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Abstract 

The issue of local gauge invariance in the simplicial lattice formulation of gravity is examined. 
We exhibit explicitly, both in the weak-field expansion about flat space, and subsequently for 
arbitrarily triangulated background manifolds, the exact local gauge invariance of the gravitational 
action, which includes in general both cosmological constant and curvature-squared terms. We 
show that the local invariance of the discrete action and the ensuing zero-modes correspond pre- 
cisely to the diffeomorphism invariance in the continuum, by carefully relating the fundamental 
variables in the discrete theory (the edge lengths) to the induced metric components in the contin- 
uum. We discuss mostly the two-dimensional case, but argue that our results have general validity. 
The previous analysis is then extended to the coupling with a scalar field, and the invariance prop- 
erties of the scalar field action under lattice diffeomorphisms are exhibited. The construction of the 
lattice conformal gauge is then described, as well as the separation of lattice metric perturbations 
into orthogonal conformal and diffeomorphism part. The local gauge invariance properties of the 
lattice action show that no Faddeev-Popov determinant is required in the gravitational measure, 
unless lattice perturbation theory is performed with a gauge-fixed action, such as the one arising 
in the lattice analog of the conformal or harmonic gauges. 

I.  Introduct ion 

In the quantization of  gravitational interactions one expects non-perturbative effects 

to play an important role [ 1 ]. One formulation available for studying such effects is 

Regge's  simplicial lattice theory of  gravity [ 2]. It is the only lattice model with a local 

gauge invariance [3] ,  and the only model known to contain gravitons in four dimensions 
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[4]. One would hope that a number of fundamental issues in quantum gravity, such 
as the existence of a non-trivial ultraviolet fixed point of the renormalization group 
in four dimensions and the recovery of General Relativity at large distances, could in 
principle be addressed in such a model. The presence of a local gauge invariance, which 
is analogous to the diffeomorphism group in the continuum, makes the model attractive 
as a regulated theory of gravity [5], while the existence of a phase transition in three 
[6] and four dimensions [3,7-10] (but not in two [1 1]) suggests the existence of 
a (somewhat unusual) lattice continuum limit. The two phases of quantized gravity 

found in [9], can loosely be described as having in one phase (G < Gc, the rough, 
polymer-like phase) 

(gu~) = 0 ,  (1.1) 

and in the other phase (G > G¢, the smooth phase), 

(guy) ~ cr/~v, (1.2) 

with a small negative average curvature (anti-De Sitter space) in the vicinity of the 
critical point at Go A physically similar two-phase structure was later proposed also 
in [ 12]; see also the earlier ideas found in the work of [ 13]. A discussion of the 

properties of the two phases characterizing four-dimensional gravity, and of the asso- 
ciated critical exponents, can be found in [9]. For additional recent numerical results 
we refer the reader to [ 10], while for some earlier attempts we refer to the work in 
Refs. [3,7,8]. Recently calculations have progressed to the point that a first calculation 
of the Newtonian potential from the correlation of heavy particle world lines, following 
the suggestive proposal of [ 14], seems feasible [ 15]. The results so far indicate that 
in the lattice quantum theory of gravity the potential between heavy spinless bodies 
is attractive, and has roughly the correct heavy mass dependence. In the same work a 
general scaling theory for gravitational correlations, valid in the vicinity of the fixed 
point, was put forward. We refer the interested reader to [ 16], where a more complete 
set of references to earlier work on Regge gravity can be found. For results with an 
alternative and complementary approach based on dynamical triangulations, we shall 

point the reader to the references in [ 17]. 
In view of this recent progress it would seem desirable to further elucidate the 

correspondence between continuum and lattice theories. The weak-field expansion is 
available to systematically develop this correspondence, and it is well known that such 
an expansion can be carried out in both formulations. Not unexpectedly, it is technically 
somewhat more complex in the lattice theory due to the presence of additional vertices, 
as happens in ordinary lattice gauge theories. In the past most perturbative studies of 
lattice gravity have focused on the lowest order terms, and in particular the lattice 
graviton propagators [4,11,6]. Recently it has been extended to include the vertex 
functions, and the results have been used to compute the one-loop amplitudes relevant 
for the conformal anomaly in two dimensions [ 18]. 

One central issue in a regularized theory of quantum gravity is the nature of its in- 

variance properties. Although some discussions of these issues have appeared before, 
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no systematic and coherent exposition has been presented yet in the literature. In this 
paper we address the question of what exactly the local gauge invariance built into 

Regge's simplicial gravity looks like. Its existence is intimately tied in with the appear- 
ance of gravitons (in four dimensions) in the lattice weak-field expansion about a flat 
background. It need not be emphasized here that local gauge invariance plays a central 
role in both the classical and quantum formulation of gravity, and its preservation in 
the lattice theory must therefore be considered of paramount importance. Physically, 
it expresses the fact that the same physical geometry can be described by equivalent 
metrics. Classically, it leads for example to the invariance of the infinitesimal line ele- 
ment and the Bianchi identities for the curvature. In the quantum theory it is known to 
give rise to the Slavnov-Taylor identities for the gravitational Green's functions. As a 
consequence, one would expect that local gauge transformations should play a central 
role in the lattice theory as well. This aspect will be therefore the focus of the first 
part of the paper, where the analog of local gauge transformations on the lattice will 
be constructed. The requirement of gauge invariance will have implications for both the 
gravitational measure and the coupling to a scalar field, and we will present in this paper 
a detailed analysis of its consequences. The second part of this paper will be devoted to 
a number of relevant applications. 

The plan of the paper is as follows. In Section 2 we introduce our notation, de- 
scribe the choice of lattice structure and the relevant degrees of freedom in the lattice 
theory, the squared edge lengths. We discuss the discrete actions for the gravitational 
degrees of freedom, and the relationship to their well-known continuum counterparts. 
In Section 3 we move on to the lattice weak-field expansion, and discuss in detail the 
two-dimensional case (with cosmological and curvature-squared terms). We exhibit ex- 
plicitly the gauge zero-modes and their corresponding eigenvectors, which are shown to 
correspond precisely to local gauge transformations in the continuum. We then compute 
explicitly and analytically the zero-modes for fluctuations about a non-flat background 
(the tetrahedral, octahedral and icosahedral tessellations of the two-sphere), and show 
that the counting of the zero-modes is indeed consistent with the expectation from the 
continuum theory. We then give further arguments supporting the identification of the 
zero-modes with the diffeomorphisms in the continuum, which we argue is valid in any 
dimension. In Section 4 we extend the previous analysis to arbitrary curved backgrounds 
and show explicitly the persistence of a local gauge invariance for the area, curvature 
and curvature-squared terms. In Section 5 we introduce a scalar field coupled invariantly 
to the gravitational degrees of freedom. We again exhibit its invariance properties under 
local gauge variations of the squared edge lengths, at least for sufficiently smooth scalar 
field configurations, by working out the concrete case of background lattices which are 
close to either equilateral or square. We then discuss the more general case of arbitrary 
background lattices, and the construction of the energy-momentum tensor for the scalar 
field. Section 6 discusses the implications of the preceding results for the lattice gravi- 
tational measure, and we give arguments that the lattice measure is essentially unique, 
up to local volume factors. We will argue therefore that the lattice measure is essen- 
tially no less unique than the original continuum (DeWitt) measure. In Section 7 we 
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consider the possibility of introducing a gauge-fixing term in the lattice action, in order 
to remove the gauge zero-modes of the gravitational action and subsequently perform 

perturbative calculations, and in close analogy with the procedure followed in the usual 
continuum perturbation theory. As an example, we discuss the explicit construction of 
the lattice conformal gauge, starting from an arbitrary configuration of squared edge 

lengths. Finally, Section 8 contains some concluding remarks. 

2 .  T h e  d i s c r e t i z e d  t h e o r y  

In this section we will briefly review the construction of the action describing the 

gravitational field on the lattice, and define the necessary notation used later in the 
paper. In concrete examples we will often refer, because of its simplicity, to the two- 

dimensional case, where a number of results can be derived easily and transparently. 
But in a number of instances here, and throughout the paper, important aspects of the 
discussion and of the conclusions will be quite general, and not restricted to specific 

aspects of the two-dimensional case. 

In simpliciai gravity the elementary building blocks for d-dimensional space-time are 
simplices tr d of dimension d. A 0-simplex is a point, a 1-simplex is an edge and a 

2-simplex is a triangle. A d-simplex is a d-dimensional object with d + 1 vertices and 

d (d  + 1 ) /2  edges connecting them. Each simplex in turn contains \ k+, sub-simplices 

o -k of dimension k. Thus in two dimensions we shall consider here a fixed closed 

simplicial two-manifold consisting of No vertices, N1 edges and N2 triangles, joined 
in such a way that each point has a neighborhood homeomorphic to the interior of a 

two-dimensional sphere. A simplicial geometry is then specified by the assignment of 

squared edge lengths l/2, i = 1 . . . . .  Nl, and a flat Riemannian metric can be assigned 

to the interior regions of the simplices in a way that is consistent with the edge length 

values. Further restrictions arise from the fact that the triangle inequalities (and their 
higher-dimensional analogs in d dimensions) have to be satisfied. 

The correspondence between squared edge lengths and an assigned continuum metric 

field can be made more precise, with the identification 

r(b) 

r(a) 

where lab is the length of the edge connecting neighboring points a and b. For a given 
set of edge lengths, the metric gw, (x )  has initially support on the edges only. 3 For a 

3 The above identification parallels an analogous correspondence used sometimes in ordinary lattice gauge 
theories, where the SU(n) matrix-valued lattice field Antz has support only on the links of a hypercubic lattice, 
Unu =-- e iaA't*= Pexp (ia f n+~, dx~,A~,(x)]. This definition is a convenient starting point for performing 

• ~ q " / . . . . .  i perturbatton theory and defining the lamce Feynman rules. For the same construction in perturbatwe slmphc al 
gravity see Ref. [ 18]. 
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metric that is constant inside each simplex, 12 ~' ~ = gl~vl i l i ,  where i labels the edge from a 

to b and the l~'s are the components of the edge lengths. 

2.1. Lat t ice  structure 

In two dimensions quantum gravity can be defined on a two-dimensional surface 

consisting of a network of fiat triangles. The underlying lattice may be constructed in a 

number of ways. Points may be distributed randomly on the surface and then joined to 

form triangles according to some algorithm. In such lattices the coordination number at 
each vertex can be kept fixed (quenched random lattice), or allowed to vary (annealed 
random lattice), by considering it as an additional, dynamical variable of the model. 

An alternative procedure is to start with a regular lattice, like a regular tessellation of 
the two-sphere, or a lattice of squares divided into triangles by drawing in parallel sets 
of diagonals, and then allow the edge lengths to vary, which will give rise to curvature 

localized on the vertices. It should be emphasized that for arbitrary assignments of edge 

lengths, consistent with the imposition of the triangle inequalities constraints, such a 
lattice is in general far from regular and resembles more a random lattice. 

The incidence matrix, which provides the information on which edges are adjacent, 

and fixes therefore the local coordination number qi, describes the topology of the 

manifold. It can be chosen to correspond to a fixed regular or to a fixed random lattice. 

But one word of caution should be spent here on the terminology. Since the edge lengths 

are dynamical variables, the lattice is in fact random in either case: contrary to a fixed 
regular lattice (such as the square or triangular one in two dimensions), there are a priori 

no preferred directions even for a lattice with fixed coordination number, as neighboring 
points can have any relative orientation as long as they are consistent with the triangle 

inequalities and their higher-dimensional analogs. Universality arguments would then 

suggest that the choice of  local coordination number should not affect the large-distance 
limit of the model, and a number of explicit calculations on random lattices have shown 

to some extent that this is indeed the case [ 19,20]. 

In the following we will often narrow down the discussion and be even more specific, 
and usually think of the "regular" lattice as consisting of a network of triangles with a 
fixed coordination number of six, qi = 6 ,  although many of the results in this work are 

quite general and do not rely on the specific choice of local coordination numbers. 
Quenched random lattices, where the local coordination number qi (which is the 

number of edges meeting at i) is random but fixed, were considered in [21,22,19,23]. 
For such Poissonian random lattices, the average coordination number is also q = 6 in 
two dimensions, independent of the topology. This follows from the expression for the 
Euler characteristic X = No - N1 + N2 with 2Nl = 3N2 = ~-~iqi in two dimensions, 
which gives for large No 

q -= lim ~-~i qi = 6,  (2.2) 
N0---*oc~ ~-"~i 1 
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irrespective of the value of X, as well as N1 = 3N0 and N2 = 2N0. In general on such 
random lattices one does not have, strictly speaking, translational or rotational invariance 
for a fixed assignment of edge lengths. The latter only hold on the average. Explicit 
calculations confirm that this is indeed the case, at least in two dimensions [ 19,24,25]. 

When the edge lengths are allowed to fluctuate one would expect the situation to be 
different, since now locally there are no preferred directions any more, as the lattice 
structure fluctuates from edge length configuration to edge length configuration. In 

principle, one can allow the local coordination number to change (annealed random 
lattice) by re-linking neighboring vertices, although there is no unique algorithm to 
do so which preserves the geometry. In this case the coordination number fluctuation 
~qi = qi - -  6 becomes an additional dynamical variable, and is indeed the only dynamical 
variable in the so-called dynamical triangulations. Randomness can be shown to be a 
relevant perturbation in two dimensions, changing the universality class already for fiat 
surfaces. We shall not consider dynamical random lattices here any further, as we are 
interested in discretizations for gravity coupled to matter which maintain the crucial 
property of reducing to the ordinary, known flat-space field theories in the limit of zero 
local curvatures. A review of the properties of random lattices and their relation to 

matrix models in two dimensions can be found in [26]. 

2.2. Degrees o f  freedom 

The elementary degrees of freedom on the lattice are the squared edge lengths, with 
the correspondence between continuum and lattice degrees of freedom given locally by 

{l, },=1, ,N,, (2.3) 2 

where the index i ranges over all Nl edges in the lattice. In general the dynamical lattice 
will give rise to some average lattice spacing a0 = [ (l 2) ] 1/2, which in turn will naturally 

supply the ultraviolet cutoff that is needed to define the quantum theory. An important 
difference with ordinary lattice field theories lies in the fact that the momentum cutoff 
A = 1/lo is not determined a priori, but follows instead from the dynamics (i.e. from 
the lattice action and lattice measure). The dynamical cutoff turns out to be determined 
mostly by the cosmological constant term and the measure factor [9]. Furthermore, for 
finite volumes the lattice theory will have a finite number of degrees of freedom N, and 
will therefore inherit an infrared cutoff of the order of l /L ,  where L is the physical 
linear extent of the lattice. 

