53, consistent with previous values. 
By combining these values we then obtain the above estimates and uncertainties. It 
is fair to say that in the case of the sphere the results can only be shown to be 
roughly consistent with the KPZ exact result, although they clearly seem to exclude 
at this point for example the semiclassical result, y = 0. In order to significantly 
sharpen our results much larger statistics is needed on the larger lattices, which is 
beyond the scope of this paper. The preceding results would suggest a restoration 
of general coordinate invariance at large distances or low momenta in the lattice 
theory. In the case of the sphere the results appear to be consistent with the KPZ 
result, but the errors are quite large. Further tests can be performed by embedding 
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TABLE 2 

715 

Liouville field or area density susceptibility as a function of lattice size. D = 0 refers to pure 
gravity, and D = 4 to gravity coupled to an king model 

x,(L) 
L D=O 

8 1.58(18) 
16 lO.lS(3.2) 
32 49.3U4.0) 
64 113.87(33.0) 

128 409.19C220.0) 

D = ;(J,, 

1.8(2) 
7.2(S) 

22.5C4.0) 
211 .O(SO.O) 
60.0(70.0) 

D = 4 (all J) 

1.57(18) 
9.9C3.2) 

3O.OU6.2) 
129IN60.0) 
83.0(51.0) 

the surface and measuring its extent in embedding space, as will be discussed in 
sect. 3. 

We have also investigated the critical properties of the area fluctuation or 
Liouville field cp(x), again in the case of pure gravity. We define the discrete 
analogue of the continuum Liouville field cp(x) = In dm as cpi = In Ai, and 
compute the Liouville-field susceptibility on a finite lattice 

x,(L) =A[ (cp2) - w*] 
with 

cp= fClnAi. 
i 

(2.8) 

For the measure dl/l at a = 0 we find, using finite-size scaling on tori of sizes 
L = \/;i- = 8 - 128 (see table 2 and fig. 51, 

*n XJ L) N 
L-r- 

c + (2 - n,)ln L 

with an exponent 2 - nP = 2.08(12). This result is consistent with the expected free 
field behavior of the massless Liouville mode (nP = 01, and again suggests a 
restoration of general coordinate invariance in the quantum theory. Note that even 
for the scale invariant measure we have breaking of scale invariance by the fact 
that the total area is fiied and as a consequence the average edge length takes 
some finite value, which then provides an ultraviolet cutoff. (When we include an 
R* term, we also break scale invariance due to its dimensionful coupling.) The 
natural expectation would be that if reparametrization invariance is not recovered, 
the Liouville mode acquires a mass of the order of the ultraviolet cutoff, which is 
of the order of the inverse average edge length. Thus we believe that the result 
that the Liouville mode is massless in our model is non-trivial. We do expect the 
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log 

102 

101 

100 
5 10 50 100 

L 

Fig. 5. Area fluctuation or Liouville susceptibility, as a function of lattice size. The circles correspond 
to pure gravity and a = 0 (D = 01, and the squares to gravity with a = 0 coupled to an king field 

(D = 4). The straight line on the logarithmic scale indicates a growth proportional to L2. 

same result for some class of not too singular lattice measures, and this is indeed 
supported by preliminary results with the d12 measure. 

3. Gravity coupled to a massless scalar field 

Matter fields are introduced in a straightforward way. Consider a D-component 
scalar field $9, a = 1,. . . , D. Define the scalar fields at the vertices of the triangles, 
and introduce finite lattice differences defined in the usual way [6,11] 

(3.1) 

The index p labels the possible directions in which one can move from a point in a 
given triangle, and li,i+.P is the length of the edge connecting the two points. As an 
action we choose 

(3.2) 



hf. Gross, H. W. Hamber / Quantum gravity 717 

where V;, is the volume associated with the edge ij, via a baricentric subdivision, 

qj= c g. (3.3) 
triangles rz+ 

The above lattice action then corresponds to the continuum expression 

Other forms for the scalar field action have been suggested [ll], and we expect 
them to be equivalent in some continuum limit. The discretized partition function 
is then given by 

