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We investigate the lattice gauge theory with fermions at infinite coupling and show that, after formal integration over 
the fermion fields, it reduces to the Wilson pure gauge theory in the limit when the number of fermion flavours nf ap- 
proaches infinity. When the boson fields are integrated over instead, the action describes a local theory of Fermi fields only. 
For finite nf the ferrnion action contains a finite number of terms. 

1. Introduction. The idea that fermion fields are 
the fundamental constituents of matter is not new. 
Several studies have claimed in the past the equiva- 
lence between theories with four-fermion interactions 
and renormalizable ones [ 1 - 3 ] .  The equivalence is in 
general rather formal and the removal of the cutoff 
presents often substantial difficulties. Still four- 
fermion theories have served from the beginning as a 
useful tool in understanding the dynamics of sponta- 
neous chiral symmetry breaking. On the other hand, 
it is known that the elimination of the boson fields 
from a renormalizable gauge theory leads to a non- 
local interaction among the fermions, and not to a 
simple four-fermion interaction. In recent theories of 
induced gravity also the gauge field action is obtained 
as an effective one, after some matter fields repre- 
senting short distance fluctuations have been inte- 
grated out [ 4 - 6 ] .  

The lattice provides a natural cutoff for investi- 
gating these questions in a controlled way, preserving 
the gauge symmetry of the theory [7]. Recent 
studies have been able to investigate the question of 
chiral symmetry breaking on the lattice at strong and 
intermediate coupling. In this paper we address the 
question of whether a gauge interaction can be in- 
duced on the lattice, when the original theory con- 
tains Fermi fields but does not include an explicit 
kinetic term for the gauge fields. We start out with 
the Wilson gauge theory [7] with group SU(N) at in- 

finite gauge coupling with nf fermion flavors. After 
integration over the fermion fields we show that, in 
the limit when the number of flavors approaches in- 
fruity, nf -+ ~ ,  the Wilson pure gauge action is re- 
covered. In order to determine the equivalence of the 
theory so defined to a local theory of fermions only, 
we then perform the functional integral over the 
gauge boson fields instead. For this task we use 
known results for the one link integral in SU(N). 
Then it can be shown that the interaction involves 
arbitrary powers of local fermion operators, and the 
first term in the expansion is a local current -current  
interaction among the fermions. When the number 
of fermion flavors is finite the action contains only a 
finite number of terms, as a consequence of the anti- 
commutation properties of fermion fields. 

2. The model. Consider the Wilson lattice gauge 
theory with fermions defined by the action [7] 

S = S G + S F (2.1) 

with 

1 + + 
tr V,, .V,,+~,,y,~+., , ,U,; ,v + c.c., 

SG - g2 n,u < v 

t 't '/ '/+/2 ~ n,~t wn 
f n,/z 

- ~ ~a ~ff)~ff), (2.2) 
f n 
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The Un, u's are N by N complex matrices elements of  
the group SU(N). The index flabels the different nf 
flavors, and we assume that the flavor symmetry is 
unbroken so that kf = k for all flavors, k plays the 
role of  a fermion mass parameter in the theory. The 
matrices Pu and P~- are defined as 

P ~ , u  = ½(r + 7u)~t3 , (2.3) 

where 7u is an euclidean gamma matrix, and r is a 
parameter that is allowed to vary between 0 and 3, 
thus interpolating between Kogut-Susskind and 
Wilson fermions. 

Let us now consider the case o f  infinite coupling, 
3/g 2 = 0. Then the action consists only of  the 
fermionic part, and the partition function becomes 

ZF =f [dU] [d~] [d~0] exp{--SF[U , ~,  ~O] ). (2.4) 

Here [dU] is the Haar measure for SU(N), and the 
fermion integration means 

[d~] [d~] = [ I  d~an (f) [-I a,r,b(f') (2.5) 
n,a,a,f m,~,b,f' uw {3m " 

Using the Matthews-Salam formula, the integration 
over the fermion degrees of  freedom can be done ex- 
plicitly, giving the result 

Z F = f [dU] [det(1 - kA)] nf, (2.6) 

where we have introduced 1 - kA as the operator 
defining the fermion quadratic form in (2.2). 