In the discrete case all the metric information on the piecewise linear space is con- 
tained in the values of the edge lengths. As already emphasized by Regge, and in 
accordance with the usual view of lattice discretization of continuum field theories, the 
discrete manifold L is thought of as an approximation to some continuum manifold S 
(as illustrated in Fig. 1 ). In the limit as the average lattice spacing a0 is sent to zero, 
the original continuum theory is recovered. In four dimensions it has been rigorously 
proven, for the Einstein-Regge action, that if a piecewise fiat space approximates a 
smooth space in a suitable sense, then the corresponding curvatures are close in the 
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Fig. 1. Piecewise linear space L as an approximation to a smooth d-dimensional enveloping surface S. 

sense of measures [27] ; see also the results of [29]. In general the expectation is that 
the lattice and continuum theory will differ by higher order corrections, with the two 

actions related to each other by 

1r(l  2) = Ic(gm,)  + ao61 + a2621 + . . .  (2.4) 

All corrections can in principle systematically be evaluated by the standard procedure 
of replacing the finite differences which appear in the lattice action by derivatives, for 

example according to the formula 

g ( n + a o ) - g ( n - - a o )  1 2 m 
2a0 = g' (n)  + -~ aog (n) + O(a~g(5) (n) ) .  (2.5) 

It should be noted that higher order corrections are expected to involve higher derivatives 
of the metric. The above expansion procedure can be thought of being equivalent to 

introducing a continuum metric on the piecewise linear manifold, and expand in the 
difference between the continuum and the piecewise linear metric. 

This interpretation is analogous to the situation in ordinary lattice gauge theories, 

where the lattice gauge fields Unu are defined on the links only; the continuum fields 

A u (x)  can then be reconstructed by some suitable interpolation to the interior regions of 
the lattice. It is of course possible to endow the piecewise linear space with a continuum 

metric gu~ (x )  which is defined everywhere, including the interiors of the simplices. In 
this case a continuum curvature Ru~o,,(x) can be defined as well, but since the interior 
of the simplices is flat, the curvature acquires delta-function singularities on the hinges 

where the discrete curvature resides. While such a description can be useful in certain 
circumstances, it has also some drawbacks, which have led to considerable confusion 

in some of the literature. The obvious ones are that the resulting model is no longer 
an ultraviolet regulator for the continuum theory, as space-time has become continuous 
again. Furthermore the fields are singular, due to the delta-function type singularities 
in the curvature, and the number of degrees of freedom is no longer finite due to the 
re-introduction of a continuum metric. In this formalism new divergences appear, which 
have to be regulated by some ad-hoc procedure such as the smoothing out of conical 
singularities, and lead to difficulties in defining higher order invariant operators such as 
the ones containing curvature-squared terms [7]. 
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This point of view, while certainly legitimate in discussing some classical aspects 
of the theory, is therefore in our opinion not useful in describing a regulated theory 
of quantum gravity. It leads instead to a string of paradoxical results when lattice 
and continuum language are mixed together, and can be especially misleading when 
discussing such subtle issues as the gravitational functional integration measure. 

It should be emphasized here that in the following we shall restrict our attention 
almost exclusively to the lattice theory, which is defined in terms of its lattice degrees 

of freedom only. Since it is our purpose to describe an ultraviolet regulated theory of 
quantum gravity, we shall follow the usual procedure followed in discussing lattice field 
theories, and discuss the model exclusively in terms of its primary, lattice degrees of 
freedom: the squared edge lengths. As such, the theory will not require any additional 
ad-hoc regulators. Below we shall discuss further at length a number of issues related 
to the precise correspondence between the lattice degrees of freedom and the continuum 
ones, the local gauge invariance of the lattice action (which gives rise in the quantum 
theory the lattice analogs of the Taylor-Slavnov identities) and the need for (or lack 

of) gauge fixing. 

2.3. Curvature and discretized action 

The construction of the lattice action starts from the definition of the elementary 
building blocks for space-time, the n-dimensional simplices. Consider an n-dimensional 
simplex with vertices 1,2, 3 . . . .  n + 1 and square edge lengths 122 = 121 . . . .  Its vertices 
are specified by a set of vectors e0 = 0, el . . . .  en in fiat Euclidean space. The matrix 

gi.j = ei • e.i , (2.6) 

with 1 ~< i , j  <<. n, is positive definite. In terms of the edge lengths lij = lei - ejl (see 
Fig. 2) it is given by 

gij( l  2) = 1[12 i + 12j - 12]. (2.7) 

The volume of a general n-simplex is then given by an n-dimensional generalization of 

the well-known formula for the volume of a tetrahedron, 

= l ~ / d e t  go(12) .  V,~(l 2) (2.8) 

Conversely, in order to obtain a simplex for an arbitrary assignment of edge lengths, the 
generalization to higher dimensions of the triangle inequalities require that V/i) ( l  2) >/0, 
with n = 1 . . . . .  d and i = 1 . . . . .  N, be satisfied for every edge, triangle, tetrahedron etc. 
in the lattice. This can be stated equivalently by requiring 

det gij( l  2) > 0 (2.9) 

for every sub-determinant of the highest dimension det gij. In d dimensions the matrix 
gij has d (d  + 1 ) /2  components, just as there are d (d  + 1) /2  components for the metric 
g ~  (x) per space-time point in the continuum. 
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Fig. 2. Assignments of edge lengths for a four-dimensional simplex. 
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and 

2 2 2 2 det  g i j ( l  2) = 41- [2(121122 + 102112 + 112101 ) - 14t - 1042 - 142] 

v/det  gig(l 2) = , (2.12) 2Ar(l  2) 

where Ar( l  2) is the area of the given triangle (see Fig. 3). 
In simplicial gravity the curvature is concentrated on the hinges, which are subspaces 

of dimensions d - 2, and is entirely determined from the assignment of the edge lengths. 
In two dimensions the hinges correspond to the vertices and 6h, the deficit angle at a 
hinge, is defined by 

(2.11) 

Fig. 3. Assignments of edge lengths and natural coordinates for a triangle. 

In this paper we shall often refer to the two-dimensional case. In two dimensions one 
has simply (,2 ,2 ) 

~(lol + I~2 - /~2) &j(l 2) (2.10) 
½(12, + 122 - 1,22) 122 

and therefore 
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Fig. 4. in two dimensions the computation of the deficit angle 60 at the vertex 0 involves the values for the 
edge lengths associated with the shaded triangles. 

6h = 2 ~ - -  E Or, (2.13) 
triangles t 

meeting at h 

where Ot is the dihedral angle associated with the triangle t at the vertex h (see Fig. 4). 

In d dimensions several d-simplices meet on a ( d -  2)-dimensional hinge, and the 

deficit angle is defined by 

t~h(/2) = 2zr -- E Od(l 2) , (2.14) 

d-simplices 
meeting on h 

where 0a is the dihedral angle in d dimensions. The sine of the dihedral angle can be 
computed from the well-known formula 

sinOd(12 ) = d VdVd-2 
d -  l Vd_1VJ_ l ' (2.15) 

where Vd-2 is the volume of the hinge, Vd is the volume of the d-simplex, and Vd-l, 

VJ_ 1 the volumes of the two (d - l)-dimensional faces that meet on the hinge. A 
general derivation of these formulae can be found in [ 5 ], with some additional results 
in [7]. Since the sine does not uniquely determine the angle, it can be useful to obtain 
an expression for the cosine of the dihedral angle, which can be found in [ 7 ]. In two 

dimensions the dihedral angle is given by 

COS0d = 1~1 + 112 -- 172 (2.16) 
2/01/02 

It is useful to introduce a dual lattice following, for example, the Dirichlet-Voronoi cell 
construction, which consists in introducing the perpendicular bisectors of the edges in 
each triangle and joining the resulting vertices. This provides for a natural subdivision 
of the original lattice in a set of non-overlapping exhaustive cells, and has a natural 
generalization to higher dimensions. It is easy to see that the vertices of the original 
lattice then reside on circumscribed circles, centered on the vertices of the dual lattice. 
For the vertex 0 the dihedral dual volume contribution, shown in Fig. 5, is given by 
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Fig. 5. Dual area A d associated with vertex 0, and the corresponding dihedral angle Od. 

1 )2] 2 2 l 2 [112(101 + 1022) -- (1021 -- Aa(/2) = ~  02 J '  (2.17) 

It is clear that the above subdivision is not unique. Alternatively, one can introduce 
a baricenter for each triangle, defined as the point equidistant from all three vertices, 
and again join the resulting vertices. The vertices of the original lattice then reside on 
inscribed circles, centered on the vertices of the dual lattice. The baricentric dihedral 
volume is simply given by 

a d ( l  2) = A/3.  (2.18) 

In general, if the original lattice has local coordination number qi at the site i, then 
the dual cell centered on i will have qi faces. A fairly complete set of formulae for 
dual volumes relevant for lattice gravity and their derivation can be found in [7]. In 
the following we shall refer to the Voronoi cell construction as the "dual subdivision", 
while we will call the baricentric cell construction the "baricentric subdivision". 

Two-dimensional Einstein gravity is trivial because the Einstein action is constant 
and the Ricci tensor vanishes identically. When a cosmological constant term and a 
curvature-squared term are included in the action, 

I = / d2x v/'g [A - kR + aR2] , (2.19) 

the classical solutions have constant curvature with R = + V / - ~  (there being no real 
solutions for A < 0). Thus the theory with the Einstein action and a cosmological 
constant is metrically trivial, having neither dynamical degrees of freedom nor field 
equations. On the other hand, the functional measure can lead to a non-trivial effective 
action. However, for a system with fixed topology, the only non-classical aspects of 
1 + 1-dimensional gravity are fluctuations in the local volumes x/g(x). 

The Einstein action for a two-dimensional simplicial lattice is given by [2] 

/ d2 x x/~ R ~ 2 Z 6h . (2.20) 
hinges h 
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Fig. 6. Original simplicial lattice (continuous lines) and dual lattice (dotted lines) in two dimensions. The 
shaded region corresponds to the dual area associated with vertex 0. 

According to the Gauss-Bonnet theorem the Einstein action in two dimensions is equal 

to 4~r times the Euler characteristic of  the surface. The same result is true on the lattice, 

with ~ h  ~h = 2¢rx, where X is the Euler characteristic. It is a constant provided we 

consider, as we shall do below, surfaces with a fixed topology. 

A cosmological constant term can be included in the action in the form 

a f d2x  , A ~ At, (2.21) 
t r i a n g l e s  t 

where A t is the area of  triangle t. Equivalently one may subdivide the triangles into 

areas associated with each hinge Ah and use the expression 

,~ ~ Ah. (2.22) 
hinges h 

For the baricentric subdivision one has simply 

ah = ½ ~ a, .  (2.23) 
triangles t 

meeting at h 

Ah can also be taken to be the area of  the cell surrounding h in the dual lattice (see 

Fig. 6),  with 

Ah = ~ Ad , (2.24) 
triangles t 

meeting at h 

with the dual area contribution for each triangle Ad given in Eq. (2.17). 
In two dimensions the Weyl tensor vanishes identically, while the other curvature- 

squared terms are all proportional to each other, 

R~p~R ~*vp'r = ½ R~vR ~v = R 2 . (2.25) 
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One therefore needs only one term quadratic in the curvature for the lattice action. Using 

the requirements that it be a sum over hinges (the only places where the curvature is 
non-zero), that it be quadratic in the deficit angle, and that it have the correct dimension 
(length)-2, one is led to the unique expression 

/ d 2 x v / g R  2 , 4 Z - ~ h .  (2.26) 

It can be shown that this formula is exact for all regular tessellations of the two-sphere, 
in the sense that the discrete lattice expression does not depend on the how fine the 
tessellation is, once the area of the surface is kept fixed [7]. 

The lattice action corresponding to pure gravity is then 

i( /2)  = ~ [Aah  - 2 k t h  + 4 0  6~ ] (2.27) 
AhJ ' 

h 

which can be written equivalently as 

i ( /2)  = Z  Vh [ A - k R h  +aR2h], (2.28) 
h 

with the two-dimensional volume element Vh = Ah, and the local curvature given by 
R h = 2 8 h / A  h. In the limit of small fluctuations around a smooth background, 1(/2) 
corresponds to the continuum action 

I[g] = / d2x v~  [ a -  kR + aR2] . (2.29) 

For a manifold of fixed topology the term proportional to k can be dropped, since 
~ h  ~h = 27rx, where ,/" is the Euler characteristic. The curvature-squared leads to non- 
trivial interactions in two dimensions, although the resulting theory is not unitary. In the 
next section we shall discuss properties of the above action in the weak-field expansion 
about fiat space, and later about an arbitrary lattice manifold. 

Arguments based on perturbation theory about two dimensions (where the gravi- 
tational coupling is dimensionless and the Einstein theory becomes renormalizable) 
suggest that there should be no non-trivial ultraviolet fixed point of the renormalization 
group in two dimensions. Explicit calculations in the lattice theory have shown conclu- 
sively that this is indeed the case in the absence of matter [ 11,30-33]. The equations 
of motion for pure gravity in two dimensions then follow from the variation 

='f ~1 [g] ~ d2x v/g [a - aR 2] g"Vtgu. = 0, (2.30) 

and read 

R2 g~v - ~ gjz~ = 0,  (2.31) 

or, in contracted form, R 2 = ,,~/a. For an arbitrary gauge variation of the metric, 
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8 g ~ ( x )  = -g~a(x )  a~g~(x) - g ~ ( x )  atzga(x) - a~g~(x) x a ( x ) ,  (2.32) 

one obtains after an integration by parts, and using the fact that the gauge function X ~ 
is arbitrary (and that (gg~);~ = 0), 

2 u.u (R g );~ = 0  (2.33) 

This is the two-dimensional analog of the (contracted) Bianchi identity. Since the 
squared edge lengths are the primary degrees of freedom, the corresponding lattice field 
equations of motion are obtained, in any dimension, from 

a 11l 2 ] 
0 l ~  - 0.  (2.34) 

Already in the two-dimensional case they are rather unwieldy when written out explicitly, 
and will not be recorded here. 

A candidate for the discrete analog of the two-dimensional Bianchi identity is simply 

6h (12i + 812i) - Z 8h (l 2) = 0 ,  (2.35) 
h(i) h(i) 

where the sum includes the four hinges h belonging to the two triangles bordering 
the edge i, and 81~ represents a variation of the edges meeting at the vertex h. By 
considering gauge variations of the edge lengths in higher dimensions, the corresponding 
exact lattice Bianchi identities can in principle be written down. Some further discussion 
of the Bianchi identities in higher dimensions can be found in the second reference in 

[4]. 

