
Volume 136B, number 4 PHYSICS LETTERS 8 March 1984 

THE AXIAL VECTOR CURRENT ANOMALY AND THE MESON DECAY CONSTANTS 

FOR THE IMPROVED LATTICE FERMION ACTION 

Herbert W. HAMBER and Chi Min WU 
The Institute for Advanced Study, Princeton, NJ 08540, USA 

Received 15 November 1983 

We discuss the anomaly in the axial vector current for the improved fermion action on the lattice. A detailed discussion 
of the fermion regularization dependence of the anomaly is given and it is shown that for finite lattice spacing the improved 
fermion action gives a more reasonable value for the anomaly contribution at finite quark mass than the Wilson action. We 
also present some results on the perturbative corrections to the decay constants of mesons for the improved fermion action. 

Introduction. In a previous paper [ 1 ] we proposed an improved fermion action on the lattice by adding a next  
nearest neighbor interaction term to the generalized Wilson fermion action [2]. We gave arguments there which 
suggested that the proposed action should approach the continuum limit more rapidly, and suggested to investi- 
gate whether theoretically motivated improvements would also lead to improvements in the quality of  the numer- 
ical results. 

In this paper we address the question of  the behavior of  the axial vector current anomaly for the improved 
fermion action for small quark masses, and elucidate the role of  the species doubling fermions in reproducing the 
correct anomaly contr ibut ion in the continuum. This problem is of  importance because of  the well known con- 
nection between the anomaly and the ~7' mass. We show that for finite and not too small quark mass (in lattice 
units) the coefficient of  the anomaly has a strong dependence on the fermion regularization. The suppression of  
the anomaly contribution for the Wilson fermion action at finite mass will be shown to be significantly reduced 
when the improved fermion action is used. Further  on we compute the perturbative correction factors for the 
meson decay constants to lowest order. These factors are useful in comparing the decay constants on the lattice 

with those in the continuum. 

1. Theaxial anomaly for  the improved action. It  has been recognized since a long time that the spontaneous 
breaking of  chiral symmetry is a cornerstone in the understanding of  low-lying hadron spectroscopy [3]. It is also 
of  course, an important  topic in the context  of the lattice gauge theory. 

It was pointed out by several authors [ 4 - 6 ]  that the Wilson fermion action reproduces the correct anomaly in 

the continuum limit. 
In our previous paper [1 ] we proposed an improvement action of  the following form 

S = Sgaug e + Sfermio n (1.1) 

with 

1 ~ + + 
= ~ tr[Un,uUn+u,vUn+v,uUn ,v + h . c . -  2] , Sgauge g2 n,ta<v 
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= _ , - -  + + 
Sfermio n k ~ [~n(r 7u)U n u~n+u + $n+u(r 7u)Un,u~nl + ~ [~n(C- DTu)Un,uUn+u,u~Sn+Zu 

n da n , #  

- + + + D ~ n ~ n  • + ~n+2u(C D~tu)Un+u,taUn,tat~n] - 
n 

(1.2) 

This action gave the Feynman rules for the fermion propagator and the three-point fermion-gluon vertices in the 
form 

S~ 1 (p) = 1 - 2k ~ (r cos Pu - iTu ~in pu ) - 2 ~ (C cos 2pu - iDTu sin 2pu),  
tz /z 

V(3)(p, q) = 2g[kr sin ~-(p + q)u + ikTu cos ~(p + q)t~ 

+ 2C sin(p + q)u cos ~(p - q)u + 2iDTu cos(p + q)u cos ~(p - q)u] Ta " (1.3) 

Here the T a's are the generators of  SU(N) and the hopping parameter k is related to the fermion mass. We then re- 
quire that the fermion propagator and the vertices approach the continuum limit rapidly, which is achieved by ad- 
justing the coefficients of  the O(p 2) and of  the O(p 3) terms in the fermion propagator to be zero. In this way we 
get the constraint 

C = - ~ k r ,  D = - ~ k .  (1.4) 

Notice that what we have written down is basically a truncated SLAC derivative fermion action, in the sense that 
an improvement to all orders in p would correspond just to using the (nonlocal) SLAC derivative formulation [7]. 

