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We explore possible cosmological consequences of a running Newton’s constant GðhÞ, as suggested by
the nontrivial ultraviolet fixed point scenario in the quantum field-theoretic treatment of Einstein gravity

with a cosmological constant term. In particular, we focus here on what possible effects the scale-

dependent coupling might have on large scale cosmological density perturbations. Starting from a set of

manifestly covariant effective field equations derived earlier, we systematically develop the linear theory

of density perturbations for a nonrelativistic, pressureless fluid. The result is a modified equation for the

matter density contrast, which can be solved and thus provides an estimate for the growth index parameter

� in the presence of a running G. We complete our analysis by comparing the fully relativistic treatment

with the corresponding results for the nonrelativistic (Newtonian) case, the latter also with a weakly scale-

dependent G.
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I. INTRODUCTION

Recent years have seen the development of a bewilder-
ing variety of alternative theories of gravity, in addition to
the more traditional alternate theories, which used to in-
clude Brans-Dicke, tensor-scalar, tensor-vector-scalar,
higher derivative, effective quantum gravity, and super-
gravity theories. Some of the new additions to the already
rather long list include dilaton gravity, fðRÞ and fðGÞ
gravity, Chern-Simons gravity, conformal gravity, torsion
gravity, loop quantum gravity, holographic modified grav-
ity, modified gravity (MoG), asymmetric brane gravity,
massive gravity, and minimally modified self-dual gravity,
just to cite a few representative examples. All of these
theories eventually predict some level of deviation from
classical gravity, which is often parametrized either by a
suitable set of post-Newtonian parameters, or more re-
cently by the introduction of a slip function [1,2]. The
latter has been quite useful in describing deviations from
classical general relativity (GR), and specifically from the
standard �CMD model, when analyzing the latest cosmo-
logical cosmic microwave background (CMB), weak lens-
ing, supernovae, and galaxy clustering data.

In this paper, we will focus on the analysis of departures
from GR in the growth history of matter perturbations,
within the narrow context of the nontrivial ultraviolet fixed
point scenario for Einstein gravity with a cosmological
term. Thus, instead of looking at deviations from GR at
very short distances, due to new interactions such as the

ones suggested by string theories [3], we will be consider-
ing here infrared effects, which could therefore become
manifest at very large distances. The classical theory of
small density perturbations is by now well developed in
standard textbooks, and the resulting theoretical predic-
tions for the growth exponents are simple to state, and well
understood. Except possibly on the very largest scales,
where the data so far is still rather limited, the predictions
agree quite well with current astrophysical observations.
Here we will be interested in computing and predicting
possible small deviations in the growth history of matter
perturbations, and specifically in the values of the growth
exponents, arising from a very specific scenario, namely, a
weak scale-dependent gravitational coupling, whose value
very gradually increases with distance.
The specific nature of the scenario we will be investigat-

ing here is motivated by the treatment of field-theoretic
models of quantum gravity, based on the Einstein action
with a bare cosmological term. Its long distance scaling
properties are derived from the existence of a nontrivial
ultraviolet fixed point of the renormalization group in
Newton’s constant G. The latter is inaccessible by direct
perturbation theory in four dimensions, and can be shown
to radically alter the short and long distance behavior of the
theory when compared to more naive expectations. The
renormalization group origin of such fixed points was first
discussed in detail by Wilson for scalar and self-coupled
fermion theories [4]. The general field-theoretic methods
were later extended and applied to gravity, where they are
now referred to as the nontrivial fixed point scenario or
asymptotic safety [5]. It is fair to say that so far this is the
only field-theoretic approach known to work consistently
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in other not perturbatively renormalizable theories, such as
the nonlinear sigma model. While perhaps still a bit mun-
dane in the context of gravity, such nontrivial fixed points
are well studied and well understood in statistical field
theory, where they generally describe phase transitions
between ordered and disordered ground states, or between
weakly coupled and condensed states.

The paper is organized as follows. First we recall the
effective covariant field equations describing the running
of G, and describe the nature of the objects and parameters
entering the quantum nonlocal corrections. We then dis-
cuss the zeroth order (in the fluctuations) field equations
and energy-momentum conservation equations for the
standard homogeneous isotropic metric, with a running
G. Later we extend the formalism to deal with small metric
and matter perturbations, and derive the relevant field and
energy conservation equations to first order in the pertur-
bations. After showing the overall consistency of the de-
rived equations, we proceed to derive the modified
differential equation for the density contrast �ðtÞ. Later
this is rewritten, following customary procedures, as a
function of the scale factor as �ðaÞ. The resulting differ-
ential equation for the density contrast is then solved and
the results for the growth exponents compared to the
standard classical result. The conclusions provide an inter-
pretation of the theoretical results and their associated
uncertainties vis-à-vis present and future high precision
galaxy clustering measurements.

II. RUNNING NEWTON’S CONSTANT GðhÞ
Originally the running of G was computed either on the

lattice directly in four dimensions [6–8], or in the contin-
uum within the framework of the background field expan-
sion applied to 2þ � spacetime dimensions [5,9] and later
using truncation methods applied in 4D [10]. In either case,
one obtains a momentum dependent Gðk2Þ, which needs to
be eventually reexpressed in a coordinate-independent
way, so that it can be usefully applied to more general
problems involving arbitrary background geometries.

The first step in analyzing the consequences of a running
of G is therefore to rewrite the expression for Gðk2Þ in a
coordinate-independent way, either by the use of a non-
local Vilkovisky-type effective gravity action [11,12], or
by the use of a set of consistent effective field equations. In
going from momentum to position space, one usually
employs k2 ! �h, which then gives for the quantum-
mechanical running of the gravitational coupling the re-
placementG ! GðhÞ. One then finds that the running ofG
is given in the vicinity of the UV fixed point by

GðhÞ ¼ G0

�
1þ c0

�
1

�2h

�
1=2� þ . . .

�
; (2.1)

where h � g��r�r� is the covariant d’Alembertian, and

the dots represent higher order terms in an expansion in

1=ð�2hÞ. Current evidence from Euclidean lattice quan-
tum gravity points toward c0 > 0 (implying infrared
growth) and � ’ 1

3 [8]. Within the quantum-field-theoretic

renormalization group treatment, the quantity � arises as
an integration constant of the Callan-Symanzik renormal-
ization group equations. One challenging issue therefore,
and of great relevance to the physical interpretation of the
results, is a correct identification of the renormalization
group invariant scale �. A number of arguments can be
given (see below) in support of the suggestion that the
infrared scale � (very much analogous to the �MS of

QCD) can in fact be very large, even cosmological, in
the gravity case. From these arguments, one would then
infer that the constant G0 can, to a very close approxima-
tion, be identified with the laboratory value of Newton’s
constant,

ffiffiffiffiffiffi
G0

p � 1:6� 10�33 cm.
The appearance of the d’Alembertian h in the running

of G naturally leads to both a nonlocal effective gravita-
tional action, and a corresponding set of nonlocal modified
field equations. Instead of the ordinary Einstein field equa-
tions with constant G

R�� � 1
2g��Rþ �g�� ¼ 8�GT��; (2.2)

one is now lead to consider the modified effective field
equations

R�� � 1
2g��Rþ �g�� ¼ 8�GðhÞT�� (2.3)

with a new nonlocal term due to the GðhÞ. By being
manifestly covariant, they still satisfy some of the basic
requirements for a set of consistent field equations incor-
porating the running of G. Not unexpectedly though, the
new nonlocal equations are much harder to solve than the
original classical field equations for constant G.
It is instructive to note, as already pointed out in [13],

that the effective nonlocal field equations of Eq. (2.3) can
be recast in a form very similar to the classical field
equations, but with a new source term ~T�� ¼
½GðhÞ=G0�T�� defined as the effective, or gravitationally

dressed, energy-momentum tensor. Ultimately, the consis-
tency of the effective field equations demands that it be
exactly conserved, in consideration of the contracted
Bianchi identity satisfied by the Ricci tensor. In this pic-
ture, therefore, the running of G can be viewed as contrib-
uting to a sort of a vacuum fluid, introduced in order to
account for the new gravitational vacuum-polarization
contribution.
More on the technical side, and mainly due the appear-

ance of a negative fractional exponent in Eq. (2.1), the
covariant operator appearing in the expression for GðhÞ
has to be suitably defined by analytic continuation. This
can be done, for example, by computing hn for positive
integer n, and then analytically continuing to n ! �1=2�
[13]. Equivalently, GðhÞ can be defined via a suitable
regulated parametric integral representation [14], such as
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�
1

�hðgÞ þm2

�
1=2� ¼ 1

�ð 12�Þ
Z 1

0
d		1=2��1e�	ð�hðgÞþm2Þ:

(2.4)

As far as the calculations in this paper are concerned, it will
not be necessary to commit oneself to an unduly specific
form for the running of GðhÞ. Thus, for example, although
the lattice gravity results only allow for a nondegenerate
phase for the case c0 > 0, it will nevertheless be possible
later to have either sign for the correction in Eq. (2.1), in
the sense that the very existence of a nontrivial ultraviolet
fixed point implies in principle the appearance of two
physically distinct phases, each of which might or might
not be physically realized due to issues of nonperturbative
stability. Observation could then be used, in principle, to
constrain one or the other choice. Furthermore, the value of
the exponent � needs not to be specified until the very end
of the calculation, so that most of the results can be kept
general.1

The situation regarding the running ofG is perhaps most
easily illustrated close and above two dimensions, where
the gravitational coupling becomes dimensionless, G�
�2�d with � the ultraviolet cutoff required to regularize
the theory (a similar and completely parallel line of argu-
ments and results can in fact be presented for the 4D lattice
theory as well, but a discussion of renormalization on the
lattice ends up being inevitably quite a bit less transparent
[6,8]). There the theory appears perturbatively renormaliz-
able, so that the full machinery of covariant renormaliza-
tion and of the renormalization group can in principle
be applied, following Wilson’s dimensional expansion
method, now formulated as a double expansion in G and
� ¼ d� 2 [5,9]. Both here and on the lattice, a renormal-
ization of the bare cosmological constant, besides being
gauge dependent, is also physically meaningless, as it can
be reabsorbed by a trivial rescaling of the metric; the latter
is needed in order to recover the proper normalization of
the volume term in the path integral, thus avoiding spurious
renormalization effects, as discussed in [6,8,9].

In momentum space, the result corresponding to
Eq. (2.1), and allowing now possibly for either sign in front
of the correction, is

Gðk2Þ ’ G0

�
1� c0

�
1

�2k2

�
1=2� þ . . .

�
; (2.5)

with c0 a positive constant, and � the new, genuinely non-
perturbative, gravity scale.2 Consequently, the above ex-
pression forGðk2Þ can be used whenever the full generality
of the manifestly covariant expression in Eq. (2.1) is not
really needed, for example, when dealing with the
Newtonian (nonrelativistic) limit.
The choice of the þ or � sign is ultimately determined

from whether one is initially to the left (þ ), or to the right
(� ) of the fixed point G0, in which case the effective
Gðk2Þ decreases or, respectively, increases as one flows
away from the ultraviolet fixed point towards lower mo-
menta, or larger distances. Physically the two solutions
represent of course gravitational screening (G<G0) or
antiscreening (G>G0).
It is crucial that the quantum correction involves a new

physical, renormalization group invariant, scale �, whose
value cannot be fixed by a perturbative calculation, and
whose absolute size determines the comparison scale for
the new nonlocal quantum effects. It should therefore be
rightfully considered as the gravity analog of the cele-
brated gauge theory scaling violation parameter �MS. In

terms of the bare gravitational coupling Gð�Þ it is given by

��1 ¼ A� ��exp

�
�
Z Gð�Þ dG0


ðG0Þ
�
; (2.7)

where 
ðGÞ is the Callan-Symanzik beta function for G
(which can be given explicitly, for example, in the 2þ �
expansion to a given loop order, or can be computed on the
lattice). It is then more or less a direct consequence of the
renormalization group that the value of the constant A�

determines the coefficient c0 in Eq. (2.1), c0 ¼
1=ðA1=�

� G0Þ. The nonperturbative lattice formulation of

quantum gravity then allows an explicit and direct compu-
tation of A�, and therefore of the coefficient c0 in GðhÞ
[6,8].
Physically it would seem at first, based on renormaliza-

tion group considerations alone, that the nonperturbative
(renormalization group integration constant) scale � could
in principle take any value, including a very small one—
based on the naive estimate �� lP—which would then of
course preclude any observable quantum effects in the
foreseeable future. But a number of recent results for the
gravitational Wilson loop on the Euclidean lattice at strong

1A running cosmological constant �ðkÞ ! �ðhÞ causes a
number of mathematical inconsistencies [13] within the mani-
festly covariant framework, described here by the effective field
equations of Eq. (2.3). Indeed if one assumes for the running part
of �ðhÞ � ð�2hÞ��, where � is a (positive or negative) power,
then the infrared regulated expression in Eq. (2.4) gives no
running of �, after using r�g�� ¼ 0. This last conclusion is in
agreement with the field-theoretic results of the nontrivial renor-
malization group fixed point scenario, thereby providing perhaps
an independent consistency check. Note that this general argu-
ment also applies to possible additional contributions from non-
zero vacuum expectation values of matter fields.

2A properly infrared regulated version of the above expression,
here with the choice of the þ sign, would read

Gðk2Þ ’ G0

�
1þ c0

�
��2

k2 þ ��2

�
1=2� þ . . .

�
: (2.6)

Then for large distances r � � the gravitational coupling no
longer exhibits the spurious infrared divergence, but instead
approaches the finite value G1 ’ ð1þ c0 þ . . .ÞG0.
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coupling, giving an area law, and their subsequent inter-
pretation in light of the observed large scale semiclassical
curvature [15], would suggest otherwise, namely, that the
nonperturbative scale � appears in fact to be related to
macroscopic curvature. From astrophysical observation,
the average curvature on very large scales, or, stated in
somewhat better terms, the measured physical cosmologi-
cal constant �, is very small. This would then suggest that
the new scale � can be very large, even cosmological,

1

�2 ’ �

3
; (2.8)

which would then give a more concrete quantitative esti-

mate for the scale in the GðhÞ of Eq. (2.1), namely, ��
1=

ffiffiffiffiffiffiffiffiffi
�=3

p � 1:51� 1028 cm. Indeed for quantum gravity,
no other suitable infrared cutoff presents itself, so that �
can almost be considered as the only ‘‘natural’’ candidate
to take on the role of a (generally covariant) infrared
regulator or graviton masslike parameter.

Finally, let us mention here briefly and for completeness
that for a limited number of metrics it has been possible,
after some considerable work, to find exact solutions, in
some regime, to the above effective nonlocal field equa-
tions. One such case is the static isotropic metric, where in
the limit r � 2MG one can obtain an explicit solution for
the metric coefficients AðrÞ ¼ 1=BðrÞ, leading eventually
to the rather simple result [16]

G ! GðrÞ ¼ G0

�
1þ c0

3�
m3r3 ln

1

m2r2
þ . . .

�
(2.9)

with m � ��1, consistent with a gradual slow increase of
GðrÞ with distance.3 One amusing aspect of the exact
solution in the static isotropic case is that no consistent
solution can be found unless � ¼ 1=3 exactly in four
dimensions, and similarly � ¼ 1=ðd� 1Þ in dimensions
d 	 4 [16], lending further support, and independently of
the lattice theory results, to this particular value for � in
four dimensions.

