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Abstract 

The leading long-distance quantum correction to the Newtonian potential for heavy spinless particles is computed in 
quantum gravity. The potential is obtained directly from the sum of all graviton exchange diagrams contributing to lowest 
non-trivial order to the scattering amplitude. The calculation correctly reproduces the leading classical relativistic post- 
Newtonian correction. The sign of the perturbative quantum correction would indicate that, in the absence of a cosmological 
constant, quantum effects lead to a slow increase of the gravitational coupling with distance. 

1. Introduction 

It is generally assumed that a quantum theory of 
gravity cannot lead to testable predictions, due to a 
lack of perturbative renormalizability of the Einstein- 

Hilbert action [ l-51. Recently the interesting possi- 

bility has been raised [6] that low energy predictions 

of quantum gravity are not necessarily affected by the 

short distance details of an ultraviolet regulated the- 
ory of gravity [ 71, and can in fact be finite and cal- 
culable. As an application, the leading long-distance 

quantum correction to the static Newtonian potential 

was computed, resulting in a finite correction of order 

O( Gti/c3r3). When gravity is treated in this fashion 
as an effective low energy theory, the analogy with the 

use of effective field theories in treating the physics 
of soft pions comes to mind [ 81. 

The existence of a universal long-distance quantum 

correction to the Newtonian potential should be rele- 
vant for a wide class of gravity theories. It is known 
that the ultraviolet behavior of pure Einstein gravity 
can be improved by adding higher derivative contribu- 

tions to the action [7]. In four dimensions these can 
be restricted to the form aRpV R,, +pR2, where (Y and 

/3 are dimensionless coupling constants. The resulting 
classical and quantum corrections to gravity are ex- 

pected to alter significantly the potential at short dis- 

tances (comparable to the Planck length) but should 

not affect the behavior at large distances, which should 

largely be determined by the structure of the Einstein- 

Hilbert action. Only the latter action will be therefore 
the subject of our present investigation. We should add 

that simplicial lattice regularizations of gravity also in- 

clude in general higher derivative terms, and the same 

considerations should apply in this case as well, as 

long as the correct continuous gauge invariance prop- 
erties of the continuum action are incorporated [ 91. 

In the following we will compute the leading clas- 

sical and quantum corrections to the static potential, 
by evaluating the complete set of diagrams which con- 

tribute to the scattering amplitude for heavy spinless 
particles in the low momentum transfer limit. From 
the resulting expression the effective static potential 
at large distances can then be read off easily, and will 
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contain, as explained further below, both classical rel- 
ativistic and quantum corrections. An important omis- 
sion in our calculation will be the absence of a bare 
cosmological constant, which would complicate the 
perturbative treatment significantly due to the need to 
expand about a non-flat background. Our results for 
the static potential are such that they suggest a slow 
increase of gravitational interactions with distance due 
to the quantum correction. The answer will then be 
compared with two recent calculations of the same 
quantity [f&10,1 11, which include only a subset of the 
diagrams considered here. We will find that our an- 
swer is qualitatively similar to the result of [ 61, but 
differs in sign from the result of [ lo], where a rather 
different method, based on world-line correlations, is 
used to estimate the potential. 

2. One loop amplitudes 

Before describing the calculation, it will be useful 
to first clarify our conventions and notation. We shall 
expand around the flat Minkowski space-time metric, 
with signature given by vPp = diag( 1, - 1, - 1, - 1) . 
The Einstein-Hilbert action is then given by 

(2.1) 

with g(x) = det(g,,) and R the scalar curvature. It is 
also assumed in the following that the bare cosmolog- 
ical constant is zero. The presence of a non-vanishing 
cosmological constant introduces additional momen- 
tum independent vertices, and would make the pertur- 
bative calculation described below considerably more 
difficult. In particular the expansion around flat space 
is no longer justified in this case, and it has to be per- 
formed around a solution of Einstein’s equations with 
a non-zero cosmological constant. 