We will now discuss the axial anomaly for the improved ferrnion action. By performing the chiral transforma- 
tion on the fermion fields 

~n "-~ exp(i750)~n , ~n ~ ~n exp(i750),  (1.5) 

we get the lattice axial Ward identity 

x:rS(2) - 5 ( 2 )  "1 -- D [t5(1)t°u,n - ~ta,n-ul5(1) +~iLat~,n-ah,n_2u,]  2 m J S - X n = O ,  (1.6) 
/z 

where we have defined 
- -  + 

~t~,n15(1) = k[~n3'u'Y5Un,#~n+u + d/n+taTuT5Un ,u t~n] , 

ju5(2) = 1 - t~n+2t, T#T5Un+~,uUn,ut~n ] , ,n - ~k[~nTuT5 Un,# Un+ta,ta~n+2~ + - + + 

m = (2/3k)(1 - 6kr) ,  J5 n = (3k/2)~n75~ n , 

- -  _ _  + - -  + 

X n = 12kr~n75 t~ n - kr ~ [¢n75Un,uqJn+ ~ + qJn_u75Un_u,uqJn + ~n75Un_~,ts~n_u + ~n+u3,5Un,u~kn] 
Iz 

+ ~kr ~ [~n~StY.. ,U.+, .~n+2, + ~.-2.~5 U.-2~.ut:.-~., ~, 
# 

+ r U + ..+ - - + + 
~nT5 n-#,t~Un- 2#,u ~n -  2u + ~n+ 2ta')'5Un+t~,tzUn,t~ t~n] . (1.7) 

The V - V - A  three-current matrix element is defined as 

exp[ - - i (pn  +qm)](OIT(J~ . b  r5(i)aa0s - r~ab(i)ir~ q) + r'ba(i)(n n~ 
, H d u , m a ~ ,  0 , 1 1  t - -  X O t l a  v , , t - ' ,  l a p #  ~ . ~ ,  r j  , 

n , m  
(1.8) 
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Fig. 1. (a), (b) The lowest order contribution to the V - V - A  
three-curren matrix element. 

and 
2 2 

ab + ba ~ b(i) ~ l avu tel, . : FaaUv (t 9, q) + p) (1.9) l.auv(p, q) i .avu(q,p)  ~ba(i)r_ 
i=1 i=1 

The quantity j a  is the vector current 
I z , n  

j a  = g k i ~ n ( r _  7u)Ta¢  n+u_  fn+u(r + 7u)rat~n] u,n (1.10) 

_ g k [ f n ( ~  r 1 gvu)Tat~n+2 u + ~n_u(~ r _ 1 - a 1 - 1 1 _ _ _ ~kn+ 2u(~ r + g7 u) T a ~b n ].  gTu)Tatkn+u ~kn+u(~r + gTu)Ta~n_  # 

The lowest order contribution to this matrix element on the lattice is given by (see fig. la  and lb)  

ab ba f d4k ~ . 1 Fauv(P'q)  + Pavu(q 'P)= - 2 k  tr(TaTb) a ( ~ ) 4  tr{7~Ts [c°s~(2k + 21+ p - q ) ~ - ~ c ° s ( 2 k  + 21+ p -  q)~] 
- -  Tt 

X S F ( k + p + l )  V ( u 3 ) ( k + p + l , k + l ) S F ( k + l ) V ( 3 ) ( k + l , k - q + l ) S F ( k - q + l ) ) + ( p ~ q , # ~ , v  ) ,  (1.11) 

where we have shifted the internal momentum k u ~ k  u + l u, and lu can be taken to be a linear combination of 
the external momenta  

l u = cpu + dqu . (1.12) 

The coefficients c and d will be determined later in order to satisfy the vector Ward identity. We also wish to de- 
fine the following quantities 

exp [ - i (pn + qm)] a b 5 ab ba = 2mPvu (q, P) 2mFuv(P, q) + (0 IT(J u ,n Jv ,m 2mJ0)10) , (1.13) 
n,m 

and 

exp [-i(pn + qm)] (OIT(J~,nJb,mXo)lO) = ab ba X~v(p  , q) + Xvu(q , p) . (1.14) 
n , m  

ab xab  ~ ,  , The lowest order contributions to 2mFuv(p ,  q) and uvlP q) are given by 

ab i d4k 2mr~v(p ,  q) = - ~k tr(Ta7/~) (-~n)4 tr[2m75SF(k + p + l) 