A. (Zeroth order) effective field equations with GðhÞ
A scale-dependent Newton’s constant is expected to lead

to small modifications of the standard cosmological solu-

tions to the Einstein field equations. Here we will
summarize what modifications are expected from the ef-
fective field equations on the basis of GðhÞ, as given in
Eq. (2.1), which itself originates in Eq. (2.5). The starting
point is the quantum effective field equations of Eq. (2.3),
with GðhÞ defined in Eq. (2.1). In the Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) framework, these
are applied to the standard homogeneous isotropic metric

d�2 ¼ dt2 � a2ðtÞ
�

dr2

1� kr2
þ r2ðd
2 þ sin2
d’2Þ

�
k ¼ 0;�1: (2.11)

In the following, we will mainly consider the case k ¼ 0
(spatially flat universe). It should be noted that there are in
fact two related quantum contributions to the effective
covariant field equations. The first one arises because of
the presence of a nonvanishing cosmological constant � ’
3=�2, caused by the nonperturbative quantum vacuum
condensate hRi � 0 [15]. As in the case of standard
FLRW cosmology, this is expected to be the dominant
contributions at large times t, and gives an exponential
(for � > 0), or cyclic (for � < 0) expansion of the scale
factor. The second contribution arises because of the ex-
plicit running of GðhÞ in the effective field equations. The
next step therefore is a systematic examination of the
nature of the solutions to the full effective field equations,
with GðhÞ involving the relevant covariant d’Alembertian
operator

h ¼ g��r�r� (2.12)

acting on second rank tensors as in the case of T��,

r�T	
 ¼ @�T	
 � ��
	�T�
 � ��


�T	� � I�	


r�ðr�T	
Þ ¼ @�I�	
 � ��
��I�	
 � ��

	�I��
 � ��

�I�	�;

(2.13)

and in general it requires the calculation of 1920 terms, of
which fortunately many vanish by symmetry due to spe-
cific choice of metric.
To start the process, one assumes, for example, that T��

has a perfect fluid form,

T�� ¼ ½pðtÞ þ �ðtÞ�u�u� þ g��pðtÞ (2.14)

for which one needs to compute the action of hn on T��,

and then analytically continues the answer to negative
fractional values of n ¼ �1=2�. Even in the simplest
case, with GðhÞ acting on a scalar such as the trace of
the energy-momentum tensor T�

�, one finds for the choice
�ðtÞ ¼ �0t


 and aðtÞ ¼ a0t
	 the rather unwieldy expres-

sion

3We have pointed out before that the result for GðrÞ is in a
number of ways reminiscent of the analogous QED result
(known as the Uehling correction to the Coulomb potential in
atoms)

Q ! QðrÞ ¼ Q

�
1þ 	

3�
ln

1

m2r2
þ . . .

�
: (2.10)

In the gravity case, the correction is not a log but a power, which
is what one would naively expect from a perturbatively non-
renormalizable theory. In gravity, the infrared cutoff due in QED
to the finite physical electron mass is naturally replaced by the
physical cosmological constant; the magnitude of neither one of
these two quantities can be predicted by the fundamental theory.
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hn½��ðtÞ� ! 4nð�1Þnþ1

� �ð
2 þ 1Þ�ð
þ3	þ1
2 Þ

�ð
2 þ 1� nÞ�ð
þ3	þ1
2 � nÞ�0t


�2n;

(2.15)

with an integer n later analytically continued to n ! � 1
2� ,

with � ¼ 1
3 .

A more general calculation shows that a nonvanishing
pressure contribution is generated in the effective field
equations, even if one initially assumes a pressureless fluid,
pðtÞ ¼ 0. After a somewhat lengthy derivation, one obtains
for a universe filled with nonrelativistic matter (p ¼ 0) the
following set of effective Friedmann equations:

k

a2ðtÞ þ
_a2ðtÞ
a2ðtÞ ¼

8�GðtÞ
3

�ðtÞ þ �

3

¼ 8�G0

3
½1þ ctðt=�Þ1=� þ . . .��ðtÞ þ �

3
(2.16)

for the tt field equation, and

k

a2ðtÞ þ
_a2ðtÞ
a2ðtÞ þ

2 €aðtÞ
aðtÞ ¼ � 8�G0

3
½ctðt=t0Þ1=� þ . . .��ðtÞ

þ � (2.17)

for the rr field equation. In the above expressions, the
running of G appropriate for the Robertson-Walker (RW)
metric is

GðtÞ � G0

�
1þ �GðtÞ

G0

�
¼ G0

�
1þ ct

�
t

t0

�
1=� þ . . .

�
(2.18)

with ct of the same order as c0 in Eq. (2.5), and t0 ¼ � [13];
in the quoted reference it was estimated ct ¼ 0:450c0 for
the tensor box operator. Note that it is the running ofG that
induces an effective pressure term in the second (rr) equa-
tion, corresponding to the presence of a relativistic fluid
due to the vacuum-polarization contribution. One impor-
tant feature of the new equations is an additional power-
law acceleration contribution, on top of the standard one
due to �.

B. Introduction of the wvac parameter

It was noted in [13] that the field equations with a
running G, Eqs. (2.16) and (2.17), can be recast in an
equivalent, but slightly more appealing, form by defining
a vacuum-polarization pressure pvac and density �vac, such
that for the FLRW background one has

�vacðtÞ ¼ �GðtÞ
G0

�ðtÞ pvacðtÞ ¼ 1

3

�GðtÞ
G0

�ðtÞ: (2.19)

Consequently, the source term in the tt field equation can
be regarded as a combination of two density terms

�
1þ �GðtÞ

G0

�
�ðtÞ � �ðtÞ þ �vacðtÞ; (2.20)

while the rr equation involves the new vacuum-
polarization pressure term

1

3

�GðtÞ
G0

�ðtÞ � pvacðtÞ: (2.21)

Form this viewpoint, the inclusion of a vacuum-
polarization contribution in the FLRW framework seems
to amount to a replacement

�ðtÞ ! �ðtÞ þ �vacðtÞ pðtÞ ! pðtÞ þ pvacðtÞ (2.22)

in the original field equations. Just as one introduces the
parameter w, describing the matter equation of state,

pðtÞ ¼ w�ðtÞ (2.23)

with w ¼ 0 for nonrelativistic matter, one can do the same
for the remaining contribution by setting

pvacðtÞ ¼ wvac�vacðtÞ: (2.24)

Then in terms of the two w parameters�
wþ wvac

�GðtÞ
G0

�
�ðtÞ ¼ pðtÞ þ pvacðtÞ (2.25)

with, according to Eqs. (2.16) and (2.17) and following the
results of [13], wvac ¼ 1

3 in a FLRW background. We

should remark here that the calculations of [13] also in-
dicate that wvac ¼ 1

3 is obtained generally for the given

class of GðhÞ considered, and is not tied therefore to a
specific choice of �, such as � ¼ 1

3 .

The previous, slightly more compact, notation allows
one to rewrite the field equations for the FLRW back-
ground in an equivalent form, which we will describe
below. First, we note though that in the following we will
restrict our attention mainly to a spatially flat geometry,
k ¼ 0. Furthermore, when dealing with density perturba-
tions we will have to distinguish between the background,
which will involve a background pressure ( �p) and back-
ground density ( ��), from the corresponding perturbations
which will be denoted here by �p and ��. Then with this
notation and for constant G0, the FLRW field equations for
the background are written as

3
_a2ðtÞ
a2ðtÞ ¼ 8�G0 ��ðtÞ þ �

_a2ðtÞ
a2ðtÞ þ 2

€aðtÞ
aðtÞ ¼ �8�G0 �pðtÞ þ �:

(2.26)

Now in the presence of a running GðhÞ, and in accordance
with the results of Eqs. (2.16) and (2.17), the modified
FLRW equations for the background read
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3
_a2ðtÞ
a2ðtÞ ¼ 8�G0

�
1þ �GðtÞ

G0

�
��ðtÞ þ �

_a2ðtÞ
a2ðtÞ þ 2

€aðtÞ
aðtÞ ¼ �8�G0

�
wþ wvac

�GðtÞ
G0

�
��ðtÞ þ �;

(2.27)

using the definitions in Eqs. (2.23) and (2.24), here with
�pvacðtÞ ¼ wvac ��vacðtÞ.
We note here that the procedure of defining a �vac and a

pvac contribution, arising entirely from quantum vacuum-
polarization effects, is not necessarily restricted to the
FLRW background metric case [13]. In general one can
decompose the full source term in the effective nonlocal
field equations of Eq. (2.3), making use of

GðhÞ ¼ G0

�
1þ �GðhÞ

G0

�
with

�GðhÞ
G0

� c0

�
1

�2h

�
1=2�

;
(2.28)

as two contributions,

1

G0

GðhÞT�� ¼
�
1þ �GðhÞ

G0

�
T�� ¼ T�� þ Tvac

�� :

(2.29)

The latter involves the nonlocal part4

Tvac
�� � �GðhÞ

G0

T��: (2.30)

In addition, consistency of the full nonlocal field equations
requires that the sum be conserved,

r�ðT�� þ Tvac
�� Þ ¼ 0: (2.31)

It is important to note at this stage that the nature of the
covariant d’Alembertian h � g��r�r� is such that the

result depends on the type of the object it acts on. Here T��

is a second rank tensor [as in Eq. (2.13)], which causes a
reshuffling of components in T�� due to the matrix nature

of both tensorh and tensor GðhÞ, and eventually accounts
for the generation of a nonvanishing induced pressure term.
This is clearly seen in the effective field equations of
Eqs. (2.16) and (2.17), and in the ensuing definitions of
Eq. (2.19).

In general though, one cannot expect that the contribu-
tion Tvac

�� will always be expressible in the perfect fluid

form of Eq. (2.14), even if the original T�� for matter (or

radiation) has such a form. The former will in general
contain, for example, nonvanishing shear stress contribu-
tions, even if they were originally absent in the matter part.

Nevertheless, the interesting question arises of whether, for
example, wvac ¼ 1

3 continues to hold beyond the FLRW

case treated above. In part this question will be answered
affirmatively below, in the case of matter density
perturbations.

III. RELATIVISTIC TREATMENT OF MATTER
DENSITY PERTURBATIONS

Besides the modified cosmic scale factor evolution just
discussed, the running of GðhÞ given in Eq. (2.28) also
affects the nature of matter density perturbations on very
large scales. In computing these effects, it is customary to
introduce a perturbed metric of the form

d�2 ¼ dt2 � a2ð�ij þ hijÞdxidxj; (3.1)

with aðtÞ the unperturbed scale factor and hijðx; tÞ a small

metric perturbation, and h00 ¼ hi0 ¼ 0 by choice of coor-
dinates. As will become clear later, we will mostly be
concerned here with the trace mode hii � h, which deter-
mines the nature of matter density perturbations. After
decomposing the matter fields into background and fluc-
tuation contribution, � ¼ ��þ ��, p ¼ �pþ �p, and v ¼
�vþ �v, it is customary in these treatments to expand the
density, pressure, and metric trace perturbation modes in
spatial Fourier modes,

��ðx; tÞ ¼ ��qðtÞeiq�x �pðx; tÞ ¼ �pqðtÞeiq�x
�vðx; tÞ ¼ �vqðtÞeiq�x hijðx; tÞ ¼ hqijðtÞeiq�x

(3.2)

with q the comoving wave number. Once the Fourier
coefficients have been determined, the original perturba-
tions can later be obtained from

��ðx; tÞ ¼
Z d3x

ð2�Þ3=2 e
�iq�x��qðtÞ (3.3)

and similarly for the other fluctuation components. Then
the field equations with a constant G0 [Eq. (2.2)] are given
to zeroth order in the perturbations by Eq. (2.26), which
fixes the three background fields aðtÞ, ��ðtÞ, and �pðtÞ. Note
that in a comoving frame the four velocity appearing in
Eq. (2.14) has components ui ¼ 1, u0 ¼ 0. To first order in
the perturbations and in the limit q ! 0 the field equations
give

_aðtÞ
aðtÞ

_hðtÞ ¼ 8�G0 ��ðtÞ�ðtÞ

€hðtÞ þ 3
_aðtÞ
aðtÞ

_hðtÞ ¼ �24�G0w ��ðtÞ�ðtÞ
(3.4)

with the matter density contrast defined as �ðtÞ �
��ðtÞ= ��ðtÞ, hðtÞ � hiiðtÞ the trace part of hij, and w ¼ 0

for nonrelativistic matter. When combined together, these
last two equations then yield a single equation for the trace
of the metric perturbation,

4One normally does not include the left-hand side field equa-
tion contribution þ�g�� as part of the right-hand side matter
part Tvac

�� , although it might be sensible to do so, given its large
radiative (quantum) content [12]. We note here that the former is
expected to contain the fundamental length scale � as well, in the
form ’ þð3=�2Þg��.
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€hðtÞ þ 2
_aðtÞ
aðtÞ

_hðtÞ ¼ �8�G0ð1þ 3wÞ ��ðtÞ�ðtÞ: (3.5)

From first order energy conservation, one has � 1
2 �ð1þ wÞhðtÞ ¼ �ðtÞ, which then allows one to eliminate

hðtÞ in favor of �ðtÞ. This finally gives a single second
order equation for the density contrast �ðtÞ,

€�ðtÞ þ 2
_a

a
_�ðtÞ � 4�G ��ðtÞ�ðtÞ ¼ 0: (3.6)

In the case of a running GðhÞ, these equations need to be
rederived from the effective covariant field equations of
Eq. (2.3), and lead to several additional terms not present at
the classical level. Not surprisingly, as we shall see below,
the correct field equations with a running G are not given
simply by a naive replacement G ! GðtÞ, which would
lead to incorrect results, and violate general covariance.

A. Zeroth order energy-momentum conservation

As a first step in computing the effects of density matter
perturbations, one needs to examine the consequences of
energy and momentum conservation, to zeroth and first
order in the relevant perturbations. If one takes the cova-
riant divergence of the field equations in Eq. (2.3), the left-
hand side has to vanish identically because of the Bianchi
identity. The right-hand side then gives r�ðT�� þ Tvac

�� Þ ¼
0, where the fields in Tvac

�� can be expressed, at least to

lowest order, in terms of the pvac and �vac fields defined in
Eqs. (2.19) and (2.24). The first equation one obtains is the
zeroth (in the fluctuations) order energy conservation in the
presence of GðhÞ, which reads

3
_aðtÞ
aðtÞ

�
ð1þ wÞ þ ð1þ wvacÞ�GðtÞG0

�
��ðtÞ þ

_�GðtÞ
G0

��ðtÞ

þ
�
1þ �GðtÞ

G0

�
_��ðtÞ ¼ 0: (3.7)

For w ¼ 0 and wvac ¼ 1
3 this reduces to�

3
_aðtÞ
aðtÞ þ 4

_aðtÞ
aðtÞ

�GðtÞ
G0

þ
_�GðtÞ
G0

�
��ðtÞ þ

�
1þ �GðtÞ

G0

�
_��ðtÞ

¼ 0; (3.8)

or equivalently in terms of the variable aðtÞ only�
3

a
þ 4

a

�GðaÞ
G0

þ �G0ðaÞ
G0

�
��ðaÞ þ

�
1þ �GðaÞ

G0

�
��0ðaÞ ¼ 0:

(3.9)

In the absence of a runningG these equations reduce to the
ordinary mass conservation equation for w ¼ 0,

_��ðtÞ ¼ �3
_aðtÞ
aðtÞ ��ðtÞ: (3.10)

It will be convenient in the following to solve the energy
conservation equation not for ��ðtÞ, but instead for ��ðaÞ.

This requires that, instead of using the expression for GðtÞ
in Eq. (2.18), one uses the equivalent expression for GðaÞ

GðaÞ ¼ G0

�
1þ �GðaÞ

G0

�
; with

�GðaÞ
G0

� ca

�
a

a0

�
�� þ . . .

(3.11)

In this last expression, the power is �� ¼ 3=2�, since from

Eq. (2.18) one has for nonrelativistic matter aðtÞ=a0 

ðt=t0Þ2=3 in the absence of a running G. In the following,
we will almost exclusively consider the case � ¼ 1

3 [8] for

which therefore �� ¼ 9=2.5 Then in the above expression
ca 
 ct if a0 is identified with a scale factor appropriate for
a universe of size �; to a good approximation this should
correspond to the Universe ‘‘today,’’ with the relative scale
factor customarily normalized at such a time to a=a0 ¼ 1.
Consequently, and with the above proviso, the constant ca
in Eq. (3.11) can safely be taken to be of the same order as
the constant c0 appearing in the original expressions for
GðhÞ in Eq. (2.28).
Then the solution to Eq. (3.8) can be written as

��ðaÞ ¼ const exp

�
�

Z da

a

�
3þ �GðaÞ

G0

þ a
�G0ðaÞ
G0

��
;

(3.12)

or, more explicitly, as

��ðaÞ ¼ ��0

�
a0
a

�
3
�

1þ ca
1þ cað aa0Þ��

�ð1þ��Þ=��

’ ��0

�
a0
a

�
3 1þ ð1þ ��1

� Þca
1þ ð1þ ��1

� Þcað aa0Þ��
(3.13)

with ��ðaÞ normalized so that ��ða ¼ a0Þ ¼ ��0. For ca ¼ 0,
the above expression reduces of course to the usual result
for nonrelativistic matter,

��ðtÞ ¼ ��0

�
a0
a

�
3
: (3.14)

Furthermore, here one also finds that the zeroth order
momentum conservation equation is identically satisfied,
just as in the case of constant G.

