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ABSTRACT

The path integral and the phase structure of simplicial quan-
tum gravity in four dimensions is investigated by computer simulation.
With a lattice analogue of the DeWitt functional measure and a higher
derivative term as a regulator, it is shown that two phases exist. In the
phase of the weak field expansion (small positive G) the simplices are
collapsed and no meaningful ground state exists within the context of
the model. In the other phase (large G) the curvature is small and neg-
ative, and approaches zero at the critical point in a continuous fashion.
From this phase, fluctuations in the curvature diverge at the critical
point, while fluctuations in the volume remain bounded. The critical
exponents at the transition are estimated. The results suggest the ex-

1stence of a non-trivial fixed point for quantum gravity at some finite

G..
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1. INTRODUCTION

Four-dimensional quantum gravity is a difficult theory to solve due to the un-
boundedness of the pure gravitational action, its non-renormalizability and non-polynomial
nature’. Recently substantial progress has been achieved in two dimensions both in the
continuum and on the lattice, where some exact results have been obtained. Understanding
properties of two-dimensional lattice quantum gravity is likely to be an essential step on
the way to formulating and solving a lattice theory of four-dimensional quantum gravity.
In four dimensions lattice calculations are more difficult since there are more terms in the
pure gravity action, there are no exact results in the full theory to compare with, and the
lattice structure and the interactions are more complex. For these reasons the lattices that
have been studied up to now are quite small. Furthermore there is a conceptual issue of
what physical quantities should be measured, and for what boundary conditions. Only
a small set of these questions have been addressed up to now, mostly pertaining to an
investigation of the phase diagram and the location of possible phase transition points.

We will concentrate here on the simplicial formulation of quantum gravity also
known as Regge calculus (for a review, see refs. 2?). One of the advantages of the approach
lies in the fact that it can be formulated in any space-time dimension (including the physi-
cally relevant case of four dimensions), and that it can be shown to be classically equivalent
to general relativity. Furthermore the correspondence between lattice and continuum quan-
tities is clear, and the interpretation of the terms in the action as well as the identification
and separation of, for example, the measure contribution is unambiguous*~1°. For a more

complete list of early references, see refs. %3, Important issues that need to be addressed
in lattice quantum gravity include the following:

Restoration of general coordinate invariance
Universality in lattice quantum gravity
Possible phases of the theory

A detailed deséfiption of the construction of the action for simplicial lattice grav-
ity without and with matter fields can be found in the literature*®91! and will not

?

repeated here. Here we will recall the geometric correspondence between continuum and
lattice quantities in four dimensions

/d‘*a: Vglz) — ZVh
h
/d‘*a: vVg(z) R(z) — 2 Z5hAh (1.1)
k
/d43‘ Vg(z) Ruype R*P°(z) — 4 Z‘SiAﬁ/Vh
| h

where 65, 1s the deficit angle at the hinge (triangle) k, Aj is the area of that hinge, and
Vi 1s the volume associated with the hinge A (which is not necessarily unique, since the
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lattice can be subdivided geometrically in more than one way; in the following we will use
the baricentric subdivision). Given reasonable geometric and positivity properties, univer-
sality is expected to lead to the same results in some continuum limit. One also notes that
in the simplicial formulation, as in the continuum, the local curvature R(z) ~ 26, An/Va
1s a continuous function of the relevant edge lengths. The straightforward geometric cor-
respondence of lattice and continuum quantities is one clear asset of the Regge calculus
approach. |

While simplicial quantum gravity can be formulated on a random lattice”, it
appears advantageous at least initially to adopt a regular lattice, which is much easier to
work with, at least from a computational point of view. Most of the simulations of lattice
gravity in four dimensions have been done for such regular lattices?1°~13. In most of the
following we will discuss results for a simplicial complex topologically equivalent to the
four-torus (periodic boundary conditions in all directions).