× V ( u 3 ) ( k + p + l , k + l ) S F ( k + l  ) V ( 3 ) ( k + l , k - q + l ) S F ( k  q + / ) ]  , (1.15) 

and by  
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ab f d4k Xuv(p , q) = - k  t r(TaT b) tr(75 [/l~t(k + p + / )  +/14(k - q +/)]  SF(k + p + l) 
_ .  (2rr) 4 

X V(u3)(k + p + l , k  + l )SF(k  + l ) V(3)(k + l , k -  q + l )SF(k  q + / ) } ,  (1.16) 

where we have set for brevity 

1 a4(k) = 6r - 2r ~ (cosk  - gcos 2k)o . (1.17) 
P 

In this way we can give the deviation in one loop level from the tree axial Ward identity o feq .  (1.6). In momen- 
tum space, it can be written as 

b Tauv(P, q) = 

ab (1) 1 pab(2)  _ ab ab {1 - exp [ - i ( p  + q)c~]}Pc~uu (p, q) + ~ ~ {1 - exp [ -2 i (p  + q)c~]} ,~uv (.P,q) 2mFuv(P ,q ) -X~v(P ,q )  
ot ot 

d4k + p ) + i ~ ( k + l + p ) ]  +[M(k q + / ) + i S ( k  q+/) ' ) '5]  =ktr (TaTb)  ' (-~n)4 tr(75 [M(k +l - _ 
- -  Vr 

X SF(k + p + l) V(3)(k + p + l, k + l) SF(k + l) V(3)(k + l, k - q + l) SF(k - q + / ) } ,  (1.18) 

where 

1 2 k ) p =  j ~ ( k )  3 M ( k ) = ~ m + 6 r -  2r ~ ( c o s k -  ~cos + ~ m ,  
P 

and 

(1.19) 

if(k) = 2 ~ 7u(sin k - ~-sin 2 k ) , .  (1.20) 
u 

After taking the trace, we obtain 

b ba ; d4k [cos1 + + 1 1 ~(2k p 2 / ) u - - g c o s ( 2 k + p + 2 / )  u cos~pu]  ~v(P, q) + T~u(q,P) = - 1 6 g  2 tr(TaTb)%u~v 
-lr  j (2rr) 4 

1 Sp(k + 0 
× [cos ~(2k + 2l  - q L  --  ~ cos(2k + 2t - q)v cos ~ qv] . . . .  

M2(k + l) + S2(k + l) 

I so(k + l+ p) + t -  q) 
- ~ + (P ~ q, U '+ v ) ,  ( 1 . 2 1 )  

X M 2 ( k + l + p ) + S 2 ( k + l + p  ) M 2 ( k + l - q - ~ 2 ~ + l _ q )  

where we have set 
1 Su(k ) = 2(sin k - ~ sin 2k)u , S2(k) = 4 ~ (sin k - gsml. 2k)2 . (1.22) 

# 

We now expand (1.21) in powers of  the external momenta  and keep terms up to second order 

a b  b a  T~v(p , q) + Tvu(q , p)  = (g2/4rr2) tr(TaTb)eau#vpaq#(c - d)I(r) , (1 .23)  

where l(r) is the integral 
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32 7-  M(k) II4=l(COsk - ~cos2k)x2~(k) 
I(r) -- m-+01im ~-~ j d4k (1.24) 

-*r [M2(k) + S2(k)] 3 ' 

with 
4 1 2k) 2 + (sin k - g sm 2k)o(sin k - i sm 2k)o (1.25) M(k) = }m + 6 r -  2 r ~  (cosk - ~cos , . 1 . 

1 
p (cosk  ~cos 2k)o 

In a similar way we get the vector Ward identity 

~ .  ab ba lp u [r~uv(p, q) p)] = - (1.26) + F~vu(q, (g2/8zr2) tr(TaTb)(c d + 2)e~ovoppq~I(r ) . 

The total axial anomaly contribution is then 

ab ba Xuu(P, q) + Xvu (q, P) = (g 2/27r2 ) tr( Ta Tb) eta~ vtsPaqJ (r), (1.27) 

where we have defined 

7 ( 0  = lira 32 f d4k~r(k)lqp( c°s k - ~- cos 2k)oM(k ) (1.28) 
m~0 7 -Tr [M2(k) + S2(k)] 3 

The coefficients c and d are determined by requiring that the vector Ward identity be satisfied 

d -  c = 2 .  (1.29) 

Now a very careful treatment for the anomaly coefficients I(r) andT(r) is needed. Generally speaking, the regular- 
ization parameter o~ can be sent to zero only after the momentum integration has been performed. This means 
that in the integrand of  the expressions in eqs. (1.24) and (1.28), the parameter m goes to zero but cannot be set 
to zero. 