It is easy to see that, to lowest order in k, the ef- 
fect o f  the fermion loops in the full theory is to shift 
the gauge coupling constant. When the gauge coupling 
is infinite to start with, the one plaquette interaction 
term is generated dynamically. To see this expand 
the statistical factor in (2.5) in powers of  k. After per- 
forming the integrals over the Fermi fields one obtains 

Z F = R f [dU] e x p { - S  G [U] } [3 + O(nfk6)]. (2.7) 

The constant R is given by 

R = exp {nf V2 d/2 [(½ k)2d(r 2 - 1) + (½ k)42d2(r 2-1)2]  }, 

(2.8) 
with V the volume and d the (even) dimensionality 
of  the lattice. The induced gauge coupling in S O is 

given to this order by 

g -2  = (1 + 2r 2 - r4)2d/2nf(½ k) 4. (2.9) 

In general the contribution of  higher order in k will 
involve Wilson loops of  arbitrary size and shape. But 
if the limit nf -+ oo is taken for fixed g (or g going to 
zero more slowly than n(1/2),  then the next contri- 
bution is of  order n fk  6 or 1/g3nlf/2 and can therefore 
be neglected. In this limit one recovers therefore the 
Wilson pure gauge action 

lim f[d~] [ d~ ]exp{ -SF[U ,  ~, ~] } 
.v/f--+ ~ 

= R  exp ( -SG[U]  }, (2.30) 

with the gauge coupling given by eq. (2.9). 
So far we have not commented on the question of  

chiral symmetry and species doubling for the fermion 
lattice action. Let us briefly recall some important 
general features of  the theory at strong coupling. 
Chiral symmetry is best discussed in the framework 
of the Kogut-Susskind fermion action (r = 0) [ 8 -10 ] ,  
since in the Wilson case (r 4= O) chiral symmetry is ex- 
plicitly broken. In the first formulation one starts out 
with the fermion action of  eq. (2.2) at r = 0 which is 
known to describe 3 6nf flavors instead of  the nf of 
the continuum case. In four dimensions the transfor- 
mation [10] 

~ ' n l ^ ' n 2 ^ ' n 3 ^ ' n 4  -~n --  + ~n=TnXn ,  T n = t l  12 "3 14 , =XnTn,  

(2.11) 

turns the action S F for r = O, into 

= '  G G [x 2. v + x ¢r> - x m V  x ¢c> ] SF ~ n,/a n n n,/a n+/a 
f n,~ 

- m  ~ ~ v(f),~(f) (2.32) 
z ~ n  A t l  ' 

y n 

where ~?n,u = ( -1)n l  + " ' + n u - 1  ' and  we have rescaled 
the fermion fields by a factor (½k) 1/2. The mass 
parameter in this formulation is thus m = 2/k. 

It is known that, written in this form, the theory 
describes 4nf fermion flavors and has a continuous 
U(n) × U(n) chiral symmetry when the mass param- 
eter m is set to zero. Here n is the number of non- 

color indices of  the X fermion field. The spontaneous 
breaking of  the chiral symmetry was shown in refs. 
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[8 -10]  at strong coupling and large N. In this limit 
the condensate wavefunction was found, in four di- 
mensions, to be [10] 

<~, ~n) = NN/~-. (2.13) 

The pseudoscalar meson mass can also be computed 
in this limit, and for small rn it is given by 

M 2 = (12/v'7)m + O(m2). (2.14) 

It is also known that these results remain qualitatively 
correct for intermediate and weak g2 [11,12]. 

3. The fermion theory. In this section we will de- 
five the purely fermionic theory that corresponds to 
the action S F of  eq. (2.2). In the previous section we 
choose to integrate over the Fermi fields in order to 
show the form of the effective gauge boson action. 
Here we will do the integral over the link variables in- 
stead, keeping the fermions unintegrated. To do the 
integral over the Un, u variables we use known resu_lts 
for the one-link integral. Define the fields A and A as 

ab = ~a p+ djb ~lab = - a  - b (3.1) 
An,u ~'n+~:u~'n , n,ta ~nPu ~n+u' 

and we have suppressed spinor and flavor indices for 
notational simplicity. Next we define the function 
W(A , A )  as 

exp[W(.4,A)] = f [dU] exp[tr(.4U + U+A)], (3.2) 

and for the induced fermion action we obtain the ex- 
pression 

In f [dU] e x p { ~ F [ U ,  ~, ~] ) 

