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The chiral order parameter and the masses of the pseudoscalar and vector mesons are computed
in lattice QCD neglecting fermion-polarization effects on lattices of size up to 8 X8x8x 16. Five
values of the gauge coupling constants are considered and the results are compared with the weak-
coupling asymptotic-freedom predictions. Estimates for the values of the light-quark masses are
presented and their scaling behavior is studied. A preliminary study of the spatial-size dependence
of physical quantities is presented. Finite-size scaling methods are used to compare the results for
the vector-pseudoscalar-meson spin splittings on the larger lattice with results on a 4 X4X 4 16 and
6X6X 612 lattice. This allows one to penetrate deeper in the weak-coupling region. Around
g%=1 the results would suggest significant deviations from two-loop asymptotic-freedom scaling.

I. INTRODUCTION

_ Lattice gauge theory presents a well defined framework
in which nonperturbative calculations in QCD can be per-
formed from first principles.'> This represents a qualita-
tively novel situation compared to phenomenological ap-
proaches that have been used with varying degrees of suc-
cess in the past.

Recent attempts to compute the hadron spectrum by
numerical methods were necessarily limited to rather
small lattices and relatively large lattice spacings, and the
natural question arises of what is the relationship of these
results to the expected continuum physics at weak cou-
pling, where asymptotic freedom makes definite predic-
tions about the scaling properties of physical quantities.
Furthermore in most studies an approximation was used
in which the fermion-polarization effects were neglected,
and the question of chiral-symmetry restoration at weak
coupling still needs to be clarified.>

In principle the dependence of physical quantities on
the cutoffs can be investigated by increasing the lattice
size and by reducing the gauge coupling, assuming one
has statistical systematic effects under control, and by
varying the form of the lattice action so as to reduce the
effects of irrelevant operators.2*

In a previous work some results were presented for the
fermion condensate (Y1) (Ref. 5) and the mass of the
lowest-lying meson states™® as obtained on a lattice of size
6X6X6x12. We used there the Kogut-Susskind form of
the fermion action since it presents some advantages be-
cause of its chiral properties. The dependence of the re-
sults on the size of the box was not investigated and for
the masses the study was basically restricted to only one
value of the gauge coupling constant (g?==1). Even
though the results appeared reasonable, the belief that
they had relevance for the continuum limit of the theory
was based on the assumption that the onset of “scaling”
for the string tension [at about g?=1.09 for SU(3)] was
appearing also in the light-hadron masses at about the
same value of the coupling. This conclusion was also sup-
ported by the fact that the scaling for () appeared to
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be quite convincing.

In this paper we continue the study of chiral-symmetry
breaking and the light-hadron masses by investigating the
size and coupling-constant dependence of the results. As
in our previous studies, we neglect for simplicity the ef-
fects of internal fermion loops. In Sec. II we introduce
our notational and discuss the size dependence of {#i)).
On an 88X 8X8 lattice five values for the gauge cou-
pling constant (3=6/g%=5.6,5.7,5.8,5.9,6.0) were studied
and for each coupling the quark mass was varied over six
different values (m=0.30,0.25,0.20,0.15,0.10,0.05). The
results show small size dependences for quark masses that
are greater than 0.05 and the values obtained by extrapo-
lating to zero mass are consistent with previous deter-
minations.

In Sec. III we present our results for the pseudoscalar-
and vector-meson masses on an 8 X8 X 816 lattice. The
behavior of () and the vector-meson mass extrapolated
to zero-quark mass appears to be consistent with scaling
in the range of coupling investigated. The pion decay
constant also shows scaling behavior, but its value is al-
ways somewhat the experimental value. The information
on the slope of the pseudoscalar-meson mass squared
versus the quark mass is then used to extract the values of
the light-quark masses for each value of g2 For the
values of coupling constant investigated we also find that
the ratio between the pseudoscalar mass squared and the
quark mass in lattice units appears to start to scale later
than the previous quantities. Nevertheless, it appears that
some physical quantities such as ratios of masses tend to
remain constant (within our errors) in the “crossover” re-
gion. On the other hand, no scaling behavior is found for
the first radial excitation of the pseudoscalar meson, a sit-
vation which we attribute to the larger statistical and sys-
tematic errors in this case.

In Sec. IV we address the important question of the
relevance of our results to the continuum limit. A real-
space renormalization-group transformation is construct-
ed by comparing the results for the p mass on the
8X 88X 16 lattice with results on a 4 X4 X416 lattice.
The procedure is similar in spirit to the finite-size scaling
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method: for weak enough coupling a change in the size of
the lattice can be compensated by a shift in the coupling 3
to give the same p mass in lattice units. The amount of
the shift is predicted for weak-enough coupling by the
two-loop 3 function. If on the finite lattice a shift in the
gauge coupling is found which is consistent with the per-
turbative prediction, then this can be taken as an indica-
tion of matching to the weak-coupling regime. Our pre-
liminary results seem to indicate that such a matching
does indeed take place not oo far beyond B=6. In Sec. V
we then present our conclusions.

II. CHIRAL-SYMMETRY BREAKING

Let us first introduce our notation. The pure gauge
part of the theory is defined in terms of a set of gauge ma-
trices U, e that reside on the links of the lattice and are
elements of the group SU(3):

SG='E 2 TI‘ Un’”Un+ﬂ:VUI+V,[LUI,V+C.C. R

np<v

where we have set B=6/g? The lattice fermion action
2,7
is*

Sp=—7 zzw‘nfiﬂ(r-n &

f nmpu
+1 ’(r+n>Un,z¢£,fip]
+(m +4r)2 zv,?i,f’z/;ﬁ,f) i 2.2
The 7 s are Euclidean y matrices and obey {¥,,7,} =28,,

and 'y‘u ¥. We also have set for simplicity the lattice
spacing a=1. In this paper we will study exclusively the
fermion action with ¥ =0 (“naive action™),’® since we are
interested in the chiral properties of the theory, which are
somewhat mutilated for nonzero v. Also, we will restrict

the number of fermion flavors ns to one. The action of :
Eq. (2.2) is known to describe 16 flavors in the continu-

um. We. prefer to write the fermion action in the
Susskind form® and reduce the number of fermion flavors
from 16 to 4. The spin dlagonallzatlon can be ach1eved
by making the unitary transformation’