Let us now consider what the appropriate lattice measure should be. For a 
D-component scalar field the continuum scalar field measure [21] 

leads to a combined continuum measure for the gravitational and scalar degrees of 
freedom 

with v = (D - 1)/4 for the Dewitt measure, and u = CD - 2)/4 for the Misner 
measure. Their discretized form then reads 

Again we have also considered the simpler dl/Z-type measure [6,8,91 

/dp.[~l/dcL[41= ed~ij,-$K[ll n n j- d+io. (3.9) 
i j sitesi u -00 

All the above forms of the lattice measure can be recast in the form 



718 M. Gross, H. W. Hamber / Quantum gravity 

with a =a= 0 for the dl/l measure, and cr = 1 and u equal to the values 
mentioned above for the lattice analogues of the Dewitt and Misner measures. 
Most of our simulation results to be presented later refer to the dl/l measure. But 
we will show results and give arguments which suggest that all three measures lead, 
in the cases we have considered, to the same critical properties. 

In order to study the properties of the scalar field coupled to gravity, and 
attempt to compare with related work, we have measured the discrete analog of 
the coordinate invariant quantity 

(3.11) 

with 

(3.12) 

Since we are working in an ensemble in which the total area is fixed, and equal to 
the number of sites, we have /& = CiAi =iV =A. On the lattice we measure 
therefore 

(4*)= &( FAi(4;-P)‘) I 
with 

@J = ; CA&‘. 
i 

(3.14) 

We have considered the cases D = 0 (no feedback of the scalar field on the 
geometry), D = 1 and D = 2. For the coefficient of the R2 term in eq. (2.1) we 
have taken a = 0.1 and a = 0.001, motivated by our intention to explore the 
sensitivity of the results to what is expected to be an irrelevant term. We have 
considered lattices ranging in size from 8* = 64 to 512* = 262 144 sites. The scalar 
field updates have been performed both by Metropolis Monte Carlo as well as by a 
heatbath, with compatible results. The number of sweeps for the scalar as well as 
the gravitational fields varied between at least 500k for the 64-site lattice to at least 
3.5k on the 262 144-site lattice. It is only on the largest lattice that we have 
observed appreciable signs of critical slowing down, leading to somewhat larger 
errors. The results are shown in table 3 and in figs. 6 (D = O), 7 (D = 1) and 8 
CD = 2). 

We have fitted the numerical results for (4*> to several functional forms, using 
a standard error-weighted least square algorithm. We estimate the errors in the fits 
by both computing the intrinsic uncertainty in the fitting parameters, as well as by 
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TABLE 3 
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Expectation values (@> as a function of lattice size, for different values of a and D. The 
column labeled with a * corresponds to the case of the Dewitt Cdl’) measure 

D=O D=l D=2 

A=L2 a =O.l a = 0.001 a=O.l a = 0.001 a = 0* a =O.l 

64 0.902(8) 0.915(6) 0.919(l) 0.949(l) 0.916(4) 0.9380) 
256 1.164(6) 1.196(6) 1.186(l) 1.214(2) 1.162(4) 1.210(l) 

1024 1.420(4) I .455(6) 1.443(3) 1.487(4) 1.402(4) 1.478(3) 
4096 1.698(21) 1.702(12) 1.702(6) 1.743(9) 1.646(g) 1.734(6) 

16384 1.928(47) I .984(35) 1.919(17) 1.923(22) 1.906(30) 2.012(17) 
65536 2.321(161) 2.117(39) 2.340(65) 2.165(47) 2.212(70) 2.191(65) 

262144 2.44(23) 2.50(13) 2.327(27) 2.424(32) 2.36(B) 

comparing the variations in the parameters as the number of points used in the fit 
is changed (we have typically six to seven values of L = a, ranging from 8 to 512, 
at our disposal). The results clearly suggest a linear behavior of ((b* > in In A for 
all D and u 

(42)A-,mco+c11nA, (3.15) 

2.5 

0.5 0.5 

Area Area 

Fig. 6. Scalar field average (d2) for pure gravity (D = O), with a = 0.1 (circles) and a = 0.001 
(squares). The straight line corresponds to a logarithmic divergence, or d, = m. 