= ~ W(An,u,An,u)+ ~ ~n~2n . (3.3) 
n ,p  i"t 

For the gauge group U(1) the function W(.4, A) is just 
in 10(2 tr(AA) 1/2, where I 0 is the modified Bessel 
function. In the case of  the group SU(N) the function 
exp[W(A, A)] is known explicitly for SU(2), SU(3) 
and large N [13-17] .  A few terms in the series ex- 
pansion of  W for small tr(AA) 1/2 ("strong coupling") 
are known for any N 

W(A,A ) = W -1 tr (.dA) 

+ [2N(N 2 - 1)] -1 [N- l ( t r  fi, A)2 _ tr(~A)2] + ... 

+ (2N)- l (det  A + det $ )  + .... (3.4) 

For weak coupling one has [13] 

W(A, A) = 2N tr(.,4A) 1/2 - 

(3.5) 

where the ~ ' s  are the eigenvalues of  (AA). Thus, as 
in the case of  the logarithm of the Bessel function, 
the function W(A, A )  has a quadratic behaviour in 
(.4A) 1/2 for small argument and becomes linear for 
large argument. In order to see the explicit expression 
for W as a function of  the fermion fields introduce 
the composite fields 

- N 6 . n  6 ~ n ,  ( 3 . 6 )  Ma~3,n - - 1 - a  

and 

Bo~l...aN,n = (1/NV~ dial ... aN • X - a l . . . a N r a l , n  ~ a N , n ,  

- -  - a N  - T . . .  - 1 . . .  ( 3 . 7 )  Ba,.. .aN, n - (l/N.)%, aNqfal n ~aN, n 

Then substituting (3.6) and (3.7) in (3.3) we obtain 

in f [dU] e x p ( - S F I U ,  t~, ffl ) 

= N  ~ { - t rMnP;Mn+uP;  + [N2/2( N2 - 1)l 
tl , p  

X [N-I( trMnP~Mn+uP~) 2 

- tr(MnPSMn+uP~)2l + ... } 

n,la 

+ (+ "~ --, Bn+u -+ Bn, Bn -+ Bn+g)]" (3.8) 

Note that for r = 0 the first term is just a familiar cur- 
rent-current  interaction 

- N  ~_J ~ (~a(f)~ ,bb(f)]t~,b(f'),~ ,l,a(f')~ (3.9) 
f , f '  n,l.t ~Vn zta'rn+taJ~Wn+ # zttWn /- 

For r ¢ 0, although less familiar, it still involves the 
conserved vector current on the lattice. 

Because of  the anticommutation properties o f  the 
fermion fields, one can show that for finite nf the 
series in (AA) 1/2 for W(AA) actually truncates. One 
has the following properties 

~X = qjk = 0  for k > A m ,  (3.10) 

and therefore 
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M k = 0 for k >Nn,  

Bk = B k = 0 for k > n. (3.11) 

Here n is equal to nf or 4nf depending on whether one 
is considering Wilson or Kogut-Susskind fermions. 
As the number of fermion flavors increases, the num- 
ber of nonzero terms in the series for the effective 
fermion action increases, and involves higher and 
higher powers of the fermion fields. The effect of 
these terms will be equivalent to gradually order the 
Un,u fields (rotate them towards the identity in group 
space, up to a gauge transformation), in complete 
analogy with the pure gauge case when the coupling 
constant g2 is decreased. 

In conclusion let us summarize our results. We 
have shown that the Wilson lattice gauge theory with 
nf fermion flavors at infinite coupling is equivalent 
to the pure gauge theory when the number of fermion 
flavors is sent to infinity, with a coupling given by eq. 
(2.9). We then showed that the same theory can be 
regarded as describing a set of interacting Fermi fields 
only, with an action that is given by a finite number 

of local terms for finite nf. 
After this work was completed, I received a pre- 

print by Bander [18], in which similar ideas are de- 
veloped. He does not consider the case of fermion 
fields. 

I wish to thank Steve Adler for a useful conversa- 
tion. This research was supported by the US Depart- 
ment of Energy under grant no. DE-AC02-76ER02220. 
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