3. Lattice weak-field expansion and zero-modes 

One of the simplest problems which can be studied analytically in the continuum 
as well as on the lattice is the analysis of small fluctuations about some classical 
background solution. In the continuum, the weak-field expansion is often performed by 
expanding the metric and the action about fiat Euclidean space 

&zv(x) = ~ + K h ~ ( x )  . (3.1) 

In four dimensions K = ~ ,  which shows that the weak-field expansion there 
corresponds to an expansion in powers of G. In two dimensions this is no longer 
the case and the relation between K and G is lost; instead one should regard K as a 
dimensionless expansion parameter which is eventually set to one, K = 1, at the end of 
the calculation. The procedure will be sensible as long as wildly fluctuating geometries 
are not important in two dimensions (on the lattice or in the continuum). The influence 
of the latter configurations can only be studied by numerical simulations of the full path 
integral [ 11,30]. 
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In the lattice case the weak-field calculations can be carried out in three- [6] and 

four- [4] dimensional flat background space with the Regge-Einstein action. One finds 

that the Regge gravity propagator indeed agrees exactly with the continuum result [34] 
in the weak-field limit. As a result, the existence of  gravitational waves and gravitons 

in the discrete lattice theory has been established (indeed it is the only lattice theory of  

gravity for which such a result has been obtained 4 ). 

The weak-field expansion about fiat space is relevant for the continuum limit of  the 

lattice quantum theory. Consider a simplicial lattice approximation to a given continuum 

manifold. For an arbitrary continuum manifold, one can envision a triangulation which 

is successively refined by making the simplices and the corresponding edge lengths 

smaller and smaller. As the average lattice spacing is reduced, the curvature on the scale 

of  the lattice spacing becomes eventually sufficiently small that the simplicial manifold 

can be regarded as being locally close to flat. In this limit the curvature is small on the 

scale of  the local volume, and in two dimensions one has 

Icurvatureb - << ( v ° l u m e ) ~  --- Ah or I~hl << 1. (3.2) 

In such regions, which become larger and larger in size as the lattice spacing is reduced, 

one can meaningfully apply the weak-field expansion about flat space, which becomes 

only an approximation when it is truncated to any finite order. 

In the following we shall consider in detail only the two-dimensional case, although 

similar calculations can in principle be performed in higher dimensions, with consid- 

erable more algebraic effort. In the pure gravity case the Einstein-Regge action is a 

topological invariant in two dimensions, and one has to consider the next non-trivial in- 

variant contribution to the action. We shall therefore consider a two-dimensional lattice 

with the higher derivative action of  Eq. (2.27) and ~ = 0, 

I ( l  2) = 4a Z 8--~ (3.3) 
hinges h Ah 

The weak-field expansion for such a term has largely been done in [ 11 ], and we will 

first recall here the main results. Since fiat space is a classical solution for such an R 2- 

type action, one can take as a background space a network of  unit squares divided into 

triangles by drawing in parallel sets of  diagonals (see Fig. 7). This is one of  an infinite 

number o f  possible choices for the background lattice, and a rather convenient one. 

Physical results should in the end be insensitive to the choice of  the background lattice 

used as a starting point for the weak-field expansion. Opposite edges of  the network 

are supposed to be identified so that the lattice acquires the topology of  a toms. (In 

4A discretization of the edge lengths, and therefore of the curvatures, as advocated in some models for 
lattice gravity, can be considered, the dynamical triangulations being one specific example. This procedure 
leads obviously to a loss of the graviton excitation, at least in the weak-field expansion. In ordinary non-abelian 
lattice gauge theories, models based on discrete subgroups of SU(N) have an artificial freezing transition at 
finite coupling and no lattice continuum limit, and do not seem to represent a useful discretization of the 
original continuum theory 135 ]. 
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(1,1) 

3 

0 

(0,0) ~ 
~J 1 (1,0) 

Fig. 7. Notation for the weak-field expansion about the rigid square lattice. 

the following we will be concerned with local properties of  the action, and the detailed 

nature of  the boundary conditions will play only a marginal role.) 

It is also convenient to use the binary notation for vertices described in Ref. [4] .  As 

discussed in the previous section, the edge lengths on the lattice correspond to the metric 

degrees of  freedom in the continuum. The edge lengths are thus allowed to fluctuate 

around their flat-space values, 

li = 1/0(1 + Ei) , (3.4) 

with l ° = l ° = 1 and l ° = x/~ for our choice of  lattice. The second variation of  the action 

is then expressed as a quadratic form in the e's, 

821 = 4a ~ • i M i j • j  . (3.5) 
ij 

The properties of  Mij are best studied by going to momentum space. One assumes that 

the fluctuation ei at the point i, j steps in one coordinate direction and k steps in the 

other coordinate direction from the origin, is related to the corresponding ei at the origin 

by 

e~ j+k) = eo~ w~ a~ °) , (3.6) 

where wi = e - i k i  and ki  is the momentum in the direction i. The matrix M then reduces 

to a 3 × 3 matrix M,o with components given by [ 11 ] 

(Mo,) 11 = 2  + oal - 20)2 -- 2601o./2 + O)1¢-O 2 + C.C., 

(M,o) ,2 = 2 - co, - 6)2 - co,o)2 - w,oa2 - wl 2 - D22 + w~2co2 + D,&2 + 2oa,D2, 

(M,,)  13 = 2 ( - 1  + 2o)1 - eSl + w2 - ¢~2 - eolwz + 2&l&2 + 6)22 - 6)lD22 -- Wl&2), 

(M,o)33 = 4 ( 2  - 2oal - 2o)2 + o)1o)2 + DIO)2 + c.c.) (3.7) 

with the other components easily obtained by symmetry. For small momenta M,o takes 

the form 

[ k~(kl + k2) 2 klk2(kl + k2) 2 -2klk2(k ,  + k2) '~ 

M,o = 14 I klk2(kl + k2) 2 k~(kl + k2) 2 -2k~k2(kl + k2) ) + O(k  5) • 

\ -2klk~(kl  + k2) -2k21k2(kl + k2) 4k2k 2 

(3.8) 
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The change of variables 

I I I 21 -- E 1 = e l  , 6 2  = 6 2 ,  63 = ( e l  + 62) + e3 (3.9) 

leads for small momenta to the matrix M~ given by 

( k4 2 2 -2k, 2 
M~ = 14 k,2 k22 k 4 -2k~k2 + O(kS). (3.10) 

-2klk~ -2k~k2 4k 12k22 

This expression is identical to what one obtains from the corresponding weak-field limit 
in the continuum theory. To see this, define as usual the small fluctuation field h ~  about 

fiat space by setting 

g~zv = 6~, + h~,.  (3.11 ) 

In two dimensions one has 

R = h11,22  7 L h22,11 - 2 h 1 2 , 1 2  -I- O ( h  2 )  , (3.12) 

and also 

v ~  = 1 + ½(h~ + h22) + O(h2) ,  (3.13) 

which gives 

v ~ R  2 = (h11,22 + h22,11 - 2h12,12) 2 + O(h 3) • (3.14) 

In momentum space, each derivative 0~ produces a factor of k~, and so one obtains 

V ~  R 2  = huu Vu~'.po" hpo,, (3.15) 

where V~,,,p,, coincides with M' above (when the metric components are re-labeled 
according to 11 ~ 1, 22 ~ 2, 12 --~ 3). 

One might wonder what the origin of the change of variables in Eq. (3.9) is. Given 
the three edges in Fig. 7, one can write for the metric at the origin 

gij = l 2 • (3.16) 

The apparent contradiction with the earlier expression for gij given in Eq. (2.10) arises 
from the different choice of coordinates in the triangles (compare Fig. 3 with Fig. 7). 

Inserting li = l°(1 + 6i), with I ° = 1 for the body principals (i --- 1,2) and l ° = x/~ for 
the diagonal (i = 3), one obtains 

ll 2 = (1 + 6 1 ) 2 = 1  + h l l ,  

1 2 = ( 1 + 6 2 )  2 = I + h 2 2 ,  

½l 2 = (1 + e3) 2= 1 + ½(hll + h22) + h,2, (3.17) 

which can be inverted to give 
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el=½hJl-ghlll 2 +O(h~l ) 

e2 = / h 2 2 -  glh222 - t -O(h~2) ,  

e3 = ¼(hll + h22 + 2h12) - ~2(hll + h22 + 2h12) 2 + O(h 3) (3.18) 

and which was then used in Eq. (3.9). Thus the matrix Mo, was brought into the 

continuum form after performing a suitable local rotation from the local edge lengths to 

the local metric components. 
The weak-field expansion for the purely gravitational part can be carried out to higher 

order, and the Feynman rules for the vertices of order h 3, h 4 . . . .  in the R2-action of 

Eq. (2.27) can be derived. Since their expressions are rather complicated, they will not 
be recorded here. 

3.1. Lattice diffeomorphisms 

It is easy to determine the eigenvalues and eigenvectors of the matrix M,, of Eq. (3.7). 

The eigenvalues of the matrix M,o are given by 

,~1 = 0 ,  

A2----0 , 

,~3 = 24 - 9(wl + ~1 + w2 + 6~2) + 4(w16~2 + ~lw2) 

+ 0) 0)2 + + (3.19) 

and there are thus two exact zero-modes in the weak-field limit. It should be emphasized 

that the exact zero-modes appear for arbitrary wi, and not just for small momenta. We 
shall see later that their presence reflects an exact local continuous invariance of the 

gravitational action. 
If  one were interested in doing lattice perturbation theory, one would have to add a 

lattice gauge-fixing term to remove the zero-modes, such as the lattice analog of the 

term 

1 (0u gv,~--~g,~,) 2 (3.20) 
K2 

and add the necessary Faddeev-Popov non-local ghost determinant. A similar term would 

have to be included as well if one were to pick the lattice analog of the conformal gauge 
[36], to which we shall return later. If  one is not doing perturbation theory, then of 

course the contribution of the zero-modes will cancel out between the numerator and 
denominator in the Feynman path integral representation for operator averages, and such 
a term should not be included, as in ordinary lattice formulations of Yang-Mills gauge 

theories. 
The eigenvectors corresponding to the two zero-modes can be written as 

e2(0)) = 0 1 - 0)2 XI(0)) (3.21) 

e3(0))  21-(1 -- 0910)2) 1(1  -- 0)10)2) ,)(2(0)) ' 
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(n +fi2)  

e2(n) 

n 

(n +~i, + P-2) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

e, (n) 
(n + I.t,) 

Fig. 8. Edge length gauge deformations ~i(n), and corresponding gauge transformation vector field x(n) ,  
defined on the sites. 

where X1 ( 09 ) and X2 ( 09 ) are arbitrary. One might worry that the above result is restricted 
to two dimensions. This is not the case. Completely analogous zero-modes are found for 
the Regge action in three [6] and four [4] dimensions, leading to expressions rather 
similar to Eq. (3.21), with as expected d zero-modes in d dimensions. As we shall see, 
this is not a coincidence. We give here for comparison the corresponding expression in 
three dimensions [6], obtained from the weak-field expansion of the Regge action, 

e2(09) J / 0 1 --  092 0 
E4(09) 0 0 1 -- 094 

e3(09) = ½(1 -- 0910.12) l ( l  --  091092) 0 

! (  1 - 091094) e5(09)  1 (  1 -- 091094) 0 2 

15"6(O9 ) 0 ½(1 -- 092094) ½(1 -- 092094) 

\~ '7(09)  1 ( 1 - - 0 ) 1 0 ) 2 0 ) 4 )  1 ( 1 - - ¢ - - 0 1 0 9 2 0 9 4 ) l ( 1  --091092094) 

X2(09)  , 

)(3(09) 

(3.22) 

again with .)(1 ( 0 9 ) ,  .)(2(O9) and ,)(3(("0) arbitrary gauge functions (in the binary notation 
for the edges, the indices 1,2, 4 correspond to the body principals, the indices 3,5, 6 to 
the face diagonals, and 7 to the body diagonal). 

It is useful to look at the above relations, and in particular Eq. (3.21), in real space. 
The replacement e ik~ --, e d/dx and ea'V f ( x )  = f ( x  + a) yields 

el (n) = X1 (n) - XI (n +/21 ) , 

e2(n) = x 2 ( n )  - x 2 ( n  +/22)  , 

e3(n) =½xj(n) + ½x2(n) - ½x,(n+/21 +/22)  - ½x2(n + /2 ]  + /22)  • (3.23) 

For our notation, we refer to the drawing in Fig. 8. Note how the arbitrary gauge varia- 
tions act on the two ends of an edge. This is true in any dimension, where elementary 
local gauge transformations are always defined on the vertices of the lattice. The above 
gauge transformation law is in fact remarkably simple for those edges that lie in the 
direction of the chosen coordinates, namely 
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812 = X'i - X t j  , (3.24) 

where i and j labels the end points of the edge, and we have rescaled the arbitrary 
functions X by I/2j so that the quantities X'i now have dimensions of length squared. 

It is easy to see that the above equations solve the constraint ~~i~:i(n) = 0 a t  the 
vertex n where Xn ~ O, 

6 
Z ei(n) = x l ( n )  + ½xl(n)  + ½x2(n) + x2(n) - x l ( n )  
i=1 

- - l x l ( n )  -- ½X2(n) -- x2(n) 

=0 .  (3.25) 

It can be written equivalently in terms of variations of the squared edge lengths meeting 
at the vertex n, labeled clockwise around the vertex n starting with the edge in the 
positive 1 direction, 

a (($12nl + t3/2,3 + 8124 + ~12n6) + b (612n2 + M2nS) = 0 ,  (3.26) 

with a and b arbitrary constants at this point. In other words, gauge variations of the 
squared edge lengths are recognized as special variations, where all edges meeting at a 
point (in two dimensions) are considered, and which either have the explicit form given 
in Eq. (3.23) for the weak-field case, or equivalently (and more generally) satisfy a set 
of defining constraints such as the one in Eq. (3.26). 

Incidentally, it should be noted here that conformal transformations, which in the 
continuum take the form 6 g ~  (x)  = g~,~ (x)6q~(x), have a natural lattice analog. They 
contract (or expand) locally all the edges meeting on a given vertex n by the same 

amount, 

6l~ ( n ) = 12i ( n ) 6q~( n ) , (3.27) 

and therefore do change locally the curvature at n. When constructed in this way, they 
can be considered orthogonal to the X transformations of Eqs. (3.21) and (3.23). 