Fig. 6. Scalar field average (d2) for pure gravity (D = O), with a = 0.1 (circles) and a = 0.001 
(squares). The straight line corresponds to a logarithmic divergence, or d, = m. 
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0.5 

Area 

Fig. 7. Scalar field average (4’) for gravity coupled to a massless scalar field (D = 11, with a = 0.1 
(circles) and a = 0.001 (squares). The diamonds indicate results for the Dewitt measure (d12), with 

a = 0. The straight line corresponds to a logarithmic divergence, or d, = m. 

but we have tried other fits as well. Assuming the above functional form, we find 
the results given in table 4. In the fits typically the x2’s per degree of freedom are 
of order one. Note that the coefficients ca and ci are not universal (in particular 
the coefficient of the In A term can be shown to be proportional to the area of an 
elementary triangle on the lattice, which is clearly not a universal quantity). For 
the pure In A fit there seems to be very little dependence of the fitted coefficients 
on D. 

The above results are not surprising, since without an extrinsic curvature term in 
the action 

I ec =~jd*xfi[Ar$~]*, (3.16) 

where A is the covariant laplacian 

A= -L g*$fav, 
JF' 

(3.17) 

the surface is expected to completely fold onto itself in embedding space, leading 
to an infinite fractal dimension, even when the gaussian curvature is zero every- 
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2.0 

1.5 

1.0 

Area 
Fig. 8. Scalar field average (4’) for gravity coupled to a two-component massless scalar field (D = 21, 

with a = 0.1. The straight line corresponds to a logarithmic divergence, or d, = m. 

where (a + a) [29,31,32]. If such an embedding in flat euclidean space is consid- 
ered, then the field 4” is known to play the role of the coordinate X in embedding 
space, as discussed by Polyakov [24]. As far as gravity is concerned, this situation of 
infinite fractal dimension is of limited consequence, since one does not require the 
existence of a continuum limit in embedding space, but only for intrinsic properties 
of the manifold. From an intrinsic point of view, the manifold is quite smooth, 
since (4’) shows a free-field type behavior, and the intrinsic or gaussian curvature 
(as measured by R*) is bounded. On the other hand, critical properties of 
two-dimensional quantum gravity will not necessarily be independent of the 

TABLE 4 
Summary of least square fits for the coefficients c,, and c, in eq. (3.15) for (42), for different 

values of D and a 

D a co Cl 

0 0.1 0.13(3) 0.187(3) 
0 0.001 0.17(3) 0.185(3) 
1 0.1 0.15(3) 0.x37(3) 
1 0.001 0.16(3) 0.190(3) 
2 0.1 0.14(3) 0.193(3) 
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existence of an extrinsic curvature term, since correlation functions of 4 are 
affected by it [31,321. 

If we attempt to fit (+*> to a power of L instead (as suggested for example by 
the authors of ref. [28]), namely 

ln(4*) - c,+c,lnA, 
A--l 

(3.18) 

we find values for c, = 2/d,.,, where d, is the fractal dimension of the surface, in 
the range 0.1X2), or d, about 13. On the other hand, the x2 parameter for the 
fits is always at least an order of magnitude larger than in the previously discussed 
case, and furthermore d, shows a clear trend towards an increase with lattice size. 
From this we conclude that the fractal dimension is always infinite in our model. 
This should be contrasted to the numerical results of the third paper in ref. [14], 
which gave a finite value for the fractal dimension (but on significantly smaller 
lattices than the ones we have treated here, and therefore with understandable 
uncertainties). Also it is clear that in order to reconcile our results, as well as the 
semi-classical limit D + -00, the power-law term discussed in the second paper of 
ref. [28] must have a vanishing coefficient. 

We have also investigated the possibility that on the torus and for D = 1 there 
might be a (In A)* term as well, as suggested again by the authors of the second 
paper of ref. [28], 

(3.19) 

Both for a = 0.1 and a = 0.001 we obtain the bound 

c* Q 0.002( 2) ) (3.20) 

suggesting that if such a term is present, its coefficient must be rather small. On 
the other hand, there is no convincing numerical evidence for such a term in any 
other model for two-dimensional surfaces. Our results seem to suggest that for the 
torus the semi-classical (D + --03) result is exact, at least for the values of D 
which we have explored. 