2. THE GRAVITATIONAL MEASURE

An important issue that needs to be addressed in lattice gravity 1s the problem
of the gravitational measure. In the continuum the form of the measure for the guy felds
appears not to be unique '°~'%. The reason for the ambiguity appears to be a lack of a
clear definition of what is meant by []_ in the functional measure. It would seem that
such an ambiguity persist in all known lattice formulation of quantum gravity. However
the difference among the measures seems to be in the power of ,/g in the prefactor, which
corresponds to some product of volume factors on the lattice.

DeWitt has argued that the gravitational measure should be constructed by first
introducing a super-metric over metric deformations, which in its simplest local form leads
to the reparametrization invariant norm?!®

1

i | M 2
5917 = 5 [ d'e/G x [42"2 +9400" 4 Xg 9] Sgubg0s (AE-2)  (21)

It then gives a functional measure for pure gravity in d dimensions of the form

dplg] = [ g9 V/8 T dg,, (2.2)

B2V

Another popular (pure) gravitational measure in the continuum is the Misner scale-

invariant measurel’ |
dulg] = [[ ¢~V I dg,. - (2.3)
T T g

It 1s unique if the product over z is interpreted as one over ‘physical’ points, and coordinate
invariance 1s imposed at one and the same ‘physical’ point. Other forms of the measure
for the gravitational field have also been suggested, inspired by the canonical quantization
approach to gravity!®. If matter fields are present, then the gravitational measure has to
be further modified'® (in the lattice context see the discussion in 12).
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On the simplicial lattice the edge lengths should be considered as the elementary

degrees of freedom, which uniquely specify the geometry for a given incidence matrix, and
over which one should perform the functional integral?®:*°. In our earlier work we have
employed the pure gravity measures

[adn= TI /ﬂ Cazu Eg 0.0

edges 1)

with ¢ = 0, -2, and F[{] a function of the edge lengths with the property that it is equal
to one whenever the triangle inequalities are satisfied, and zero otherwise. The parameter
¢ 1s introduced as an ultraviolet cutoff at small edge lengths: the function F. ] is then

chosen to be zero if any of the edges are equal or less than €. The introduction of such a
cutoft seems to be necessary in four dimensions?:1%  but not in two!2. The above measure

is of course correct in the weak field limit, where all continuum measures agree as well.
Since we have argued that it is not entirely clear what the measure in the con-

tinuum should be, it would seem of interest to explore the sensitivity of the results to the

type of gravitational measure employed. Another class of pure gravity measures which can

be written down on the lattice is obtained by considering the ‘volume associated with an
edge’ V;;, and writing for example

Jaudn= T [ viray rin (2.5)

edges 1)

with 20 = —1/d for the lattice analogue of the Misner measure, and 20 = (d — 4)/2d for
a lattice analogue of the DeWitt measure (note that the ‘Misner’ and di /1 measure share
the property of being scale invariant). One would like to see how the results depend on
the form of the measure and on ¢. Our results in two dimensions suggest that different
measures, within a certain universality class, will give the same results for infrared sensitive
quantities, like correlation functions at large distances and critical exponents. We believe
though that the lattice path integral might not be meaningful for certain values of o. We
have found in particular in two dimensions that if o is too negative, then the measure
factors tend to favor configurations of triangles which are long and thin, with a small
area and a large perimeter. In this case the lattice tends to degenerate into a lower-
dimensional manifold, a situation far from the desired continuum limit, and which one
would like to avoid. In two dimensions we have systematically studied the sensitivity of
the results for infrared sensitive quantities, like the fractal dimensions, on the measure. In
four dimensions, exploring the sensitivity of the results to different values of o is beyond

the scope of this work. Here we will present results that have been obtained for the DeWitt
measure (dI?), corresponding to o = 0 in eq. (2.5)

3. THE GRAVITATIONAL ACTION

We have employed the discrete analog of the higher derivative action in the form
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AL9
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h
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sttes p hinges h,h' Dp h h!