B. Zeroth order field equations with running GðhÞ
The zeroth order field equations with the running of G

included were already given in Eq. (2.27). One can subtract
the two equations from each other to get an equation that
does not contain �,

5This implicitly assumes that the cosmic evolution is largely
matter dominated, if p ¼ w� then aðtÞ=a0 ¼ ðt=t0Þ2=3ð1þwÞ. In
the opposite regime where a cosmological constant can even-
tually prevail one has instead aðtÞ=a0 ¼ exp

ffiffiffiffiffiffiffiffiffi
�=3

p ðt� t0Þ. Then
t
t0
¼ 1þ 1

t0

ffiffiffi
3
�

q
log a

a0
and for t0 ’ � and

ffiffiffi
3
�

q
’ � one has simply

t
t0
¼ 1þ log a

a0
.
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_a2ðtÞ
a2ðtÞ �

€aðtÞ
aðtÞ ¼ 4�G0

�
ð1þ wÞ þ ð1þ wvacÞ�GðtÞG0

�
��ðtÞ:

(3.15)

Alternatively, from Eqs. (2.27) one can obtain a single
equation that only involves the acceleration term with €aðtÞ,

3
€aðtÞ
aðtÞ ¼ �4�G0

�
ð1þ 3wÞ þ ð1þ wvacÞ�GðtÞ

G0

�
��ðtÞ þ �:

(3.16)

It is also rather easy to check the overall consistency of the
energy conservation equation, Eq. (3.8), and of the two
field equations in Eq. (2.27). This is done by (i) taking the
time derivative of the first tt equation in Eq. (2.27),
(ii) replacing terms involving _�� by �� using the energy
conservation equation, Eq. (3.8), and (iii) finally by sub-
stituting again the result of the first (tt) equation into
Eq. (2.27) to obtain the second (rr) equation in Eq. (2.27).

C. Effective energy-momentum tensor �vac, pvac

The next step consists in obtaining the equations which
govern the effects of small field perturbations. These equa-
tions will involve, apart from the metric perturbation hij,

the matter and vacuum-polarization contributions. The
latter arise from [see Eq. (2.29)]�

1þ �GðhÞ
G0

�
T�� ¼ T�� þ Tvac

�� (3.17)

with a nonlocal Tvac
�� � ð�GðhÞ=G0ÞT��. Fortunately to

zeroth order in the fluctuations the results of Ref. [13]
indicated that the modifications from the nonlocal
vacuum-polarization term could simply be accounted for
by the substitution

��ðtÞ ! ��ðtÞ þ ��vacðtÞ �pðtÞ ! �pðtÞ þ �pvacðtÞ: (3.18)

Here we will apply this last result to the small field fluctu-
ations as well, and set

��qðtÞ ! ��qðtÞ þ ��q vacðtÞ
�pqðtÞ ! �pqðtÞ þ �pq vacðtÞ:

(3.19)

The underlying assumptions is of course that the equation
of state for the vacuum fluid still remains roughly correct
when a small perturbation is added. Furthermore, just like
we had �pðtÞ ¼ w ��ðtÞ [Eq. (2.23)] and �pvacðtÞ ¼ wvac ��vacðtÞ
[Eq. (2.24)] with wvac ¼ 1

3 , we now write for the fluctua-

tions

�pqðtÞ ¼ w��qðtÞ �pq vacðtÞ ¼ wvac��q vacðtÞ;
(3.20)

at least to leading order in the long wavelength limit, q !
0. In this limit we then have simply

�pðtÞ ¼ w��ðtÞ

�pvacðtÞ ¼ wvac��vacðtÞ � wvac

�GðtÞ
G0

��ðtÞ;
(3.21)

with GðtÞ given in Eq. (2.18), and we have used Eq. (2.19),
now applied to the fluctuation ��vacðtÞ,

��vacðtÞ ¼ �GðtÞ
G0

��ðtÞ þ . . . (3.22)

where the dots indicate possible additional OðhÞ
contributions.
A bit of thought reveals that the above treatment is

incomplete, since GðhÞ in the effective field equation
of Eq. (2.3) contains, for the perturbed RW metric of
Eq. (3.1), terms of order hij, which need to be accounted

for in the effective T
��
vac. Consequently, the covariant

d’Alembertian has to be Taylor expanded in the small field
perturbation hij,

hðgÞ ¼ hð0Þ þhð1ÞðhÞ þOðh2Þ; (3.23)

and similarly for GðhÞ

GðhÞ ¼G0

�
1þ c0

�1=�

�
1

hð0Þ þhð1ÞðhÞþOðh2Þ
�
1=2�þ . . .

�
;

(3.24)

which requires the use of the binomial expansion for the
operator ðAþ BÞ�1 ¼ A�1 � A�1BA�1 þ . . . . Thus for
sufficiently small perturbations it should be adequate to
expand GðhÞ entering the effective field equations in
powers of the metric perturbation hij. Since a number of

subtleties arise in this expansion, we shall first consider the
simpler case of a scalar box, where some of the issues we
think can be clearly identified and addressed. After that, we
will consider the more complicated case of the tensor box.
This will be followed by a determination of the effects of
the running of G on the relevant matter and metric pertur-
bations, by the use of the modified field equations, now
expanded to first order in the perturbations.

D. OðhÞ correction using scalar box

In this section the term OðhÞ in ��vac of Eq. (3.19) will
be determined, using a set of formal manipulations involv-
ing the covariant scalar box operator. Instead of consider-
ing the full field equations with a runningGðhÞ, as given in
Eq. (2.3),

R�� � 1

2
g��Rþ �g�� ¼ 8�G0

�
1þ �GðhÞ

G0

�
T��

(3.25)

wewill consider here instead the action of a scalarGðhÞ on
the trace of the field equations for � ¼ 0,
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R ¼ �8�G0

�
1þ �GðhÞ

G0

�
T�

�; (3.26)

or equivalently, by having the operator GðhÞ act on the
left-hand side,�

1� �GðhÞ
G0

þ . . .

�
R ¼ �8�G0T�

�: (3.27)

For a perfect fluid, one has simply T�
� ¼ ��, which then

gives [13]

G0

�
1þ �GðhÞ

G0

�
T�

� ! G0

�
1þ ct

�
t

t0

�
1=� þ . . .

�
T�

�

� GðtÞT�
�; (3.28)

or equivalently,

G0

�
1þ ct

�
t

t0

�
1=� þ . . .

�
��ðtÞ � GðtÞ ��ðtÞ; (3.29)

with ct ’ 0:785c0, and t0 ¼ � [13] (in the tensor box case a
slightly smaller value was found, ct ’ 0:450c0). The two
terms in Eq. (3.29) are of course recognized, up to a factor
of G0, as the combination

��ðtÞ þ ��vacðtÞ (3.30)

of Eq. (3.18), with ��vacðtÞ � �GðtÞ=G0 � ��ðtÞ. Thus the
zeroth order result obtained by the use of the scalar
d’Alembertian acting on the trace of the field equations
is consistent with what has been used so far for GðtÞ.

To compute the higher order terms in the hij’s appearing

in the metric of Eq. (3.1) one needs to expand GðhÞ
according to Eq. (3.24) giving

GðhÞ ¼ G0

�
1þ c0

�1=�

��
1

hð0Þ

�
1=2� � 1

2�

1

hð0Þ �hð1ÞðhÞ

�
�

1

hð0Þ

�
1=2� þ . . .

��
: (3.31)

Here we are interested in the correction of order hij, when

the above operator acts on the scalar T�
� ¼ � ��. This

would then give the correction OðhÞ to ��vac, namely,
the second term in

��vacðtÞ ¼ �Gðhð0ÞÞ
G0

��ðtÞ þ �GðhÞðhÞ
G0

��ðtÞ; (3.32)

with the first term being simply given in the FLRW back-
ground by �GðtÞ=G0 � ��ðtÞ. Here the OðhÞ correction is
given explicitly by the expression

�GðhÞðhÞ
G0

�� ¼ � 1

2�

c0

�1=�

1

hð0Þ �hð1ÞðhÞ �
�

1

hð0Þ

�
1=2� � ��:

(3.33)

The effect of the ðhð0ÞÞ�1=2� term is essentially to make the
coupling time dependent, i.e. to correctly reproduce the
required overall time-dependent factor �GðtÞ=G0.

Now the scalar d’Alembertianh ¼ g��r�r� acting on

scalar functions SðxÞ has the form

hSðxÞ � 1ffiffiffi
g

p @�g
�� ffiffiffi

g
p

@�SðxÞ: (3.34)

In the absence of hij fluctuations, this gives for the metric

in Eq. (3.1)

hð0ÞSðxÞ ¼ 1

a2
r2S� 3

_a

a
_S� €S !

�
�@2t � 3

_a

a
@t

�
SðtÞ;
(3.35)

where in the second expression we have used the properties
of the RW background metric: we only need to consider
functions that are time dependent, so that Sðx; tÞ ! SðtÞ.
To first order in the field fluctuation hij of Eq. (3.1) one

computes

hð1ÞðhÞSðxÞ ¼ � 1

2
_h _S� 1

a2
hxx@

2
xSþ 1

a2
ð�@xhxxÞ � @xS

þ 1

2a2
@xh � @xSþ . . . (3.36)

with the trace hðtÞ ¼ hxxðtÞ þ hyyðtÞ þ hzzðtÞ. But for a

function of the time only, one obtains

hð1ÞðhÞ�ðtÞ ¼ �1
2
_hðtÞ _SðtÞ: (3.37)

Thus to first order in the fluctuations one obtains the
expression

1

hð0Þ �hð1ÞðhÞ � ð�G ��Þ

¼ 1

�@2t � 3 _a
a @t

� 1
2
_h

�
3
_a

a
�G� _�G

�
�� (3.38)

where use has been made of the zeroth order mass conser-
vation equation in Eq. (3.10). Note that this result also

correctly incorporates the effect of Gðhð0ÞÞ on functions
of t, as given, for example, in Eq. (3.28), which ensures the
proper running of �GðtÞ.
Now in our treatment we are generally interested in mass

density and metric perturbations around a near-static back-
ground described by _a=a ¼ HðtÞ, and ��ðtÞ. For these we
expect the relevant time variations in �� and h to be
somewhat larger than for the background itself. Thus for
sufficiently slowly varying background fields we retain
only hðtÞ and its derivatives, and for a sufficiently slowly
varying hðtÞ only hðtÞ and the lowest derivatives. Then the
factors of _a=a are seen to cancel out at leading order
between the numerator and denominator in Eq. (3.38),
and one is left simply with

1

hð0Þ �hð1ÞðhÞ � �GðtÞ ��ðtÞ ¼ � 1

2
�GðtÞhðtÞ ��ðtÞ þ . . .

(3.39)

Putting everything together, one finds for the OðhÞ correc-
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tion

�GðhÞðhÞ
G0

��ðtÞ ’ þ 1

4�

�GðtÞ
G0

hðtÞ ��ðtÞ: (3.40)

The scalar box calculation just described allows one to
compute the correction OðhÞ to ��vacðtÞ in Eq. (3.32), and
leads to the following OðhÞ modification of Eq. (3.22)

��vacðtÞ ¼ �GðtÞ
G0

��ðtÞ þ 1

2�
ch

�GðtÞ
G0

hðtÞ ��ðtÞ (3.41)

and similarly from �pvacðtÞ ¼ wvac��vacðtÞ,

�pvacðtÞ ¼ wvac

�
�GðtÞ
G0

��ðtÞ þ 1

2�
ch

�GðtÞ
G0

hðtÞ ��ðtÞ
�

(3.42)

with wvac ¼ 1
3 . The second OðhÞ terms in both expressions

account for the feedback of the metric fluctuations h on the
vacuum density ��vac and pressure �pvac fluctuations.

The potential flaw with the preceding argument is that it
assumes that certain very specific functions of the back-
ground stay constant, or at least very slowly varying. In the
case at hand, this was _a=a � HðaÞ 
 const and � 
 const,
which in principle is not the only possibility, and would
seem therefore a bit restrictive. A slightly more general
approach, and a check, to the evaluation of the expression
in Eq. (3.38) goes as follows. One assumes instead a
harmonic time dependence for the metric fluctuation
hðtÞ ¼ h0e

i!t, and similarly for aðtÞ ¼ a0e
i�t, ��ðtÞ ¼

��0e
i�t, and �GðtÞ ¼ �G0e

i�t; different frequencies for a
and �� could be considered as well, but here we will just
stick with the simplest possibility. Then from the last
expression in Eq. (3.38) one has

1

�@2t � 3 _a
a @t

� 1
2
_h

�
3
_a

a
�G� _�G

�
��

¼ 1

!2 þ 7�!þ 10�2
� ð��!�Gh ��Þ: (3.43)

In the limit ! � �, corresponding to _h=h � _a=a, one
obtains for the above expression

� �

!
�GðtÞhðtÞ ��ðtÞ ’ �

�
_a

a

h
_h

�
�GðtÞhðtÞ ��ðtÞ; (3.44)

after substituting back _h=h ¼ i! and _a=a ¼ i� in the last
expression. Then ��vacðtÞ in Eq. (3.41) now involves the
quantity ch

ch ¼ _a

a

h
_h
: (3.45)

At first this last factor (a function and not a constant) would
seem rather hard to evaluate, and perhaps not even close to
constant in time. But a bit of thought reveals that, to the
order we are working, one can write

_h

h

a

_a
¼ @ loghðaÞ

@ loga
¼ @ log�ðaÞ

@ loga
� fðaÞ; (3.46)

where �ðaÞ is the matter density contrast, and fðaÞ the
known density growth index [17]. In the absence of a
running G (which is all that is needed, to the order one is
working here) an explicit form for fðaÞ is known in terms
of derivatives of a Gauss hypergeometric function, which
will be given below. One can then either include the
explicit form for fðaÞ in the above formula for ��vacðtÞ,
or use the fact that for a scale factor referring to today
a=a0 
 1, and for a matter fraction � 
 0:25, one knows
that fða ¼ a0Þ ’ 0:4625, and thus in Eq. (3.41) one obtains
the improved result ch ’ 2:1621. This can then be com-
pared to the earlier result, which gave ch ’ 1=2.
A similar analysis can now be done in the opposite, but

in our opinion less physical, ! � � limit, for which one
now obtains for the expression in Eq. (3.43)

� 1

10

�
a

_a

_h

h

�
�GðtÞhðtÞ ��ðtÞ: (3.47)

This new limit is less physical because of the fact that now
the background is assumed to be varying more rapidly in

time than the metric perturbation itself, _a=a � _h=h. For
��vacðtÞ one then obtains a similar expression to the one in
Eq. (3.41), with a different coefficient

ch ¼ 1

10

a

_a

_h

h
(3.48)

still involving the quantity ða= _aÞð _h=hÞ � fðaÞ. By the
same chain of arguments used in the previous paragraph,
one can now either include the explicit form for fðaÞ in the
formula for ��vacðtÞ, or use the fact that for a scale factor
referring to today a=a0 
 1 and a matter fraction � 

0:25 one knows that fða ¼ a0Þ ’ 0:4625. In this case one
then has in Eq. (3.41) ch ’ ð1=10Þ � 0:4625 ¼ 0:0463.
One disturbing, but not entirely surprising, general aspect
of the whole calculation in this second ! � � limit (as
opposed to the previous treatment in the opposite limit) is
its rather significant sensitivity, in the final result, to the set
of assumptions initially made about the time development
of the background as specified by the functions aðtÞ and
��ðtÞ. Therefore in the following we shall not consider this
limit further.
To summarize, the results for a scalar box and a slowly

varying background, _h=h � _a=a, give the OðhÞ corrected
expression for ��vacðtÞ in Eq. (3.41) and �pvacðtÞ ¼
wvac��vacðtÞ, with ch ’ þ2:1621.