It is of interest to explore how some of the above results depend on the 
gravitational measure. For D = 1 and a = 0 we have repeated the simulation using 
the lattice analogue of the Dewitt measure (eq. (3.8)). In the case D = 1 this 
particular measure becomes quite simple, l-l dl*, since all the volume factors 
cancel out. The computed values for ( $2> are well described by eq. (3.15) (see also 
fig. 71, and we find 

cg = 0.19(3) ) c, = 0.175(8), (3.21) 

which confirms the fact that a change in the measure changes the non-universal 
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coefficients ca and ci, but leaves the functional dependence on A unchanged, and 
in particular the result d,, = ~0. 

It is of interest to investigate further the dependence of physical results, like the 
fractal dimension d,, on both the gravitational measure (i.e. the parameter u in 
eqs. (3.8) and (3.10)) and the number of components of the scalar field D, perhaps 
in some more extreme limits, like large D and more singular measures. To this end 
we have run a number of long simulations for D = 4, D = 8 and D = 12 on lattices 
varying in size between 64 and 4096 sites with a = 0.001, using the “flat” measure 
dl/l (for which therefore no dependence on D is included). We have found that as 
D increases, the coefficient of the In A term in (c$*>” increases (from 0.24 to 0.33 
to 3.36) until for D = 12 the behavior is more consistent with a power:law in the 
area. In this last case a power-law fit gives d, = 4.4, which is close the fractal 
dimension for branched polymers (trees), d, = 4. The large error bars in the data 
stem from the fact that for D = 12 the model has entered into a new phase, in 
which relaxation times are extremely long. Indeed the step size in the simulation 
has to be decreased by four orders of magnitude to keep the acceptances of order 
one, which suggests that the model we are considering is probably not even 
appropriate for this phase. Another indication that this is the case comes from the 
fact that a number of edges start to become quite long, while others get quite 
short; regions develop where the curvature is very large in magnitude, and it 
becomes increasingly difficult to get rid of these “defects”, especially on the larger 
lattices. 

There are a number of ways by which one can try to locate more accurately the 
transition. Indeed on a finite lattice a sharp transition between a phase in which 
d, = m and d, = 4 will be somewhat broadened. One way then is to try, say by a 
linear fit to the inverse of the coefficient of the In A term, to determine approxi- 
mately where it diverges 

(3.22) 

which gives from our data DC = 13.1 f 0.6. On the other hand, by fitting the data 
to a finite power of A instead, one can estimate DC from where the effective 
power start to become very small: one finds DC = 14.1 + 1.4, consistent with the 
previous estimate. Thus for the measure dl/l there is a transition somewhere close 
to D = 13. One can also try to extract a value for the susceptibility exponent 7, by 
using eq. (2.6). One finds for D = 4, 8, 12 y, - 1.8, 1.7, -3.8, which is on the one 
hand consistent for small D with the previous results for D = 0, 1, 2 (7, = 2, 
torus), and perhaps for larger D with the fact that y might eventually become 
negative. On the other hand, we do not believe that our results are accurate for 
D > DC, for the reasons mentioned above. 
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One would like then to understand how the previous results depend on the 
gravitational measure, the R2 term in the action, and D. Since performing a full 
exploration of the phase diagram using a set of different lattice sizes is quite time 
consuming, we have restricted ourselves to a lattice of 64 sites, and have defined 
an effective fractal dimension d,(A) via 

[ 1 ln(42>,4 -’ N d h-I(A) =2 lnA A+=- I-l’ (3.23) 

We have explored the measure dl/l for a = 0.001, 0.1, 1.0, the measure dl/l X A?/’ 
for a = 0.001, and the lattice analogue of the Dewitt measure, d12 X A\“-1)/2, also 
with a = 0.001. We varied D between 0 and 32 in intervals of 2, and on each 
lattice we performed 400 + 600 iterations, starting always from flat space (thus all 
data points are statistically uncorrelated). We have found that the transition at 
finite D seems to disappear when the correct Dewitt weighting factor for the 
scalar field measure fio’2 is taken into account for large D (for small D its effect 
appears to be negligible). On the other hand, if the coefficient of the R2 term a is 
varied for the dl/l measure, then it seems that DC can be shifted by one or two 
units. In other words, the location of the transition in D seems to be non-universal 
and dependent on a. 