To proceed further we divide momentum space into 16 regions and calculate each fermion species contribu- 
tion to the anomaly separately. It is known that in the ordinary (nearest neighbor) generalized Wilson fermion 
action (the action of  eq. (1.2) with the next nearest neighbor terms) one has on the lattice 16 fermion species in- 
stead of  the one expected in the continuum. All o f  them except one have a mass of  the order of  the cutoff. In 
Wilson case, at k --- k c the particles at pa ; [Tr, 0, 0, 0] have a mass 2r/a (and there are 4 of  them), at [rr, rr, 0, 0] 
a mass 4r/a (6), at [Tr, rr, rr, 0] a mass 6r/a (4), and the one at [n, rr, k, 7r] a mass 8r/a (1). 

Here, as in the ordinary Wilson case, the different species are classified in 5 categories withmultiplicities 
C O = 1, C 1 = 4,C- 2 = 6, C 3 = 4, C 4 ; 1. The total anomaly can be decomposed into its 5 species contributions and 
written as 

4 

I(r) = ~ CiBi(r) 
]=0 " " 

and analogously 
4 

~(r):i~=oCf'B/(r) 

with 

(1.30) 

(1.31) 

Bj(r) mfimo Ai(r, m),  

~r/2 
A](r,m)=-~2 2 2  d 4 k ~  

M(k)I14=l (cos k - ~ cos 2k)~ M(k) 

[M2(k) + S2(k)] 2 

(1.32) 

(1.33) 
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"ff/(r) = lirn A,(r, rn ), (1.34) 
m._~O I 

~r/2 /14(k) I14= l(COS k - ~ cos 2k)x/~(k ) (1.35) 
32 f d4k '~/ 

A/(r, m) = ~ _ /2 [/142(k) + S2(k)] 2 

The momentum shift operator Tj is defined as 

~jf (k l ,k  2 .... kj, kj+ 1 .... ) = f ( k  1 +rr, k 2 +Tr .... kj + n,k/+ 1 .... ), (1.36) 

with T0 = 1 andj  = 0, 1 ,2 ,3 ,  4. (r , m) is a continuous function of m and we have Bj(r) = ( r ,m = 0). By 
using the following identity (valid for any value of m) 

( 4 (s ink_ts in2k)p d ) i M  1 M(k)M(k) 
' Z )  ( 1 .37 )  1 + ~  = , 

p=l (cask ~-cos2k)p dk;  2(k)+S2(k)]2 [M2(k)+S2(k)]3 

one can easily show that the integrand of Aj(r, m) and A/(r, m = 0) can be expressed as a total derivative 

B / ( r ) = l i m  8 ~/2 ~--~1~-( - -~-s in2k)xlIa~,(cosk ~cos2k)~)  (1.38) m~O ~'2 f d4k ~] (sink 1 
- . / 2  = ~ [M2(k) + S2(k)] 2 ' 

1 • 1 2k).  ) 8 7r/2 f ~ l d (  ( s ink -~sm2k)x l Io ' x (cOsk -gc°s  - . (1.39) 
Bj(r) = ~-~_ /2 d4k = ~ " [M2(k) + S2(k)] 2 Ira=0 

After integrating over one momentum in (1.38) and in (1.39) we get 

"B0 =B0 -- 1 = 7r-24J 0 -- 1 , B1 =B1 = -rr-2 ' (Jo - 3J1) ,  B2 =B2 = - " - 2 ( 2 3 1  - 2J2) , 

B3 = B3 = --rr-2(3J2 - J 3 ) ,  

where we have set 
~r/2 

B4 =B4 =-Tr -24J3  , (1.40) 

1 I-[3=1 (COS k - g cos 2k)h 
J i = 1 6  rr f d3kTi " ~ r -  Z3(cosk -~cos2k )2]2+4+aE3(s ink -~s in2k ) i }2  ' (1.41) - / 2  ( [~-m + 2r  ~ p 

(i = 0, 1,2, 3). The difference between B 0 and B 0 comes from the infrared singularity in B'O. From (1.30), (1.31) 