—- n
=Ty Xn, Yu=Xy Tm' T, =’}/111/22'}/§37/44 . 2.3)

As a result one obtains a sum of four identical actions,
each of the form

SF“‘ 2 znn,u(xn+pUJpxn X Un an+u)_m Exnxn
n,p

2.4)
. n+- Ve +n H
with 7,,,=(—1) #~', and X can now be taken to
be a one-component Fermi ﬁeld
The above action describes 4n, (instead of l6nf) fer—
mion flavors, and has a continuous U(n)XU{n) chiral
symmetry when the mass parameter m is set to zero.”%10
Here 7 is the number of noncolor indices of the X fermion
field. These symmetries correspond to baryon-number
and flavor-nonsinglet-charge conservation, respectively,

and it is the second one that is spontaneously broken both

iz.‘l)’ -

at strong and at intermediate coupling. Note that these
symmetries are not the same as the U(4)xU(4) chiral
symmetry of a continuum action with four flavors. Still,
an important consequence of the residual chiral symmetry
is that no mass counterterms are generated when the
gauge-field interaction is included and no parameters need
to be adjusted to obtain a massless pion.

In the new action formulated in terms of the X fields
only the even sites should be identified with the points in
the physical Euclidean space, and the four Dirac fields
should be thought of as constructed out of the 16 X fields
in the unit cell of size 2a. This circumstance and the
presence of four flavors gives rise to factors of 2 when
comparing lattice with continuum quantities such as

_3 L 2 (x X ) 4<¢¢>cont Hlavor - (2.5)

Unless otherwise stated, in' the following we will refer,
when quoting specific numbers in the tables and in the
graphs, to (Y1) as the quantity corresponding to fwo fla-
vors in the continuum. In the lattice theory one is in-
terested in evaluating expectation values of gauge-
invariant operators. In order to do this, the relevant
operators have to be averaged over the gauge and fermion
variables. The quantum expectation value of a physical
observable O(U,,¥) is given by

(0y=z"" [ [aUI[dPI[dp1OU,$, P’ TF .
Here

[dU]= ] dU,

(2.6)

is the invariant measure on SU(3), and the fermion in-
tegratlon means

[dgIldy]l= H doad TI avhy’ .
n,a,a,f m,B,b,f’
Z is the partition function

z= [ [dUl[dg]idple™ 5 .

For weak-enough coupling physical quantities like had-
ron masses are expected to scale according to the
asymptotic-freedom prediction and thus become propor-
tional to the QCD scale parameter

2.7

1 B, /28,5 —1/28,82+0(g?)
Alatt"' 2)1 oe 08 g .

= ;(Bog (2.8)

~ In the following, fermion-polarization effects will be

neglected (ny=0), and then one has for the group SU(3)
11 _51
Bo=

Tor?” Pr= gt @9)

A _quantity of interest is the condensate wave function
{Pp) (Refs. 5 and 11), and it is given by

Futhd =2~ [ [aUIA- UL, .10

and A~ ! s the inverse of the matrix that defines the fer-
mion action in Eq. (2.2). It is only meaningful to calcu-
late its value for the y=0 action, since otherwise the
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chiral symmetry is explicitly broken and the above quanti-
ty cannot be used to define an order parameter because of
perturbative contributions. In the free-fermion theory
(i) vanishes when the quark mass is reduced to zero.
A nonvanishing result in the interacting theory in the
same limit signals spontaneous breaking of chiral symme-
try and the ensuing existence of Goldstone modes. A
spectral representation for (J:/:) can be written

wﬂp)_ fdl 7»2+m

For free fermions p(A) behaves like A for small A.
Dynamical chiral-symmetry breaking implies a nonvan-
ishing spectral density at low frequency:

2.11)

tim {(g) ="Tp(0) . (2.12)

m—0 vV
In practice {(¢1f) is computed on a finite lattice (with
periodic boundary conditions) and, before averaging, on a
given background-gauge-field configuration, using sto-
chastic methods like the Monte Carlo method or the
Langevin equation for fermions (relaxation methods are
impractical for this quantity).* 112

. It is a well-known result that no spontaneous symmetry
breaking can occur on a finite lattice, and thus () has
to ultimately vanish in the interacting theory when the
quark mass is reduced to zero. A signal for spontaneous
symmetry breaking is when a nonzero order parameter is
found when the volume is sent to infinity first, and then
the external field (in this case the mass) is sent to zero.
Therefore it is only the volume-independent part of the
order parameter that is of relevance for the discussion on
symmetry breaking:

(F)=1lim Gim — 3 (Fthndmy (2.13)
m—a0Voew V n

The schematic behavior of {1/} on a finite lattice as a

function of m is shown in Fig. 1. Its purpose is to show

that it is the envelope of the finite-lattice curves that is of

-'5 T l T T T T T T l T

<YP>
o

FIG. 1. Qualitative behavior of the order parameter {{fp) as
a function of the quark mass m. On a finite lattice it tends to
zero for small quark mass. In the infinite-volume limit the re-
gion in which size dependence is observed shrinks to zero, and
the size independent part of {1} (the envelope of the finite lat-
tice curves) develops a discontinuity at m =0.
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TABLE 1. () on a 6X6X6X6 lattice (the data is taken

from Ref. 5).
at m =0.