The coupling of gravity to scalar particles of mass 
m is described by the action 

x [g+“(x)a,4(x)&#(x) - m2d2(x) ] . (2.2) 

In the following we shall consider the interaction in- 
duced by graviton exchange between two heavy scalar 
particles of distinct mass ml and m2. The effective 

interaction in the static limit is then determined by 
evaluating the scattering amplitude between the two 
heavy particles, in the limit of small momentum trans- 
fer q2 3 0. 

Usually in perturbation theory the metric gPy (x) is 
expanded around the flat metric vpy [ 41, by writing 

&V(X) = 71iLLy + fc&.LV(X) , (2.3) 

with K* = 321rG. Here we shall instead follow the 
method of Ref. [ 12 3, and define the small fluctuation 
graviton field h,,(x) via 

gPv(X)~~=7)” +Kh”(X). (2.4) 

One advantage of this expansion over the previous 
one is that it leads to considerably simpler Feynman 
rules, both for the graviton vertices and for the scalar- 
graviton vertices (as can be seen from the fact that 
precisely the above expression appears in the kinetic 
term of the scalar field action). Once the action is 
expanded out in the graviton field h@“(x) , the space- 
time indices are then raised and lowered using the flat 
metric. 

A gauge fixing term [ 13,141 has to be introduced, 
and here it will be of the form 

(2.5) 

as suggested in Ref. [ 121. The bare graviton propa- 
gator is then given simply by 

i rlpprlva + q.dyp - rl~.~~rl~~r 
DjwpAp) = Jj 

p* + k 
(2.6) 

For the present calculation one also needs expressions 
for the three-graviton and two ghost-graviton vertex. 
The relevant expressions are quite complicated and 
have already been given in Ref. [ 121, so they will not 
be reproduced here. We have performed a number of 
checks of the results of Ref. [ 121, some of which will 
be discussed beiow. Let us point out here that with the 
present definition for the gravitational field, there are 
no factors of 1 /(d - 2) for the graviton propagator 
in d dimensions; such factors appear instead in the 
expressions for the Feynman rules for the vertices. For 
the following calculations we shall also need the two 
scalar-one graviton vertex, which is given by 

Pl&P2V + PI”P2/L - - (2.7) 
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where the ~1, p2 denote the four-momenta of the in- 
coming and outgoing scalar field, respectively. In addi- 
tion we need the two scalar-two graviton vertex, which 
is given by 

iK2m2 2 

2(d - 2) 
q/.lArlVu + ??porlvA - d_2 rlrlJrlAa 

> 
’ 

(2.8) 

where one pair of indices (p, V) is associated with one 
graviton line, and the other pair (A, U) is associated 
with the other graviton line. These rules follow readily 
from the expansion of the gravitational action to order 
G312 ( K~), and of the scalar field action to order G 

(K’). 
To lowest order in G, the contribution to the po- 

tential can be computed from the single graviton ex- 
change diagram. In momentum space the static con- 
tribution is given, as expected, by 

-Gmlmp%, (2.9) 

where q is the momentum transfer (see also [ 151) . 
Higher order corrections in G are computed by eval- 

uating contributions to the interaction coming from the 
complete set of one-loop diagrams. One notices that 
the relevant length scale appearing with the Einstein- 
Hilbert action for pure gravity is the Planck length 
I, = (G!$‘c 3 ) ‘j2. On the other hand the action for the 
scalar particle involves only the combination mc/fi, 
the inverse Compton wavelength associated with the 
heavy sources. This is also clearly seen from the path 
integral phase contribution for a single particle, which 
is given by 

imc2 
-7 

(2.10) 

When one considers the lowest order contribu- 
tion to the gravitational interaction due to sin- 
gle graviton exchange one obtains a contribu- 
tion to the static gravitational potential propor- 
tional to (A/c>(mc2/h)2(GfL/c3) = m2G. At 
order G2 one finds contributions both of order 
(h/c) (mc2/A)2(Gh/c3)2 = m2hG2/c3 and of order 
(ti/c)(mc2/h)3(Gh/c3)2 = m3G2/c. The first one 
represents a genuine quantum correction proportional 
to ti, while in the second type of contribution the h’s 
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Fig. I. Some one loop graviton exchange diagrams. 

have canceled, the correction represents 
a relativistic correction. The latter involves 
the Schwarzschild radius of the massive particle, 
2Gm/c2. 