A similar situation is encountered for D = 0 when the parameter u of the 
measure (see eq. (3.101, (Y = 0) is varied. In this case we write the measure as 
dl/l X A:“, and vary 2a between 0 and - 12, setting a = 0.001 and a = 1.0. As the 
measure becomes increasingly singular (large negative a>, we again encounter a 
transition to the branched polymer (tree) phase, with d, approaching four. Due to 
the smallness of the lattice we observe some substantial rounding, which presum- 
ably will sharpen as one goes to larger lattices. For a = 0.001 the location of the 
transition can be estimated at 2~5 c- - 12, by comparing to the analogous behavior 
for the transition in D discussed above. If a is larger, then it seems that the 
transition moves to even more negative values for CT, as expected from the effect of 
the R2 term which tends to suppress singularities in the curvature. 

Our results for the phase diagram of two-dimensional gravity coupled to a 
D-component scalar field, with the measure of eq. (3.10) and a higher-derivative 
(regulator) term, can then be summarized as follows. We expect a whole line of 
phase transitions for all D’s considered here (0 2 D & 321, which crosses the CT = 0 
axis only for larger (- 12) values of D. For the Dewitt measure we find no 
transition in the region considered, but we cannot exclude one for even larger 
values of D (D > 321, even though we are more inclined to believe that such a 
transition never takes place for the Dewitt measure, which after all is perhaps the 
more credible gravitational measure in the presence of scalar fields. 
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4. Ising spins coupled to gravity 

725 

In order to study a model for gravity coupled to Ising spins, we consider the pure 
gravity action of eq. (2.11, with the additional term 

(4.1) 

which is analogous in form to the scalar field action (3.21, except for the replace- 
ment of the scalar field multiplet ~$9 by the Ising spin variables Si = f 1. 

For the case of the sphere, the Ising model on a dynamically triangulated lattice 
has been solved exactly by exploiting the equivalence to a large-N matrix model 
[17]. The critical exponents cy = - 1, j3 = f, y = 2, 7 = 3 and v = $ agree with the 
conformal field theory estimates of ref. 1261. Here we will investigate again the case 
of a lattice with the topology of a torus (periodic boundary conditions for all 
fields), and show that for the torus the semiclassical (D = -m> results CY = CQ, . . . , 
where cy,, = 0,. . . are the pure Ising critical exponents, appear to hold. 

In our simulation we have measured the discrete analogues of the invariant 
spontaneous magnetization per spin 

and of the zero field susceptibility 

In a fixed-area ensemble with A = N = L*, these formulae simplify to 

M= cm>, m = a zAiSi, 
i 

x =A[(m*> - Cm>*], 

(4.2) 

respectively. Since on a finite lattice the spontaneous magnetization will vanish 
identically even at low temperatures, we have found it convenient to also define 
the quantities M’ and x’, which differ from the above expressions by the replace- 
ment of m with lml. In addition we have computed the fluctuation in the Ising 
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c*,= ;[((Els)‘) - w2] P 
with 

E,,=~ C ~j 
edges ij 

(4.6) 

(4.7) 

If all the edges are taken to be of equal length, then the system reduces to a pure 
Ising model on a triangular lattice, for which 1, = $6 ln3 = 0.9514.. . . This has 
provided us with the possibility of a useful comparison of our results with and 
without gravity on finite lattices. In our simulations we have at first used again the 
gravitational measure dl/l of eq. (1.81, and have set the higher-derivative coupling 
to a = 0.001. We have investigated lattice sizes varying from B2 = 64 sites to 
12B2 = 16384 sites. The length of our runs varies in the critical region (J, = 1.03) 
between 400k sweeps on the smallest lattice and 50k sweeps on the largest lattice. 