The cosmological constant term can also be shown to be invariant under the same set 
of continuous local transformations, since, using the same notation for the expansion 

about the square lattice, one obtains 

Z ah = ~ [1 + l ( e , ( n )  + ez(n))  + O(e2)] , (3.28) 
h n 

and at the vertex Pn where X, :~ 0 one has again 

4 
ei(n) = Xl (n) + x2(n)  - XI (n) - x2(n)  = 0,  (3.29) 

i=1 

where the sum is over the four edges pointing in the four principal directions. Written 
in terms of the variations of the squared edge lengths, one has 
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Fig. 9. Tetrahedral tessellation of the two-sphere, with arbitrary edge length assignments. 

~121 + ~512n3 + ¢~12n4 -']- C$126 = 0. (3.30) 

In general one has in two dimensions six edges meeting at a vertex, and therefore 
four allowed constraints on the gauge edge length variations. In conclusion we have 
exhibited an exact local gauge invariance of the gravitational action in the weak-field 
limit. Later on we shall show that it corresponds precisely to the lattice analog of the 
diffeomorphisms. 

It is important to notice that the appearance of zero-modes in the weak-field expansion 
is not specific to the expansion about flat space. One can look at the same procedure 
for variations about spaces which are classical solutions for the gravitational action with 
a cosmological constant term as in Eq. (2.27), such as the regular tessellations of the 
two-sphere [7]. In the following we will consider edge length fluctuations about the 
regular tetrahedron (with 6 edges), octahedron ( 12 edges), and icosahedron (30 edges). 

After expanding about the equilateral configuration, the action at the stationary point 
reduces to 

I = a8~'X/- ~ + a8qr/v/-a/a = 16~ 'x /~ ,  (3.31) 

in fact independently of the tessellation considered. Vanishing of the linear terms in the 
small fluctuation expansion gives for the average edge length 

lo = [c~'Z(na/~)] U4, (3.32) 

with c = 16/3, 4/3,  16/75 for the tetrahedron, octahedron and icosahedron, respectively. 
For fluctuations about the classical solution for a tetrahedral tessellation of S 2 (see 
Fig. 9) the small edge length fluctuation matrix gives rise to the following coefficients: 

e~2 ~ 16v/-~ (54 - 6x/37r + 5Ir2)/817r, 

e12 e13 ~ 16x/-~ ~r/9, 

e12 el5 ~ 64v/a~ ( - 2 7  + 3x/3~ + 27rZ)/817r, (3.33) 

with the remaining coefficients being determined by symmetry. The small fluctuation 
matrix is therefore given by 
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Fig. 10. Octahedral tessellation of the two-sphere, with arbitrary edge length assignments. 

/ ,  1 1 1 1 2 - / x  
1 / ,  1 2 - / z  1 1 

8 r r x / ~  1 1 /z 1 2 - / z  1 
1 2 - / z  1 ~ 1 1 ' (3.34) 

1 1 2 - / ,  1 /x 1 
2 - / ~  1 1 1 1 /~ 

where/z = 2(57r 2 - 6v/3¢r + 54)/9¢r 2 ~ 1.5919 (the a/a dependence has disappeared 

since the couplings a and a only appear in the dimensionless combination v/-~).  The 
eigenvalues of the above matrix (neglecting the constants in front of it) are 0 (with 

multiplicity 2), 2 ( / x -  1) (with multiplicity 3) and 6 (with multiplicity 1). The zero- 
modes correspond to fiat directions for which deformations of the edge lengths leave 
the lattice geometry unchanged. The multiplicities of the eigenvalues agree with the 
dimensions of the irreducible representations of the symmetry group of the tetrahe- 
dron. 

For the octahedron (see Fig. 10) one obtains instead the following coefficients of the 
small fluctuation matrix: 

e22 ---+ 2 x / ~  (216 - 12v~cr + 5~r2)/277r, 

el2 e13 --+ 8 v ~  ( - 2 7  - 3V~rr + 2~r2)/27¢r, 

612 614 --+ 4V/-~ (54 + r r z ) / 9 ¢ r ,  

ej2 e34 --+ 8 v / ~  ( - 5 4  + 3v/3rr + ¢r2)/27¢r, 

el2 e46 ---+ 4 v / ~  (108 + 12v~rr + rt2)/277r, (3.35) 

again with the remaining coefficients being determined by symmetry. Up to a common 
factor of 2v/-~/27rr,  the eigenvalues of the 12 x 12 small fluctuation matrix are given 
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Fig. 11. |cosahedral tessellation of the two-sphere, with arbitrary edge length assignments. 

by 367r 2 (with multiplicity 1), 972 (with multiplicity 2), and 8 ( 3 v ' ~ -  ~)2 (with 
multiplicity 3), and zero (with multiplicity 6). 

Finally, for the icosahedron (shown in Fig. 11) one computes the following coeffi- 
cients of the small fluctuation matrix: 

e~2 ~ 16V'-a--~ (270 - 6v/'37r + rr2)/135~r, 

e12 el3 --~ 1 6 v / ~  ( -675  - 30v/3¢r + 87rZ)/6757r, 

e12 el4 --~ 16v/-a--~ (270 - 6v/-3 + ~rr2)/135zr, 

612 634 ~ 32v/ 'a~ ( -675  + 15v~Tr + 27r2)/675zr, 

e12 e45 ~ 16V'-~ ( -675  + 15v/3zr + 27r2)/6757r, 

612 638 --+ 16V'-~ ( - 6 7 5  + 15x/37r + 27r2)/6757r, 

612 e48 ~ 16x/a-~ (675 + 30v~rr + ¢r2)/6757r, (3.36) 

with the remaining coefficients being determined by symmetry. Up to a common factor 
of 8v/-d-~/6757r, the eigenvalues of the 30 × 30 small edge length fluctuation matrix are 
given (numerically) by 12340.173 (with multiplicity 3), 7238.984 (with multiplicity 
5), 888.264 = 90¢r 2 (with multiplicity 1), 20.887 (with multiplicity 3), and zero (with 
multiplicity 18). 

The presence of the zero-modes is related to the gauge (diffeomorphism) invariance 
of the gravitational action. The previous results can in fact be summarized as 
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Tetrahedron (No = 4) : 2 zero-modes 

Octahedron(N0 = 6) : 6 zero-modes 

Icosahedron(N0 = 12) : 18 zero-modes (3.37) 

If  the number of zero-modes for each triangulation of the sphere is denoted by Nz.m., 

then the results can be re-expressed as 

Nz.m. = 2 N 0 -  6,  (3.38) 

which agrees with the expectation that in the continuum limit, No ~ oo, Nz.m./No 
should approach the constant value d in d space-time dimensions, which is the number 

of local parameters for a diffeomorphism. On the lattice the diffeomorphisms corre- 

spond to local deformations of the edge lengths about a vertex, which leave the local 
geometry physically unchanged, the latter being described by the values of local lattice 

operators corresponding to local volumes, and curvatures. The lesson is that the correct 

count of zero-modes will in general only be recovered asymptotically for large triangu- 

lations, where No is roughly much larger than the number of neighbors to a point in d 
dimensions. It should be possible to find a similar pattern in higher dimensions. 

3.2. Edge lengths as metric components 

Returning to the weak-field expansion about flat space, it is easy to see that the above 
lattice gauge transformation corresponds to the diffeomorphisms in the continuum. Using 

the relationship between the metric perturbations and the edge length variations, obtained 
by choosing coordinates axes along the edges (as in Eq. (3.16) and Fig. 7), 

! ( 6 l ~ ( n )  - ~12(n) - 812(n)) ) ~Sl~ ( n ) 2 

8gi j (n)  = 1 2 - 612(n) 812(n) 6l~(n) 7(~13(n ) - ) 

(3.39) 

one obtains from Eq. (3.23) the result 

8gll = 61~ = 2 x l ( n )  - 2Xl (n  +/21) ~ - 2 0 1 X 1 ,  

~g22 = ~I 2 = 2x2 (n )  - 2x2 (n  +/22) ~ - 2  02X2, 

8g12 = ~( 613 - - 

= X1 (n +/21 ) - X1 (n +/21 -b/22) q- x 2 ( n  -b/22) - x 2 ( n  +/21 q-/22) 

--O32X1 - -  0 1 X 2 ,  

which can then be combined into the single familiar expression 

8gu.~, = --8~X~, - cg~,Xu , 

and which is indeed the correct gauge variation in the weak-field limit. 

(3.40) 

(3.41) 
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Conversely, the above form of the lattice gauge transformation, Eq. (3.23), can be 

obtained from the form of infinitesimal diffeomorphisms in the continuum. In order to 
see this result, start from the definitions of diffeomorphisms 

0x pax  ,~ 
g ~ ( x ' )  - 9x~ ax~ g p ~ ( x ) ,  (3.42) 

as transformations which leave the infinitesimal line element, as well as any other 
coordinate invariant quantity, unchanged 

ds '2 ~ g ~ p ( x  I) d x l ~ d x  I~ = ds  2 =~ gp~(x )  dxPdx  ~ (3.43) 

under an arbitrary change of coordinates 

x q" = x ~ + X u ( X )  . (3.44) 

For infinitesimal variations one obtains 

g ~ ( x ' )  =gu~(x) + ~3gu~(x) 

= g u ~ ( x )  - g~za(x) OuXa(X) - ga~(x) OuXa(X) + O(X 2) • (3.45) 

The above relationships express the well-known fact that metrics related by a coordinate 
transformation describe the same physical manifold. In the discrete case it reflects the 
invariance of the lattice action under local deformations of the simplicial manifold which 
leave the local curvatures unchanged [ 3 ]. Since the continuum metric degrees of freedom 
correspond on the lattice to the values of edge lengths squared, one would expect to find 
analogous deformations of the edge lengths that leave the lattice geometry invariant, the 
latter being specified by the local latt ice areas and curvatures, in accordance with the 

principle of discussing the geometric properties of the lattice theory in terms of lattice 
quantities only. Clearly the distance between lattice vertices will change under such a 
transformation, in accordance with the fact that only distances between f i xed  points will 
remain the same. This invariance is spoiled by the presence of the triangle inequalities, 
which places a constraint on how far the individual edge lengths can be deformed. In the 
perturbative, weak-field expansion about a fixed background the triangle inequalities are 
not seen to any order in perturbation theory, they represent non-perturbative constraints. 

These considerations are further illustrated by the following elementary example [ 38 ]. 
In one dimension (zero space, one time dimension) one can discretize the line by 
introducing N points, joined by segments of lengths l,. The only invariant term in one 
dimension is obviously the length of the curve, 

N 

Z l , .  (3.46) L ( I )  
n=l 

From the expression for the invariant line element, ds  2 = g d x  2, one naturally associates 
g ( x )  with l 2, and the coordinate increment with the lattice spacing, d x  = 1. One can 
take the view that distances can only be assigned between vertices which appear on 
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some lattice in the ensemble, although this is not strictly necessary as distances can also 
be defined for locations that do not coincide with any specific vertex. 

The above one-dimensional action has an exact local invariance (compare with 
Eq. (3.23) in two dimensions) 

8In = Xn+l - Xn, (3.47) 

where the Xn'S represent continuous gauge transformations defined on the lattice ver- 

tices (actually, in order for the edge lengths to remain positive, one should also require 

Xn - Xn+l < ln, which is satisfied for sufficiently small X'S). These transformations 
are in fact remarkably close in structure to the ones found in two dimensions (see 

Eq. (3 .24)) .  Physically, the local invariance reflects the re-parameterization, or coordi- 

nate invariance, of  the original continuum action L = f d x x / g ( x ) .  It is the discrete form 

of  the change S g ( x )  = 2g0x. Variations of  the edges which satisfy Eq. (3.47) leave 

the physical length of  the curve unchanged. In addition, given any two points on the 

curve, independent local gauge transformations can be performed on any of  the vertices 
situated between the two points, while at the same time maintaining the same physical 

distance between them (which, for any assignments of  edge lengths, is simply obtained 
by adding up the intervening edge lengths). It justifies the name lattice di f feomorphisms 

for the transformations of  Eq. (3.47).  5 

In two dimensions one starts from the relationship of Eq. (3.16) between the squared 

edge lengths and the metric, and uses the expression for metric perturbations given in 

Eq. (3.39).  From Eq. (3.45) one obtains 

812 =Sgl l  = - 2  1201X 1 4- (l~ 4- l~ - 12) 01X 2 , 

8l 2 =8g22 = - 2  12 a2X 2 4- (l~ 4- 1~ - 12) 02X 1 , 

8l 2 =Sg l l  + 8g22 + 28g12 

= ( - - I  2 + 122 - 12) (a lX 1 4- a2X 1) + (12 - 12 _ 12) (a lX 2 4- a2X2). (3.48) 

After introducing appropriate finite differences for the fields X ~' one then has 

812 = 

81~ = 

81~ = 

- -2 I~ (XII - X~) 4- ( l  2 4- l~ - 12) (X ]  2 - Xo2), 

- 2  12 (X~ - X 2) 4- ( l l  2 4- l~ - l~) (X]~ - X o ) ,  

( - I  2 + 1 2 2 - I  2) ( X ~ - X o  1) 4 - ( I 1 2 - I  2 - I  2 ) ( X ~ - X 2 )  • (3.49) 

Here upper indices on X label the components, while lower indices indicate the position. 

Taking X1 = X2 = X3 = 0, Xo :~ 0, as well as ll = 12 = 1, 13 = x/~ (as appropriate for 
the square lattice), one finally obtains the simple result 

5 There is here an (incomplete) analogy with ordinary lattice gauge theories, in the sense that if one 
defines Un = e t" and Vn = e x", then the gauge transformation law of Eq. (3.47) can be rewritten as Un ---* 
VnlUnVn+b which parallels the gauge transformation law for the SU(N) gauge fields Un~ in d dimensions, 
Unu ~ Vn I Un~ Vn+ ~, where Vn~ are arbitrary N x N SU ( N ) matrices. The "update" Un "-'* V. Un corresponds 
here to In --* In + 8ln. 
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2, = 2 , 

 132 =2 + x02), (3.50) 

which is indeed equivalent to Eq. (3.23). This shows that the zero-modes described in 
Eq. (3.23) correspond to lattice diffeomorphisms. (The term lattice coordinate trans- 
formations would appear to be equally suitable, provided one identifies the directions 
associated with the edges with a preferred coordinate system, and identifies changes 
in these coordinates as corresponding to variations in the squared edge lengths which 
leave the local curvatures unchanged.) The case of flat space is obviously the simplest. 
By moving the location of the vertices around in flat space, one can find a different 
assignment of edge lengths which represents the same fiat geometry. This leads to a 
d. N0-parameter family of transformations for the edge lengths in fiat space, and to a set 
of equivalent metrics which are all related by lattice diffeomorphisms, i.e. deformations 
of the edge lengths which leave the local curvature invariants unchanged, and respect 

the triangle inequalities. 
In conclusion, the previous analysis shows a direct correspondence between gauge 

transformations on the simplicial lattice 

12i , l~ + Sl~ ( x ) , (3.51) 

and the analogous diffeomorphisms in the continuum 

gu~(x) , g~ , ( x )  + 6 g u , ( X ( x ) ) .  (3.52) 

These transformations, in which suitable deformations of the edge lengths are shown to 
correspond to the local gauge transformations, should be contrasted with the set of what 
can be called trivial coordinate transformations. For a given assignment of edge lengths, 
introduce an arbitrary coordinate system, and a corresponding fiat metric, within each 
triangle (or simplex in higher dimensions). Coordinate changes can then be performed 
within any triangle such that 

l'~! (n) = 121 ( n ) ,  

l'22(n) = 1022(n) , 

l'~2( n) = l~2( n) (3.53) 

within each triangle. These diffeomorphisms are trivial, in the sense that they correspond 
to a change in an arbitrary coordinate system, which was not part of the theory to 
begin with, as Regge's lattice theory is formulated exclusively in terms of coordinate- 
independent squared edge lengths, and not piecewise fiat continuum metrics, which are 
highly degenerate. 