I I I I I i i i i I i 

E 0 r = O . 4  
%_ 

E 

~ - . 5  

E -~ 
o 

o .5 t 
Q u a r k  Mass  m 

-.5 

- 4  

I I I I I ' I ' I I ' 

i i i I i i t i 

.5 
Q u a r k  M a s s  m 

b 
I I 

t 

0 

- . 5  

-4  

I I I t  l l l l  I I I J  

0 .5 4 
Q u a r k  M e s s  m 

Fig. 2. (a) The behavior of the anomaly coefficient ~(r, m) (see eq. (1.27)) for the Wilson action. (b) The behavior of~(r, m) for 
the improved action. (c) A comparison of I(r, m) for the Wilson and improved actions at r = 1. 
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Table 1 
l(r, m) for the Wilson and improved action. 

r m ~(rcn)wilson action ~(r,m)improved action 

1.0 0.01 -0.897 -0.981 
0.1 -0.520 -0.824 
0.2 -0.329 -0.675 
0.5 -0.116 -0.366 
1.0 -0.0324 -0.138 

0.5 

0.1 

0.01 -0.934 -0.980 
0.1 -0.628 -0.818 
0.2 -0.432 -0.666 
0.5 -0.162 -0.358 
1.0 -0.0402 -0.129 

0.01 -0.897 ±0.925 
0.1 -0.395 -0.496 
0.2 -0.190 -0.277 
0.5 -0.0362 -0.0723 
1.0 -0.00470 -0.0139 

and (1.40) we obtain for m ~ 0 

I(r) = 0 ,  7(r)  = - 1  . (1.42) 

We have therefore shown that the improved action gives the correct anomaly in the cont inuum limit, and that the 
deviation in one loop level from the tree level axial Ward identity is zero. 

In figs. 2a and 2b we present the behavior of I ( r ,  m) for the Wilson and improved fermion actions as a function 
of r and m, respectively. A comparison between them shows (see fig. 2c) that the improved action gives a more 
reasonable value for the anomaly coefficient at finite m than the Wilson action. Figs. 3a and 3b also show the in- 
dividual contributions of each fermion species to the anomaly. (See also table 1 .) 

Because of the connection in (large N) QCD between the anomaly and the r/' mass, our calculation would sug- 
gest (if one assumes proportionality between~'(m, r) and rnn, ) a strong suppression of the zr - ~7' isospin splitting 

I- \ \  i i  N 

0 ~ 2 

r 

I I [ I [ I I I I I I 

' b 

~ B4( r,m=O] 

I I  i i I i i , i I , I , 
0 4 2 

r 

Fig. 3. (a) The behavior of Bi(r, m = 0) (see eq. (1.31)) for each fermion species for the Wilson action. (b) The behavior of 
Bi(r, m = 0) for each ferrnion species for the improved action. 
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for finite and not too small quark mass in the Wilson fermion case. When the improved action is used the 
splitting should increase significantly. A too small value for the 7/' mass was in fact suggested by recent numerical 
studies at g2 = 1 [8]. 

2. Relationship between decay constants on the lattice and in the continuum. A set of  quantities that can be 
easily computed by Monte Carlo simulation are the meson decay constants. It is known that the values of  the 
meson decay constants on the lattice in the Wilson case are about a factor two larger than their experimental val- 
ues [8]. The authors of  ref. [9] have computed the first order perturbative correction that relates the continuum 
and lattice local operator in the Wilson case. But it appears that the corrections are still too small to compensate 
for the observed discrepancy. 

Let us give here some predictions for these quantities in the case of  the improved action. The relevant local 
operators used in Monte Carlo simulation to measure the meson masses and decay constants are of  the form 

Oi(x ) = ~l(X)I ' i~2(X) , (2.1) 

where ~O 1.2(x) are the quark fields of  flavor 1,2 and Pi is one of the 16 Dirac matrices. The meson decay con- 
stants are defined as follows 

(ml +m2)(01~275 ~11P)=X/~fpm 2 , (m I - m2)(01~2 ¢118)=fS m2 , 

<01~27uqJ 1 IV) = f v l m 2 e  u , <01~2757u~llA) = f A l m 2 e u ,  (2.2) 

where m l ,  2 are the quark masses. P, S, V and A denote the pseudoscalar, scalar, vector and axial vector meson 
respectively. 