Let us begin by discussing the magnetization results. Since close to J, we expect 
A4 - (J - J,>p, we have that A4 lip should appear close to linear. In fig. 9 we show 
the magnetization M’ squared (suggested by the assumption p = 41, and raised to 

0.0 I 1.1 1.2 1.3 

J 

Fig. 9. Ising magnetization M’ squared and raised to the eight power, for different lattice sizes (L = 8 
(diagonal crosses), 16 (crosses), 32 (squares), 64 (circles), 128 (diamonds)). The pure Ising magnetization 

on an L = 64 lattice, raised to the eight power, (diamonds) is shown for comparison. 
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TABLE 5 
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Peak values for the Ising susceptibilities ,y and ,y’, and for the specific heat C, as a function of 
lattice size 

L Xmw xb,W GaAL) 

8 24.6(10) 4.5(2) 4.16(5) 
16 97.3(50) 14.5(S) 4.896) 
32 236.0(60.0) 51.0(4.0) 5.74(10) 
64 710.0(120.0) 179.0(50.0) 6.62(60) 

128 359.0(150.0) 342.0(70.0) 6.01(1.2) 

the eight power (suggested by the assumption p = $), for different size lattices. 
Our results clearly favor the pure Ising exponent, in spite of the uncertainty in J,. 
In the case of the susceptibility we expect from finite-size scaling a scaling form 

,y(L,J) =L*-~~(L”“(J-.&)). (4.8) 

Thus in particular the peak in x (or x’) should scale like L2-” for large L. In table 
5 and in fig. 10 we show the computed peaks in x and x’ as a function of L, on a 

104 

103 

102 

101 

105 

Fig. 10. Peak values for the Ising susceptibilities ,y (circles) and ,y* (diamonds) for different size 
lattices. The straight lines correspond to an exponent 2 - n = $. 
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values for the Ising specific heat C. The straight line corresponds to a logarithmic 
divergence (LY = 0). 

logarithmic scale in the figure. Using a least-square fit we estimate 

2 - 77 = 1.78(6) (from x) , 

2 -n = 1.68(3) (from x’) , (4.9) 

which is completely consistent with the pure Ising results 2 - r] = y/v = i. 
The results for the peak in the Ising specific heat C,, as a function of lattice size 

L are shown again in table 5 and in fig. 11. They resemble closely what is expected 
from a logarithmic divergence C,, N In L (a/v = 0). From the combined magneti- 
zation, susceptibility and specific heat results, we estimate the critical Ising 
coupling in the infinite-volume limit at 

J, = 1.030(5). (4.10) 

One can improve on the estimate of J, by considering the fourth-order cumu- 
lant [331 

U,(J) = 1 - - 
3( m2>2 
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with scaling form 

U,(J) = i7(L1’“(J-J,)). (4.12) 

The curves f&(J), for different and sufficiently large values of L, should intersect 
at a common point J,, where the theory exhibits scale invariance, and where U 
takes on the fixed-point value U*. We have found that indeed the curves meet very 
close to a common point, and from the intersection of the curves for L = 8 to 128 
we estimate 

J, = 1.025(3), (4.13) 

which is consistent with the previous estimate of the critical point. We also 
determine U* = 0.59(2), which is again consistent with the pure Ising model 
estimate for the invariant charge U* = 0.58 [33]. We conclude that for the Ising 
model coupled to gravity on a simplicial lattice with the topology of a torus, the 
exponents are, within our errors, the same as in the pure Ising model. 

In order to check again the dependence of our results on the specific measure 
(dl/l) used, we have also performed a simulation with the “Dewitt” measure 
appropriate for one field (d12>, and with the “Misner” measure d12/ fl. We have 
done the two simulations on a lattice of 322 = 1024 sites, and have chosen a = 0. 
Our conclusions therefore rely mostly on a comparison with similar results with the 
dl/l measure, and on the same size lattice. While we find that the critical point 
moves to a larger value 0, = 1.041, we find that the peak values in the susceptibil- 
ity and specific heat are comparable to the values for the dZ/Z measure on the 
same size lattice. In table 6 we compare the “Dewitt” (dZ2) measure for a = 0 and 
L = 32 to the “Misner” (dr2/ fi> measure for a = 0, and to the dl/l measure 
results for a = 0 and a = 0.001. Our results show again little dependence on the 
measure, at least within our errors and for the lattice sizes considered. A more 
detailed comparison would involve several lattice sizes, which is outside the scope 
of the present work. (We did check though that for the “Dewitt” measure the 
results on a larger lattice, 642, combined with the results on the smaller lattice, are 
again consistent with pure Ising exponents: for example we estimate 2 -q = 

TABLE 6 
Results for the peak values of the Ising susceptibilities ,y and x’, and of the specific heat C, on a 

322 lattice and for several forms of the gravitational measure 

Measure Xmnx 
, 

Xmax c max 

DW,a=O 
M,a=O 
dl/l, a = 0 
dl/l, a = 0.001 

279(40) 496) 6.4(4) 
332(40) 5103 6.8(6) 
353(S) 37(6) 5.5(6) 
331(55) 40(6) 5.1(5) 
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1.75(14).) We conclude that the choice of measure does not seem to affect our 
conclusion that the critical exponents are pure Ising-like. 