E. OðhÞ correction using tensor box

The results of Eqs. (3.32) and (3.41) for the vacuum-
polarization contribution,

��vacðtÞ ¼ �GðtÞ
G0

��ðtÞ þ 1

2�
ch

�GðtÞ
G0

hðtÞ ��ðtÞ (3.49)
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and similarly for �pvacðtÞ ¼ wvac��vacðtÞ with wvac ¼ 1
3 ,

were obtained using a scalar d’Alembertian to implement
GðhÞ by considering the trace of the field equation,
Eq. (3.26). In this section, we will discuss instead the result
for the full tensor d’Alembertian, as it appears originally in
the effective field equations of Eqs. (2.3) and (3.25).

Now the d’Alembertian operatorh ¼ g��r�r� acts on

the second rank tensor T�� as in Eq. (2.13), and should

therefore be regarded as a four by four matrix, transform-
ing T�� into ½hT���. Indeed it is precisely this matrix

nature of h, and therefore of GðhÞ, that accounts for the
fact that a vacuum pressure is induced in the first place,
leading to a wvac � 0.

To compute the correction ofOðhÞ to ��vacðtÞ one needs
to consider the relevant term in the expansion of ð1þ
�GðhÞ=G0ÞT��, which we write as

� 1

2�

1

hð0Þ �hð1ÞðhÞ � �Gðh
ð0ÞÞ

G0

� T��

¼ � 1

2�

c0

�1=�

1

hð0Þ �hð1ÞðhÞ �
�

1

hð0Þ

�
1=2� � T��: (3.50)

This last form allows us to use the results obtained pre-
viously for the FLRW case in [13], namely,

�Gðhð0ÞÞ
G0

T�� ¼ Tvac
�� (3.51)

with here

Tvac
�� ¼ ½pvacðtÞ þ �vacðtÞ�u�u� þ g��pvacðtÞ (3.52)

and [see Eqs. (2.19) and (2.30)] to zeroth order in h,

�vacðtÞ ¼ �GðtÞ
G0

��ðtÞ pvacðtÞ ¼ wvac

�GðtÞ
G0

��ðtÞ;
(3.53)

with wvac ¼ 1
3 . Therefore, in light of the results of

Ref. [13], the problem has been dramatically reduced to
just computing the much more tractable expression

� 1

2�

1

hð0Þ �hð1ÞðhÞ � Tvac
�� ; (3.54)

and in fact the only ordering for which the expression
ð�GðhÞ=G0ÞT�� is calculable within reasonable effort.

Still, in general the resulting expression for 1
hð0Þ �hð1ÞðhÞ

is rather complicated if evaluated for arbitrary functions,
although it does have a structure similar to the one found
for the scalar box in Eq. (3.38).

Here we will resort, for lack of better insights, to a
treatment that parallels what was done before for the scalar
box, where one assumed a harmonic time dependence for
the metric trace fluctuation hðtÞ ¼ h0e

i!t, and similarly for
aðtÞ ¼ a0e

i�t and �ðtÞ ¼ �0e
i�t. In the limit ! � �, cor-

responding to _h=h � _a=a, one finds for the fluctuation
��vacðtÞ in Eq. (3.41)

��vacðtÞ ¼ �GðtÞ
G0

��ðtÞ þ 1

2�
ch

�GðtÞ
G0

hðtÞ ��ðtÞ: (3.55)

The OðhÞ correction factor ch for the tensor box is now
given by

ch ¼ 11

3

_a

a

h
_h
; (3.56)

with all other off-diagonal matrix elements vanishing.
Furthermore, one finds to this order, but only for the
specific choice wvac ¼ 1

3 in the zeroth order Tvac
�� ,

�pvacðtÞ ¼ 1
3��vacðtÞ; (3.57)

i.e., the OðhÞ correction preserves the original result
wvac ¼ 1

3 . In other words, the first order result OðhÞ just
obtained for the tensor box would have been somewhat
inconsistent with the zeroth order result, unless one had
wvac ¼ 1

3 to start with. Now, one would not necessarily

expect that the first order correction could be still be cast
in the form of the same equation of state pvac ’ 1

3�vac as the

zeroth order result, but it would nevertheless seem attrac-
tive that such a simple relationship can be preserved be-
yond the lowest order.
As far as the magnitude of the correction ch in

Eq. (3.56), one can argue again, as was done in the scalar
box case, that from Eq. (3.46) one can relate the combina-

tion ð _h=hÞða= _aÞ to the growth index fðaÞ. Then, in the
absence of a running G (which is all that is needed here, to
the order one is working), an explicit form for fðaÞ is
known in terms of suitable derivatives of a Gauss hyper-
geometric function. These can then be inserted into
Eq. (3.56). Alternatively, one can make use again of the
fact that for a scale factor referring to today a=a0 
 1, and
for a matter fraction � 
 0:25, one knows that fða ¼
a0Þ ’ 0:4625, and thus in Eq. (3.41) ch ’ ð11=3Þ �
2:1621 ¼ þ7:927. This last result can then be compared
to the earlier scalar result which gave ch ’ þ2:162 using
the same set of approximations (slowly varying back-
ground fields). It is encouraging that the new correction
is a bit larger but not too different from what was found
before in the scalar box case. Note that so far the sign of the
OðhÞ correction is the same in all physically relevant cases
examined.
Next, as in the scalar box case, one can do the same

analysis in the opposite, but less physical, limit ! � � or
_h=h � _a=a. One now obtains from the tt matrix element
the OðhÞ correction in the expression for ��vac given in
Eq. (3.41), namely

1

2�
ch

�GðtÞ
G0

hðtÞ ��ðtÞ; (3.58)

with a coefficient

ch ¼ � 121

60

!2

�2
¼’ � 121

60

�
a

_a

�
2 €h

h
¼ Oð €h=hÞ: (3.59)
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Similarly for the ii matrix element of the OðhÞ correction,
one finds

1

2�
a2ðtÞc0h

�GðtÞ
G0

hðtÞ ��ðtÞ; (3.60)

with

c0h ¼ � 5
18 (3.61)

giving now the �pvacðhÞ correction. Again, all off-diagonal
matrix elements are equal to zero. It seems therefore that

this limit, ! � � or _h=h � _a=a, leads to rather different
results compared to what had been obtained before: the
only surviving contribution to OðhÞ is a rather large pres-
sure contribution, with a sign that is opposite to all other
cases encountered previously. Furthermore, here the rela-
tionship wvac ¼ 1

3 is no longer preserved to OðhÞ. But, as
emphasized in the previous discussion of the scalar box
case, this second limit is in our opinion less physical,
because of the fact that now the background is assumed
to be varying more rapidly in time than the metric pertur-

bation itself, _a=a � _h=h. Furthermore, as in the scalar box
calculation, one disturbing but not entirely surprising gen-
eral aspect of the whole calculation in this second ! � �
limit, is its extreme sensitivity as far as magnitudes and
signs of the results are concerned, to the set of assumptions
initially made about the time development of the back-
ground. As a final sample calculation, let us mention here
the case, similar to what was done originally for the scalar
box, where one assumes instead _a=a � HðaÞ 
 const and
�� 
 const, which, as we mentioned previously, seems now
a bit restrictive. Nevertheless, we find it instructive to show
how sensitive the calculations are to the nature of the
background, and, in particular, its assumed time depen-
dence. In the notation of Eqs. (3.58), (3.59), and (3.61) one
finds in this case

ch ¼ þ 625

192

!2

H2
¼ � 625

192

1

H2

€h

h
c0h ¼ � 4

9
: (3.62)

Again, here the pressure contribution �pvacðhÞ is the domi-

nant contribution, the ��vacðhÞ part being negligible,Oð €hÞ.
For the reasons mentioned, in the following we will no
longer consider this limit of rapid background fluctuations
any further.

To summarize, the results for a scalar box and for a very

slowly varying background, _h=h � _a=a, give the OðhÞ
corrected expression for ��vacðtÞ in Eq. (3.41) and
�pvacðtÞ ¼ wvac��vacðtÞ with ch ’ þ2:162, while the ten-
sor box calculation, under essentially the same assump-
tions, gives the somewhat larger result ch ’ þ7:927. From
now on, these will be the only two choices we shall con-
sider here.

F. First order energy-momentum conservation

The next step in the analysis involves the derivation of
the energy-momentum conservation to first order in the
fluctuations, and a derivation of the relevant field equations
to the same order. After that, energy conservation will be
used to eliminate the h field entirely, and thus obtain a
single equation for the matter density fluctuation �.
The results so far can be summarized as follows. For the

metric in Eq. (3.1), and in the limit q ! 0, the field
equations in Eq. (2.3) can now be written as

R�� � 1
2g��Rþ �g�� ¼ 8�G0ðT�� þ Tvac

�� Þ; (3.63)

with Tvac
�� � ð�GðhÞ=G0ÞT��. Here T�� describes the or-

dinary matter contribution, in the form of a perfect fluid as
given in Eq. (2.14), here with p ¼ w� and w ’ 0, while
Tvac
�� describes the additional vacuum-polarization contri-

bution

Tvac
�� ¼ ½pvacðtÞ þ �vacðtÞ�u�u� þ g��pvacðtÞ (3.64)

with pvac ¼ wvac�vac and wvac ¼ 1
3 , as in Eq. (2.24).

Furthermore, each field now contains both a background
and a perturbation contribution,

�ðtÞ ¼ ��ðtÞ þ ��ðtÞ pðtÞ ¼ w�ðtÞ; (3.65)

and similarly,

�vacðtÞ ¼ ��vacðtÞ þ ��vacðtÞ pvacðtÞ ¼ wvac�vacðtÞ:
(3.66)

From Eq. (2.19) one has

�� vacðtÞ ¼ �GðtÞ
G0

�ðtÞ; (3.67)

while from Eq. (3.41) on has

��vacðtÞ ¼ �GðtÞ
G0

��ðtÞ þ 1

2�
ch

�GðtÞ
G0

hðtÞ ��ðtÞ; (3.68)

and similarly, �pvacðtÞ ¼ wvac��vacðtÞ. The second OðhÞ
terms in both expressions physically account for the feed-
back of the metric fluctuations h on the vacuum density
��vac and pressure �pvac fluctuations. In light of the dis-
cussion of the previous section, we will limit our deriva-
tions below to the case of constant ch; the case of a
nonconstant ch as in Eq. (3.46) can be dealt with as well,
but the resulting equations are found to be quite a bit more
complicated to write down.
Consequently, all quantities in the effective field equa-

tions of Eq. (3.63) have been specified to the required order
in the field perturbation expansion. First we will look here
at the implications of energy-momentum conservation,
r�ðT�� þ Tvac

�� Þ ¼ 0, to first order in the fluctuations.

The zeroth order energy conservation equation was already
obtained in Eq. (3.7), and its explicit solution for ��ðaÞ
given in Eq. (3.13). After defining the matter density con-
trast �ðtÞ as the ratio �ðtÞ � ��ðtÞ= ��ðtÞ, the energy con-
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servation equation to first order in the perturbations is
found to be

�
� 1

2

�
ð1þ wÞ þ ð1þ wvacÞ�GðtÞ

G0

�
� 1

2�
ch

�GðtÞ
G0

�
_hðtÞ

þ
�
1

2�
ch

�
3ðw� wvacÞ _aðtÞ

aðtÞ
�GðtÞ
G0

�
_�GðtÞ
G0

��
hðtÞ

¼
�
1þ �GðtÞ

G0

�
_�ðtÞ: (3.69)

In the absence of a running G (�GðtÞ ¼ 0), this reduces

simply to � 1
2 ð1þ wÞ _hðtÞ ¼ _�ðtÞ, and thus to the standard

result for the metric trace perturbation in terms of the
density contrast

� 1
2ð1þ wÞhðtÞ ¼ �ðtÞ: (3.70)

This last result then allows us to solve explicitly, at the
given order, i.e., to first order in the fluctuations and to first

order in �G, for the metric perturbation _hðtÞ in terms of the

matter density fluctuation �ðtÞ and _�ðtÞ,

_hðtÞ ¼ � 2

1þ w

�
1þ 1

1þ w

�
ðw� wvacÞ � 2ch

1

2�

�
�GðtÞ
G0

�
_�ðtÞ � 1

2�

4ch
ð1þ wÞ2

�
3ðw� wvacÞ _aðtÞ

aðtÞ
�GðtÞ
G0

�
_�GðtÞ
G0

�
�ðtÞ:
(3.71)

Similarly, by differentiating the above relationship, an
expression for €hðtÞ in terms of � and its derivatives can
be obtained as well.

G. First order field equations

To first order in the perturbations, the tt and ii effective
field equations become, respectively,

_aðtÞ
aðtÞ

_hðtÞ � 8�G0

1

2�
ch

�GðtÞ
G0

��ðtÞhðtÞ

¼ 8�G0

�
1þ �GðtÞ

G0

�
��ðtÞ�ðtÞ (3.72)

and

€hðtÞ þ 3
_aðtÞ
aðtÞ

_hðtÞ þ 24�G0

1

2�
chwvac

�GðtÞ
G0

��ðtÞhðtÞ

¼ �24�G0

�
wþ wvac

�GðtÞ
G0

�
��ðtÞ�ðtÞ: (3.73)

In the second ii equation, the zeroth order ii field equation
of Eq. (2.27) has been used to achieve some simplification.

As a final exercise, it is easy to check the overall con-
sistency of the first order energy conservation equation of
Eq. (3.69), and of the two field equations given in
Eqs. (3.72) and (3.73). To do so, one needs to (i) take the
time derivative of the tt equation in Eq. (3.72); (ii) get rid of
_�� consistently by using energy conservation to zeroth order
in �G and in the fluctuations from Eq. (3.69) for terms of
order �G times a fluctuation, combined with the use of
energy conservation to first order in �G, but without fluc-
tuations as in Eq. (3.8) for the terms that are already of first

order in the fluctuations; (iii) eliminate the _� terms using
the energy conservation equation to first order in �G
without field fluctuations [Eq. (3.8)] for terms proportional
to �G times a fluctuation, and using the energy conserva-
tion equation to first order in �G and in the fluctuation
[again Eq. (3.69)] for terms of zeroth order in the fluctua-
tions; (iv) use the combination of Eqs. (2.27) that does not
contain �, Eq. (3.15), to get rid of €a=a terms; (v) finally,
use the tt equation for the fluctuation, Eq. (3.72), to elimi-
nate some terms proportional to �� times a fluctuation so as
to finally obtain the second ii field equation Eq. (3.73).

