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We propose an improved fermion action on the lattice by adding a next nearest neightbor interaction term to the Wilson 
action. The proposed action is expected to approach the continuum limit more rapidly. Using the improved action, the pre- 
dictions for the critical value of the hopping parameter at weak and strong coupling are given. The relationship between 
quark masses on the lattice and in the continuum is also discussed. 

1. Introduction. Recently numerical studies of  lattice gauge theories in the form of numerical simulations have 
been pursued in an a t tempt  to compute non-perturbative quantities such as mass spectra [ I ] .  It is known that the 
properties of  the continuum euclidean quantum field theory are supposed to be recovered in the limit when the lat- 
tice spacing a goes to zero. Finite size and finite bare coupling effects are two types of problems that affect these 
computat ions and which have to be seriously considered. One possible approach to the question of whether the 
theory is really physically relevant is to try to investigate whether theoretically motivated improvements also lead 
to improvements in the quality of  the numerical results. 

As first suggested by Wilson and by Symanzik [2] in the framework of  ~4, one possible approach is to syste- 
matically construct a lattice action such that the cutoff  dependence of  physical observables is reduced and the con- 
t inuum scaling behaviour is approached more rapidly. Recently the improvement program was studied in the con- 
text  of  the non-linear sigma model  in two dimensions by Symanzik and collaborators [3],  by Martinelli et al. [4],  
and in four-dimensional pure Yang-Mil ls  field by Weisz [5] and by Curci et al. [6].  

In this paper we propose an improved fermion action on the lattice by adding a next nearest neighbor interac- 
tion term to the Wilson fermion action [7] ,  and present some analytical predictions for this new action. 

2. Improved action and mass renormalization. We propose an action of  the following form 

S = S G + S F , 

with 

SG = 1--- ~ tr[Un uUn+u,Un+,,uU + + h . c . - 2 ] ,  
g2 n,~<v ' ' ,v (2.1) 

SF = ~ : ~  [~n(r -  7#)U.,~,~n+. + ~n+~,(r + ~'~,)Un+, ~,~n] 
n,p .  

[ ~ n ( C -  D3'u)Un uUn+u,taggn+2u + t~n+2u(C+ + + DTu)Vn+u,uUn, ugZn] ~ ~nt~n (2.2) 
+ n,~z ' n 

As can be seen, we have added a next nearest neighbor interaction term to the Wilson fermion action. The coeffi- 
cients C and D will be determined later. 
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Fig. 1. (a), (b) Fermion-gluon vertices appearing in the im- 
proved fermion action. 

In eq. (2.2) the gauge group is SU(N) and the U n,u's are N by N complex matrices belonging to the group 
SU(N). We have set the lattice spacing a = 1 and 

Un,u = exp(igAn,u) ,  An,u  = ~ Aanut a " (2.3) 
a 

The ta's are the generators of  SU(N) and are normalized to tr tat b = ~6 ab. The hopping parameter k is related to 
the fermion mass. 

In the usual way, we get the Feynman rules for the ghion and fermion propagators 

Duu(q ) = [1/S2(q)] [6uv - (1 - X) St~(q)Sv(q)/S2(q)] , (2.4) 

Sl~l(p) = 1 - 2k ~ ( rcospu  - i')' u sinpu ) - 2 ~ (Ccos 2pu - iDa[ u sin 2pu ) (2.5) 
# tt 

and for the two fermion-gluon vertices (see fig. la,b) 

V(3)(p, q) = 2g[kr sin ~(p + q)u + ik~[u cos ½(p + q)u 

+ 2C sin(p + q)u cgs ~(p - q)u + 2iDTu cos(p + q)u cos ~(p - q)u] t a , (2.6) 

V(4)(P, q) = -2kg26uu[rc°s  ½(P + q)u - iYu sin -~(p + q)u] taro 

l 1 lu ] tat b (2.7) 1 c o s ( p + q ) u c o s  1 _ 4 i D ~ / u c o s _ 2 k u s i n ( p + q ) u c o s ~  - 2g28uv [4C cos ~k u ~ l V 

• 1 2 = Y~uSu2(q). We where Su(q) = 2 sin 2qu and S (q) shall work in the Feynman gauge where X = 1. As p -+ 0, we ex- 
pand S~- l (p)  in powers o fp .  

s ~ l ( p )  1 8kr 8C+i  ~ ' y ~ p t a ( 2 k + 4 D ) + ~  p 2 ( k r + 4 C ) + i ~  3 1 = - - 7 u p u ( -  § k - ~ D ) +  .... (2.8) 

Let us take the coefficient for the term O(p 2) to be zero, i.e. 