The confusion between the two types of invariance is, in our opinion, at the root of 
the erroneous conclusions drawn in Ref. [39], where it is argued that Regge gravity 
always needs a non-local gauge-fixing term, to compensate for the fact that in the 
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functional integral for gravity the integration is over "invariants", the edge lengths. 
As the edge lengths correspond to components of the metric (see Eqs. (2.7), (3.18), 
(3.21), (3.23)),  this cannot be true. The above discussion shows in detail that the 
situation is more subtle, and that a non-local additional, and in our opinion ad-hoc, 
gauge-fixing term will most likely lead to an incorrect weighting, as already pointed out 

in [40]. 

4. Arbitrary curved backgrounds 

The previous discussion dealt with the case of an expansion of the gravitational action 
about flat space, or a regular tessellation of the sphere, a manifold of constant curvature. 
To complete our discussion, we now turn to the more complex task of exhibiting 
explicitly the local gauge invariance of the simplicial theory, for an arbitrary background 
simplicial complex. To this end we write 

l 2 = 12i -k- qi q- ~12i, (4 .1)  

where qi describes an arbitrary but small deviation from a regular lattice, and 6l~ is a 
gauge fluctuation, whose form needs to be determined. We shall keep terms O(q 2) and 
0(q612) ,  but neglect terms 0(614) .  

The squared volumes I/,2(o -) of n-dimensional simplices ~r are given by homogeneous 

polynomials of order (12) n. In particular for the area of a triangle AA with arbitrary 

edges lj, 12,13 one has 

6A~ ' 2 1~)~i~ , 2  12)~l~ l 2 = g ( - l ,  + l~ + + g ( l ,  - l~ + + g(1,  + l~ - l~) 612 , (4.2) 

and similarly for the other quantities in Eqs. (2.16)-(2.18) which are needed in order 

to construct the action. 
For our notation in two dimensions we will refer to Fig. 12. The subsequent figures 13 

and 14 illustrate the difference between a gauge  deformation of the surface which leaves 
the area and curvature at the point labeled by 0 invariant, and a physical  deformation 
which corresponds to a re-assignment of edge lengths meeting at the vertex 0 such that 
it alters the area and curvature at 0. In the following we will characterize unambiguously 
what we mean by the two different operations. 

4.1. Equi lateral  latt ices 

First consider the expansion about a deformed equilateral lattice, for which loi = 1 
to start with. A motivation for this choice is provided by the fact that in the numerical 
studies of two-dimensional gravity the averages of the squared edge lengths in the three 
principal directions turn out to be equal, (ll z) = (12 2) = (132). The baricentric area associated 

with vertex 0 is then given by 
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Fig. 12. Notation for an arbitrary simplicial lattice, where the edge lengths meeting at the vertex 0 have been 
deformed away from a regular lattice by a small amount qi (minimally deformed equilateral lattice). 

Fig. 13. Local gauge deformations of the lattice act on the edge lengths meeting at the vertex 0, and are 
performed in such a way that the area and curvature at the vertex 0 are left unchanged. 

Fig. 14. Physical deformations change the area and curvature at the vertex 0, thus changing the lattice geometry. 
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A= Ao( q) + 2 . ~  [ 8121 

+8l~2 (3 + q0~ - 4q02 

+8123 (3 + q02 - 4q03 

q-~124 (3 + q03 - 4qo4 

q-t~125 (3 -q- q04 - 4qo5 

at-~126 (3 + q05 -- 4q06 

(3 + q06 - 4q01 + q02 d- q16 -k- ql2) 

+ q03 -q- q12 -q- q23) 

+ qo4 + q23 + q34) 

-t- qo5 -k- q34 q- q45 ) 

"1- q06 q'- q45 + q56) 

+ q01 -+- q56 + q16)] + O(~/4) 
.I 

(4.3) 

Our normalization is such that Ao = 4 for qi = 0. Equivalently one can write, in more 
compact notation, at the vertex 0 

A = Ao(q) + lva(q) • 812 + O(t~/4) , (4.4) 

with 812 = (Sl~l . . . . .  t~126). After adding the contributions from the neighboring vertices 
one obtains 

Z A = Z Ao(q) + Va(q)" 8l 2 + O(814).  (4.5) 
PO...P6 PO...P6 

Therefore the area associated with the vertex 0 will remain unchanged provided the 
variations in the squared edge lengths meeting at 0 satisfy the constraint 

Va(q) • 8l 2 = 0.  (4.6) 

This is nothing but the curved space equivalent of  the condition of  Eq. (3.30),  which 
for the fiat equilateral lattice takes the form 

6 

Sly(n) = 0.  (4.7) 
i=1 

Alternatively, if one considers a dual subdivision, one has to consider the dual area 
associated with vertex 0. In this case one has 

1 
[6121 ( 1 + 2qo6 -- 4qol + 2qo2) A = ao(q) + 

q-~lo22 ( 1 + 2qol - 4qo2 -F 2qo3) + 61~3 ( 1 + 2qo2 - 4qo3 + 2qo4) 

+~/24 ( 1 + 2qo3 - 4qo4 + 2qo5) + 8125 ( 1 + 2qo4 - 4qo5 + 2qo6) 

+6126 (1 + 2qo~ - 4qo6 + 2qol)] + O(6/4) • (4.8) 

leading to a result formally similar (in fact in this case identical) to the baricentric case. 
A similar calculation can be done for the curvature associated with vertex 0. One has 

for the deficit angle at 0 

' [ ~ = ~o(q) -t- ~ 81o21 (3 -- 2qo6 -- qol -- 2qo2 + ql6 + ql2) 

- 2qol - q02 - 2q03 + q12 + q23)  q'- . . . ]  q- 0 ( 8 1 4 )  • +61022 (3 (4.9) 
.] 
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and therefore for the variation of  the sum of the deficit angles surrounding 0 

and 

PO...P6 

375 

(4.10) 

A similar calculation can be performed for the square lattice with 101 = 102 = 1 and 

/03 = v/-~. The baricentric area associated with vertex 0 is now given by 

[~121 (4 -- 4q01 + q02 + q16) + c31022 (q01 -- 2q02 + q03 + q12 + q23) A Ao(q) + 

+~123 (4 + qoz - 4q03 + q34) + t~1024 (4 - 4q04 + q05 + q34) 

+61~5 (qo+ - 2q05 + q06 + q45 + q56) + t3126 (4 + q05 - 4q06 + q16) ] 

+ O ( ~ I  4) . ( 4 . 1 6 )  

4.2. Square lattice 

6 = ~ So(q) + vR(q) • 8l 2 + O(814) , (4.11) 
PO...P6 PO...P6 

with in this case, as expected, vR(q) = O. 
Finally for the curvature squared associated with vertex 0 one computes 

= 82/Ao(q) + 33~ [t~121 (q01 + q02 + q03 + q04 + q05 + q06 - q12 - q23 A 

-q34 - q45 - q56 - q16) + ~122 (qol + q02 + q03 + q04 + q05 + q06 

-q12 - q23 - q34 - q45 - q56 - q16) + . . . ]  +O(t~14) • (4.12) 

Adding up all seven contributions one gets 

A ( ~ 6 2 / A h )  = Z (4.13) 

and therefore 

Z 62/A = Z (62/A)0 + vR2(q)" 812 + 0(614)" (4.14) 
Po...P6 PO...P6 

In this case the curvature squared associated with the vertex 0 will remain unchanged, 

provided the variations in the squared edge lengths meeting at 0 satisfy the constraint 

vR2 ( q) • 812 = 0.  (4.15) 

which provides a second constraint on the edge length variations 612 at the vertex 0. 

Again this constraint is the generalization to curved space of  the condition of  Eq. (3.26), 

which was valid for flat space. 



376 H.W. Hamber, R.M. Williams~Nuclear Physics B 487 (1997) 345-408 

Our normal iza t ion  here is such that Ao = 1 for qi = 0. S u m m i n g  up all relevant 

contr ibut ions,  one can write 

Z A = Z Ao(q) + Via(q) • 812 + 0(814), (4 .17)  

P O . . . P 6  P O . . . P 6  

leading to the invariance constraint  on the edge length variations 

Vta(q) • 812 = O. (4 .18)  

This provides  a first constraint  on the edge length variations 8 l  2 at the vertex O, for the 

deformed square lattice. 

For the dual  (Voronoi)  area associated with vertex 0 one has instead 

1 
[612ol (2  - 3qm + 2qo2 -I- 2qo6 - q16 - q12) A = Ao(q) + -~ 

+Mo22 ( - 2  + 2qm - 3qo2 + 2qo3 + ql2 + q23) 

+8123 (2  -F 2q02 - 3qo3 -F 2q04 - q23 - q34) 

+8124 (2 -q- 2qo3 - 3qo4 + 2qo5 - q34 - q45) 

+8125 ( - 2  + 2q04 - 3qo5 + 2q06 + q45 -t- q56) 

(2 + 2qm + 2qo5 - 3qo6 - q56 - q16)] + O(8/4)  , (4 .19)  +8/2o6 

leading to a constraint  s imilar  to the one for the baricentric area. For the curvature 

associated with vertex 0 one has 

1 
[81~1 (2 - 2qo6 - qm - qo2 -t- q16 q- q12) + 8122 (2 - qol - qo3) 8= 8o(q) + -~ 

-F8123 (2  - q02 - q03 - 2q04 + q23 -F q34) 

+8124 (2  - 2q03 - q04 - q05 + q34 + q45) + 8l~5 (2  - q04 - q06) 

(2  - qo5 - q06 - 2qol + q56 -k- q16)] q- O(8/4)  , +8/26 (4 .20)  

which gives now 

Z 8 = Z 8o(q) + v'R(q)" 812 + O ( M 4 ) ,  (4 .21)  

PO . . . P6  PO . . . P 6  

with v ' R ( q )  -- 0. 

Final ly,  the curvature squared associated with jus t  the vertex 0 is given by 

62/A = Bg/Ao(q) + ½ [8121 (qm + q02 + q03 + q04 + q05 + q06 - q12 - q23 

--q34 -- q45 -- q56 -- q16) + 81022 (qOl + q02 + q03 + q04 + q05 + q06 

--q12 -- q23 -- q34 -- q45 -- q56 -- q16) q- . . . ]  -bO(8/4)  • (4 .22)  

The label ing in the previous formulae is a bit  c lumsy in deal ing with nearest next-nearest  

ne ighbor  interactions;  for the label ing in the fol lowing formula  we refer to Fig. 15. 
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Fig. 15. Labeling of lattice vertices for the expansion of the curvature-squared term around a minimally 
deformed square lattice. 

A d d i n g  up the contr ibut ions  f rom the seven distinct vertices 0 - 6  one  obtains for the 

term l inear  in 612 

[8l~,1(4q0,1 + 2q0,2 + qo,-1 - qo,-2 - qo,3 + 2qo -3 - ql,3 - 2q2,3 - q - 1 , - 3  
! 
2 

- 2 q - 2 , - 3  -- q - l , 2  - q l , - 2  + q l , l+ l  + 2q1,1-2 + 2ql,l+3 -- q l + l , l - 2  

--q1+1,1+3 + q2,2+3 -- 2 q - 2 j - 2  -- q - 2 , - 2 - 2  -- q - 2 , - 2 - 3  + q -2 -2 , -2+1  

+ q - 2 - 2 , - - 2 - 3  -- 2q3,1+3 -- q3,2+3 -- q3,3+3 -- q - 3 , - 2 - 3  + q3+3,1+3 + q3+3,2+3) 

+8/02,3(--q0,1 -- q0,2 -k- 4q0,3 + 2 q 0 - J  + 2q0,-2 + q0,-3 -- ql,3 -- q2,3 -- q - I , - 3  

- - q - 2 , - 3  -- 2 q - l , 2  -- 2q l , -2  -- q l , l+l  -- qJ,1-2 -- 2ql,l+3 + q - l , 2 - 1  + q l+ l ,1 -2  

+ q l + l , l + 3  -- q2.2+2 -- q2,2-1 -- 2q2,2+3 + q-2 ,1 -2  + q2+2,2-1 + q2+2,2+3 

+2q3,1+3 -k- 2q3,2+3 -k- q3,3+3 -- q3+3,1+3 -- q3+3,2+3) q- . . . ]  q- O(814) (4 .23)  

which  can be writ ten in short form as 

8 2 / A ( q )  = Z ( 6 2 / A ) o  + v ' R 2 ( q )  . 81 z + O ( ~ / 4 )  . 

Po . . . P6 Po . . . P6 

(4 .24)  

Aga in  the curvature  squared associated with the vertex 0 will  remain unchanged provided  

the variat ions in the squared edge  lengths meet ing  at 0 satisfy the constraint  

V'RZ (q )  • 812 = 0 .  (4 .25)  

which provides  the second constraint  on the edge  length variat ions 812 at the vertex 0, 

for the de fo rmed  square latt ice ( compare  with Eq. ( 3 . 2 6 ) ) .  

In conclus ion ,  we have shown expl ici t ly  how gauge variations o f  the edge  lengths at 

each vertex can be def ined by requir ing that the action contr ibut ions be local ly  invariant. 

We have looked  at small  deformat ions ,  but large deformat ions  can be treated as well  
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~3 

13 (~ 2 

Fig. 16. Labeling of edges and fields for the construction of the scalar field action. 

along the same lines, provided one is careful not to violate the triangle inequalities, 

which impose a non-perturbative cutoff in orbit space The same approach can also be 

extended to higher dimensions, leading to similar (but rather more complicated, when 
written out explicitly!) results. The main conclusions do not change. 