H. Matter density contrast equation in t

To obtain an equation for the matter density contrast
�ðtÞ ¼ ��ðtÞ= ��ðtÞ, one needs to eliminate the metric trace
field hðtÞ from the field equations. This is first done by
taking a suitable linear combination of the two field equa-
tions in Eqs. (3.72) and (3.73) to get the equivalent equa-
tion

€hðtÞ þ 2
_aðtÞ
aðtÞ

_hðtÞ þ 8�G0

1

2�
chð1þ 3wvacÞ�GðtÞ

G0

��ðtÞhðtÞ

¼ �8�G0

�
ð1þ 3wÞ þ ð1þ 3wvacÞ�GðtÞ

G0

�
��ðtÞ�ðtÞ:

(3.74)

Then the first order energy conservation equations to ze-
roth [Eq. (3.70)] and first [Eq. (3.71)] order in �G allows

one to completely eliminate the h, _h, and €h fields in terms
of the matter density perturbation �ðtÞ and its derivatives.
The resulting equation reads, for w ¼ 0 and wvac ¼ 1

3 ,
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€�ðtÞ þ
��

2
_aðtÞ
aðtÞ �

1

3

_�GðtÞ
G0

�
� 1

2�
� 2ch �

�
_aðtÞ
aðtÞ

�GðtÞ
G0

þ 2
_�GðtÞ
G0

��
_�ðtÞ

þ
�
�4�G0

�
1þ 7

3

�GðtÞ
G0

� 1

2�
� 2ch � �GðtÞ

G0

�
��ðtÞ � 1

2�
� 2ch

�
�
_a2ðtÞ
a2ðtÞ

�GðtÞ
G0

þ 3
_aðtÞ
aðtÞ

_�GðtÞ
G0

þ €aðtÞ
aðtÞ

�GðtÞ
G0

þ
€�GðtÞ
G0

��
�ðtÞ ¼ 0: (3.75)

This last equation then describes matter density perturba-
tions to linear order, taking into account the running of
GðhÞ, and is therefore the main result of this paper. The
terms proportional to ch, which can be clearly identified in
the above equation, describe the feedback of the metric
fluctuations h on the vacuum density ��vac and pressure
�pvac fluctuations. The equation given above can now be
compared with the corresponding, much simpler, equation
obtained for constant G, i.e., for G ! G0 and still w ¼ 0
(see for example [17,18])

€�ðtÞ þ 2
_a

a
_�ðtÞ � 4�G0 ��ðtÞ�ðtÞ ¼ 0 (3.76)

from which one obtains for the growing mode

�qðtÞ ¼ �qðt0Þ
�
t

t0

�
2=3

; (3.77)

which is the standard result in the matter-dominated era.

I. Matter density contrast equation in aðtÞ
It is common practice at this point to write an equation

for the density contrast �ðaÞ as a function not of t, but of
the scale factor aðtÞ. This is done by utilizing the following
simple derivative identities

_fðtÞ ¼ aHðaÞ@fðaÞ
@a

(3.78)

€fðtÞ ¼ a2H2ðaÞ
�
@ lnHðaÞ

@a
þ 1

a

�
@fðaÞ
@a

þ a2H2ðaÞ @
2fðaÞ
@a2

;

(3.79)

where f is any function of t, andH � _aðtÞ=aðtÞ the Hubble
constant. This last quantity can be obtained from the zeroth
order tt field equation

H2ðaÞ �
�
_a

a

�
2 ¼ 8�G0

3
��þ �

3
: (3.80)

Often this last equation is written in terms of current
density fractions,

H2ðaÞ �
�
_a

a

�
2 ¼

�
_z

1þ z

�
2

¼ H2
0½�ð1þ zÞ3 þ�Rð1þ zÞ2 þ��� (3.81)

with a=a0 ¼ 1=ð1þ zÞ, where z is the red shift, and a0 the
scale factor today. Then H0 is the Hubble constant eval-

uated today, � the (baryonic and dark) matter density, �R

the space curvature contribution corresponding to a curva-
ture k term, and �� the dark energy or cosmological
constant part, all again measured today. In the absence of
spatial curvature k ¼ 0 one has today

�� � �

3H2
0

� � 8�G0 ��0

3H2
0

�þ�� ¼ 1: (3.82)

In terms of the scale factor aðtÞ, the equation for matter
density perturbations for constant G ¼ G0, Eq. (3.76),
becomes

@2�ðaÞ
@a2

þ
�
@ lnHðaÞ

@a
þ 3

a

�
@�ðaÞ
@a

� 4�G0

1

a2HðaÞ2 ��ðaÞ�ðaÞ ¼ 0: (3.83)

The quantityHðaÞ is most simply obtained from the FLRW
field equations

HðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�

3
G0 ��ðaÞ þ �

3

s
; (3.84)

with the matter density given in Eq. (3.14), which can in
principle be solved for aðtÞ,

t� t0 ¼
Z da

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�
3 G0 ��0ða0a Þ3 þ �

3

q : (3.85)

It is convenient at this stage to introduce a parameter 

describing the cosmological constant fraction as measured
today,


 � �

8�G0 ��0

¼ ��

�
¼ 1��

�
: (3.86)

While the following discussion will continue with some
level of generality, in practice one is mostly interested in
the observationally favored case of a current matter frac-
tion� 
 0:25, for which 
 
 3. In terms of the parameter

 the equation for the density contrast �ðaÞ for constant G
can then be recast in the slightly simpler form

@2�ðaÞ
@a2

þ 3ð1þ 2a3
Þ
2að1þ a3
Þ

@�ðaÞ
@a

� 3

2a2ð1þ a3
Þ�ðaÞ ¼ 0:

(3.87)

A general solution of the above equation is given by a
linear combination of the two solutions
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�0ðaÞ ¼ c1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a3


p
a�3=2 þ c2 � a � 2F1

�
1
3; 1;

11
6 ;�a3


�
;

(3.88)

where c1 and c2 are arbitrary constants, and 2F1 is the
Gauss hypergeometric function. The subscript 0 in �0ðaÞ is
to remind us that this solution is appropriate for the case of
constant G ¼ G0. Since one is only interested in the grow-
ing solution, the constant c1 ¼ 0.

To evaluate the correction to �0ðaÞ coming from the
terms proportional to ca one sets

�ðaÞ / �0ðaÞ½1þ caF ðaÞ�; (3.89)

and inserts the resulting expression in Eq. (3.75), written
now as a differential equation in aðtÞ, after using
Eqs. (3.78) and (3.79) to replace

_aðtÞ ¼ aH €aðtÞ ¼ a2H2

�
@ lnH

@a
þ 1

a

�
: (3.90)

One only needs to determine the differential equations for
density perturbations � up to first order in the fluctuations,
so it will be sufficient to obtain an expression for Hubble
constant H from the tt component of the effective field
equation to zeroth order in the fluctuations, namely, the
first of Eqs. (2.27). One has

HðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�

3
G0

�
1þ �GðaÞ

G0

�
��ðaÞ þ �

3

s
(3.91)

withGðaÞ given in Eq. (3.11) and ��ðaÞ given in Eq. (3.12).6

In this last expression, the exponent is �� ¼ 3=2� ’ 9=2
for a matter-dominated background universe, although
more general choices, such as �� ¼ 3ð1þ wÞ=2� or even
the use of Eq. (3.85), are possible and should be explored
(see discussion later). Also, ca 
 ct if a0 is identified with
a scale factor corresponding to a universe of size �; to a
good approximation this corresponds to the universe today,
with the relative scale factor customarily normalized at that
time to a=a0 ¼ 1. In [13], it was found that in Eq. (2.18)
ct ’ 0:785c0 in the scalar box case, and ct ’ 0:450c0 in the
tensor box case; in the following we will use the average of
the two values.
After the various substitutions and insertions have been

performed, one obtains, after expanding to linear order in
a0, a second order linear differential equation for the
correction F ðaÞ to �ðaÞ, as defined in Eq. (3.89). Since
this equation looks rather complicated for general �GðaÞ it
will not be recorded here, but it is easily obtained from
Eq. (3.75) by a sequence of straightforward substitutions
and expansions. The resulting equation can then be solved
for F ðaÞ, giving the desired density contrast �ðaÞ as a
function of the parameter �.
Nevertheless, with the specific choice for GðaÞ given in

Eq. (3.11) an explicit form for the equation for �ðaÞ reads

@2�ðaÞ
@a2

þ AðaÞ @�ðaÞ
@a

þ BðaÞ�ðaÞ ¼ 0; (3.92)

with the two coefficients given by

AðaÞ ¼ 3ð1þ 2a3
Þ
2að1þ a3
Þ

� cað9a3ð1þ ��Þ
�þ a��ð6ch��ð1þ 2��Þð1þ a3
Þ2 þ ð�9a3
þ ��ð1þ a3
Þð3þ 2��ð1þ a3
ÞÞÞ�ÞÞ
6a���ð1þ a3
Þ2

(3.93)

and

BðaÞ ¼ � 3

2a2ð1þ a3
Þ

� cað3a3ð1þ ��Þ
�þ a��ðch��ð2þ ��Þð1þ a3
Þð�1þ 2�� þ 2a3ð1þ ��Þ
Þ þ ð4�� þ a3ð�3þ 4��Þ
Þ�ÞÞ
2���a

2ð1þ a3
Þ2
(3.94)

and the variable a considered just as a stand-in for what
should really be the variable a=a0. To obtain an explicit
solution to the above equation, one needs to know the
coefficient ca and the exponent �� in Eq. (3.11), whose

likely values are discussed above and right after the quoted
expression for GðaÞ. For the exponent � one has � ’ 1

3 ,
whereas for the value for ch one finds, according to the
discussion in the previous sections, ch ’ 7:927 for the
tensor box case. Furthermore, one needs at some point to
insert a value for the matter density fraction parameter 
 as
given in Eq. (3.86), which based on current observation is
close to 
 ¼ ð1��Þ=� ’ 3.

6We have noted before that Eq. (3.91) is suggestive of a small
additional matter contribution, �vac ’ ð8�=3Þ�GðaÞ ��0=H

2
0 , to

the overall balance in Eq. (3.82).
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IV. RELATIVISTIC GROWTH INDEX WITH GðhÞ
The solution of the above differential equation for the

matter density contrast in the presence of a running
Newton’s constant GðhÞ leads to an explicit form for the
function �ðaÞ ¼ �0ðaÞ½1þ caF ðaÞ�. From it, an estimate
of the size of the corrections coming from the new terms
due to the running ofG can be obtained. It is clear from the
previous discussion, and the form of GðhÞ, that such
corrections will become increasingly important in the
present era t 
 t0 or a 
 a0. When discussing the growth
of density perturbations in classical general relativity it is
customary at this point to introduce a scale-factor-
dependent growth index fðaÞ defined as

fðaÞ � @ ln�ðaÞ
@ lna

; (4.1)

which is in principle obtained from the differential equa-
tion for any scale factor aðtÞ. Nevertheless, here one is
mainly interested in the neighborhood of the present era,
aðtÞ 
 a0. One therefore introduces today’s growth index
parameter � via

fða ¼ a0Þ � @ ln�ðaÞ
@ lna

��������a¼a0

� ��; (4.2)

so that the exponent � itself is obtained via

� � lnf

ln�

��������a¼a0

: (4.3)

The solution of the above differential equation for �ðaÞ
then determines an explicit value for the growth index �
parameter, for any value of the current matter fraction �.
In the end, because of observational constraints, one is
mostly interested in the range � 
 0:25, so the following
discussion will be limited to this case only, although from
the original differential equation for �ðaÞ one can in prin-
ciple obtain a solution for any sensible�. Numerically, the
differential equation for �ðaÞ can in principle be solved for
any value of the parameters. In practice we have found it
convenient, and adequate, to obtain the solution as a power
series in either � or 1��. In the first case, the resulting
series is asymptotic and only slowly convergent around
� 
 0:25, while in the latter case the convergence is much
more rapid. In this last case, we have carried therefore the
expansion up to eighth order, which gives the answers
given below (see, also, Figs. 1–4) to an accuracy of several
decimals.

It is known that in the absence of a running Newton’s
constant G (G ! G0, thus ca ¼ 0) one has fða ¼ a0Þ ¼
0:4625 and � ¼ 0:5562 for the standard �CDM scenario
with � ¼ 0:25 [17]. On the other hand, when the running
of GðhÞ is taken into account, one finds from the solution
to Eq. (3.75) for the growth index parameter � at� ¼ 0:25
the following set of results.

For the tensor box case discussed in Sec. III E, one has
the value ch ¼ ð11=3Þ � 2:1621 ¼ 7:927 in Eqs. (3.41)
and (3.68), which gives

� ¼ 0:5562� 199:2ca þOðc2aÞ: (4.4)

For the scalar box case discussed in Sec. III D, one has
instead ch ¼ 2:1621 and in this case one finds

� ¼ 0:5562� 54:8ca þOðc2aÞ: (4.5)
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FIG. 1 (color online). Illustration of the matter density contrast
�ðaÞ as a function of the scale factor aðtÞ, in the fully relativistic
treatment (tensor box) and for a given matter fraction � ¼ 0:25,
obtained from the solution of the density contrast equation of
Eq. (3.76), with GðaÞ given in Eq. (3.11) with �� ¼ 9=2 and for
ca ¼ 0:001. In the case of a running GðhÞ, one generally
observes a slightly faster growth rate for later times, as compared
to the solution for the case of constant G and with the same
choice of �, described by Eq. (3.87).
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FIG. 2 (color online). Illustration of the growth index parame-
ter � of Eq. (4.3) as a function of the matter density fraction �,
computed in the Newtonian (nonrelativistic) theory with a
running GðaÞ given in Eq. (3.11), and obtained by solving
Eq. (A36), here with �� ¼ 9=2 and ca ¼ 0:01. For the specific
choice of matter fraction � ¼ 0:25, suggested by �CDM mod-
els, one then obtains the estimates for the growth index parame-
ter given in Eq. (4.6).
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As a comparison, we have also computed the exponent �
for the case ch ¼ 0 in Eqs. (3.41) and (3.68). This corre-
sponds to a case where the OðhÞ correction to ��vac is
entirely neglected, and one obtains � ¼ 0:5562�
0:703ca þOðc2aÞ. Finally, for the Newtonian (nonrelativ-
istic) treatment, described in Appendix A, one finds the
much smaller correction

� ¼ 0:5562� 0:0142ca þOðc2aÞ: (4.6)

Among these last expressions, the tensor box case is sup-
posed to give ultimately the correct answer; the scalar box
case only serves as a qualitative comparison, and the ch ¼
0 case is done to estimate independently the size of the
correction coming from the ubiquitous OðhÞ or 1

2� ch terms

[see, for example, the differential equation for the density
perturbations �ðtÞ in Eq. (3.75)]. Note that the ch ¼ 0,
scalar and tensor box results can be summarized into the
slightly more general formula

� ¼ 0:5562� ð0:703þ 25:04chÞca þOðc2aÞ; (4.7)

showing again the overall importance of the ch contribu-
tion to ��vac in Eq. (3.41). This last term is responsible for
the feedback of the metric fluctuations h on the vacuum
density ��vac and pressure �pvac fluctuations.
It should be emphasized here once again that all of the

above results have been obtained by solving the differential
equation for �ðaÞ, Eq. (3.92), withGðaÞ given in Eq. (3.11),
and exponent �� ¼ 3=2� ’ 9=2 relevant for a matter-
dominated background universe. It is this last choice that
needs to be critically analyzed, as it might give rise to a
definite bias. Our value for �� so far reflects our choice of a
matter-dominated background. More general choices, such
as an ‘‘effective’’ �� ¼ 3ð1þ wÞ=2� with an effective w,
or even the use of Eq. (3.85), are in principle possible.
Then, although Eq. (3.75) for �ðtÞ remains unchanged,
Eq. (3.92) for �ðaÞ would have to be solved with new
parameters. In the next section we will discuss a number
of options which should allow one to increase on the
accuracy of the above result, and, in particular, correct
the possible shortcomings coming so far from the specific
choice of the exponent ��.