These considerations lead the apparently para- 
doxical that Feynman diagram perturbation the- 

is also to reproduce classical 
tic corrections, which independent of ft. it 
was by the authors Refs. [ that clas- 

relativistic corrections graphs con- 
to an high of external clas- 

sources. A calculation of these 
relativistic corrections, using diagrammatic methods, 
was in [ 181. it was ex- 
plicitly that corrections of order correctly and 
completely reproduce leading classical relativistic 
corrections in 
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2a) 2b) 

24 

2e) 
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A nontrivial check of the calculation is then provided 
by the expected equality, for each diagram involv- 

ing massless particles only, of the coefficient of the 

2/e ultraviolet divergence and of the coefficient of the 

- log q* contribution, which would appear as one sin- 

gle logarithmic term log( A*/q*) in the presence of an 
explicit ultraviolet cutoff A. 

3. Results and discussion 

By converting the expressions for the individual di- 
agrams to coordinate space, one obtains the following 

results. One has from diagram la 

+;G2 mlm2(ml f m2) + 2G2 mm2 
T-2 7rr3 ’ 

(3.1) 

from diagram 1 b 

+iG* 
mlm2fmlf m2) + 2G2 mlm2 

r2 7Tr3 ’ 
(3.2) 

? --- 
from diagram lc 

28) 2h) 

Fig. 2. Additional one loop graviton exchange diagrams. 

performing the necessary momentum and parametric 
integrations. Due to the vast amount of algebraic ma- 

nipulations involved in doing the index contractions, 
computer algebra was employed throughout the calcu- 
lation in order to ensure the correctness of the results. 

For small $ the contributions arising from each dia- 
gram can then be separated into two types of terms, 

one describing the classical relativistic correction pro- 

portional to 1 / @, and the other describing the lead- 
ing quantum correction proportional to log q’. 

These in turn can then be expressed as corrections 
in coordinate space by using 

(2.11) 

(2.12) 

(2.13) 

-G2 
mlm2(ml+ m2) 

r2 
+8G2Y$ (3.3) 

from diagram Id 

_l()G* mlm;? 
z-r3 ’ 

(3.4) 

from diagram 2b 

+;G*!?!$, (3.5) 

and from diagram 2d 

+??G*!!$ (3.6) 

From diagrams 2e and 2g one obtains the graviton and 

ghost vacuum polarization contribution 

206 G2 mm2 -- 
30 7. 

(3.7) 

This last contribution was also computed in Ref. [ 121. 
We have verified that the Slavnov-Taylor identity for 

the vacuum polarization fIaprs (q) , 

9P9V D,&Xp ( 9) K+yS( 9) &%cr( 9) = 0 (3.8) 
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is indeed satisfied to this order. In Ref. [ 41 the vacuum 

polarization was computed using a somewhat differ- 
ent expansion for the metric field, and a coordinate in- 

variant expression for the one-loop counterterms was 

given in terms of operators quadratic in the curvature. 

Finally, diagram 2h represents the contribution to 
the vacuum polarization due to one massless scalar 

particle, 

1 mlm2 
--G2F. 

20 v3 
(3.9) 

Its contribution to the vacuum polarization satisfies 
separately the Slavnov-Taylor identity, as one would 

expect from the covariant conservation law for the 

energy-momentum tensor associated with matter. Di- 

agrams 2a and 2c do not give rise to any classical 

relativistic or quantum correction, while diagram 2f 
vanishes identically in dimensional regularization. Di- 
agrams 2b, 2d, 2e, 2g and 2h give only quantum me- 

chanical corrections, involving closed graviton loops 
in all cases, except 2b. 

The sum of all contributions from diagrams la to 
2g is therefore 

+;G2 mlm2(ml + m2) 
r2 

+Cp!E* 
7rr3 

(3.10) 

The contribution of n species of massless scalar parti- 
cles to the vacuum polarization (arising from diagram 

2h) changes the quantum correction to the potential to 

+A(488 - 3n) G2 y, (3.11) 

which represents a relatively small modification to the 

result for pure gravity if n is small. Massless particles 

of higher spin will contribute additional terms to the 
vacuum polarization. 