The last column contains the extrapolated value

Y 0.30 0.25 0.20 0.15 0.10 0.00
B

5.0 0.684 0.679 0.681 0.653 0.627 0.56
5.1 0.674 0.656 0.643 0.645 0.589 0.52
52 0.659 0.638 0.628 0.614 0.564 0.48
53 0.631 0.622 0.598 0.573 0.534 0.46
54 0.621 0.606 0.576 0.540 0.539 0.43
5.5 0.588 0.560 0.542 0.498 0.481 0.40
5.6 0.539 0.502 0.473 0.427 0.392 0.30
5.7 0.516 0.490 0.440 0.401 0.335 0.20
5.8 0.498 0.440 0.398 0.368 0.280 0.15
59 0.469 0.431 0.373 0.330 0.233 0.06
6.0 0.468 0.429 0.379 0.319 0.232 0.05
6.1 0.449 0.401 0.353 0.285 0.219 0.04
6.2 0.436 0.395 0.340 0.271 0.190 0.01
6.3 0.427 0.383 0.326 0.273 0.180 0.00

interest in the continuum limit. The rest are lattice ar-
tifacts. Also we notice that for negative m the sign of
() should be flipped.

In Ref. 5, {J1p) was computed on a 6X6X6X6 lattice
for several values of m and B and gauge group SU(3).
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FIG. 2. (a) The quantity {3} for two flavors on the
6X6X6X6 lattice as a function of the quark mass m for dif-
ferent values of 8 (see Table I). The curves are only intended as
a guide to the eye. (b) The quantity () for two flavors on the
8X 888 lattice as a function of the quark mass m for dif-
ferent values of B (see Table II). The curves are only intended as
a guide to the eye. '
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TABLE II. (¢%) on an 8X8X8X8 lattice. The second column also lists the values of the average plaquette. The last two
columns contain the extrapolated values at 7 =0 obtained using the point at 7z =0.05 in the quadratic-polynomial fit and discarding
it because of possible finite-size effects, respectively.

m 0.30 0.25 0.20 0.15 0.10 0.05
B 1—(TtU,}/N e
5.6 0.4752 0.552 0.516 0.484 0.428 0.377 0.306 0.232 0.242
5.7 0.4502 0.518 0.484 0.438 0.389 -0.344 0.234 0.150 0.232
5.8 0.4320 0.488 " 0.454 0.410 0.353 0.276 0.201 0.105 0.087
5.9 0.4181 0.468 0.436 0.384 0.322 0.249 0.150 0.045 0.059
6.0 0.4061 0.121 0.009 0.036

0.457

0.418

0.368

0.309

0.228

There the gauge coupling constant was chosen to lie 1n31de
the narrow (in the couphng constant) crossover region
(5.5<B<6.2, with B=6/g?), where approximate scaling
behavior for the string tension'> ! is observed.

The values for (¢} for this lattice are presented in
Table I and in graphic form in Fig. 2(a). We have repeat-
ed in part the calculation on a slightly larger lattice

(8¢ 8X 8X8) to estimate the importance of finite-size ef-
fects. For 5 values of 8 and 6 values of m we have com-___
puted (¢y) on 2—4 configurations averaging over

200—600 fermion sweeps. For each value of B and m the
configurations were chosen to be statistically independent.
In the computation we used the Langevin equation, and
discarded the results from the first 100 iterations. We
have preferred this technique over the Monte Carlo
method because of its faster convergence rate for this par-
ticular quantity. At each value of (B,m) we used a dif-
ferent statistically independent gauge-field configuration,

separated from the previous one by 100 iterations if at the

same value of B and 300 if the value of B differed. We
also averaged over configurations obtained from hot and
cold starts. For three values of (B, ) we have checked
our results with the Monte Carlo method. At each value
of B,m we have also computed (1)) using the relaxation
method on an 8X 83X 83X 16 lattice for a few (2—6) lattice
points for both periodic and open boundary conditions in
the time direction obtaining again results consistent with

the other determinations within the errors. More details

on the general aspects of the techniques used can be found
in Ref. 3, and references therein.

renormahzat:lon-group behavmr is also shown. The straight line
represents the estimate (i) ) =(110+151(2Bg2)~# 11, .

The results on the larger lattice are displayed in Table
II and Fig. 2(b). As can be seen from comparing the two
sets of quantities the finite-size effects are rather small up

to m=0.1. For m=0.05 the values on the larger lattice
_‘are slightly below the extrapolated value obtained from
the smaller lattice, indicating that they might not be trust-

ed in an extrapolation. Also, the size dependence appears
to be larger for weaker coupling. A least-squares
quadratic-polynomial fit to the remaining points then
gives the extrapolated values at m =0, listed in the last
column of Table II.

If chiral symmetry is spontaneously broken, then for
weak-enough coupling one expects (i) to scale as A3
times an anomalous dimension factor. In Fig. 3 we show
its behavior as a function of B. It appears that the scaling
is quite convincing, and from the graph we estimate

() =R*(2Bg?) ~* M Ay’ (2.14)

with R=110%15. On the other hand, we notice that for
weaker coupling there is a tendency for R to become
smaller. At B=5.6, 5.7, 5.8, 5.9, and 6.0 we find R=135,
150, 120, 115, and 110, respectively, so that a value for R
as low as 90 for weaker coupling cannot be excluded. A
study with higher statistics on a larger lattice should clari-
fy this issue. It should be kept in mind that perturbative
corrections affect A and that the peak that is observed in
the specific heat at B=5.55 could lead to some distortion -
in the results. We will return to this question later on. If
we use the value for the lattice spacing obtained in the
next section from the p mass for each value of 8 and take
the average, we obtain the estimate for two flavors
(1) 2 X (460+ 60 MeV)? in the region g2~1.

III. MASSES OF LIGHT MESONS AND QUARKS

Let us now turn to a discussion of the light-hadron
spectrum. The way by which the masses and decay con-

‘stants are extracted from the lattice propagators has been

extensively discussed before in the literature (see, for ex-
ample, again Ref. 3, and references therein). Here we will
only recall the main results and formulas that are relevant
for the following discussion.