A. Possible physical interpretation of the results

Looking at these last results (see, also, Figs. 1–4), they
seem to indicate that (a) the correction due to the h (or
1=2�) terms in Eq. (3.41) and in the differential equation,
Eq. (3.75), for �ðaÞ is rather large, and that (b) it is more
than twice as large in the tensor box case than it is in the
scalar box case. Furthermore, they seem to suggest that
(c) the Newtonian (nonrelativistic) result, which does not
contain a �vac contribution, substantially underestimates
the size of the quantum correction. To quantitatively esti-
mate the actual size of the correction in the above expres-
sions for the growth index parameter �, and make some
preliminary comparison to astrophysical observations,
some additional information is needed.
The first item is the coefficient c0 
 33:3 in Eq. (2.28) as

obtained from lattice gravity calculations of invariant cor-
relation functions at fixed geodesic distance [19]. We have
reanalyzed the results of [19], which involve rather large
uncertainties for this particular quantity, nevertheless it
would seem difficult to accommodate values for c0 that
are more than an order of magnitude smaller than the
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FIG. 3 (color online). Illustration of the growth index parame-
ter � of Eq. (4.3) as a function of the matter density fraction �,
computed in the fully relativistic (tensor box) theory with a
running GðaÞ as given in Eq. (3.11), and obtained by solving
Eq. (3.75) with �� ¼ 9=2 and ca ¼ 0:0003. For the specific
choice of matter fraction � ¼ 0:25 one then obtains the esti-
mates given for the tensor box in Eq. (4.4). Not surprisingly, the
deviations from the standard result for � become more visible for
larger values of �.
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FIG. 4 (color online). Qualitative comparison of the growth
index parameters � of Eq. (4.3) as a function of the matter
density fraction �, computed first in the relativistic (tensor box)
theory with a running GðaÞ and ca ¼ 0:0003, then in the
Newtonian (nonrelativistic) treatment also with a running GðaÞ
and ca ¼ 0:01, both with �� ¼ 9=2, and finally compared to the
usual treatment with constant G. In both cases, the deviations
from the standard result for � are most visible for larger values
of �, corresponding to a greater matter fraction.
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quoted value. A renewed more accurate lattice calculation
of c0, obtained from the computation of invariant curvature
correlation functions at fixed geodesic distance, would
seem rather desirable at this point.

The next item that is needed here is a quantitative
estimate for the magnitude of the coefficient ca in
Eq. (3.11) in terms of ct in Eq. (2.18), and therefore in
terms of c0 in the original Eq. (2.28). First of all, one has
ca 
 ct, if a0 is identified with a scale factor corresponding
to a universe of size �; to a good approximation this
corresponds to the Universe today, with the relative scale
factor customarily normalized at that time to a=a0 ¼ 1,
although some large conversion factor might be hidden in
this perhaps naive identification (see below).

Regarding the numerical value of the coefficient ct
itself, it was found in [13] that in Eq. (2.18) ct ’ 0:785c0
in the scalar box case, and ct ’ 0:450c0 in the tensor box
case. In both cases, these estimates refer to values obtained
from the zeroth order covariant effective field equations. In
the following we will take for concreteness the average of
the two values, thus ct 
 0:618c0. Then for all three co-
variant calculations recorded above ca 
 0:618� 33:3 

20:6, a rather large coefficient.

From all of these considerations one would tend to
get estimates for the growth parameter � with rather large
corrections. For example, in the tensor box case the cor-
rections would add up to �199:0ca ¼ �199:0� 0:618�
33:3 ¼ �4095:0. Even in the Newtonian (nonrelativistic)
case, where the correction is found to be the smallest, the
corresponding result appears to be quite large. In this last
case ca 
 ct 
 2:7c0 (see Appendix A), so the correction
to the index � becomes �0:0142� 2:7� 33:3 ¼ �1:28.

It would seem though that one should account some-
where for the fact that the largest galaxy clusters and
superclusters studied today up to redshifts z ’ 1 extend
for only about, at the very most, 1=20 the overall size of the
visible universe. This would suggest then that the corre-
sponding scale for the running coupling GðtÞ or GðaÞ in
Eqs. (2.18) and (3.11), respectively, should be reduced by a
suitable ratio of the two relevant length scales, one for the
largest observed galaxy clusters or superclusters, and the

second for the very large, cosmological scale ��
1=

ffiffiffiffiffiffiffiffiffi
�=3

p � 1:51� 1028 cm entering the expression for
�GðhÞ in Eqs. (2.3) and (2.28). This would dramatically
reduce the magnitude of the quantum correction by as
much as a factor of the order of ð1=20Þ�� ¼ ð1=20Þ4:5 

1:398� 10�6. When this correction factor is roughly taken
into account, one obtains the more reasonable (and perhaps
observationally more compatible) estimates for the tensor
box case

� ¼ 0:5562� 0:0057ca þOðc2aÞ; (4.8)

and for the scalar box case

� ¼ 0:5562� 0:0016ca þOðc2aÞ; (4.9)

while in the nonrelativistic (Newtonian) case one finds � 

0:5562� 4:08� 10�7. In the tensor box case, this would
then amount to a slightly reduced value for the growth
index � at these scales as compared to the constantG case,
by as much as a few percent, which could perhaps be
observable in the not too distant future. Of course, on larger
scales the effects would be more significant, and somewhat
bigger for larger values of �.
A second possibility we will pursue here briefly is to

consider a shortcoming, mentioned previously, in the use

of aðtÞ � a0ðt=t0Þ2=3 in relating GðaÞ in Eq. (3.11) to GðtÞ
in Eq. (2.18). In general, if w is not small, one should use
instead Eq. (3.85) to relate the variable t to aðtÞ. The
problem here is that, loosely speaking, for w � 0 at least
two w’s are involved, w ¼ 0 (matter) and w ¼ �1 (�
term). Unfortunately, this issue complicates considerably
the problem of relating �GðtÞ to �GðaÞ, and therefore the
solution to the resulting differential equation for �ðaÞ. As a
tractable approximation though, one should set instead

aðtÞ � a0ðt=t0Þ2=3ð1þwÞ, and then use an effective value of
w 
 �7=9, which would seem more appropriate for the
final target value of � 
 0:25. For this choice, one then
obtains a significantly reduced power in Eq. (3.11), namely,
�� ¼ 3ð1þ wÞ=2� ¼ 1. Furthermore, the resulting differ-
ential equation for �ðaÞ, Eq. (3.92), is still relatively easy to
solve, by the same methods used in the previous section.
One now finds

� ¼ 0:5562� ð0:92þ 7:70chÞca þOðc2aÞ; (4.10)

which should be compared to the previous result of
Eq. (4.7). In particular, for the tensor box case one has
again ch ¼ 7:927, which can the be used to compare to the
previous result of Eq. (4.4). Thus by reducing the value of
�� by about a factor of 4, the ca coefficient in the above
expression has been reduced by about a factor of 3, a
significant change.
After using this improved value for the power ��, the

problem of correcting for relative scales needs to be ad-
dressed again, in light of the corrected estimate for the
growth exponent parameter of Eq. (4.10). Given this new
choice for �� ¼ 1, on can now consider, for example, the
types of galaxy clusters studied recently in [20–22], which
typically involve comoving radii of �8:5 Mpc and viral
radii of�1:4 Mpc. For these one would obtain an approxi-
mate overall scale reduction factor of ð1:4=4890Þ1 
 2:9�
10�4. Note that in these units (Mpcs) the reference scale
appearing in GðhÞ is of the order of � ’ 4890 Mpc. This
would give for the tensor box (ch ¼ 7:927) correction to
the growth index � in Eq. (4.10) the more reasonable order
of magnitude estimate �62:� 20:6� 2:9� 10�4 

�0:37, and for � itself the reduced value would end up
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at 
 0:19. Clearly, at this point these should only be
considered as rough order of magnitude estimates.7

Nevertheless, this last case is suggestive of a trend, quite
independently of the specific value of ch and therefore of
the overall numerical coefficient of the correction in
Eq. (4.10): namely, that the correction to the growth index
parameter will increase close to linearly (for �� close to 1,
as we have argued) in the size of the cluster. Consequently,
one expects that the deviations will increase tenfold in
going from a cluster size of 1 Mpc to one of 10 Mpc,
and a hundredfold in going from 1 to 100 Mpc.

Finally, another possible, and ultimately much more
conservative, approach would be to take—at least for the
time being—with some caution the rather large value for c0
obtained from nonperturbative lattice quantum gravity cal-
culations. One could then use instead the observational
bounds on x-ray studies of large galactic clusters at dis-
tance scales of up to about 1.4 to 8.5 Mpc [21], namely � ¼
0:50� 0:08, to constrain the value of the constant ca at
that scale, giving, for example, from Eq. (4.10) the bound
ca & 8� 10�4 in the case of tensor box, and the much less
stringent bound ca & Oð1Þ for the Newtonian (nonrelativ-
istic) case of Eq. (4.6).

B. Density perturbations in the conformal Newtonian
gauge with GðhÞ

In this section, we will outline briefly what other ave-
nues can be pursued to determine quantitatively and sys-
tematically the cosmological effects of a running GðhÞ.
The perturbed RW metric is well suited for discussing
matter perturbations, but occasionally one finds it more
convenient to use a different metric parametrization, such
as the one derived from the conformal Newtonian (cN)
gauge line element (see, for example, [23,24], and refer-
ences therein)

d�2 ¼ a2ðtÞfð1þ 2c Þdt2 � ð1� 2�Þ�ijdx
idxjg (4.11)

with conformal Newtonian potentials c ðx; tÞ and �ðx; tÞ.
In the simplest framework, the two potentials c and� give
rise separately to Newton’s equation for a point particle,
and Poisson’s equation, respectively,

€x ¼ �rc r2� ¼ 4�Ga2��: (4.12)

In this gauge, and in the absence of a GðhÞ, the unper-
turbed equations are

�
_a

a

�
2 ¼ 8�

3
Ga2 ��

d

dt

�
_a

a

�
¼ � 4�

3
Ga2ð ��þ 3 �pÞ;

(4.13)

in the absence of spatial curvature (k ¼ 0). In the presence
of a running G these again need to be modified, in accor-
dance with Eqs. (2.17), (2.16), and (2.18). A cosmological
constant can be conveniently included in the �� and �p, with
��� ¼ �=8�G ¼ � �p�. In this gauge scalar perturbations
are characterized by Fourier modes c ðq; tÞ and�ðq; tÞ, and
the first order Einstein field equations in the absence of
GðhÞ read [23]

k2�þ 3
_a

a

�
_�þ _a

a
c

�
¼ 4�Ga2�T0

0

k2
�
_�þ _a

a
c

�
¼ 4�Ga2ð ��þ �pÞ


€�þ _a

a
ð2 _�þ _c Þ þ

�
2
€a

a
� _a2

a2

�
c þ k2

3
ð�� c Þ

¼ 4�

3
Ga2�Ti

i

k2ð�� c Þ ¼ 12�Ga2ð ��þ �pÞ�;

(4.14)

where the perfect fluid energy-momentum tensor is given
to linear order in the perturbations �� ¼ �� �� and �p ¼
p� �p by

T0
0 ¼ �ð ��þ ��Þ T0

i ¼ ð ��þ �pÞvi ¼ �Ti
0

Ti
j ¼ ð �pþ �pÞ�i

j þ �i
j�

i
i ¼ 0

(4.15)

and one has allowed for an anisotropic shear perturbation
�i

j to the perfect fluid form Ti
j. The two quantities 
 and

� are commonly defined by

ð ��þ �pÞ
 � ikj�T0
j ð ��þ �pÞ� � �ðk̂ik̂j � 1

3
�ijÞ�i

j

(4.16)

with�i
j � Ti

j � �i
jT

k
k=3 the traceless component of Ti

j.

For a perfect fluid, 
 is the divergence of the fluid velocity,

 ¼ ikjvj, with vj ¼ dxj=dt the small velocity of the

fluid. The field equations imply, by consistency, the cova-
riant energy-momentum conservation law

_� ¼ �ð1þ wÞð
� 3 _�Þ � 3
_a

a

�
�p

��
� w

�
�

_
 ¼ � _a

a
ð1� 3wÞ
� _w

1þ w

þ 1

1þ w

�p

��
k2�

� k2�þ k2c (4.17)

and relate the matter fields �, �, and 
 to the metric
perturbations � and c , where � is the matter density
contrast � ¼ ��=�, and w is the equation of state parame-
ter w ¼ p=�. In general relativity � ¼ c as long as there
is no anisotropic stress, but in extended theories of gravity,

7One might perhaps think that the running of G envisioned
here might lead to small observable consequences on much
shorter, galactic length scales. That this is not the case can be
seen, for example, from the following argument. For a typical
galaxy, one has a size �30 kpc, giving for the quantum correc-
tion the estimate, from Eq. (2.9) for the correction to the static
potential, ð30 kpc=4890� 103 kpcÞ3 � 2:31� 10�16, which is
tiny given the large size of �. It is therefore unlikely that such a
correction will be detectable at these length scales, or that it
could account for large anomalies in the galactic rotation curves.
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such as the one described here, the relation between � and
c can become scale dependent.
In the presence of a GðhÞ, the above equations need to

be rederived and amended, starting from the covariant field
equations of Eq. (2.3) in the cN gauge of Eq. (4.11), with
zeroth order modified field equations as in Eqs. (2.16) and
(2.17), using the expansion for GðhÞ given in Eq. (3.24),
but now in terms of the new cN gauge potentials � and c .
One key question is then the nature of the vacuum-
polarization induced anisotropic shear perturbation correc-
tion�i

j appearing in the covariant effective field equations

analogous to Eqs. (4.14), but derived with a GðhÞ. In
particular, one would expect the quantum correction to
the energy-momentum tensor appearing on the right-hand
side of Eq. (2.3) to contribute new terms to the last of
Eqs. (4.14), which could then account for a nonzero stress
�, and thus for a small deviation from the classical GR
result for a perfect fluid, � ¼ c . Naively, one would
expect c =� ¼ 1þOð�G=G0Þ. An explicit calculation
with GðhÞ [25] gives

c

�
¼ 1þ

�
1� 1

2�ð1þ wÞ
�
3wvac

�GðtÞ
G0

¼ 1þ
�
1� 1

2�

�
�GðtÞ
G0

(4.18)

for w ¼ 0 and wvac ¼ 1
3 . It is often customary (see, e.g.,

[23,24,26,27]) to parametrize deviations from general rela-
tivity in terms of a slip function � and of the growth rate
parameter � introduced previously. These two quantities
are defined by

r2ð�þ c Þ ¼ 3��H2� � ¼ logf

log�
(4.19)

with � the density contrast and f the density contrast
exponent. Occasionally, the parameter � ¼ c =�� 1 is
introduced as well. In classical general relativity c =� ¼
1, � ¼ 0, � ¼ 1, and then the growth exponent � 
 0:55
for � 
 0:25. The calculations presented in the previous
sections have already suggested to some extent what
changes to expect for the exponent �, which then leaves
the problem of determining the structure of the � correc-
tion. In addition, the Newtonian (nonrelativistic) calcula-
tion of Appendix A has determined, from the form of the
modified Poisson equation, one of the relevant equations,
namely, the one for the potential �. We plan to discuss
these interesting questions in a future publication [25].