We have also investigated the critical properties of the Liouville field in the case 
of gravity coupled to an Ising model. We have computed the Liouville-field 
susceptibility x&J, L) discussed previously (in the context of pure gravity) and 
have found the critical exponent Q to be still consistent with 0. In particular for 
the measure dl/l with a = 0 and at the Ising transition, we find using finite-size 
scaling on sizes 8-64 (see fig. 5) for the exponent 2 - v+, = 2.19(19), a result which 
is consistent with the expected free-field behavior of a massless Liouville mode. As 
we move away from the Ising critical point, we still find a similar result, namely 
that the Liouville susceptibility grows close to linearly in L2 as L is increased, 
indicating that the Liouville field behaves like a massless free field for all J. 

5. Conclusions 

In the preceding sections we have discussed results relevant for a model of 
simplicial quantum gravity, and mostly on a manifold with the topology of a torus. 
It is characteristic of our model that the variations in the geometry of space are 
described by fluctuating edge lengths on a lattice with fixed coordination number. 
We have considered the case of pure gravity (D = 01, gravity coupled to a scalar 
field (D = 1, 21, and gravity coupled to an Ising model (D = $1. We have investi- 
gated in detail how the results for critical properties depend on what are expected 
to be irrelevant CR’-type) terms, as well as on the form of the gravitational 
measure. 

In the case of pure gravity we have computed the exponent -y, for both the torus 
and the sphere, and found good agreement with the expected exact answers from 
conformal field theory. For the torus we have computed critical properties of the 
Liouville field, which corresponds to the area density fluctuations on the lattice, 
and found them to be in agreement with the expectation that the Liouville field 
behaves like a free massless field for A + A,, or A + 00. 

By adding a D-component scalar field to the model, we have been able to 
compute the average ( c$~>, and therefore make contact with the results on models 
of random surfaces. These predict, among other things, an infinite fractal dimen- 
sion for the surface, at least in the absence of extrinsic curvature terms. We found 
that for the torus the fractal dimension is indeed infinite for D = 0, 1 and 2. For 
D = 1 we have looked for an (In Al2 term, but have found its amplitude to be quite 
small and consistent with zero. Our results seem to be insensitive, within the range 
of parameters explored, to the presence of an R2-type term in the action or to the 
detailed form of the measure. We have argued that for sufficiently singular 
measures though, the triangulation will tend to collapse into a degenerate configu- 
ration of edges. 
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Finally we have studied the case of gravity coupled to an Ising field. By 
computing the Liouville field susceptibility in the presence of the Ising spins as 
well (both at the Ising transition and away from it>, we have established that the 
Liouville field stays massless. On the other hand, a computation of the magnetiza- 
tion, susceptibility and specific heat suggests that for the torus the exponents are 
the same as for the pure Ising model (which is basically the semi-classical D * --CQ 
result). There are two possible explanations for this last finding. The first is that 
there is some flaw in our model (in the action or in the measure), and that in some 
other model for lattice gravity coupled to Ising spins the correct gravitational 
exponents will be obtained. But it appears difficult to reconcile this conclusion 
with the fact that we seem to obtain the correct value for the pure gravity string 
susceptibility exponent y on the sphere, and the fact that the lattice analogue of 
the Liouville field appears massless (a lack of reparametrization invariance is 
expected in general to lead to massive excitations only, with masses of the order of 
the ultraviolet cutoff). An alternative possible explanation lies perhaps with the 
peculiar properties of the toroidal topology. 

In conclusion it is clear that it would be of interest to investigate in greater 
detail a topology different from the torus, like a sphere or surfaces with bound- 
aries. Even more challenging are of course possible applications to four-dimen- 
sional gravity. 

The authors have benefited from conversations with J. Ambjgrn, F. David, 
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