When the appropriate powers of c and ti are put 
back in, one obtains the following final answer for the 

corrected potential in pure gravity, valid to order G2 

V(r) = _G !?!? 122GfL 

r 1 157rc3r2 ’ 
(3.12) 

As we alluded to previously, two very different length 
scales enter in the correction to the static Newtonian 
potential, namely the Schwarzschild radii of the heavy 
sources, 2Gmi/c2, and the Planck length ( G/i/c3 ) ij2. 

As a consequence there are two independent dimen- 

sionless parameters that appear in the correction term, 
involving the ratio of these two scales with respect 
to the distance r. Presumably the above calculation is 

meaningful only if these two length scales are much 

smaller than the distance r. 

Our calculations are similar in spirit to the work of 

Ref. [6]. There the starting point is also a calcula- 

tion of the scattering amplitude in the limit of small 

momentum transfer. The potential is defined there as 

the non-relativistic limit of the one particle reducible 

graphs in the crossed channel, which represents there- 
fore a subset of the graphs considered here. We should 

point out that the results we obtain here are in complete 

agreement with the expected classical relativistic cor- 

rection, as derived for example from the expansion of 

the Schwarzschild metric [ 201. The sign of the quan- 

tum correction is found to be the same as in Ref. [ 61, 
and the magnitude of the correction is comparable. 
The sign of the quantum correction we obtain indicate 

that gravitational interactions increase (slowly) with 

distance, which shows similarities with the evolution 
of the coupling constant in pure Yang-Mills theories, 

but differs in sign from the QED radiative corrections 
to the static Coulomb potential. This result is also in 

agreement with the intuitive expectation that gravity 

couples universally to all forms of energy, and cannot 

be easily screened by quantum fluctuations. 
Recently the authors of Ref. [ lo] have computed 

the corrections to the static Newtonian potential fol- 

lowing the method of Ref. [ 21 I, thus extending to the 

next order in G the calculation of Ref. [ 221. In their 

work the radiative corrections to the potential are ob- 
tained by considering correlations between the action 
contributions from two heavy particle world lines, sep- 

arated by a fixed geodesic distance. The results they 
obtain appear to correctly reproduce the classical rela- 

tivistic correction, but arise from only a subset of two 
diagrams among the four which lead to the classical 

correction in Ref. [ 181. In this last reference the ladder 
and crossed ladder diagrams give, using the same met- 

ric expansion, additional contributions which appear 

to be necessary in order to obtain the correct classical 
relativistic correction. These diagrams involve recoil 
of the massive particles, and have been neglected in 
the calculation of Ref. [ lo]. In our calculation we find 
that ladder and crossed ladder diagrams ( la and 1 b) , 
when carefully treated, contribute to the quantum cor- 
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rection. This probably explains why our results and 
the results of Ref. [ lo] differ in both sign and mag- 

nitude for the quantum correction. 

Let us conclude by mentioning that we have little 

to say about what might happen to higher order in the 

perturbative expansion. In particular it is unclear if 
higher order corrections in G can still lead to finite cor- 

rections in the long-distance limit, as was found above 

to lowest non-trivial order. Whether higher derivative 

terms or string theory is needed to control the ultravi- 

olet divergences appearing at higher loops remains an 

open question [ 231. As we pointed out before, another 
important omission in the present calculation is repre- 

sented by the absence of a cosmological constant term. 
This term substantially modifies the propagation prop- 

erties of gravitons already at tree level, and leads to 

new, momentum independent, vertices and Feynman 
rules for gravitons which were not considered here. 

Finally there is the issue of the non-perturbative 

definition of the Euclidean path integral for quan- 

tum gravity, which suffers from the problem of the 

unbounded fluctuations in the conformal mode, and 
for which an integration over complex conformal fac- 

tors has been suggested, followed by an integration 

over conformal equivalence classes of metrics. In the 

framework of perturbation theory we did not have to 

deal with these difficult problems. 
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