C = - ¼ k r ,  D = C / r .  (2.9,2.10) 

In this way, not only the inverse propagator S~- 1 (p) but also the vertices approach the continuum limit more 
rapidly. 

Let us now consider the fermion mass renormalization effects for the new action. The lowest order diagrams are 
given in fig. 2(a) and (b) and their contributions are 

y ( a ) ( p )  = 
,0,,V 
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f v(3)(p _ ~q)SF( p _ q)Duv(q) V(3)(p  _ l q ) ,  
q 

1 ~ f v (4) (p  ' q)Duv(q)fu v E(b)(P) = 2 u,v 
q 

(2.11) 
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Fig. 2. (a), (b) Diagrams contributing to lowest order to the 
fermion self-energy. 

where we have set for brevity 

4 +Tr dq u (2.12) f.rll 
q - - r r  

We now perform a Taylor series expansion around pu = 0 for Z (a) and N(b), and parameterize the first two terms 

in the expansion as 

E(a) (p)  = - k  m (a) + 5 i ~ "/up A (a) + B (a) i~ + m + 51 
/a /z 

(2.13) 

with m = (1 - 6kr)/k. A similar expansion can also be done for z ( b ) .  We thus obtain the modified fermion propa- 
gator 

S ' -  l ( p )  = SF  l ( p )  _ 2;(a)(p) _ z ( b ) ( p )  

=k[l+B(a'+B(b'](itC+m+Sm'a'+sm(b'+li ~J'),up3(i+A(a'+A(b')). (2.14) la 

The term k [ 1 + B (a) + B (b) ] can be absorbed into the wave function renormalization. Using the Feynman rules 

of  eqs. (2 .4 ) - (2 .7 ) ,  we get 6m (a) and 6m (b) at k = 1/6r (which corresponds to vanishing quark mass, m = 0) 

_•__ \ . 41 + 2~ . 61 1 kiN 1) g2rf Y~ sm ~ q a [ 2 X a -  ~uXu r u s l n  ~ 
6 m ( a ) = - ' 4  - -  • 2 1  

q [r ( a fi qa)  + Za Xa sin i q a ]  Zp sm i q p  

~[(N 2 1)/2Nlg2r, 6m (b) = ~ (2.15) 

where 

21 1 sin 21 2 X a =cos  ~qa(~ + " ~qa) . (2.16) 

Doing the integrals numerically we f'md also 

8m (a) = - 0 . 0 1 3 4  [(N 2 - 1)/2N] g 2 r ,  (2.17) 

so that 5m (b) is much larger than 5m(a). Therefore, we neglect the contr ibut ion of  6m (a). Thus, from 

m + 6m (b) = 0 ,  (2.18) 

we obtain k c in a weak coupling expansion 

k c = (1/6r)[1 + ~1 [(N 2 - 1) /2N]g 2 + O(g4)] = (1/6r)[1 + ~ g2 + O(g4)] , for SU(3) (2.19) 
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Next, we will calculate the meson propagators to find a singularity in k in the strong coupling limit (we restrict 
ourselves to the case r = 1). We use the hopping parameter expansion and the random walk method [8] to derive 
an expansion for the meson propagators. The meson propagator corresponds to a random walk of quark-antiquark 
lines with double projection operators on the lattice. 