The masses of the lighter hadrons can be obtained by
computing the appropriate fermion correlation functions
of compos1te ‘operators. In the case we are interested in,

these are given for the mesons by the formulas
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(PYx)IP0)) o= [ dp[UTTr [A—lkx,ol UA~Y0,x | U],
(FYP0)) 1 mo= [ dplUITr [A~Hx,0 | UIAUOx | U —ny [ du[UITr [A~ Y x,x | DIATY0,0| T)],  (.D)

and for the baryons

(FTFPUO)) = [ dulUITH A= (x,0| UIA~1(x,0| DDA~ (x,0| V)] , | (3.2)

where we have suppressed color and spinor indices for
simplicity. We have set

dulUl=Z ~lexp(S)d[ U],

and A is the lattice Dirac operator as defined through the
action of Eq. (2.2). With I =0 we denote here a flavor
singlet, and assume that the flavor symmetry is unbroken.
In the following discussions we will restrict ourselves to
the pseudoscalar- and vector-meson states. Results for
some of the heavier mesons and the baryons for the
Susskind action will be presented elsewhere.

Let us call the propagator for a given (meson or baryon)
state G(x). Then it is convenient to have states with zero
spatial momentum propagate in time, which can be
achieved by looking at the propagator summed over spa-
tial coordinates. From the large-distance behavior of the
propagators the masses are then determined through their
exponential falloff

Gr()=T Gl—(x)t ~ Ae

— 00

—-ml-t

(3.3)

At intermediate separation other states |n) which are
higher in mass and have the same quantum numbers as
the operator ¥I"y tend to contribute. A Lehmann repre-
sentation for the propagator shows that

Gr()=" | (O] HOTYO) |n) |2 "™, (3.4)

and the intermediate states |n) above the first excited
state are the radial recurrences. The amplitudes of the ex-
ponentials are also of physical relevance since they are re-
lated to the decay constants.

The spin-parity assignments in the case of the Kogut-
Susskind fermions are not so straightforward, because
states of different spin-parity can contribute to the same
correlation function.>%!%!! In order to extract the masses
one first considers the meson propagator

Gulx)=3 A5 (x)|? . (3.5)
ab

and the baryon propagator

Gp(x)=F T A 1 x)Apy T XA X) .
abc a’b'c’

(3.6)

In order to separate the states with different spin-parity it
is convenient to consider the four kinds of corners of the
spatial Brillouin zone. One defines

[
Gi(t)= 3 Gylx),

Gu(t)= T [(— 1P+ (—1P+(—1F]Gylx) ,

3.7
Gh(t)= S [(=1PF L (— 1Y T2 (=17 +*]Gy(x) ,

Gyl(t)= S (— 177 +3Gy (x) .

X

It is then easy to prove that for large ¢ the above propaga-
tors behave like

G&(f)t:w e Pt ,

G,b(t)t:m eV 1y T

GRD) ~ e ™™ (— 1y, (3.8)
Gu() ~ e TP (1)

where P, ¥, S, A, and T stand for pseudoscalar, vector,
scalar, axial vector, and tensor. It is clear that in the case
of the staggered fermions the analysis of the correlation
functions is made more difficult by the presence of more
than one particle.

In the case of the baryons similar projections on the
Brillouin boundary can be done. It turns out thai also in
this case states of different parity contribute to the same
correlation function (one finds that, when the mass of the
baryon is not small in lattice units, the states that propa-
gate forward and backward are mixtures of spin < and
47 states).!°

On the lattice one is of course interested in eventually
approaching the chiral limit m,—0. Because of long re-
laxation times for small quark masses and the finite box
size, the range of quark masses typically accessible in the
crossover region is between mga=0.3 and m,a=0.02,
corresponding to a physical quark mass which can be at
most reduced to about 50 MeV, an order of magnitude
still above the physical m,, my quark masses.

Statistical and systematics errors tend to affect the
computation of the masses. Statistical fluctuations in the
gauge-field configurations contribute to the statistical er-
rors in the masses. The higher the relative mass of the
state, the higher in general the fluctuation.

The masses of the hadrons are obtained in practice by
fitting the correlation functions to the expected exponen-
tial or hyperbolic cosine (or sum thereof). At short dis-
tances (t <<m ~') the correlation functions follow in gen-
eral power-law behavior, while at larger separation a con-
tamination from higher excitations (the radial recurrences)
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TABLE III. Some results for {fyy} and the pseudoscalar and vector masses in lattice units as a func-
tion of the quark mass m on a 4X4X4X 16 lattice at g2= . The column with m =0 contains the ap-
proximate extrapolated values, and the last column contains the exact values at m =0 and g*N = oo

from Refs. 7, 9, and 10, listed for comparison.

\m 0.30 ©0.20 - 0.10 0.00 Exact
(Fw) . 0.91 093 09 0.98 3Y7 0,992
mp 1.17 0.94 0.67 0 0
my 1.97 1.93 1.88 1.82 cosh—13=1.763
mp*/m 4.55 4.45 452 4.51 12 _ 453

V7

will be present. One notices in general that for smaller
quark masses and weaker gauge coupling the expected
asymptotic behavior sets in more slowly. This is the

reason why one chooses to work on an asymmetric lattice: _

by making the lattices longer in the “time” direction these
effects can be reduced. Of course the higher the separa-
tion, the larger the statistical errors will be and more sta-
tistical accuracy is needed. This is the first source of sys-
tematic errors. :

The physical region of small quark masses has to be, at

least with the presently available lattice sizes, obtained by
extrapolation using the values of the masses computed for
larger quark masses. The finite spatial extent of the lat-

tice poses a limit on the smallest pion mass that can be .

reached: . the inverse pion mass in lattice units should be
at most about one half the size of the lattice. This is
equivalent to the requirement that the pion wave function
should fit inside the box (and the size of the wave func-
tion goes like the inverse of the mass of the state). Also,
for pion masses greater than about 0.2—0.1 in lattice units
the cutoff-dependent corrections to the fermion propaga-
tor are significant, as can be seen comparing the hadron
mass values for y=0 and y=1 using the same quark
mass as input. Another way of phrasing these require-

ments is that the masses in lattice units should lie between _

the ultraviolet and the infrared lattice cutoff:

w/La << m <</a, and m can be made small only if L,

the spatial extent of the box, is made large. An improved
fermion action could make the extrapolation problem less
acute. This is the second source of systematic errors.