5. Sca lar  f ield 

In the previous section we have discussed the invariance properties of the lattice action 
for pure gravity. Next a scalar field is introduced, as the simplest type of dynamical 

matter that can be coupled to gravity. The scalar lattice action in the continuum is 

4,] = ½ f d2x v~ [ gU," Ol,&Ovq~ + (m 2 _+_ ~:R) ~b 2 ] . (5.1) l[g, 

The dimensionless coupling s c is arbitrary; two special cases are the minimal (s c = 0) 
l and the conformal (~: = g) coupling case. In the following we will mostly consider the 

case s c = 0. 

5.1. Construction of the lattice action 

On the lattice consider a scalar qbi and define this field at the vertices of the simplices. 

The corresponding lattice action can be obtained through the usual procedure which 
replaces the original continuum metric with the induced metric on the lattice, written in 
terms of the edge lengths [4,6]. Here we shall consider only the two-dimensional case; 

the generalization to higher dimensions is straightforward. It is convenient to use the 
notation of Fig. 16, which will bring out more readily the symmetries of the resulting 
lattice action. Here coordinates will be picked in each triangle along the (1,2) and (1,3) 

directions. 
To construct the scalar lattice action, one performs in two dimensions the replacement 

( 12 ½(-12+l~ +12) ) 
g ~ , ( x )  ---+ g i j ( A )  -- 1 2 2 2 $(--I  1 + 12 + 13) l~ (5.2) 
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which then gives 

det g/,,, (x) 

379 

= { 2 ( 1 1 1 2 + 1 2 1 3 + 1 3 l , ) - 1 4 - 1 4 - I  4} =_ 4A2a, , detgij(A) ¼ 22 22 22 

(5.3) 

and also 

. .  1 / 
g~V(x) , g'J(A) = det g(a~ ~ I z 

For the scalar field derivatives one writes [41,42] 

0,,¢&¢ , aiCaj¢ = ( 
(¢2 ¢1 )2 

\ ( ¢ 2  -- ¢ 1 ) ( ¢ 3  -- ¢ 1 )  

1 2  ) ~ ( I ,  - 122 - 13 2)  
(5.4) 

(¢2 - ¢1)(¢3 - ¢1) 
(¢3 - ¢ 1 ) 2  ) , (5.5) 

which corresponds to introducing finite lattice differences defined in the usual way by 

C~/z¢ -'-'-'+ ( A / ~ ¢ ) i  ----- ¢ i + #  -- ¢ i .  ( 5 . 6 )  

Here the index/z labels the possible directions in which one can move from a point in 
a given triangle. The discrete scalar field action then takes the form 

1 [/~(¢2 --  ¢ 1 ) ( ¢ 3  -- ¢ 1 )  -1- 122(¢3 --  ¢ 2 ) ( ¢ 1  -- ¢ 2 )  

A 

"1-/2(¢1 -- ¢ 3 )  ( ~ 2  -- ¢ 3 ) ]  - ( 5 . 7 )  

Using the identity 

( ¢ i - - ¢ j ) ( ¢ i - - ¢ k )  = 1 [ (¢ i - -~ j )2-q-  ( ¢ i - - ¢ k ) 2 - -  (¢ j  --¢k)23 , ( 5 . 8 )  

one obtains after some re-arrangements the simpler expression [41 ] 

(¢ i  - ¢j  ~2 (5.9) Im(12'¢) = ½ Z aij \ lij ] ' 
(o) 

where Aij is the dual (Voronoi) area associated with the edge/ j .  In terms of the edge 
length lq and the dual edge length hi j, connecting neighboring vertices in the dual 
lattice, one has Aij = ½hqlij (see Fig. 17). Other choices for the lattice subdivision 
will lead to a similar formula for the lattice action, but with the Voronoi dual volumes 
replaced by their appropriate counterparts in the new lattice. 

For the edge of length Ii the dihedral dual volume contribution is given by 

2 2 2_1~ ) A 6 12(12+12-12) -Jr- 11(14+[5 l / i h l  ( 5 . 1 0 )  
= 16A123 16A234 = ~ ' 

with hi the length of the edge dual to Ii. The baricentric dihedral volume for the same 
edge would be simply 
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Fig. 17. Dual area associated with the edge Ii (shaded area), and the corresponding dual link hi. 

AI~ = (A123 + A234) /3  • (5.11) 

It is well known that one of the disadvantages of the Voronoi construction is the lack of 

positivity of the dual volumes, as already pointed out in [7]. Thus some of the weights 

appearing in Eq. (5.9) can be negative for such an action. On the other hand, for the 
baricentric subdivision this problem does not arise, as the areas Aij are always positive 

due to the enforcement of the triangle inequalities. It is immediate to generalize the 

action of Eq. (5.9) to higher dimensions, with the two-dimensional Voronoi volumes 
replaced by their higher-dimensional analogs. 

Mass and curvature terms can be added to the action, so that the total scalar action 

contribution becomes 

---- 1 1 1,,(12,~) 5y~aij ~-~J +~-~a~(m2+~Ri)~. (5.12) 
(i j) li.i i 

The term containing the discrete analog of the scalar curvature involves the quantity 

a i R i -  ~ 6h :" v /gR .  (5.13) 
h3i 

In the above expression for the scalar action, A/j is the area associated with the edge 
lij, while Ai is associated with the site i. Again there is more than one way to define 

the volume element Ai [7], but under reasonable assumptions, such as positivity, one 
expects to get equivalent results in the lattice continuum limit. In the following we shall 
mainly consider the simplest form for the scalar action, with m 2 = s c = 0, 

One of the simplest problems which can be studied analytically in the continuum 
as well as on the lattice is the analysis of small fluctuations about some classical 
background solution. In the continuum, the weak-field expansion is often performed by 
expanding the metric and the action about flat Euclidean space 

g~, = 6,~ + K hu, .  (5.14) 

In four dimensions x = ~ ,  which shows that the weak-field expansion there 
corresponds to an expansion in powers of G. In two dimensions this is no longer 
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the case and the relation between x and G is lost; instead one should regard K as a 

dimensionless expansion parameter which is eventually set to one, K = 1, at the end of 
the calculation. The procedure will be sensible as long as wildly fluctuating geometries 
are not important in two dimensions (on the lattice or in the continuum). The influence 
of the latter configurations can only be studied by numerical simulations of the full path 
integral [ 11,30]. 

In the continuum, the Feynman rules are obtained by expanding out the action in the 
weak fields hu~(x), 

½ d2x hu~ 

+O(h 2) , (5.15) 

and by then transforming the resulting expressions to momentum space. 
On the lattice the action is again expanded in the small fluctuation fields ei, which 

depend on the specific choice of parameterization for the flat background lattice - a 
convenient starting point is (in two dimensions) the square lattice with diagonals. It is 
convenient to define the edge variables at the midpoints of the links [ 18]. For the edge 
lengths one then defines the lattice Fourier transforms as 

j j  d2k e-ik'n-ik,/2 
el(n) = ~ e l (k ) ,  

, 2 ( n )  ~ jjd2ke-ik'n-ik2/2~2(k ) ~  
- - ~  - - T r  

i j  d2k e-ik.n-ikl/2-ik2/2 e3(n) = ~ e3(k) , (5.16) 

--qT" -- 'W 

while the scalar fields are still defined on the vertices, and are Fourier transformed in 
the usual way, namely 

j j d2P e_ip. n q~(n) = ~ ~b(p). (5.17) 

--7/" --~7" 

These formulae are completely analogous to the ones used in developing the perturba- 
tive expansion for lattice gauge theories [44]. They are easy to generalize to higher 
dimensions when a simplicial subdivision of a hypercubic lattice is employed, as first 
suggested in [4]. Following this procedure, the Feynman rules for the lattice scalar field 
action were derived in [18] (using the Voronoi dual volumes), and shown to agree 
completely with the continuum Feynman rules for small momenta. For more details, 
and the computation of the Feynman diagrams relevant to the conformal anomaly, we 
refer the interested reader to the cited work. 
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5.2. Equilateral lattice 

In order to compare and analyze the difference between the two volume discretizations 
(baricentric vs. dual) for the scalar action, it will be useful to look at their form for 
small deformations of the edges about a regular lattice, such as an equilateral or a square 
one. One would expect that the precise form of the discretization should not matter, as 
long as the correct long distance (small momentum) properties are preserved. Let us 
see how this can come about. 

The next step is therefore the expansion of the lattice scalar field action of Eq. (5.9) 
with volumes A 0 defined via for example a baricentric subdivision, starting from an 
equilateral lattice with 12 = 1 °2 + 812, and 1 ° = 1. It will be sufficient to limit oneself to 
the contributions coming from one site (0) and its six neighbors (1-6) ,  which for the 
kinetic term is given by 

(qSl-dpo)214---1V'-~+24---l-v~(8126-48121+8122 

1 2 
+(~b2-  ~bo)2 [ ~  + 2--4--V~(81o,-48l~32 + 

1 2 48lg3 + + (q~3 -- ~bo ) 2 [ 4-----~ + 2--~---~ (81o2 - 

1 2 48124 + + (q54 - ~bo ) 2 [4--x/~ + 2-~-~ (8103 - 

2 1 1 2 _ 48l~ 5 + "[-(~b5- t~0)[~-~ -{- 2---~ (8104 

2 1 1 2 _ 48116 + + 

q- 8126 --1- 8122 ) + 0(814) ] 

8123 --I- 8122 q- 8l~3) -k- O(814) ] 

812 + 8123 + 8124) + O(8l 4) ] 

t~125 q- 8124 -+- t~125) -k- O(814)] 

8126 q- 8125 q- 8126) -t- O(8l 4) ] 

8121 + 8126 -k- 8126) + O(8l 4) ]. 

(5.18) 

For our notation and labeling of the edge lengths we refer again to Fig. 12. In the case 
of the dual (Voronoi) subdivision, the results is identical to this order except for the 

l l which can be interpreted as a rescaling replacement of the coefficient ~ ~ 12-5--~' 
of the gravitational coupling between the metric field and the scalar. For fields that are 
smoothly varying on the scale of the cutoff, the scalar action contribution is invariant 
under a gauge transformation on the edges acting at the origin 0, if the defining condition 
for gauge transformations, analogous to Eq. (3.26) pertaining to the square lattice in 
the weak-field expansion, is satisfied 

6 
812(n) 0. 

i=1 
(5.19) 

This result is also very similar to what happens in one dimensions, where the exact 
invariance of the scalar action can be written down explicitly with more ease [ 38]. 

For the same (equilateral) lattice let us consider next the mass term; it is given by 
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- f ,., A 2 I m 2 d2x ~V/'~2 1 2 Z i ~bi (5.20) 2 ~m . 
J i 

Again expanding about the equilateral lattice with l] = l/°2 + 8l/2 one obtains for the 
baricentric subdivision 

I m 2 q~02[ V/-3 ~ 2~/022 + 6l~2 6123 0(8/4)]  2 . . . . .  ' + (26t 2, + + + + .) + 

(5.21) 

while in the dual case one has 

2"'1 ~2~2~0[V~__2_+1_~1 (~12 j + 6122 + . . . . . .  + 2~3122 + 26l~ 3 + .) + 0(614) ] 

(5.22) 

Again to this order the mass term is invariant under a gauge transformation on the edges 
acting at the origin 0, if the defining condition for gauge transformations (compare to 
Eq. (3.30) obtained in the weak-field expansion) is satisfied 

6 
Z S l 2 ( n )  = 0 .  (5.23) 
i=1 

Finally one can consider the curvature term, 

l (  f dzx v/-gRfb2 ~" ½ ~ Z  ai (26i /ai)  qb~. (5.24) 
, /  i 

Its expansion is given by 

2[2  2 (5.25) 1 see0 ~ ( 6 1 0 1 +  + . . . -  - .) + , 

with baricentric and dual forms identical to all orders in ~l 2, since Ai does not appear 
in this term. Again it is obvious that this term is invariant under gauge transformations 
at 0. 

Further higher order terms involving the curvature, such as 

/ d2x v/g R g~V O~zfbcgvfb ~ ~i 2~i j~t Aij . .  12 (~bi-,;bj) 2, (5.26) 

become increasingly complicated in their structure, as they involve neighbors which are 
further apart. They are strongly suppressed for smooth manifolds due to the presence of 
the deficit angle. In the baricentric case one finds 

(q~t - ~bo)2 3 - ~  (2t~l~, + O. 6l~2 + 6t~3 + ~124 -'~ ~125 -~- O" ~1~6 -~- . . . 

--0" ~1~2 -- 6123 -- Sl24 - t3125 - O" ~1216 + . . . )  + 0(614), (5.27) 
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and we have omitted the terms involving (~b2 - ~b0) 2 etc. since they can be obtained 
by symmetry. Again for slowly varying scalar fields the above term is invariant under 

gauge transformations at the origin. 

5.3. Square lattice 

A similar calculation can be performed for the square background lattice with again 

l/2 = l °2 + 61/2, and 101 = 102 = 1 and 103 = x/~. Using the baricentric subdivision, the 

kinetic term gives 

2 1 ~8 (6121 261022 61023 + 6l~2 6123 ) 0(614) +~¢,2-4,0) [~5 + - + + + ] 

-t-(q~4- ~0)2 [~ -'1- ~4 (~123- 2~124-1-~125)-'{-O(~l 4) ] 

2 1 q-(q~5--t~0) [ '~ -[- L(6124 - - 4 8  26l°25 -'~ 6126 -~- 6125 "1- 6126) q- O(614) ] 

q-(~b 6 -q~0)2[~ q- ~4(-26126-q--t~121 +61~6 ) +O(614 ) ]. (5.28) 

Again for smoothly varying scalar fields, the above action will be invariant under gauge 

variations of  the edge lengths at the vertex 0, provided one has 61~l + 2612o2 + 6123 + 
6l~4 + 26125 + 6l~6 = 0 (which is the scalar field action analog of Eq. (4 .18)) .  