(3.1)

(the numerical factor €r,n 18 equal to 1 if the two hinges A, A’ have one edge in common
and —2 if they do not). The motivations leading to the above action are discussed in detail
in %1% and will not be repeated here. The introduction of the higher derivative terms
1s motivated by the fact that the resulting extended theory of gravity is renormalizable
in four dimensions'®~%°. To simplify things further we have actually set ¢ = 4b below.
The higher derivative term proportional to & acts as a regulator and allows us to establish
contact with results for continuum higher derivative theories. h

In four dimensions the classical continuum limit is taken by requining that the
local curvature be small on the scale of the local lattice spacing, which is equivalent to
1IMpOoSINg,

Apby 1
L —== 3.2
Vi vVVi (3:2)
and 1mplies
A%6?
ik &1 (3.3)
Vi

This condition can be met by having the coefficient of the curvature squared terms large;
otherwise the results are expected to depend on the detailed structure of the ultraviolet
cutoff (i.e. choice of lattice structure and lattice transcription of the continuum action).
Quantum mechanically it is known that the continuum limit has to be taken at a (non-
trivial) fixed point of the renormalization group, if one can be found.

In the classical continuum limit the above action is equivalent to the continuum
higher derivative action

[ = / 27 A= 5 B4 bRyype B9 + $(6=45) CuupoC*| (3.0

with a cosmological constant term (proportional to A), the Einstein term (k/2 =1/16xG,
where G 1s the bare Newton constant), and two higher derivative terms with additional
dimensionless coupling constants a~* and 51, It is known that the above action?! leads
to a renormalizable®* (and asymptotically free?3) theory in four dimensions, and for suf-
ficiently large A it can be shown that the action is bounded from below. It is also known
that higher derivative theories tend to have problems with unitarity in the weak field limit,
and these problems will have to be addressed by a full non-perturbative calculation?3.

4. PHASES OF PURE GRAVITY

Non-perturbative studies of quantum gravity are motivated by the search for a
non-trivial fixed point in four dimensions?®2. One of the advantages of the lattice a,pproa.ch.

9



1s that it allows non-perturbative calculations. The first numerical simulations for lattice
gravity, with the above action, were discussed in 2'°, As in the two-dimensional case, the
lattice was chosen to be regular, and built out of rigid hypercubes. This choice is clearly
not unique, and is dictated mostly by a criterion of simplicity, with the advantage that
such a lattice can be used to study rather large systems with little algorithm modification.
For the same reason up to now only the action with a = 45 only (no Weyl term) was
considered.

Let us now discuss some of the methods and the results obtained. In our previous
numerical simulations the lattice was chosen of size L x L x L x L with 15L* edges, and
only the cases L = 2 (240 edges), L = 4 (3840 edges), and exceptionally L = 8 (61440
edges), were considered. Here we will present rather accurate results for all three lattice
sizes, in order to provide an estimate for the volume dependence of the results. Periodic
boundary conditions were used, and the topology was therefore restricted to a hypertorus;
other topologies can in principle be studied by changing the boundary conditions.

In the case in which all the couplings are zero (a = b=k = A = 0) the total action
1s zero, and variations in the edge lengths are only constrained by the non-trivial gravita-
tional measure of eq. (2.5). Let us introduce here therefore some definitions. Quantities
of interest which have been computed include the average curvature R

< 22 OpAp >
=< [? > —axh — ,
R =<l*> S Vi (4.1)
and the average curvature squared R?
2 A2
R? = <[22 M (4.2)

which are here both dimensionless quantities, since they have been expressed 1n units of
the average edge length. Remarkably one finds that at strong coupling the system tends
to develop an average negative curvature®:1?,