The physical masses of the hadrons are obtained then
by extrapolating the results obtained at finite coupling to
the limit of zero coupling using the renormalization
group. In order to do this one has to check that the re-
sults at finite coupling scale in accordance with the pre-
dictions of asymptotic freedom. The glue correlation
length (the inverse glueball mass) grows very rapidly in
‘this region, and one cannot make the coupling too small
because of boundary effects. In other words, on a finite
lattice both the quarks and the gluons can wind around
the periodic lattice if they are light enough, giving rise to
unphysical results. In a box of finite volume it is easy to

show that the size effects are exponential in the mass gap ~

times the linear size of the box. Because of machine-time
limitation it is often possible to study only a few (1-3)
values of the gauge coupling constant in the crossover re-
gion. One then hopes that in this region one is close

enough to the asymptotic behavior, since for the masses
the corrections are of order A%a2. In the case of the decay
constants, perturbative corrections proportional to g are
in general present. For the pion decay constants obtained
using the local operator one finds, for example,'®

M =[1-0.12g7+0(g"1f5" .
This is the third source of systematic effects.

As a first test of our methods we have computed the
pseudoscalar and vector mass and (Y1) on a
44416 lattice at B=0. The results can be used as a
check and are displayed in Table III together with the ex-
act answers from Refs. 7, 9, and 10. As can be seen, at
least in this regime the numerical results even on such a
small lattice are in good agreement (within a few percent)
with the analytic ones.

In Table IV we have listed for later comparison some of
the results obtained in Ref, 6 on a 6X6X6X12 lattice at
B=6.0. For finite B our results for the pseudoscalar and
vector masses on an 8X8X8X16 lattice are shown in
Tables V and VI. The pseudoscalar mass was obtained
from the analysis of the first propagator of Eq. (3.7) and
the vector-meson mass from the second propagator in the
same equation. The other two propagators were also
analyzed and gave comparable results, but with larger sta-
tistical errors. As usual the masses were obtained fitting
the propagators to a sum of two hyperbolic cosines, with
the one or two points close to the origin removed in the
fit. Because of the number of points used, the fit tends to
be rather reliable and does not depend significantly on
whether the points at separation O and 1 are included or
not. Typically we have found that the two-hyperbolic-
cosine fit gives values for the mass estimates for fixed B
and m that are about five percent lower than the ¢ (time- -

(3.9)

TABLE 1IV. Pseudoscalar-meson mass, vector-meson mass,
pseudoscalar decay constant, and first radial excitation of the
pseudoscalar in lattice units as a function of m at f=6.0 as ob-
tained on a 6:X 6 X 6 12 lattice (from Ref. 6).

\m 0.30 0.20 0.10 0.00
mp 1.21 0.94 0.60 0
my 1.35 1.10 0.77 0.51
fo 0.23 0.19 0.16 0.12
mp 1.57 1.32 1.04 0.78
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TABLE V. Pseudoscalar-meson masses in lattice units as a function of B and m as obtained on the
88X 816 lattice. The numbers in parentheses indicate the error.

m 0.30 0.25 0.20 0.1 0.10 0.05
B
5.6 1.32(1) 1.20(1) 1.09(2) 0.95(2) 0.77(3) 0.55(1)
5.7 1.31(2) 1.20(1) 1.08(3) 0.94(2) 0.76(3) 0.53(5)
5.8 1.30(1) 1.19(1) 1.08(1) 0.93(2) 0.75(5) 0.52(6)
5.9 1.27(4) 1.174) 1.04(3) 0.89(2) 0.72(5) - 0.48(3)
6.0 1.20(1) 1.09(5) 0.95(8) 0.82(4) 0.62(3) 0.41(2)

slice) -dependent mass estimates m (t)=InG (t —1)/G(¢).
These tend to be slowly convergent even in the case of
Kogut-Susskind fermions, where the asymptotic regime of
pure exponential decay seems to be reached significantly
faster (for comparable values of the pion mass) than in the
Wilson fermion case. For the smaller values of the quark
mass {(m «<0.2) we have also checked our results by using
open boundary conditions for the fermions in the time
directions, and found agreement within the errors. Non-
periodic boundary conditions have the disadvantage of
giving rise to larger statistical noise and no average can be
taken over the forward and backward propagation as in
the periodic case. Also it is not always clear in the case of
nonperiodic boundary conditions at what separation one
should stop because of possible boundary effects.

The mass of the vector meson at m =0 for each 8 was
obtained by linearly extrapolating the mass-squared
difference my2—mp?, which is slowly varying as a func-
tion of m in the data, and is almost constant experimen-
tally when going from the p to the J /3. We also include
in Tables VII and VIII estimates for the pseudoscalar de-
cay constant and the mass of the first radial excitation in
the pseudoscalar channel. The results were obtained by
computing the propagators on two independent gauge
configurations for m >0.15 and on four independent con-
figurations for the smaller values of m. The fermion
propagators were computed using the relaxation method
with 100—400 iterations and convergence was checked by
evaluating the quantity

(Py)—am [dt G (1),

which is zero configuration by configuration for any m
and on a finite lattice because of chiral symmetry, if the
propagator is evaluated exactly, and was kept in the
present computation smaller than 1075, Since a different
configuration was used for each value of m, separated
from the preceding one by 100 Monte Carlo iterations
(with 10 hits), the values of the masses and other parame-

(3.10)

ters can be thought of as independent for different values
of both m and B3.

As can be seen from Table V and Fig. 4(a), due to the
large size of the lattice the statistical errors are rather
small and can be estimated at a few percent. In general
there is a trend for the masses and the spin splittings to
slightly decrease as the number of configurations is in-
creased, but we estimate that this effect is included in our
errors. We also estimate that the systematic errors due to
the finite extent of the box in the time direction are com-
parable or smaller than the statistical errors, because of
the length 16 employed. We will postpone until later a
discussion of the finite-size effects due to the finite box
size in the spatial direction. In Table IV we also list for
comparison the analogous estimates for the masses and
decay constants obtained in Ref. 6 on a 6 X6X6X 12 lat-
tice. The results appear to be consistent with each other
within the errors..