The matrix elements of  the currents on the LHS of eq. (2.2) depend on the regutarization procedure. At one 
loop level one has: 

[(ml + m2)<01 ~275 ~bl IP)] cont = (1 + (Ots/47r)CFAp)[(m 1 + m2)<01~275 ¢1 IP)] latt , 

[<01 ~ 2 " / ~ 1  IV)] cont = (1 + (Ots/47r)CFAv) [<0[ ~2"/~ ~1 IV)] la t t ,  (2.3) 

and similarly for the scalar and axial vector mesons (A S and AA). The coefficients A S,P,V,A can be computed 
in perturbation theory. By calculating the O(Cts) diagrams for the vertex correction and quark self energy (see fig. 
4) on the lattice and in the continuum we get 

AS,p = A1,3, s +Ax; 2 , AV,A = A,ru,vsv~ + Ax 1 , 

where 

A1,3,s = 4 (7 - -  F0001 -- 1) +47r2(I1 +12 - •3)  , Avu,vsv u 

Ao u,v = -4"K213 ' 

1 
= 3' - F0001 - 2 + 4rr2(~-I 1 T- ~-I 2 - I 3 )  , 

p k' 

k j k k k k k 

a b 

Fig. 4. (a), (b) One-loop diagrams for the vertex correction and the quark self energy. 

(2.4) 

(2.5) 
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r AX1 AZ2 A 1 A.yS A.,/g A-y5,yp Atypv 

0.0 -3.95 10.6 -26.6 -26.6 -7.66 -7.66 0 
0.2 -4.17 9.18 - 17.5 -22.6 -7.63 -5.09 -0.44 
0.4 -4.75 6.16 -10.6 -18.2 -7.23 -3.45 -0.98 
0.6 -5.53 3.13 -7.44 -15.1 -6.75 -2.91 -1.34 
0.8 -6.42 0.46 -5.85 -12.9 -6.32 -2.76 -1.59 
1.0 -7.35 -1.88 -4.94 -11.4 -5.99 -2.74 -1.75 

with 

f d4p I A4~313 A5A7]  j 11 = ( ~ n )  4 ~ - - ~ ]  i2 = 4r2 d4p 1 
-n" ' -rr (2rr) 4 A2A1 

i3 = ) d4p 1 ~ r 4 A 2 A 6 ]  
-Tr (2rr) 4 A2A1 [13--~'-r2A3A4 + 

2 
t = 1 + ~-~ ~ (sinpp ~sm 2pp) 2 A 1 ~ sin 2 ~pp , A 2 r sin4~Po 

p p 

16 ^ 2 ^  
-¢ za3~ 5 -- 4 + ~_A6A7 ] ~A3A 4 

,5 3 = E s in  4 ~ -Po '  
0 

,5 4 = (~)3 ~ (cos ~p ~cosp)o(s in  ' - ~p -- ~ sin p)o(sin p -- 1 . 1 g sm 2p)p A5 = ~ ) 2  G (cos cos p)2 , ~ P - ~  , 
p p 

A6 = (4)2 ~ . ( s i n  ~p t ~  sin p ) 2 ,  A7 = (4)2 ~ (sin p - ~ sin 2p) 2 , A 8 = ~ sin2pp , (2.6) 
P P P 

and 7 is Euler's constant. The quantity FOO01 = 1.3109 is defined in ref. [10]. From eqs. (2 .4)-(2 .6)  and the ex- 
pression for E 1 and Z 2 given in ref. [1] 

= y cont y)att  (2.7) 
A~t ,2  1,2 -- 1,2 

we obtain numerically the correction coefficients. These are shown in table 2. From the numbers in table 2 we 
finally get 

fTr = [1 + (as/47r)CFATr]f latt = (1 -- 0.112 g2)f lat t  , (2.8) 

fp- 1 = [1 + (OIs/47r)CFAp] ( f o  X)latt = (1 -- 0.112 g2)0c p- 1)latt (2.9) 

for r = 1 and SU(3). 

3. Conclusions. In this paper we have presented some analytic results for the axial vector current anomaly and 
the finite renormalizations of  local currents on the lattice for the improved fermion action. This allowed us to in- 
vestigate the regularization dependence of  the anomaly and discuss the possible relevance of  our results for the 
problem of  computing the r~' mass in lattice QCD. Since we have found the anomaly coefficient for f'mite quark 
mass to depend significantly on the fermion action regularization, we expect a similar situation to arise also in the 
case of  the 7?' mass. 
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