When the parameters A, k and a in eq. (3.1) take non-zero values, then one finds
a sudden very sharp transition between a state in which the curvature is small and one
in which it 1s very large, presumably a reflection of the unbounded fuctuations in the
conformal modes found in the continuum. For example for the dl/l measure, A\ = 1 and
for small higher derivative coupling (a = 4b = 0.005), the average curvature R jumps from
a small negative value to a large positive one for k >~ 2.0 or greater. A similar type of
transition is found if k is kept fixed and A is varied?!%. The jump in R is so large, that
1t could be perhaps indicative of a discontinuous transition, and it was suggested that the
transition is connected with the lowest eigenvalue of the quadratic edge length fluctuation
matrix around the saddle point becoming zero and then negative, as in the case of the
regular tessellation of the four-sphere ag®®. Indications of a discontinuous transition were
later found also for the pure Einstein action in a fixed volume ensemble!3, as well as in
the hypercubic lattice formulation of gravity?4—27,

To turther explore these issues, which had been left unanswered by our previous
study, we have performed a number of large scale simulations of pure gravity, using the di*
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('DeWitt’) measure, and employing lattices of size up to §* (with 61440 edges) (we have
also done some short runs on 16* lattices (with 983040 edges), but we will not discuss the
results here in detail since the statistics is at this point still rather low). Let us emphasize
that at this point the nature of the results is still rather preliminary. A more detailed
- description of the results will be given in a separate publication?®. The lengths of our
runs typically vary between 24000 Metropolis Monte Carlo iterations on the 24 lattice,
6000 iterations on the 4* lattice, and at least 1200 iterations on the 8% lattice. In all cases
the starting lattices were duplicated copies of the smaller lattice, for each k, and as is
customary additional thermalization sweeps were performed for each lattice and value of
k, after duplicating the lattice. In Fig. 1 we show the distribution of curvatures OnAn
~ /g R(z) on the 16* lattice, for A = 1, £ = 0.2 and a = 0.005.

It 1s of interest to explore the dependence of the results on the measure, and to
investigate In more detail the transition between the ’smooth’ and the ’rough’ phases of
spacetime described above. Besides the quantities R and R? discussed before, we have
therefore also computed the lattice analogues of the fluctuations in the local curvatures

1 2 _ : _
R = S < (2;6;&-‘4&) > '{2;6};1‘1}1}] (4.3)

and of the fluctuations in the local volumes

XV = 2 E;Vh 3 < (Zh:Vh)g >~ < ;Vh >?] (4.4)

A divergence in the fluctuation is then indicative of long range correlations (a massless par-
ticle) in the relevant channel. The results obtained for the dimensionless average curvature
R are shown, for different lattice sizes, in Fig. 2. The statistical errors in R are estimated
by the usual binning procedure, and represent one standard deviation. One finds that as
long as one does not move too close to k., the autocorrelations are contained.

One notes that as k is varied, the curvature appears to go to zero at some finite
value k.. In the particular case studied, namely for A = 1 and a = 0.005, one finds
ke =0.239 £ 0.012 on the largest lattice (L = 8), with values compatible within errors on
the smaller lattices. For k close to, but less than, k. one can then write

~ I AY:
R ~ Aw(ke—Fk)

© 4.5
XR  ~ Ay (kc“‘k)ﬁﬁl (4.9)

k- k.

where & is a universal exponent characteristic of the transition. Performing a simultaneous
fit in A, k. and the exponents, one finds § = 0.61 + 0.04 (Ar = —3.68 £ 0.07) from the
average curvature, and 0 — 1 = —0.35 £ 0.22 from the curvature susceptibility (see Fig.
3). From the curvature susceptibility we estimate k. = 0.24 + 0.06, in agreement with the
previous estimate from the average curvature, but with a much larger error due to the
difficulty of estimating the susceptibility accurately on the larger lattice, since the runs are
still a bit too short, especially close to k..
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Figure 1: Histogram of the distribution of curvatures §,A4; ~ 1./9 R on a lattice with
15 x 16* = 983040 edges, and for A = 1, k = 0.2 and a = 0.005 (dI? measure).

In analogy to the two-dimensional case one can define a critical exponent Yy
which determines the leading volume correction to the curvature

k<[ gR> Yy — 2
4 <f\/§:> V—*mc-'_ V L (4.6)

Near k. one finds that 7, is, for the torus, quite close to and consistent with the value
2, namely v, — 2 = 0.023 & 0.010. This result is reminiscent of the two-dimensional case,
where «, is exactly two for the torus.