From the table and the graphs it appears that we have
good control over the pseudoscalar mass, and the noise is,
not unexpectedly, significantly larger for the vector-meson
mass. Let us discuss the behavior of the pseudoscalar
mass and its dependence on the quark mass first. Current
algebra predicts that in the continuum the pseudoscalar
mass squared is linear in the quark mass,

2M1rszr2= (Julbu +Jd¢d)(mu +md)+0(m21nm2) )
(3.11)

and we will not consider here for simplicity the case of
unequal quark masses. It is easy to prove that this identi-
ty is satisfied exactly on the lattice for all couplings in the
limit of small quark mass. It follows from the definition

of fo,

(mu'*‘md)(o!';u’/ﬂl’d17>=ﬁfwmw2 3 (3.12)

which implies for the pion propagator at large distances

TABLE VI. Vector-meson masses in lattice units as a function of 8 and m as obtained on the

8X8X8x16 latticg.ﬁ The numbers in parentheses indicate the error.

0.15 0.10 0.05 0.00 7

m 0.30 0.25 0.20
B
5.6 1.67(5) 1.56(7) 1.44(5) 1.29(9) 1.15(8) 0.96(11) 0.78
5.7 1.65(7) 1.54(8) 1.42(9) 1.26(4) 1.12(3) 0.95(9) 0.75
5.8 1.62(5) 1.52(3) 1.40(3) 1.24(9) 1.06(6) 0.86(12) 0.63
5.9 1.48(7) 1.40(2) 1.28(13) 1.08(3) 0.98(6) 0.73(3) 0.54
6.0 1.39(6) 1.28(9) L14(7) 0.954) 0.81(4)

0.62(9) 0.45
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TABLE VIIL. Pseudoscalar-meson decay constant in lattice units as a function of B and m obtained
on the 8 X8 X8 16 lattice. The numbers in parentheses indicate the error.

0.05

m 0.30 025 0.20 _ 0.15 0.10 0.00
B —_
5.6 0.412) 03720 0332 0.30(3) 0.24(2) 0.20(2) 0.18
5.7 0.37(3) 0.34(2) 0.28(1) 0253) . 0.213) 0.17(3) 0.16
5.8 0.34(1) 0.30(1) 0.27(2) 021(2) - 0.20(4) 0.15(2) 0.14
5.9 0.30(2) 0.27(1) 0.24(2) 0.20(2) 0.17(2) 0.14(2) 0.11
6.0 0.27(1) 0.23(1) 0.2102) 0.18(3) 0.16(1) 0.11(1) 0.09
‘f 2,, 3 , ~ results for the vector-meson mass are presented.
G, (t) ~ T—e Tt : (3.13) In order to compute the light-quark masses an evalua-

too  4m?
and from the exact sum rule for G,(#), evaluated for
small m..

As can be seen from Fig. 4(a) for the smaller values of
B the pseudoscala.t mass squared is remarkably linear in
the quark mass, in fact it is difficult to detect at B=5.6
and 5.7 any deviation from linearity in the range of quark
masses we have investigated. For larger B’s (5.9 and 6.0)
some curvature sets in at the smaller mass values. This is
not unexpected since in the continuum the ratio M, p/m
should scale as A, up to an anomalous dimension factor.
What is nevertheless surprising is that scaling for this ra-
tio sets in (if it sets in at all) at a value of 8 (~5.9) that is
significantly after the region where there is a peak in the
specific heat and the crossover phenomenon in the string
tension is observed (8~5.55). In Fig. 4(b) the analogous

tion of the lattice spacing is needed, which we chose to ex-
tract from the p mass. The sum of up and down quark
masses are then extracted by using the 7 mass as input,
whereas the strange-quark mass can be obtained from the
(nonexistent) s§ pseudoscalar meson whose experimental
mass can be estimated from

2__ 2 2
My _me+ _m,7-+

" to be around 686 MeV. Similar estimates can be alterna-

tively obtained by using the ¢-meson mass as input. Thus
at the different values of B we get the following series of
estimates for the p mass in lattice units, the inverse lattice
spacing, the ratio of pseudoscalar mass squared over
quark mass in lattice units, the sum of up and down
quark masses and the strange-quark mass, and the pion
decay constant:

: my+mg ms S
B am, ' (MeV). amp’/m (MeV) (MeV) (MeV)
5.6 0.78 970 63 6.4 75 175
5.7 0.75 1010 62 6.3 75 155
5.8 0.61 1210 5.4 6.0 70 170
5.9 0.54 1410 44 6.3 75 160
6.0 0.45 1690 ST 34 6.8 80 140

s

The results would lead us to conclude that although the
numbers in lattice units change significantly in the region
of B explored, when they are reexpressed in physical units
little change is observed as the gauge coupling is reduced.
In Fig. 5 we have plotted the p mass as a function of B to
show the approx1mate scaling behavior observed in this

region. Again, as in the case of (¢), it appears that the

p mass in lattice units decrease slightly more rapidly than

asymptotic freedom would predict. —

From our analysis on the 8 X 8X 83X 16 lattice at g¥=1
we arrive at the estimates for the bare quark masses and
the lattice pion decay constant

m, +mg=6.4t1.0 MeV, m;=75+9 MeV ,
(3.14)

fr=160%16 MeV .

TABLE VIII. The mass of the first radial excitation of the pseudoscalar meson as a function of B
and m obtained on the 8 X 8 8 16 lattice._The numbers in parentheses indicate the error.

m 0.30 0.25 020 015 0.10 0.05 . 0.00
B
5.6 1.47(5) 1.36(4) 1.26(8) 1.20(4) 1.05(4) 0.92(5) 0.75
5.7 1.51(5) 1.39(7) 1.35(12) 1.20(16) 1.1409) 1.02(14) 0.88
5.8 1.54(12) 1.42(12) 1.39(6) 1.30(14) 1.20(10) 1.09(23) 0.96
5.9 1.55(5) 1.50(19) 1.42(11) 1.30(5) 1.25(17) 1.10(13) 1.00
6.0 1.50(9), L 38(6) 1.32(5) 1.20(4) 1.17(5) 1.10

1.44(14)
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FIG. 4. (a) Pseudoscalar- and (b) vector-meson masses
squared as a function of the quark mass and the gauge coupling
constani: f=35.6 (triangles), B=5.7 (squares), 8=5.8 (penta-
gons), B=15.9 (hexagons), and B= 6.0 (circles).