We denote aSNL(n , oe, [3) of the number of possible random walks from the origin arriving at a site n after L 
steps (c~,/3are spin index of quark and antiquark). The possible numbers for L steps and L - 1 steps are related by 
a neighboring constraints for the lattice sites n and n', which is characterized by a matrix 

NL(n,a,~)= ~ M(n, ot, 13, n',ot',13')NL(n',o~',t3' ) , 
n'ot'[~' 

where 

, , + T  + (p~ - T  M(n, ot, t3, n,ot , /3 ' )=(2k)  2 ~[(P~)aa,(P~ )O#,Sn+u, n, )aa'(Pu )#5'6n-u,n' 
la 

+ (a~)ae,,(a~T)o#,6n+2u, n,+ Q+ ( g ) a a ' ( a ~ T ) o f l ' S n - 2 t a , n ' ]  , 

(2.20) 

(2.21) 

with 

Pu = ~ ( l + - T u ) ,  Q u - - - s  (1 -+Tu), (2.22) 

P~ and Q~ correspond to the nearest neighbor and next nearest neighbor interaction respectively. T stands for the 
transpose of the matrix. Thus, if we consider the Green function of the quark-antiquark density operators for 
finite lattice spacing 

G ~  (n) = (01 ~.r(n)xP~(n)~ 8 (0) ~I't3(0) I 0) ,  (2.23) 

we notice that it can be rewritten as [8] 

#'r ['~ipn D -  1 #'r Gas (n) = -!V j ~ (p) Or8 
P 

with 

D~'~ =8~6~ ( 2 k ) 2 ~  - ~ + "r +(p+ufla(p~)~exp(_ipu ) 
- [(Pu )c~(Pu)8 exp(ipu) 

12 

+ a - "r exp(_2ipu)] + (Q£-)~(Qu+)~ r exp (2ipu) + (Qu)~(Qu)8 

By Fierz transformation we expand the 16 by 16 matrixD~'~ into another 16 by 16 matrixDAB 

(2.24) 

(2.25) 

D~ ~ = ~ 3, o~o A B  DAB(PA)~(FB)8" (2.26) 

The non-zero components of coefficient matrix DAB a r e  diagonal sub matrices 1, PPA, and DVT. The zero eigen- 
value forDAB with a particle at rest pu = (0, iM) should give the pole position of the propagator, the mass of mesons. 

For DpA , it is given by 

1 - ~ k  2 - 4 k 2 c h M -  ¼k 2 ch 231 

DeA(O) = -4k2 i ( shM + ~ sh 231) 

4k2i(shM+ ~ sh 2M) 

1 - 4k2chM - ¼k2ch 2M] " 
(2.27) 

For DVT , there are three similar degenerate matrices 
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(1 - ~ k  2 4k2chM-  ¼k2ch2M 4k2(1/X/~)i(shM+ lZ6Sh 2M) ) 
1 17 2 2 1 2 " (2.28) De(i)T(O'i) = \-4k2(1/v~)i(shM+ l&6 sh2M)  ~[1 - Z  k - 4 k  chM-7 , k  ch2M] 

The constraint [IDEA (0)II = 0 gives the meson mass of  theDeA sector, and I[Dv(i)T(O,i)II = 0 gives a threefold de- 
generate meson mass of the DVT sector. The vanishing of  the meson mass gives the critical value o f k  in the strong 
coupling. The lowest value of k c comes from the DpA sector 

kc = x/~7 = 0.242535.  (2.29) 

Note that this value is very close to the critical k for the ordinary Wilson action at strong coupling, which is about 
one quarter. 

3. Relationship between quark masses on the lattice and in the continuum. Actually it is possible to write down 
a fermion action which approaches the continuum limit even more rapidly than the one in eqs. (2.9), (2.10). In 
order to do this, let us take the coefficient not  only of  the O(p  2) but  also of the O(p  3) terms in the fermion propa- 
gator to be zero. Then from eq. (2.8) we get 

1 1 C =-~kr ,  D = - ~ k .  (3.1) 

The fermion propagator and the vertices now become (expanding in p)  

_ _ _ a. sin 2pu)] s i T l ( p )  = I  2k ~ [ ( r c o s p u  ivus inpu)-( lrcos2Pu ~lVu 

V(3)(p, q) = 3 .  1 q 2 ta ~ k g ~ , . [ l + ~ ( p -  ).÷O(p3)] , 

2 2 tat b V(u4)(p, q) = _¼g2kr[3(p + q)2 + ku + lu + O(p3)]  ~ ,v  , (3.2) 

with m = (2/3k)  (1 - 6kr). 
As discussed in ref. [9] and references therein, the relation between the running quark mass mf(a)  on the lattice 

and the running quark mass m (/~) at a scale/a in the continuum is given by 

mf(~t) = mr(a)  { 1 - (6g2/167r 2) [(N 2 - 1)/2N] (ln a/l - In C m )}, (3.3) 

where a is the lattice spacing, N is the number of  color, and 

Cm = Am/Alam tt . (3.4) 