In the case of  the dual subdivision, one obtains for the same lattice 

1 _46lg 1 -t- 61022 -Jr- 61126) 4- 0(6l 4) ] (~,-~o)2[~ + ~ (  

-~-(~b 2 --t~0)2 [0 .~- L(6121 -- 26122 -~-6123 "4-6122 -4-6/23 ) + O( 614)] 
16 

q--(~b 3 -- q~O)2 [ 1 q-- ~6 (--46123 -q'- 61022 + 6124) --[- O(614) ] 

q-(~b4- t~°)2 [~ -q- 1 (--4612410 + 61t]5 + 61324)-l-0(6l 4) ] 

+( ~ _ ~0)~ [0 + L (  al~, - 2alo ~, + 610~6 + 61], + 61~6) + o (6r )  ] 
16 

-+-(~b6- q~°)2 [¼ -4- L(-46126-~-6125q-6126)16 + O(614) ] , (5.29) 

Due to the asymmetry of  the lattice in this case, the difference between the two dis- 
cretizations is quite marked. We will argue below that the dual volume form represents 
in fact an "improved" discretization over the baricentric form. 

For the mass term one proceeds in the same way, and for the baricentric subdivision 

one obtains 
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1 2 2 f 1__ 2~121 0 • 6122 + 2~123 q- 8l~2 q- t~123 --[- 0 .  124 q-  O(t~/4)], ~m ~b 0L 1 +  12 ( + "'" + + " "  ) 

(5.30) 

Again, this term is invariant under a gauge transformation if Eq. (4.18) is satisfied. For 
the dual (Voronoi) case one finds similarly 

2m t , ° o '  .2~t211 --}- ~ l (t~121 -~lg2--}-t~lgg--~...--[-t~122--}-~123-~t~124-[-. ...)--[-O(t~14)] . 

(5.31) 

which is invariant again if the area at 0 is invariant. 
Finally for the curvature term of Eq. (5.24) one has 

~c~b O l  2 f[Slo 12 + fi/g2 + t~123 + fil24 + t~125 + fi/026 

-fil~2 - ~123 - fi124 - fil425 - fil26 - fil26 + O(t3/4)] 

I 2 [t~/g I t~/g 2 t~lg 6 t~l~2 ~ 1 ~ 6 0 ( ~ / 4 ) ]  -n t- . (5.32) + ~ 4 , ~  - - + + + . . ,  

with the baricentric discretization equal to the dual discretization to all orders in t~l 2, 
since the local a r e a  Ai does not appear. Again it is obvious that this term is invariant 

under gauge transformations at 0. 
Let us now return to the apparent discrepancy between the scalar kinetic term in the 

baricentric and dual discretizations. It is useful to look at the two discretized forms in 
momentum space. Thus we assume that the edge length fluctuations ei =- ~l~/2 102 and 
q~ at the point i, j steps in one coordinate direction and k steps in the other coordinate 
direction from the origin, are related to the corresponding ei and & at the origin by 

(j+k) j k e}o) (5.33) ~'i = 091 OA2 ' 

where toi = e -ik', and k i is the momentum in the direction i. Similarly for ~b one writes 

cb(j+k ) = ~o~{ jk  ,~(o) tu 2 V"i , (5.34) 

where o.)ti = e -ipi . 

After making the substitution e i --+ h lz  ~, of Eq. (3.18) (which is the same as the 
change of  variables in Eq. (3 .9))  one obtains for the interaction in momentum space, 
in the dual case 

o(h2)]  2 [½ + + h22) + 

+p~ q~2 [l  + ¼(+hl l  _ h 2 2 )  + O ( h 2 ) ]  

+PlP2 ~ b2 [--hl2 + O(h2)] , (5.35) 

which indeed coincides with the weak-field expansion of  the kinetic term for the original 
scalar field action in the continuum, Eqs. (5.1) and (5.15). In the baricentric case one 
obtains instead 
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(a) (b) 

Fig. 18. Two equivalent triangulation of flat space, based on different subdivisions of the square lattice. 

p2 ~b2 [ l +  ~ ( - h l l  + h 2 2 - h 1 2 )  +O(h2) ]  

q_p~ ~b 2 [ 1 + / ( + h i  l _ h 2 2 _ h 1 2 )  +O(h2) ]  

1 hi2 + O(h2)]  +PlP2 q~2 [/ -- .g 

which at first looks quite different from the dual (Voronoi) volume case. 

(5.36) 

On the other hand, this result is not too surprising, as an analogous situation occurs 
in fiat space. Consider for example the two lattices of Fig. 18 (up to now we only 
considered the one corresponding to 18a), and compute in each case the action for one 
momentum mode, which is just the inverse scalar propagator in momentum space. In 
the absence of any interaction terms along the lattice diagonals one has 

2 Z [I - cospu ] ,-~ p~ + p2 + O ( p 4 )  . (5.37) 
u 

The interaction terms along the lattice diagonals in Fig. 18a contribute 

2[ 1 - cos(pl + P2) ] ~ P21 + P~ + 2pip2 + O(p 4) , (5.38) 

while the interaction terms along the lattice diagonals in Fig. 18b contribute 

2[ 1 - cos(pl - P2) ] ~ p21 + P~ - 2pip2 + O(p4) .  (5.39) 

Thus when one averages over the two equivalent contributions (since the lattice is 

dynamical, and both contributions are equally probable) one obtains 

211 - cospl cosp2 ] ~ p~ +p2  + O ( p 4 )  , (5.40) 

which is now rotationally invariant to order p2. When the same procedure is applied to 
the lattice scalar action in the presence of the gravitational field, Eqs. (5.35) and (5.36) 
can be shown to become equivalent, after a rescaling of the gravitational coupling. Still, 
the action based on dual Voronoi volumes of Eq. (5.35) appears to lead to a more 
attractive discretization, as the unwanted terms do not appear at all for the choice of 
lattice of Fig. 18a, and no averaging over the gravitational field fluctuations is necessary 
to exhibit the correct correspondence with the continuum action. How seriously one 



H. W Hamber, R.M. Williams~Nuclear Physics B 487 (1997) 345-408 387 

takes this class of  problems depends on how seriously one trusts low order perturbation 
theory about a fixed flat background as a tool for the study of  fluctuating geometries. 

5.4. lnvariance properties of  the scalar action 

It is instructive to look at the invariance properties of  the scalar action under the con- 

tinuous lattice gauge transformations defined in Eqs. (3.23) and (3.49). Physically, these 
local gauge transformations, which act on the vertices, correspond to re-assignments of  

edge lengths which leave the distance between two fixed points unchanged. In the sim- 
plest case, only two neighboring edge lengths are changed, leaving the total distance 

between the end points unchanged. On physical grounds one would like to maintain such 

an invariance also in the case of  coupling to matter, just as is done in the continuum. 
The scalar nature of  the field requires that in the continuum under a change of 

coordinates x ---, x ~, 

, / , ' (x ' )  = 4 , ( x ) ,  (5.41) 

where x and x ~ refer to the same physical point in the two coordinate systems. Let us 

first look at the one-dimensional case, which is the simplest. On the lattice, as discussed 
previously, gauge transformations move the points around, and at the same vertex labeled 

by n we expect 

, :-  
~bn --+ ~b n ~ ~b. + \ l. e . .  (5.42) 

One can determine the exact form of the change needed in ~b. by requiring that the 

local variation of  the scalar field action 

1 l ----L--  (,¢,. + a 4 , . -  4,._L)2 + t---5~ ( ~ . + , - 4 , . -  a4,.) 2 
l n - I  q- En 

1 (q~n -- q~n-I )2 1 )2 -l._----~ - T. (~b.+l - ~b. = 0 (5.43) 

be identically zero. Solving the resulting quadratic equation for A~bn one obtains a rather 
unwieldy expression, which to lowest order is given by [38] 

en ~n--~n-I + 

= y ln-1 

I~_ l + 1, z + i n - ~ 2  + , (5.44) 

and which is indeed of  the expected form (as well as being symmetric in the vertices 

n - 1 and n + 1 ). For fields which are reasonably smooth, this correction is suppressed 
if [~b,+l - ~b,, Ill# << 1. On the other hand it should be clear that the functional measure 
dckn is no longer manifestly invariant, due to the rather involved transformation property 
of  the scalar field. 
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A similar line of argument can be pursued in higher dimensions. Thus in two dimen- 
sions one should require that locally the variation of the action contribution be again 
zero for edge length deformations 81ij, associated with edges meeting at the vertex i, 
and which correspond to lattice gauge transformations (in the weak field, for example, 
they have the explicit form given in Eqs. (3.21) to (3.23)), namely 

((b i q- A~i)i--~/)j~ 2 (~¢.~i--~j~ 2 
ZAij(I~+61~j) - ~ l ~  ~ -~j ~ ~ } = 0 ,  (5.45) 

where j labels the neighbors of the site i. The transformation law for ~bi is then deter- 
mined by solving the above equation for ACbi, given an arbitrary gauge variation ~I2(x) 
at the vertex i. 

5.5. Equations of motion and lattice energy-momentum tensor 

The equations of motion for ~bi are obtained from 

0 Aij \ ~ /  + ,~b, = 0 (5.46) 
o~k l, ~,J) 

and read 

A/j $i - ~bj 
Z ~ij" -ffjij +m2Aifbi=O' (5.47) 
j(i) 

where the notation j(i) indicates that the site j is taken to be adjacent to i. For the 
choice of indices in Fig. 12 (see also Fig. 17), the equation with i = 0 reads 

2 ( a o l  q~l -q~o A0___.66 . q~6 --  ~bo } + m2q~o __. 0 ,  
A01 + . ~ . + A 0 6  /~1 " ~ + ' ' "  + 106 106 

(5.48) 

and represents the discrete analog of -~gOug~'~ga~ck + m2~b = 0. Eq. (5.47) can be 

rewritten, for m 2 = 0, as 

~--~ \Ai dJ ( Aij ~ ~i --(~jl~ ~-~ Z Pij (~i--~jl~ =0  . (5.49) 
j(i) j(i) 

The weights Pij = Aij/Aid can be interpreted as normalized hopping amplitudes, with a 
normalization condition 

Z P,J -- 1. (5.50) 
j(i) 

It is easy to verify that this last property does not depend on the way the original lattice 
has been subdivided in order to construct the dual lattice. Both the Voronoi construction 
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of Eq. (2.17) and the baricentric one of Eq. (2.18) lead to the same normalization for 
Pii. And indeed it is easy to show that this result holds in higher dimensions as well. 

Some very interesting properties regarding the spectrum of the Laplacian on flat 
random lattices have been worked out in [24,19] and the reader is referred to these 
papers for further details. Perhaps one of the most interesting results which can be 
derived by the method of replicas in the weak disorder limit is that, at least in sufficiently 
low dimension, the spectrum of the Laplacian coincides with the continuum result at 
low frequencies, with subleading corrections which then reflect specific aspects of the 
edge length distribution such as its Poissonian form [24,38]. In other words, quenched 
random lattices and regular lattices give the same (continuum) result at low frequencies. 

In the continuum the energy-momentum tensor for matter described by action Im is 

defined via the relationship 

61,,, = ½ f dd x ~ T ~" 6g#~ . 

For infinitesimal gauge variations, which have the form 

(5.51) 

6g#,,(x) = -gtza(x) O~Xa(X) - ga~(x) O~Xa(X) - Oag#~(x) Xa(X) 

= d x g ~ ,  (5.52) 

one expects 61,,, = 0. After an integration by parts in Eq. (5.51), one then obtains 

= 0 .  ( 5 . 5 3 )  

The energy-momentum tensor defined by Eq. (5.51) will be conserved if and only if 
the matter action is a scalar. More concretely, for one real scalar field of mass m, one 

has 

T#~ = Oud/)O, fb - I guy (Oa~b0a~ + m2t~2) • (5.54) 

Taking the trace one obtains 

(2~__d_) d 2-2 T ~  = Oufb O•dp - ~ m  (p . (5.55) 

It is natural to proceed on the lattice in analogy with the continuum case. For the scalar 
action contribution of Eq. (5.9) one computes the variation 

film = ~ ~-'~(dpi - d / j )  e ~ 612k. (5.56) 
~212J  

k ij 

Since the derivative term inside the sum is non-zero only for edges / j  which belong 
to triangles touching the edge k (see Fig. 19), only four terms contribute to the sum 
over (i j) .  It is actually more convenient to start from the equivalent form for the scalar 
action given in Eq. (5.7), and one obtains 
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~3 

12 ~ 4 

13 
~2 

Fig. 19. Notation for Eq. (5.57) describing the variation of the action. 

61m=-f-~ {I2(I2 + l ~ ) - ( l ~ - 1 2 ) 2 } ( q b 2 - q b , ) ( ( b a - ( b , )  

1 
+ 1__~2 {/~(/2 4-12) -- (l 2-/52) 2} (q~2 - -  ~ 4 ) ( ~ 3  -- ~b4)] 6/2 

1 
4--f-~ [ . . .1 612 4 - . . .  (5.57) 

Using the definition for the dual volumes (see Eq. (2.17), and Fig. 20 for our notation 
here) one can rewrite the above expression more compactly as 

All A24.1 ) ] 
1 [-~12 (¢~2 -¢~1)(~b3 -q~l)  4-~-22 1.¢P2 -~b4)(¢~3-~b4 61m = "~ 8121 

1 
4-g [...1 ~l 2 4- . . .  (5.58) 

Therefore one can introduce the quantities Tk such that 

61m = ½ Z Tk (12 ) 612 k , (5.59) 
k 

with 

I { A l l , ~  2A24 } Tl = --~T[tp2 - ~bl) (~b3 - ~bl) 4- A--3-(~b2 - ~b4) (~b3 - ~b4) , (5.60) 
A 1 

associated with the edge labeled by 1 in Fig. 19, and similarly for all the other edges 
in the lattice. It is clear that this equation defines the analog of the energy-momentum 
tensor in the discrete case. 

The coefficients in the above expansion in 6l/2 can be regarded as the components of 
the Regge lattice analog of the energy-momentum tensor, 

Tk = T~tu l~ l~k , (5.61 ) 

just as we can define for the simplicial components of the metric tensor [45] 

~' u 12 . (5.62) g~ = g~vlkl k :-- 

From Eqs. (2.7) and (3.39) 
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12 ¢4 

0, 

13 
'2 

Fig. 20. Labeling of the dual areas appearing in Eq. (5.58). 

391 

= 1 [612i 21_ 612j-  ~l~j] ( 5 . 6 3 )  6gij (l 2) ~ . , 

and therefore within triangle 1 (with vertices 1,2, 3 and choosing coordinates along 23 
and 21), one has (see Fig. 20) 

612 = 6glj , 6l 2 = 6g22, 612 = 6gll + 6g22 - 26g12 • (5.64) 

For one triangle (for example, triangle 1 in Fig. 19) one obtains 

Tm'a&zv , (T  11 +T12)812 + (T 22 + TI2)612 _ T126l~. (5.65) 

In the lattice case it is clear that, inserting for the variation of the squared edge lengths 
corresponding to gauge variations, as in Eqs. (3.21) and (3.23), and then equating the 
resulting coefficients of the arbitrary gauge parameters X / to zero, gives the discrete 
equation of conservation for the energy-momentum tensor. 