From the vector-meson mass (by using the ¢ meson as in-
put) we would have obtained the slightly less accurate es-
timate m, =66115 MeV.

We have quoted here the bare quark masses at g2~1,
and it is unclear what the corresponding momentum scale
is. The renormalization-group-invariant masses 7 were
defined in Refs. 5 and 6 through

FIG. 5. The p mass as a function of 8. The expected
renormalization-group behavior is also shown and the straight
line represents the estimate m,=(205£20)A .

38 mia), (3.15)
47

2 —4/11
m=

where m is the bar quark mass. Some care is needed
when comparing the quark masses on the lattice with the
quark masses in the continuum, because of perturbatively
computable finite-renormalization effects that can be sig-
nificant in the presently accessible coupling-constant re-
gion. The relationship between the bare quark mass on
the lattice m{a) and the invariant quark mass #3 in the
modified minimal-subtraction (MS) scheme is given for
SU(3) and n;=0 by the formula!®

4/11
Ass 33

2T
+ 452

9

331

B+ n
47 Apn

m= InC,, ma) .

(3.16)

One has that InC,, =6.53 for r=0 and Ajn/Agg=24.5,

and therefore 7 =~1.92 m(a) in the region considered
here. The estimates for the invariant masses then become
My + Mg =12.2+2.0 MeV and 7i;=145+20 MeV, a more
reasonable set of values.

For the pion decay constant, taking into account the
perturbative correction factor of Eq. (3.9), we then get
that f, in the continuum is about 140+15 MeV, which
should be compared to the experimental value of 93.5
MeV. This high value is not surprising given the high
value of the pion decay constant at strong coupling, the
presence of perturbative corrections to lattice current ma-
trix elements and the sensitivity of the pion wave function
(more than its mass) to the coarseness of the lattice. It is
known that the estimates for the hadron masses do not
have any correction factors proportional to g2 (the correc-
tions are of order a?A? for weak coupling), and thus are
likely to be more accurate. On the other hand, one can see
that there is clearly a trend towards lower values of £, as
the gauge coupling is decreased.

It would appear that some of our results do not agree
with the analogous quantities in the Wilson fermion case.
This is not surprising since the two-fermion action be-
comes equivalent only in the continuum limit, i.e., for

- small g2. In fact it is known that at strong coupling some

quantities, like the p mass in lattice units and therefore
the lattice spacing, can differ by as much as a factor of 2.

Still we notice that a substantial deviation from the
strong-coupling values has taken place. In fact at
82N = o one has for Susskind fermions am,=1.76 and
therefore a~1=430 MeV from which one obtains
m, +mg=20.1 MeV, m;=241 MeV, and f,=201 MeV.
It is also of interest to see the amount of deviation from
the PCAC (partial conservation of axial-vector current)
formula (3.11). On the lattice we have shown that for Eu-
clidean Susskind fermions the PCAC relationship is ex-
actly satisfied for the pion of Eq. (3.8). As a check on our
numerical results we have computed the ratio

2fp’mp?
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which one expects to approach the value 1 for small m.
At B=5.6, 5.7, 5.8, 5.9, and 6.0 we find for the ratio the
values 0.84, 0.61, 1.33, 1.08, and 0.67, respectively, which
give on the average 0.90. Thus it-appears that the PCAC
relation is satisfied within the errors.

IV. RENORMALIZATION-GROUP ANALYSIS

In this section we continue to discuss the dependence of
our results on the infrared cutoff arising due to the finite
spatial extent of the box. A real-space renormalization-
group transformation can be constructed from the re-
quirement that physical quantities be invariant under a
change of the linear size of the system size. In our discus-
sion here we will borrow from a set of ideas on finite-size
scaling properties of thermodynamlc functions due origi-
nally to Fisher and collaborators!’ and later elaborated by
others.!® In Ref. 3 it was suggested that these studies may
elucidate further the significance for the infinite system of
results obtained on small lattices. By using these methods
one hopes to extract as much information as possible
about the infinite system by analyzing a sequence of small
finite-size systems.

Here we will restrict our discussion to a geometry in
which the size of the system is L XL XL XT with
T— . Now consider an observable (like a physical
mass) Fr{g) on a finite lattice and assume an algebraic
singularity close to the critical point F (g ~Alg —g.)°
for g—g,. Denoting by &, the correlatlon length (the in-
verse of the mass gap) in the infinite system, then on a
finite lattice one expects that for §, L >>a,

FL(g
F(g)

=f|z

4.1)
§w N

with f(x) a universal function dependent on F and the
boundary conditions. Since one knows that f(x)—1 for
x— oo and F(x)—sex ~/" for x —0, this suggests that Fy
should have the scaling form

Fp(g)=L ~°*h(Lt"), 4.2)

where we have set t=(g—g.)/g.. The validity of this
form can be demonstrated in the A¢* theory where for
a—0 physical observables like N-point functions for fi-
nite L obey the same renormalization-group equations as
for infinite L. Define u to be the renormalization point
and t=(T—T,)/T,. Then this implies that the ratio

Fy
—_——= o . 4.3
¢L([_L,t,)\:) Fw (;7 ) .
obeys the equation
]
L At ,8,A)=0 4.4
"o +B(A) ax FTIRaAN vl LA “.4)

As a consequence one then obtains from the usual scaling
arguments for Ly >>1

¢L(p’1t’h)=¢l(1:tLl/vy7\o*) (4.5)

and it has been tacitly assumed that A*, the value of the
running coupling constant at the 1nfrared fixed point, is
nonvamshmg For A¢* this is indeed true below four di-
mensions. At four dimensions one expects logarithmic
corrections to scaling, whose form can be computed exact-
ly in the N-vector model for large N (Ref. 19). In the
case of lattice QCD the bare gauge coupling g plays the
role of t and the argument of the scaling functions has a
different form: for a physical mass one has that the quan-
tity Lt" is replaced by L exp[ —1/2(Bog?].