A m and A ~  tt are scales which are introduced in the equations that govern the renormalization group behavior of  
the quark masses m (/a) and m (a), respectively. In the continuum, the renormalization group invariant quark mass 
m f is defined as 

mf = [(bo/N) ln(u/A)]  - ~1 m/~o m (U),  (3.5) 

A is a mass parameter  defined in some renormalization scheme. Also b 0 = 1 1N/&r and the quantities ~'lm and/30 
are the coefficients of  the first term of "Ym and t3 function respectively. If, as a first approximation,  the contribu- 
tion of  internal quark loop is neglected in a numerical simulation, we have 

/30 = 1 1N/487r 2 , (3.6) 

and 
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~ f  = [(bo/N ) ln(C m/aA)] - ~'' m i(3o mr(a) 

= [(2~r/N2)(/~ + (NboI2rr) ln(ALAIA ) + (Nbo/2rr)ln Cm) l -~'lml~omf(a), (3.7) 

where ALA is the mass parameter defined on the lattice. By calculating the self energy of a quark perturbatively 
on the lattice and in the continuum we can extract the value of C m . The general expression for the fermion self 
energy order O(g 2) for q ~ 0 has the form 

3k(g21167r2) [(iV 2 - 1)/2N] [rN LATr + i~N LATr + mN~ ATr ] • (3.8) xLATT(q) = 

As shown in the previous section, the effect of the xLATT term is to shift the kc(k c = I/6rat the tree level). From the 
diagrams of fig. 2(a) and (b), we obtain 

167r2 /, 1 ~_3  u~.~zo__ lp  1 ,  : ATT_ 2 + _ _  _ _  (:cos -- cosp. cos p.) 2 D sin4- pp 
3 9 ,~A1A 2 2 ~ p 

+ 8 ~  . 1 !p  ~2 ~ s i n  41 (2sln~pu sinpuc°s2 u~ ~po+2 ~ ( 2  1 1 1 - c°s~Pu - ~c°s PuC°S 2Pu) 
3 u  o 

1 • 1 2 ) sin 2Pu - smpuc°s ~P~) sinp~(1 + ~ sin2~-p~) , + ( 2 "  
/ 

1 
= 2 ~.2 ~LATT 2 f xdxln[(q2x +m2)(1 - x ) a  2] + 3'E -F0001 +3 

0 

+~7r r 2 D 3 . 21 • 41 • 61 ~ • 41 (~sln 2 P u -  sin ~p~--2sin  fipu) sin ~pp 
p ~ p 

_ ~  . 21  ) 2 • 2~ 2 sin 5Pu) 3 ~ sin2pu(1 + g sin2~pu)2(1 + 2 sin 2Pu) + 2r2 ~ sin2pu sin4~pu (1 + 3 
8 ~ 

r2 t p/'ff ['4~"' sin41po ~ sin2p# l " 2 '  2 • 2, , 2 f sm ~pu(1 +gsin 2Pu) + ~Tr 

• 61 ~ sin2pu(1 +2 . 21 } - -  2 • s i n  ~ Po 3 s in  ~ Pu) 
o l 

(3.9) 

47r2fI~--~12(9 ~c°s21pu usin2pu ( l + 2 s l n 2 1 3  + ~ ~ 2 3 " ~P~) 

9 ~ 8  u cos2X~pu( 1 +32sin21p~)2 ~o sin2pp(1 +~sin2pp )t+! A 3 1 9 ~  sin2p~],  (3.10) 

Table 1. 
Some values of In C m. 

r Improved action Wilson action 

MS MS MS MS 

1 0.90 1.88 1.18 2.15 
0.5 1.62 2.59 1.59 2.56 
0 2.43 3.40 5.56 6.53 
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1 