The above results are consistent with the picture of a vanishing curvature and a
divergent curvature fluctuation, at the same value of k.. We should point out though that
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Figure 2: Average curvature R as a function of k, for A = 1 and a = 0.005 (dI? measure).
The circles refer to L = 2, the squares to L = 4, and the diamonds to L = &.

one cannot entirely exclude a discontinuous (first-order) transition at k,, with a rather
small discontinuity. But from our results there is clearly no evidence either for such a
discontinuous transition. We notice that the numerical solution gives correctly a negative
sign for the average curvature, which is needed for ¥ < k. in order to have a positive
fluctuation xg. Also the average curvature becomes complex for & > k., reflecting the fact
that the theory becomes unstable in that regime, and that the curvature is really infinite
(or very large on a large lattice) in that phase. If we compute the volume susceptibility,
we find on the other hand that it approaches a finite value at k., suggesting the absence
of critical volume fluctuations (see Fig. 4). These appear to be desirable properties in a
theory supposedly describing gravity, where the excitations in the continuum are expected
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Figure 3: Curvature fluctuation xx as a function of %k, for the same parameters as in
Fig. 2.

to be massless gravitons, without any massless scalar particles and no massless volume
density fluctuations. |

On the other side of the transition (k > k.) one has that the curvatures are
infinite, since the simplices collapse into degenerate configurations with very small volumes
(< Vi >/ < 1? >%~ 0). This is the region of the weak field expansion (G — 0), and it is
therefore not surprising that it has difficulties in extending to the region where a sensible
path integral for pure gravity can be defined. A qualitative picture of the phase diagram
for pure gravity with our lattice action is sketched in Fig. 5.

It would appear that close to the transition one is dealing with two rather different
length scales. In an attempt to clarify the nature of this transition, one can define first a
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Figure 4: Volume density fluctuation xv as a function of &, for the same parameters as
in Fig. 2.

length scale Ry associated exclusively with the space-time average of the curvature, and
therefore related to some average curvature radius,

14
=~ (P (4.7)

As one approaches the fixed point at k., this length scale becomes very large. Naturally
another length scale M;! can then be associated with the average volume (per hinge or

per site)
N M, |
zh Vh = RE- ~ f\eff (4.8)

11




Smooth Phase Rough Phase

Weak Field Expansion

Figure 5: Phase diagram for pure 4-d gravity.

Close to and below the critical point this particular combination approaches some constant
value. From the numerical solution one then obtains for Ry

R{] k:k ARﬂ (k‘c - k)—6/2 (49)

with Ag, = 1.17 1+ 0.03 and §/2 = 0.31 £+ 0.03, and also for M, one gets

Mo ~ Au, (ko — k)—38/2 (4.10)

with Ay, = 0.216 £0.005. Here we have used the fact that for the dI? measure the volume
per site (or per hinge), as well as the average edge length, approaches a constant different
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Figure 6: Average volume in unit of the average edge length 50 < V; > / < 2 >2 as a
function of k, for the same parameters as in Fig. 2.

from zero as k tends toward k. from below. So does their ratio 50 < V3, > / < I2 >2~
(7.48 £ 0.01)/(2.25 £ 0.02)* ~ 0.293 + 0.002, shown in Fig. 6 (The factor of 50 arises
since there are 50 hinges or triangles per site for our regular hypercubic lattice). This
ratlo 1s zero in the other phase, indica.ting a sharp discontinuity at ¥ = k.. The fact that
the volume is discontinuous as k. is consistent with the fact that the volume fluctuation

approaches a finite value, and does therefore not diverge, at k..