An important consequence of the property stated in Eq.
(4.1) is that it allows one to construct a renormalization-
group transformation which is exact for £, L >>a and
calculable on a finite system. Define a scale transforma-
tion L-—L' and g—g' such that

LM, (g)=L'M,(g") (4.6)

holds. The masses in the infinite system are usually un-
known, but can be eliminated by realizing that (4.1} and
(4.6) imply

ML(g)
M_(g)

N ML'(g')
M, (@)’

(4.7)

which gives for the final form of the renormalization-
group transformation

LM, (g)=L'M;{g") . (4.8)

For weak-enough gauge coupling the amount by which g
has to be changed under a scale transformatmn L—L'is
known. At one-loop order one has

1 1 L'
PR 2 + 2/30111—[ . (4.9)
At two-loop order one can define the change in g? to be
such that the ratio of sizes L /L’ is equal to the ratio of
lattice A parameters A’'/A.

In principle M(g) can be any physical mass. We have
chosen as our physical observable the p mass, since it can
be determined more accurately than the glueball mass,
whose correlation function is usually difficult to measure
for large separation because of statistical noise. The re-
normalization of the coupling constant was determined by
comparing results for m, on the 8 X8 X8 16 lattice with
results on a 4X4X4X 16 lattice. For one value of the
coupling we also used previously obtained results on a
6X6x6x12 lattice. The p mass on the L =4 lattice was
obtained by computing the pseudoscalar- and vector-
meson mass mp and my for m=0.3, 0.2, and 0.1 on two
gauge configurations for each 8 and linearly extrapolating
then mp?—mp® to m =0. We have chosen the lattice to
be significantly longer in the time direction so as to allow
us to determine as accurately as possible the true energy-
level splitting on the spatially finite lattice. As a conse-
quence our results are more sensible to the infrared cutoff
and less sensible to the short-distance features. In Fig.
6(a) we show the quantities Lm; (g) as a function of 1/g2
for L=4 and L=8. In two limits the expected behavior
of this quantity is known:
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FIG. 6. (a) The p mass on a finite lattice times the linear spa-
tial extent of the lattice Lm; as a function of 8 for L =4 (lower
curve) and L =8 (upper curve). (b) The shift in the coupling B
necessary to have the two curves in the preceding ﬁg\ire overlap.
The almost horizontal line shows the two-loop perturbative
behavior expected at large .

Lmy—Lcosh™ 13 (g2 >),
. 4.10)
Lm; —constant (g2—0),

and our results are consistent with these results. Note
that an intersection of the two curves (for L =4 and
L =8) would indicate the presence of a phase transition.
On the other hand, asymptotic-freedom scaling predicts
that the distance between the two curves should become
independent of g? for small enough g2. In other words, a
finite shift of one of the two curves should make them
overlap. In Fig. 6(b) we show the shift §8 in 8 that would
be required to have the values of Lm; on the two lattices
with L=4 and L=8 match. Taking into account two-
lIoop corrections one would expect that in the region
6.0 <8< 7.0 the shift should be about §8=0.61. It ap-
pears from the graph that there is a tendency to overshoot
the asymptotic-freedom prediction and that the correct
answer might be recovered only for values of B larger
than 6.0. ‘

Several comments are in order. It is clear that the
statistics and the number of data points are not at the mo-
ment sufficient to reach any definite conclusion, especially
for weaker gauge coupling. It also would be extremely
helpful to have results on larger lattices such as

12X 12X 1232 and 16X 16X 16X 32. In particular, for
L =4 it is unclear that one is in a regime where L >>a.
We are now improving on the statistics and will present
the results elsewhere. Still it appears that the methods
that we have presented can be used to shed more light on
the region g2 < 1, and the way by which the lattice results
match onto the weak-coupling scaling predictions.

V. CONCLUSIONS

In the previous sections we have presented new and
more accurate results for {3} and light-meson and
quark masses and compared the results to previous calcu-
lations. The new estimates appear to be consistent with
the old ones, given the lower statistics and larger errors of
the previous results. Still it appears that studies on larger
lattices and with even better statistics are important and
should be performed to check all the results and fully
determine the size and significance of systematic errors
due to the finite box size, quark mass, and gauge coupling
constant.

Note added. After this work was completed, papers®®
appeared in which similar results for the fermion conden-
sate (1) and the 7 and p mass in lattice QCD with
Susskind fermions are presented. The lattice size (83X 16
and 10°X16) and the number of gauge configurations
used is comparable to the present study. While there is
general agreement in the values of the chiral condensate,
there appears to be some rather significant discrepancy in
the results for the 7 and p masses. These are in the quot-
ed papers always significantly higher than the present es-
timates at finite- and zero-quark mass. The reason for
this discrepancy should be ascribed to the fact that the
quark and meson propagators are evaluated there at too
small quark masses (rz equal or less than 0.05 in lattice
units). This circumstance makes it difficult to evaluate
the true asymptotic behavior of the propagator at large
time separations and introduces large systematic errors in
the meson masses. Their final estimates for the 7 and p
mass, the pion decay constant, and the quark masses are
therefore also likely to be affected by large systematic er-
rors.

For the above reasons the extrapolation to small quark
mass by uvsing six larger values of the same was preferred
in this paper. The problems of extrapolation mentioned
above have been previously extensively discussed in the
literature (see, for example, Refs. 3, 5, and 6). It should
be pointed out that the results presented in this paper for
the 7 and p mass appear to be in good agreement with the
recent results of Ref. 21 at B=5.7 on a similar size lattice.

r
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