V. CONCLUSIONS

In this paper, we have attempted to systematically ana-
lyze the effects on matter density perturbations of a run-
ning GðhÞ appearing in the original effective, nonlocal
covariant field equations of Eq. (2.3). The specific form
of GðhÞ in Eq. (2.1) is inspired by the nonperturbative
treatment of covariant path integral quantum gravity, and

follows from the existence of a nontrivial fixed point in G
of the renormalization group in four dimensions. The
resulting effective field equations are manifestly covariant,
and in principle besides the genuinely nonperturbative
scale � there are no adjustable parameters, since the co-
efficients (c0) and scaling dimensions (�) entering GðhÞ
are, again in principle, calculable by systematic field the-
ory and lattice methods (see [6] and references therein).
The present work can be viewed in broad terms as

consisting of two parts. In the first part, we have system-
atically developed the general formalism necessary to deal
with small matter density fluctuations in the presence of a
running gravitational coupling GðhÞ. Most, if not all, of
the results in the first part have been formulated in a way
that assumes as little as possible about specific aspects
related to how exactly G does run with scale. Indeed,
many of the equations we have obtained are not restricted
to � ¼ 1

3 , and are found to be valid for a wide range of

powers � and coefficients c0 appearing, for example, in the
original expression for GðhÞ as given in Eq. (2.28).
Furthermore, the zeroth order (in the fluctuations) results
of [13], on which the present work builds up, do not rely on
any specific value for these parameters either, since the
expressions obtained there follow from general properties
of the covariant d’Alembertian and its powers, as they
appear in GðhÞ. In particular the flow in the vicinity of
the ultraviolet fixed point could in principle allow for c0
being either negative (gravitational screening) or positive
(gravitational antiscreening), and both cases could in prin-
ciple be described by the results obtained above, for ex-
ample, for the growth index f and the growth index
parameter �. It is only the latter option though that is
favored by studies of nonperturbative Euclidean lattice
gravity (the weak coupling phase is unstable and found
to describe a collapsed degenerate two-dimensional space-
time), hence the choice here to discuss primarily this last
case. But in principle the fact remains that the sign of c0
will ultimately determine the direction of the corrections
given above, which could eventually become constrained
by observation. In the end, the only result that is exten-
sively used in the first part is the result of [13] that wvac ¼
1
3 , apart from the fact that we choose to restrict our atten-

tion from the very beginning primarily to the nonrelativ-
istic matter case w ¼ 0, and to the long wavelength limit
q ! 0. Later on it was found that for sufficiently slowly
varying backgrounds the result wvac ¼ 1

3 is preserved also

to first order in the perturbations, which seems to suggest
some level of consistency in the treatment of the field
perturbations.
In spite of the nonlocality of the original effective field

equations in Eq. (2.3), one finds quite in general that small
perturbations can be treated, in first approximations, in
terms of local terms, described by quantities �vac and
pvac as they appear in the effective description of Tvac

�� in

terms of a perfect fluid. The latter should then be regarded
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as the leading term in a derivative expansion of the non-
local contribution to the effective field equations, as they
apply here to the rather specific case of the FLRW back-
ground. Under the physically motivated assumption of a
comparatively slowly varying (both in space and time)
background, it is then possible to obtain a complete and
consistent set of effective field equations, describing
small perturbations for the metric trace and matter modes
[Eqs. (3.69), (3.72), (3.73), and (3.74)]. From these, a single
equation for the matter density contrast is eventually ob-
tained, Eq. (3.75), which is the main result of this work.
The only input needed in this last equation is �GðtÞ, the
zeroth order (in the fluctuations) running of G as written in
Eq. (2.18), with given more or less known parameters � and
ct. The corresponding result in the Newtonian (nonrelativ-
istic) treatment is obtained in Appendix A, leading to
Eq. (A30).

The next step was a translation of the equation for the
density contrast �ðtÞ into the corresponding equation for
�ðaÞ, involving a related running coupling GðaÞ, instead of
the original GðtÞ. Since in general the transformation from
one variable to the other is not entirely trivial, some
simplification had to be assumed, i.e., that the quantum
correction in GðaÞ can be written as a power, with an
exponent ��, a choice that could in the future be relaxed
as part of a broader more systematic investigation.
Subsequently, a solution for the differential equation for
�ðaÞ was obtained, leading to expressions for the growth
index fðaÞ and for the growth index parameter �. A num-
ber of general features can be observed, the first one being
the fact that generally the correction to the growth index
parameter � is found to be negative, indicating a less steep
rise of f with �.

The second part of the paper describes a number of
attempts to provide a semiquantitative estimate for the
corrections obtained, in order to see whether these correc-
tions could be related in some way to current astrophysical
observations. In order to do so, one needs to adapt the
theoretical calculation for the growth index parameter � to
the kind of observational data available from the study of
large galactic clusters. This requires, as expected, a careful
consideration of the relative length scales that come into
play. On the one hand, one length scale is given by the size
of the largest clusters reached by observation, typically of
the order of a few Mpcs. On the other hand it should

involve the absolute reference scale given by � ¼ ffiffiffiffiffiffiffiffiffi
3=�

p ’
4890 Mpc. The comparison between theory and observa-
tion would then seem straightforward, were it not for the
fact that this ratio generally comes in to a certain power,
whose detailed knowledge is necessary in order to even-
tually reduce the quantitative uncertainties. Eventually,
these could be bracketed by a more systematic study of
the solutions to the �ðaÞ equation, and the corresponding
growth exponents �. We are referring here, in particular, to
a study of the sensitivity of the results to the specific

choices of the exponent ��, appearing in �GðaÞ and de-
termined in part by the relationship between the variables t
and aðtÞ, which we discussed earlier. In addition, there is
still perhaps a certain level of uncertainty in the actual
coefficients c0 and ct entering the theoretical predictions,
which we have also described above in some detail. The
latter could be reduced further by improved nonperturba-
tive lattice computations. Nevertheless, the value of the
present calculations lies in our opinion in the fact that so far
a discernible trend seems to emerge from the results. The
trend we have found seems to suggest that the correction to
the growth exponent � is initially rather small for small
clusters, negative in sign, and then slowly increasing in
magnitude, close to linearly with scale.
It is clear that the effects discussed in this paper are only

relevant for very large scales, much bigger than those
usually considered, and well constrained, by laboratory,
solar, or galactic dynamics tests [1,28–30]. Furthermore,
the effects we have described here are quite different from
what one would expect in fðRÞ theories [31,32], which also
tend to predict some level of deviation from classical GR in
the growth exponents [33–35]. Future more accurate as-
trophysical observations might make it possible to see the
difference in the predictions of various models [26,27,36–
38].
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APPENDIX A: NONRELATIVISTIC (NEWTONIAN)
TREATMENT OF MATTER DENSITY

PERTURBATIONS

In this section, we discuss the Newtonian theory of small
matter fluctuations, first by recalling the relevant equations
in the usual treatment, and then by presenting what
changes need to be implemented in order to account for
the running of G. Later these equations will be solved, so
that a comparison can be made with the results in the
absence of a running G.
When discussing a nonrelativistic Hubble flow it is

customary to define coordinates in the following way:
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x ¼ r

aðtÞ v ¼ dr

dt
¼ _a

a
r (A1)

where x is attached to the comoving frame, while r is the
flat Minkowski space coordinate, such that in the comoving
frame x one has, by construction, dx=dt ¼ 0.

In the following, some simplification will arise due to
the fact that we shall consider a nonrelativistic fluid with
the negligible pressure, p ’ 0 or w ¼ 0. The relevant
equations are then the continuity equation, the Euler equa-
tion, and the gravitational field equations. These will be
listed below to zeroth and first order in the matter density
(�), pressure (p), velocity field (v), and gravitational field
g.

1. Newtonian treatment without the running of G

After decomposing the fields into a background and a
fluctuation contribution, � ¼ ��þ ��, p ¼ �pþ �p, and
v ¼ �vþ �v, one obtains from the continuity equation, to
zeroth and first order, respectively,

_��þr � ð ��vÞ ¼ 0

_��þ 3
_a

a
��þ _a

a
ðr � rÞ��þ ��r � �v ¼ 0:

(A2)

When the effect of the Hubble flow is included, i.e.,
Eq. (A1), the above zeroth order equation reduces to

_��ðtÞ þ 3
_aðtÞ
aðtÞ ��ðtÞ ¼ 0 (A3)

with solution ��ðtÞ ¼ ��0ða0=aðtÞÞ3, where ��0 and a0 are the
two integration constants corresponding to the present
matter density and to the present scale factor (usually taken
to be a0 ¼ 1). We note here that Eq. (A3), and hence
Eq. (3.14), will continue to hold for a running G, as these
equations are derived from the kinematics and the continu-
ity equations in the RW background metric given in
Eq. (A2), which is not affected by the running of G !
GðhÞ.

To zeroth and first order in the fluctuations, the Euler
equations for a fluid in the RW background are given,
respectively, by

_vþ ðv � rÞv ¼ g

_�vþ _a

a
�vþ _a

a
ðr � rÞ�v ¼ � 1

��
r�pþ �g:

(A4)

Finally, the gravitational field equations are given to zeroth
and first order in the fluctuations by

r� g ¼ 0 r � g ¼ �4�G0 �� (A5)

r� �g ¼ 0 r � �g ¼ �4�G0�� (A6)

incorporating Gauss’ law and the constraint that the gravi-
tational fields are longitudinal. Only the last set of equa-
tions contain the gravitational constant G. Hence, in the

framework of the Newtonian treatment, the modification of
a runningG ! GðhÞ only affects the gravitational Poisson
equation.
It is customary at this stage to introduce Fourier compo-

nents of the fluctuations, and write

��ðr; tÞ ¼ ��qðtÞ exp
�
ir � q
aðtÞ

�
(A7)

and similarly for �v, �g, and possibly �p. For an adiabatic
fluctuation one can also set �p ¼ v2

s��, with vs the speed
of sound.
Then to first order in the fluctuations, the continuity

equation, Euler equation, and the gravitational field equa-
tions take on the form, for each mode q,

_��qðtÞ þ 3
_aðtÞ
aðtÞ��qðtÞ þ

iq � �vqðtÞ
aðtÞ ��ðtÞ ¼ 0 (A8)

_�vqðtÞ þ _aðtÞ
aðtÞ�vqðtÞ ¼ � iq

aðtÞ
v2
s

��ðtÞ��qðtÞ þ �gqðtÞ
(A9)

�gqðtÞ ¼ 4�iq

q2
aðtÞG0��qðtÞ: (A10)

Subsequent elimination of the gravitational and velocity
fields then leads to a single second order differential equa-
tion for the matter density contrast �qðtÞ � ��qðtÞ= ��ðtÞ
describing the physics of compressional modes:

€� qðtÞ þ 2
_aðtÞ
aðtÞ

_�qðtÞ þ
�
v2
sq

2

aðtÞ2 � 4�G0 ��ðtÞ
�
�qðtÞ ¼ 0:

(A11)

In the limit of very long wavelength fluctuations, q ! 0,
the above equation simplifies to

€�ðtÞ þ 2
_aðtÞ
aðtÞ

_�ðtÞ � 4�G0 ��ðtÞ�ðtÞ ¼ 0: (A12)

A solution can then be found, using ��ðtÞ ¼ 1=6�Gt2 and
_aðtÞ=aðtÞ � HðtÞ ¼ 2=3t, such that the general form for

�ðtÞ is given by a linear combination of either �t2=3 or
�t�1. The latter corresponds to a decaying (as opposed to
growing) solution and is usually discarded, giving finally
the standard Newtonian result �ðaÞ / a. We note here that
the above nonrelativistic equation and solution applies to
the case of nonrelativistic matter only; in particular, it
excludes the presence of a cosmological constant.

2. Newtonian treatment with running GðhÞ
The next step is a modification of the nonrelativistic

equations in Eqs. (A2) and (A4)–(A6) to incorporate a
suitable running ofG. Since only the latter set of equations,
Eqs. (A5) and (A6), contain G it is only these that need to
be suitably modified. In the presence of a scale-dependent
coupling, one has
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�g ¼ �r�� (A13)

with the perturbing potential �� given by a solution to
Poisson’s equation

r2��ðr; tÞ ¼ �r � �gðr; tÞ ¼ 4�GðhÞ��ðr; tÞ (A14)

and GðhÞ given in Eq. (2.28). Following Eq. (A7), as it
applies here to �g and ��, we Fourier transform the spatial
components of the above Poisson equation, which requires
the Fourier transform of GðhÞ as obtained from Eq. (2.28),
namely,

Gðq2; @2t Þ ¼ G0

�
1þ c0

��1=�

½�@2t � q2=a2ðtÞ�1=2� þ . . .

�
:

(A15)

As a result, the gravitational field perturbation is of the
form

�gqðtÞ ¼ 4�iq

q2
aðtÞ � exp

��ir � q
aðtÞ

�
Gðq2; @2t Þ

�
�
��qðtÞ exp

�
ir � q
aðtÞ

��
: (A16)

Since we are mainly interested in the long wavelength
limit, it suffices here to evaluate the above expression in
the limit q ! 0,

�gqðtÞ ¼ 4�iq

q2
aðtÞ

�
1� ir �q

aðtÞ þ . . .

�
Gðq2; @2t Þ

�
�
��qðtÞ

�
1þ ir �q

aðtÞ þ . . .

��

’ 4�iq

q2
aðtÞ

�
Gðq2; @2t Þ��qðtÞ

� ir �q
aðtÞ Gðq2; @2t Þ��qðtÞþGðq2; @2t Þ��qðtÞ ir �qaðtÞ

þ . . .

�
; (A17)

and for q ¼ 0 only the first term survives. Furthermore,
when GðhÞ ¼ Gðq2; @2t Þ acts on a function of t, which we
will assume here is of the form of a power (e.g., t	, with the
power 	 a number of order 1) one obtains

Gðq2; @2t Þ � t	 ! GðtÞ � t	: (A18)

Here the running coupling GðtÞ is given by the expression
in Eq. (2.18), with t0 � �, and the coefficient

ct ¼
�������� �ð1þ 	Þ
�ð1þ 	þ 1=�Þ

��������c0: (A19)

Thus, for example, for 	 ¼ �4=3 (the standard Newtonian
result for matter density perturbations) one has ct ¼
ð27=10Þc0; in the following, it will be safe to assume that
the coefficient ct in Eq. (2.18) is a number of the same
order of magnitude as the original c0 in Eq. (2.28).

Consequently, when acting on a density perturbation
��qðtÞ in the form of a power law in t, to leading order

in q, one obtains simply

�gqðtÞ ¼ 4�iq

q2
aðtÞG0

�
1þ ct

�
t

t0

�
1=� þ . . .

�
��qðtÞ:

(A20)

This last result can be compared with Eq. (A10) for the
case of a constant G.
As stated previously, the continuity equation for the

fluctuations, Eq. (A8), and the corresponding Euler equa-
tion for the fluctuations, Eq. (A9), are not modified by the
presence of a running GðhÞ, as given in Eqs. (A16) and
(A20). To solve the resulting equations of motion for the
fluctuations, it is now customary to decompose the velocity
perturbation �v into parts perpendicular and parallel to q

�vqðtÞ ¼ �vq?ðtÞ þ iq�qðtÞ (A21)

with

q � �vq? ¼ 0 �q � � iq � �vq
q2

: (A22)

The fractional change in the matter density � is then
defined as

�qðtÞ �
��qðtÞ
��ðtÞ : (A23)

With the above decomposition of the velocity field �v and
the expression for the density contrast � inserted into the
first order continuity equation, Eq. (A8), one obtains the
unmodified result

_� qðtÞ ¼ q2

aðtÞ �qðtÞ; (A24)

so that there is no change in the relationship between � and
� when G ! GðhÞ. In turn, the Euler equation for the
fluctuation, Eq. (A9), now becomes the two sets of equa-
tions

Re : _�vq?ðtÞ þ _a

a
�vq?ðtÞ ¼ 0

Im: iq _�qðtÞ þ _a

a
iq�qðtÞ ¼ � iq

a
v2
s�qðtÞ þ �gq

(A25)

with the gravitational field fluctuation �gq now given by

the expression in Eq. (A16). From the real part (corre-
sponding to rotational modes), one concludes

�vq? / a�1ðtÞ; (A26)

which is of the same form as in the case of a constant G.
From the imaginary part (corresponding to compressional
modes), in Eq. (A25) one obtains, using Eq. (A24),
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€�qðtÞ þ 2
_a

a
_�qðtÞ þ q2

a2
v2
s�qðtÞ � 4� exp

��ir � q
aðtÞ

�

Gðq2; @2t Þ
�
exp

�
ir � q
aðtÞ

�
��ðtÞ�qðtÞ

�
¼ 0: (A27)

The latter can be recast into the slightly simpler form

€� qðtÞ þ 2
_a

a
_�qðtÞ þ

�
q2

a2
v2
s � 4�Gðq2; @2t Þ

�
�qðtÞ ¼ 0

(A28)

by defining a modified source term

G ðq2; @2t Þ � 1

�qðtÞ
�
exp

��ir � q
aðtÞ

�
Gðq2; @2t Þ

�
�
exp

�
ir � q
aðtÞ

�
��ðtÞ�qðtÞ

��
: (A29)

In the limit q ! 0 one obtains immediately

€�ðtÞ þ 2
_a

a
_�ðtÞ � 4�GðtÞ ��ðtÞ�ðtÞ ¼ 0: (A30)

The last two equations can now be compared with
the corresponding results for a constant G, given in
Eqs. (A11) and (A12).