Our results therefore suggest that one is dealing simultaneously with a very large
(Ro) and a very small (M;™') length scale, associated with the curvature and density of
the 'universe’, respectively. In particular we conclude that the dimensionless ratio of R;1
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over My is given by

1 (ﬂ) -
RoM, ~ &2/ esr v Zh

As k approaches the fixed point k., this quantity vanishes with a power which we estimate
at about 26 = 1.22 +0.08 > 0, in agreement with the observed fact that the renormalized
cosmological constant is very small, once it is expressed in the approprniate units. In our
model this is simply a consequence of the fact that the curvature is small in units of the
volume, as long as one does not cross over into the ’rough’ phase of gravity (k > k.). There
no sensible ground state seems to exist, at least within the context of our model.

The results presented above for the average curvature R are not inconsistent with
known results within the weak field expansion in the continuum. Substituting ¥~! = 87G,
and setting k. = cA?, where ¢ is a constant independent of k, and A the ultraviolet cutoff
(here of the order of the average inverse lattice spacing ~< 12 >=1/ ?), one obtains

(k. — k)?%° (4.11)

R ~Ar (‘é%)ﬁ (1 — cA*8xG)° a1
~AR (é%:?:)éj (146 cA*(—87G) + 5_@.2—_1.2 (cA?)? (—87G)? + - ] |

One can see that, besides R possibly not being analytic at G = 0, an expansion in powers
of G involves increasingly higher powers of the ultraviolet cutoff A, as expected from a
theory which is not perturbatively renormalizable in G. The above results are therefore
not inconsistent with what is known in the continuum. |

More detailed and careful computations are needed to better understand these
interesting issues, and it seems that correlations should be computed in order to determine
the excitation spectrum. It also of course of interest to understand better the phase
diagram of the theory, and how the results depend on the dimensionless higher derivative
coupling a. One would expect that the exponents do not depend on a, unless a new
phase occurs for large enough a. It would also be interesting to make contact with the
perturbative results for large a obtained within the weak feld approximation. Similarly
we would expect that the results for the exponents should not depend on small variations
in the gravitational measure, as is the case in two dimensions, but these issues need still to
be explored in four dimensions. Matter fields (bosonic or fermionic) can also be included,
and they could play a role similar to the higher derivative terms in stabilizing the ground

state. In this last case one could distinguish between external fixed matter distributions,
and the effects of dynamical matter loops.

5. CONCLUSIONS

In the preceding sections we have discussed results relevant for a model of sim-
plicial quantum gravity in four dimensions. It is characteristic of our model that the

variations in the geometry of space are described by fluctuating edge lengths on a lattice
with fixed coordination number.

In four dimensions we have studied in some detail a model for pure lattice gravity,
with a higher derivative term acting as a regulator, and using a lattice analogue of the
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DeWitt measure. In our earlier work we had found on small lattices a rather sudden
transition between a 'smooth’ and a ’rough’ phase of pure gravity. The detailed nature
of that tramsition had remained unclear. We have now extended our earlier results on
the phase transition to a different measure, as well as to much larger lattices, and have
shown that the transition appears to be continuous if it is approached from the smooth
phase (small k or large ), which is characterized by a negative average curvature. The
usual weak field expansion on the other hand starts out in what has been described here
as the ‘rough’ phase, and for which there appears to be no sensible definition for the path
integral, in the sense that the curvatures are almost infinite and the volumes are almost

zero, 1n units of the average edge length, and the lattice model therefore ceases to be a
usetul representation for the theory.

We have computed critical exponents associated with the non-trivial fixed point
of four-dimensional euclidean gravity, and have shown that at the point where the average
curvature vamshes, the curvature fluctuations diverge. Furthermore the values of the
exponents computed show that the quantity 1/RoMy ~ (4)\/k?),. ;s vanishes at the fixed
point as well.

Many questions have remained open. It would be of interest to investigate how
our results depend on the coupling a, and complete the picture for the phase diagram for
pure gravity. For larger a one expects that the transition will move to larger values of k.
The sensitivity of the results on the measure should be explored further. It would also

be of interest to investigate these questions in the presence of matter fields, as well as for
surfaces with boundaries.
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