GLATT = 4 fox ln[(q2x + m 2) (1 - x)a 2] + 43" E - 4F0000 
0 

256 f I ~sin 4 , ( _ 6 ~  2, 2 .2 ,  , 2 ~ . 4 ,  -- ~ Tr2r 2 - -  cos 2Pu (1 +Ssln 2Pu) AIA,~ ~Pv u P sm 2Po 
P 

+ ~  r 2 ~  sin6½p u ~ sin4½po +3 ~ sin2pu sin21p (1 +-~sin21p.)2~ 
/a p W 2 p ~ ] 

f [ _ ~  ( ~ 2. 2, 2 2, ,6 2 ~ s i n 6 ~ p u ] + _ j _ l  1 + 47r2 1 (1 + gsln ]pu) cos ~pu+ -~r u / A2J ' 

where F0000, F000I are defined in ref. [ 10]. 7E is Euler's constant and 

AI ~ • 21 (8 ~ )2 2 . 2 1  2 = sm tip,  , A 2 = r sin4½pu + ~ [sinp,(1 +§sin 2Pu)] 

(3.11) 

(3.12) 

On the other hand using dimensional regularization in the continuum theory one obtains (we use the MS scheme) 

l 

Y'I = 2 f x d x l n [ ( 1 - x ) ( q 2 x + m 2 ) / p  2] +TE l n 4 n + l ,  
0 

1 

~ 2 = 4  f dxln[(1 x)(q2x+m2)/U2] +43'E - - 4 1 n 4 7 r + 2 .  (3.13) 
0 

Then from eqs. (3.3), (3.8) and (3.13) we get 

Cm = expl  [(~LATT _ ~LATr) _ (~1 -- ~2)] (3.14) 

where " ~ "  stands for the finite part of corresponding quantities. C m has been numerically evaluated with an ac- 
curacy of better__ than 1% using gaussian quadrature__ formulae. In table 1 we give some numerical values of In C m in 
the MS and MS schemes. The results in the MS scheme is obtained by dropping the terms proportional to 3'E--ln47r 
in E 1 and ~2" 

At this point we would like to correct some slight errors which appear in ref. [9]. Using the Wilson action, they 
compute the relation between the quark masses on the lattice and in the continuum. In their formulation, ~1 and 
522 should be 

• 21 ~, [r 2 ~u cos Pu 1 ~.u Sln 2Pu -- sin2pu 
~LATT=TE F0001 + 1 J d4 p 

4~.2 _ ~ k2  A 2 4 A2A2 

1 No sin2po [~"~ sin41pu r2(~'u sin2~p.) 2] 
+ , (3.15) 

4 A2A~ 

~ L A T T = 4 7 E - - 4 F 0 0 0 0 - - ~ -  -~r" d4p A2 L\  u z u ]  u u 

• 21 2 
+ 1 ~ d 4 p ( 1  +r2 4~osin4½pu-4r2(Zosm ~Po) ) 

4zr2 -Tr \ A'-2- - A2 A2 - , (3.16) 
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where 

A2=4r2(~sin2½po)2+~ sin2po . 

o o 

This means that ~ f  should become (in the MS scheme) 

~f = mf(a)[ 27r(~- 1.99 + 0.99)] ~ 1.57 mr(a), at 13 = 6 ,  

instead of 2.06 mf(a). 

(3.17) 

(3.18) 

4. Discussion. We have presented above some analytical results concerning an improved fermion action on the 
lattice. One might expect that an improved action of the type we have described will prove useful in the context 
of numerical studies of lattice QCD, perhaps in connection with the use of an improved action also for the gauge 
fields. 

We have also performed some preliminary numerical simulations with the improved fermion action. The relaxa- 
tion program to compute the fermion propagator runs in the improved case about a factor of four slower than in 

the ordinary (Wilson) case. Unfortunately it appears that on small lattices (4 X 4 X 4 X 8 × 6 X 6 X 6 × 12) the finite 
size effects even at infinite gauge coupling are more significant than in the Wilson fermion case. This situation is, 
on the other hand, not unexpected given the presence of next-nearest neighbor terms in the new action. A detailed 
numerical study using the improved action would therefore appear meaningful only on larger lattices. We hope to 
return to this question in a future publication. 

This research was supported by the US Department of Energy under grant no. DE-AC02-76ER02220. 
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