3. Computation of the nonrelativistic (Newtonian)
growth index with GðhÞ

The next step requires a solution of the differential
equation for the density perturbations �qðtÞ, in the

Newtonian approximation and in the limit q ! 0, as in
Eq. (A30). It is convenient and customary at this point to
change variables from t to the scale factor aðtÞ, so that

�qðtÞ ! �qðaÞ ¼ ~�q � �ðaÞ. From Eq. (3.90) one has

_�ðtÞ ¼ aHðaÞ @�ðaÞ
@a

€�ðtÞ ¼ a2H2ðaÞ
�
@ lnHðaÞ

@a
þ 1

a

�
@�ðaÞ
@a

þ a2H2ðaÞ @
2�ðaÞ
@a2

:

(A31)

Here HðaÞ is defined as the Hubble ‘‘constant’’ HðaÞ �
_aðtÞ=aðtÞ, as it appears in the equations of motion for a
background FLRW geometry

HðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�

3
GðaÞ ��ðaÞ þ �

3

s
; (A32)

but with a running Newton’s constant GðaÞ [see Eq. (2.18)]

GðaÞ ¼ G0

�
1þ �GðaÞ

G0

�
¼ G0

�
1þ ca

�
a

a0

�
�� þ . . .

�
:

(A33)

Here the index is �� ¼ 3=2�, since from Eq. (2.18) one has

for nonrelativistic matter aðtÞ=a0 
 ðt=t0Þ2=3. In the above
expression ca 
 ct, if a0 is identified with a scale factor

corresponding to a universe of size �; to a good approxi-
mation this corresponds to the Universe today, with the
relative scale factor customarily normalized to a=a0 ¼ 1.
As a consequence, the constant ca in Eq. (A33) can be
taken to be of the same order as the constant c0
appearing in the original expressions for GðhÞ in
Eqs. (2.5) and (2.28). Note also that by the use of
Eq. (A32) for the scale factor, we have allowed for a
nonvanishing cosmological constant in our otherwise
Newtonian (nonrelativistic) treatment.
After these substitutions, one finally obtains the differ-

ential equation for the matter density contrast, Eq. (A30),
in the variable aðtÞ
d2�ðaÞ
da2

þ
�
d lnHðaÞ

da
þ 3

a

�
d�ðaÞ
da

� 4�GðaÞ ��ðaÞ
a2H2ðaÞ �ðaÞ ¼ 0:

(A34)

Note that in order to compute the leading, in �GðaÞ=G0,
correction to the density contrast �ðaÞ, one only needs ��ðaÞ
to lowest order as given in Eq. (3.14), and HðaÞ as given in
Eq. (A32).
With the aid of the parameter 
 [see Eq. (3.86)]


 � 1��

�
; (A35)

where � is the matter density fraction and 1�� the
cosmological constant fraction as measured today, one
obtains the following differential equation for the density
contrast �ðaÞ
@2�

@a2
þ 3ð1þ 2a3
Þ
2að1þa3
Þ

�
1þ ca

��a
�� þð13�� � 1Þa3þ��


ð1þa3
Þð1þ 2a3
Þ
�
@�

@a

� 3

2a2ð1þa3
Þ
�
1þ ca

a3þ��


1þa3


�
�¼ 0 (A36)

for a reference scale a0 ¼ 1; the latter can always be
reintroduced later by the trivial replacement a ! a=a0.
Without a scale-dependent G [ca ¼ 0 in Eq. (A33)], the

growing solution to the above equation is given by

�0ðaÞ / a � 2F1ð13; 1; 116 ;�a3
Þ; (A37)

where 2F1 is the Gauss hypergeometric function. To evalu-
ate the correction to �0ðaÞ coming from the terms propor-
tional to ca, one sets

�ðaÞ / a � 2F1ð13; 1; 116 ;�a3
Þ½1þ caF ðaÞ�; (A38)

then inserts the resulting expression in Eq. (A36), and
finally expands the resulting expression to lowest order in
ca to find the correction F ðaÞ. The resulting differential
equation can then be solved for F ðaÞ, giving the density
contrast �ðaÞ as a function of the two parameters [�� and
� or 
 � ð1��Þ=�] appearing in Eq. (A36). In the
following, we will focus on the specific choice � ¼ 1

3

obtained from the lattice theory of gravity [8], which leads
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to theGðaÞ exponent �� ¼ 3
2� ¼ 9=2. It is customary at this

point to define the growth index fðaÞ � @ ln�ðaÞ
@ lna and the

related growth index parameter � via � � lnf
ln� ja¼a0 . Then

the solution to Eq. (A36) gives an explicit expression for
the growth index � parameter, as a function of the matter
fraction �.

Based on observational constraints, one is mostly inter-
ested in the case � 
 0:25, therefore in the following we
will limit our discussion to this choice only. In the absence
of a running G (G ! G0, thus ca ¼ 0) one has fða ¼
a0Þ ¼ 0:4625 and � ¼ 0:5562 for � ¼ 0:25 [17]. On the
other hand, when the running of G is taken into account
one finds from the solution to Eq. (A36) for the growth
index parameter � at � ¼ 0:25

� ¼ 0:5562� 0:0142ca þOðc2aÞ: (A39)

In the end it would seem therefore that at least in the
Newtonian treatment the correction comes out rather
small. Note that both the Newtonian and the relativistic
treatment, described in the main body, give a negative sign
for the correction arising from the running of G.
To estimate quantitatively the actual size of the correc-

tion in Eq. (A39), one needs an estimate for the coefficient
c0 
 33:3 in Eq. (2.28), as obtained from the lattice gravity
calculations of invariant correlation functions at fixed
geodesic distance [19]. In addition, one uses the fact that
ca 
 ct 
 2:7c0 [see the previous discussion related to
Eq. (A33)]. From this, one would then get the estimate � ¼
0:5562� 1:28 on the largest scales, which looks like a
significant Oð1Þ correction to �.
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of the 1976 Cargèse Summer Institute (Plenum Press, New

York, 1977), Vol. 26; E. Brezin and J. Zinn-Justin, Phys.

Rev. Lett. 36, 691 (1976).
[5] S. Weinberg, in General Relativity-An Einstein Centenary

Survey, edited by S.W. Hawking and W. Israel

(Cambridge University Press, Cambridge, England, 1979).
[6] H.W. Hamber, Quantum Gravitation (Springer

Publishing, Berlin and New York, 2009), and references
therein.

[7] H.W. Hamber and R.M. Williams, Nucl. Phys. B248, 392
(1984); B260, 747 (1985); B269, 712 (1986); Phys. Lett.

157B, 368 (1985); Nucl. Phys. B435, 361 (1995); Phys.

Rev. D 59, 064014 (1999).
[8] H.W. Hamber, Phys. Rev. D 45, 507 (1992); Nucl. Phys.

B400, 347 (1993); Phys. Rev. D 61, 124008 (2000).
[9] H. Kawai and M. Ninomiya, Nucl. Phys. B336, 115

(1990); H. Kawai, Y. Kitazawa, and M. Ninomiya, Nucl.

Phys. B393, 280 (1993); B404, 684 (1993); Y. Kitazawa
and M. Ninomiya, Phys. Rev. D 55, 2076 (1997); T. Aida

and Y. Kitazawa, Nucl. Phys. B491, 427 (1997).
[10] M. Reuter, Phys. Rev. D 57, 971 (1998); M. Reuter and H.

Weyer, Gen. Relativ. Gravit. 41, 983 (2009); E. Manrique,

M. Reuter, and F. Saueressig, arXiv:1006.0099, and refer-
ences therein.

[11] G. A. Vilkovisky, in Quantum Theory of Gravity, edited by
S. Christensen (Hilger, Bristol, 1984); Nucl. Phys. B234,
125 (1984).

[12] T. R. Taylor and G. Veneziano, Nucl. Phys. B345, 210
(1990).

[13] H.W. Hamber and R.M. Williams, Phys. Rev. D 72,
044026 (2005).

[14] D. Lopez Nacir and F.D. Mazzitelli, Phys. Rev. D 75,
024003 (2007).

[15] H.W. Hamber and R.M. Williams, Phys. Rev. D 73,
044031 (2006); 76, 084008 (2007); 81, 084048 (2010).

[16] H.W. Hamber and R.M. Williams, Phys. Lett. B 643, 228
(2006); Phys. Rev. D 75, 084014 (2007).

[17] P. J. E. Peebles, Principles of Physical Cosmology

(Princeton University Press, Princeton, New Jersey, 1993).
[18] S. Weinberg, Gravitation and Cosmology: Principles and

Applications of the General Theory of Relativity (John

Wiley & Sons, New York, 1972).
[19] H.W. Hamber, Phys. Rev. D 50, 3932 (1994).
[20] F. Schmidt, A. Vikhlinin, and W. Hu, Phys. Rev. D 80,

083505 (2009).
[21] A. Vikhlinin et al., arXiv:0903.5320; arXiv:0903.2297.
[22] D. Rapetti, S.W. Allen, A. Mantz, and H. Ebeling,

arXiv:0911.1787.
[23] C.-P. Ma and E. Bertschinger, Astrophys. J. 455, 7

(1995).
[24] F. Bernardeau, S. Colombi, E. Gaztanaga, and R.

Scoccimarro, Phys. Rep. 367, 1 (2002).
[25] H.W. Hamber and R. Toriumi (unpublished).
[26] L. Amendola, M. Kunz, and D. Sapone, J. Cosmol.

Astropart. Phys. 04 (2008) 013.
[27] S. F. Daniel et al., Phys. Rev. D 80, 023532 (2009).
[28] J. P. Uzan, Rev. Mod. Phys. 75, 403 (2003).
[29] J. P. Uzan, arXiv:0908.2243.
[30] E. G. Adelberger, B. R. Heckel, and A. E. Nelson, Annu.

Rev. Nucl. Part. Sci. 53, 77 (2003).
[31] S. Capozziello, M. De Laurentis, and V. Faraoni,

arXiv:0909.4672, and references therein.
[32] S.M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner,

Phys. Rev. D 70, 043528 (2004).

COSMOLOGICAL DENSITY PERTURBATIONS WITH . . . PHYSICAL REVIEW D 82, 043518 (2010)

043518-25

http://dx.doi.org/10.1088/0954-3899/33/1/001
http://dx.doi.org/10.1103/PhysRevLett.70.2217
http://dx.doi.org/10.1103/PhysRevLett.70.2217
http://dx.doi.org/10.1103/PhysRevD.53.5541
http://dx.doi.org/10.1103/PhysRevD.53.5541
http://arXiv.org/abs/hep-th/0002094
http://arXiv.org/abs/hep-th/0703055
http://dx.doi.org/10.1103/PhysRevLett.28.548
http://dx.doi.org/10.1103/PhysRevD.7.2911
http://dx.doi.org/10.1103/PhysRevD.7.2911
http://dx.doi.org/10.1103/PhysRevLett.36.691
http://dx.doi.org/10.1103/PhysRevLett.36.691
http://dx.doi.org/10.1016/0550-3213(84)90603-5
http://dx.doi.org/10.1016/0550-3213(84)90603-5
http://dx.doi.org/10.1016/0550-3213(85)90057-4
http://dx.doi.org/10.1016/0550-3213(86)90518-3
http://dx.doi.org/10.1016/0370-2693(85)90382-X
http://dx.doi.org/10.1016/0370-2693(85)90382-X
http://dx.doi.org/10.1016/0550-3213(94)00495-Z
http://dx.doi.org/10.1103/PhysRevD.59.064014
http://dx.doi.org/10.1103/PhysRevD.59.064014
http://dx.doi.org/10.1103/PhysRevD.45.507
http://dx.doi.org/10.1016/0550-3213(93)90409-I
http://dx.doi.org/10.1016/0550-3213(93)90409-I
http://dx.doi.org/10.1103/PhysRevD.61.124008
http://dx.doi.org/10.1016/0550-3213(90)90345-E
http://dx.doi.org/10.1016/0550-3213(90)90345-E
http://dx.doi.org/10.1016/0550-3213(93)90246-L
http://dx.doi.org/10.1016/0550-3213(93)90246-L
http://dx.doi.org/10.1016/0550-3213(93)90594-F
http://dx.doi.org/10.1103/PhysRevD.55.2076
http://dx.doi.org/10.1016/S0550-3213(97)00091-6
http://dx.doi.org/10.1103/PhysRevD.57.971
http://dx.doi.org/10.1007/s10714-008-0744-z
http://arXiv.org/abs/1006.0099
http://dx.doi.org/10.1016/0550-3213(84)90228-1
http://dx.doi.org/10.1016/0550-3213(84)90228-1
http://dx.doi.org/10.1016/0550-3213(90)90615-K
http://dx.doi.org/10.1016/0550-3213(90)90615-K
http://dx.doi.org/10.1103/PhysRevD.72.044026
http://dx.doi.org/10.1103/PhysRevD.72.044026
http://dx.doi.org/10.1103/PhysRevD.75.024003
http://dx.doi.org/10.1103/PhysRevD.75.024003
http://dx.doi.org/10.1103/PhysRevD.73.044031
http://dx.doi.org/10.1103/PhysRevD.73.044031
http://dx.doi.org/10.1103/PhysRevD.76.084008
http://dx.doi.org/10.1103/PhysRevD.81.084048
http://dx.doi.org/10.1016/j.physletb.2006.10.049
http://dx.doi.org/10.1016/j.physletb.2006.10.049
http://dx.doi.org/10.1103/PhysRevD.75.084014
http://dx.doi.org/10.1103/PhysRevD.50.3932
http://dx.doi.org/10.1103/PhysRevD.80.083505
http://dx.doi.org/10.1103/PhysRevD.80.083505
http://arXiv.org/abs/0903.5320
http://arXiv.org/abs/0903.2297
http://arXiv.org/abs/0911.1787
http://dx.doi.org/10.1086/176550
http://dx.doi.org/10.1086/176550
http://dx.doi.org/10.1016/S0370-1573(02)00135-7
http://dx.doi.org/10.1088/1475-7516/2008/04/013
http://dx.doi.org/10.1088/1475-7516/2008/04/013
http://dx.doi.org/10.1103/PhysRevD.80.023532
http://dx.doi.org/10.1103/RevModPhys.75.403
http://arXiv.org/abs/0908.2243
http://dx.doi.org/10.1146/annurev.nucl.53.041002.110503
http://dx.doi.org/10.1146/annurev.nucl.53.041002.110503
http://arXiv.org/abs/0909.4672
http://dx.doi.org/10.1103/PhysRevD.70.043528


[33] H. Motohashi, A.A. Starobinsky, and J. Yokoyama,
arXiv:1005.1171.

[34] P. Zhang, Phys. Rev. D 73, 123504 (2006).
[35] R. Gannouji, B. Moraes, and D. Polarski, J. Cosmol.

Astropart. Phys. 02 (2009) 034; S. Tsujikawa, R.
Gannouji, B. Moraes, and D. Polarski, Phys. Rev. D 80,
084044 (2009).

[36] A. S. Goldhaber and M.M. Nieto, Rev. Mod. Phys. 82, 939
(2010).

[37] O. Bertolami, J.M. Mourao, and J. Perez-Mercader, Phys.
Lett. B 311, 27 (1993); O. Bertolami and J. Garcia-
Bellido, Int. J. Mod. Phys. D 5, 363 (1996).

[38] G. Robbers, N. Afshordi, and M. Doran, Phys. Rev. Lett.
100, 111101 (2008).

HERBERT W. HAMBER AND REIKO TORIUMU PHYSICAL REVIEW D 82, 043518 (2010)

043518-26

http://arXiv.org/abs/1005.1171
http://dx.doi.org/10.1103/PhysRevD.73.123504
http://dx.doi.org/10.1088/1475-7516/2009/02/034
http://dx.doi.org/10.1088/1475-7516/2009/02/034
http://dx.doi.org/10.1103/PhysRevD.80.084044
http://dx.doi.org/10.1103/PhysRevD.80.084044
http://dx.doi.org/10.1103/RevModPhys.82.939
http://dx.doi.org/10.1103/RevModPhys.82.939
http://dx.doi.org/10.1016/0370-2693(93)90528-P
http://dx.doi.org/10.1016/0370-2693(93)90528-P
http://dx.doi.org/10.1142/S0218271896000230
http://dx.doi.org/10.1103/PhysRevLett.100.111101
http://dx.doi.org/10.1103/PhysRevLett.100.111101