On the other hand, the equations of motion for l/2 (as opposed to the equations of 
motion for 4,, which are given in Eq. (5.48)) are obtained directly from Eq. (5.58), 
namely 

Olm[12_____~] All [(q~2 _ 4,1)2 + (q~3 _ ~1 )2 (4,3 _ 4,2)2 ] 
e l~ = 16 A,~ 

A24 
[(4,2 -- 4,4) 2 d- (4,3 (5.66)  + 1 - g - ~  ~4,3 - 4 ,4)  2 - - , 2 )  2] - - o .  

It corresponds to the continuum equation Tuv = 0. In the presence of a cosmological 
constant term, A Y]t At, an additional term appears in the equations of motion, which 
become, again with the notation of Figs. 19 and 20, 

All [(4,2 _ 4,1 ) 2 _4,2)2 ] 16 A 2 + (4,3 -- 4,1 )2 __ (4,3 

+ A24 [ . ,  
- 4 ,4 )  2 + (4,3 - 4 ,4)  2 - (4 ,3 - 4 ,2)  2] 

L~2 

I 
+ 12 - t~) + I (t~ + t~ - t~)] = o, (5.67) 

+ a [ 1 - g g  ' (l~ J 
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and relates the squared edge lengths to the derivatives (or, more properly here, finite 
differences) of  the scalar field. 

6. Gravitational functional measure 

In this section we will re-examine the issue of  the gravitational functional measure in 
light of  the results of  the previous sections, and in particular the local gauge invariance 
of the lattice gravitational action. It is well known that in ordinary (lattice) gauge 

theories the invariance of  the action selects a unique measure (the group invariant 
Haar measure) .  A natural way to construct the gravitational functional measure in the 
continuum is to introduce a metric over metrics (or super-metric),  and then compute the 

resulting functional volume element. We shall see that what appears at first as a rather 
straightforward procedure is in fact affected by a number of  rather subtle ambiguities. 

6.1. Continuum case 

Following DeWitt [47] ,  one introduces a super-metric G over metric deformations 

Sguv(x) ,  which in the simplest local form leads to the following norm-squared for 
metric deformations: 

f 

tl~gll z ~ J dax G uv''~3 [g (x )  ]6gu,, ( x )  6g,~3(x) , (6.1 ) 

with the inverse of  the DeWitt supermetric given by 

G~Z"~3[g(x) ] = ½x/-g-~ [g~'~(x)g"3(x) + gU3(x)gV'~(x) + AgUV(x)ga3(x)] , 

(6.2) 

and A 4: - 2 / d ,  to avoid the vanishing of  the determinant of  G. It is easy to check 
that the above expression for II~gLI 2 is invariant under diffeomorphisms. 6 The usual 
procedure is then to derive the functional measure in the form 

/ d / . ~ [ g ]  = j r [  ( det[ G(g(  x ) ) ] ) l /2 H dg~v( x ) , (6.3) 
x ~z>~ 

with the determinant of  the super-metric GU~'~a(g(x)) given by 

det G ( g ( x )  ) oz ( 1 + ½da) [g(x) ](d-4)(d+l)/4. (6.4) 

Up to irrelevant constants, in four dimensions it reduces to the very simple expression 

6 While it should be clear that the functional norm should be invariant, it is less obvious that it should be 
local. Ultimately the justification for locality lies in the fact that the resulting functional measure is local in 
the continuum, a rather desirable feature. 
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/dlz[g] =/~x [g(x)](d-4)(d+l)/8 ~ dg..(x) d---~ / ~IIdglz'(x)" (6.5) 

Unfortunately this measure is not gauge invariant, if the product over x is interpreted 

as one over 'physical '  points, and coordinate invariance is imposed at one and the same 

'physical '  point, as discussed in [48].  Here this is seen as a consequence of the fact 
that I]•gH 2 has been split in two separately non-invariant parts. The measure that does 
satisfies the invariance property is 

/ dtz[g] = / 1-I (det [G(g(x))/gvf~-~])l/2 I I dgu~(x), (6.6) 
x Iz~>l, 

and was originally proposed by Misner [49].  Explicitly, 

/dlz[g] =fII(g(x))-(d+l)/2~ dg..(x). (6.7, 
x ~z>~ 

It has the property of  being scale invariant in any dimension. Unfortunately it is also 
singular, and needs therefore to be regulated in some way for small g (on the lattice 

this requires some cutoff for small local volumes).  
Indeed both measures can be obtained as particular cases if one introduces a real 

parameter to, and writes 

= f d d x  (g(x))o./2 G~...,[g(x); to]~gu.(x) 6g.,(x), (6.8) I/agll 2 

with 

GU~'a#[g(x);to] = ½ (g(x)) ~1-~)/2 

x [gU~(x)g'#(x)+gUB(x)g~(x)+AgU~(x)ga#(x)].  (6.9) 

(6.10) 

with the measure parameter o- related to the choice of  to via 

o-=  - ( d  + 1) + ( t o -  1 ) d ( d +  1) (6.11) 
4 

For to = 0 one obtains the DeWitt measure of  Eq. (6.5),  while for to = 1 one has the 
Misner measure of  Eq. (6.7).  The close relationship between the DeWitt and Misner 

The metric in function space is obviously left unchanged by this rewriting, but the 
measure (obtained from det G) depends on to, and by the usual argument one obtains 
the parameterized functional gravitational measure 
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measures was pointed out in [50] .7 

As there is no way of  deciding between these two choices, or any intermediate one 
for that matter, one is forced to consider tr as an arbitrary (and hopefully ultimately 
irrelevant) real parameter of  the theory, the only constraint being o- > - ( d  + 1). In 
general the volume factor g~/2 in the functional measure is absent in d dimensions for 

the special choice to = 1 + 4/d.  It should be emphasized here that gauge invariance 
does not select a specific value for tr, but does otherwise completely constrain the form 

of the measure. The criteria of  simplicity and universality would suggest the above 
to be the preferred choice for to. The reason for the ambiguity in the gravitational 

functional measure appears to be a lack of  a clear definition of  what is meant by Fix. In 

spite of  some recurrent claims to the contrary, such an ambiguity persists in all lattice 

formulations. Also, the volume term in the measure is completely local since it contains 

no derivatives. It does not effect the propagation of gravitons, as it contributes 6d(o) 
terms to the effective action. To some extent these can be regarded as renormalizations of  
the cosmological constant, since they clearly only affect the distribution of local volumes. 

As such they are expected to only affect the short distance behavior of  the theory, leaving 
the more interesting universal large-distance properties unmodified (the recent work in 

Ref. [ 51 ] gives a more concrete realization of  these ideas in the framework of  continuum 
perturbation theory).  Support to this interpretation also comes from a number of  simple 

examples [ 38]. 

6.2. Lattice transcription 

Let us examine the consequences of  this discussion in the discrete case. As the edge 

lengths play the role of  the metric in the continuum, one expects the discrete measure to 
involve an integration over edge lengths [ 3,5]. Indeed the induced metric at a simplex 

is related to the edge lengths squared within that simplex, via the expression for the 
invariant line element ds 2 = &,~dx~'dx ~. The relation between metric perturbations and 
squared edge length variations for a given simplex in d dimensions is (see Eqs. (2.7) 

and (3.39),  and Fig. 3) 

6gij(l 2) = ½ (612i + 612j -- 612j). (6.13) 

Thus for one simplex the integration over the metric is equivalent to an integration over 

the edge lengths, and one has 

7 The gravitational measure has to be modified in the presence of the matter fields. For an n-component 
massless scalar field the invariant measure is 

n Jd/.L[f~]=/Hgn/4(x)Hdf]~a(x), 
x a = |  

(6.12) 

and therefore tr = - ( d  + 1) + (to - 1) ala+t) + n/2. 
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Fig. 21. Typical edge length distribution T'(l) in four dimensions, for the lattice analog of the DeWitt measure 
o" = 0 (see Eq. (6.15)), close to the critical point at Gc (from Ref. [9] ). 

tr d(d+l)/2 
( 1 v I d e t g i j ( s ) )  1 - Idg ' j ( ' )=( -½)~" - ' )12[V~( '2 ) ] "  II  d'2*" (6.14) 

i>/j k=l 

There are d (d  + 1 ) / 2  edges for each simplex, just as there are d(d  + 1 ) /2- independent  
components for the metric tensor in d dimensions. (We are ignoring for the moment  

the triangle inequality constraints, which further require all sub-determinants of  go to 
be positive as well, including the obvious restriction l~ > 0.) The extension to many 

simplices glued together at their common faces is then immediate, and after summing 
over all simplices one obtains, up to an irrelevant numerical constant, 

oo 

o " L i  

In four dimensions the lattice DeWitt measure (o- = 0) is particularly simple, 

oo 

S d / z [ l  2] = / . I X  dl2F[12ij]. (6.16) 

0 U 

Here F, [/] is a (step) function of  the edge lengths, with the property that it is equal to 

one whenever the triangle inequalities and their higher-dimensional analogs are satisfied, 
and zero otherwise. 8 

The above lattice measure over edge lengths has recently been used extensively 
in numerical simulations of  simplicial gravity [8-10,15,33,52,53] (Fig. 21 gives an 

8 The functional measure over edge lengths in Eq. (6.16 ) does not have compact support, and a cosmological 
term (with coefficient A > 0) is therefore essential in obtaining convergence of the functional integral for 
large edge lengths. 
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example of the edge length distribution obtained in four dimensions with measure 
parameter cr = 0). One would expect that physical properties of the theory should not 
depend on the arbitrary parameter o-, but for the moment this universality argument 
remains largely an unproven conjecture. The universality argument is in part tenuously 
supported by some systematic numerical studies in two [30] and three [6] dimensions, 
although there is no solid evidence for it yet in four dimensions [9,10]. The authors of 
Ref. [ 10] have also independently emphasized the importance of exploring the effects of 
different choices for the measure parameter o-. In the context of dynamical triangulations 
and their relationship with simplicial gravity, the irrelevance of the measure parameter 
has also been proposed in [55]. Finally let us mention that one can argue backwards 
[54] that the Regge lattice measure of Eqs. (6.14) and (6.16) provides further support 
for the correctness of the continuum DeWitt functional measure approach. 

The above measure can also be obtained by considering a simplicial analog of the 
DeWitt supermetric, as was suggested in [27,28]. One writes for the induced metric of 
Eq. (2.7) 

II ~3g(s) II 2 = ~ G ijkt (g(s )  ) 6gij(s) 8gkt(s) , (6.17) 
s 

with the inverse of the lattice DeWitt supermetric given now by 

GiJkt[g(s)] = l gv/- ~ [g ik(s )~t (s )  + git(s)gYk(s) + AgiJ(s)gkl(s)] , (6.18) 

and (~ v~ - 2 / d ) .  This defines a metric on the tangent space of positive real sym- 
metric matrices g. The resulting functional measure is the one of Eq. (6.15), with, by 

construction, o-= ( d -  4 ) ( d  + 1)/4, the DeWitt value. Thus 

i<,,.<E,',:iO (6.19) 
• i > / j  

with the determinant of the super-metric G ijkl ( g ( s ) )  given by 

det G ( g ( s ) )  oc (1 + ½aa) [g(s)] (d-4)(d+l)14 , (6.20) 

and therefore up to irrelevant constants 

o o  

id/z[l '] =SI- I [V(s)]<~H dl~,, (6.21) 
0 s U 

with o- = ( d -  4 ) ( d  + 1)/4. The measure factor can be exponentiated and written 
equivalently as an effective action contribution 

/ d tx [ 12 ]  = / I I . .  dl~. exp o ' y ~ l o g V ( s )  . (6.22) 
0 tj s 

Its effect is to suppress or enhance, depending on the sign of o', contributions from 
small volumes. As such, it acts much like a cosmological constant contribution 
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ox { 
6.3. Lund Regge approach 

397 

(6.23) 

The previous approach to the functional measure is based on a direct discretization 
of the continuum measure, and leads to a unique local measure over the squared edge 
lengths (modulo the volume factors), in close analogy to the continuum expression. 
Alternatively, one can try to find a discrete form for the supermetric, and then evaluate 
the resulting determinant. 

In a paper Lund and Regge offered a slightly different approach to the measure 
problem [45], in connection with the 3 + 1 formulation of simplicial gravity. The idea, 
recently re-analyzed by the authors of Ref. [46], was to obtain a lattice analog of the 
DeWitt supermetric, by considering the quantity 

11MzI[ 2 = ~ a i j ( 1 2 ) t ~ 1 2 ~ l  2 , (6.24) 
/j  

where Gij(l 2) plays a role analogous to the DeWitt supermetric, but now on the space 
of squared edge lengths. One way of constructing the explicit form for Gij(l 2) is to 
write the squared volume of a given simplex in terms of the induced metric within the 
same simplex, 

( I ) 2  
VZ(s) = ~ det{gij(12(s))}. (6.25) 

Then compare the expansion of the determinant of the metric in the continuum, 

det(gij + 6g O) - exp Tr log(g 0 + 8g 0) 

= de t (g i j )  [1-k-g '76gi j-q-  Igi jgkl t~gi jSgkl-  lgijgkl6gjkSgli + . . . ]  , 

(6.26) 

0 2 V 2 ( l 2 ) 6l 2 ~l 2 

t ]  • 

V(~2 ) 0V2(l 2) 8, 2 1 
~ i  li = ~ ~ g~J ~gij , 

and to quadratic order 

(6.28) 

1 d ~ [gijgktSgij6gkl -- gijgkt6gjk~gli] (6.29) 

to the analogous expansion for the square of the volume of a simplex 

0 2 V 2 ( 12 ) 8l 2 ~l 2 
°v2(12) + F_, ol, otj V2(12 + 612) = V2(/2) q- Z Ol2i ~ i j -'~''" (6.27) 

i ij 

Identifying terms of order (M2)" in Eq. (6.27) with terms of order (6gij)" in Eq. (6.26) 
one obtains to linear order 
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Remarkably, the right-hand side of this equation contains precisely the expression ap- 
pearing in the continuum supermetric of Eq. (6.2), for the specific choice A = -2 .  After 
summing over simplices one obtains 

1 Z ~/det(gij(s)) [g~k(s)gjl(s) + g i i ( s ) g l k ( s )  - -  2giJ(s)gkl(s)] 6gij(s)6gkt(S) 
S 

2 2 2 = Z Gij(l )6li8l j , (6.30) 
/j  

with 

1 t92V2 (s) 
Gij(l 2) = -d[ Z V(s) ' (6.31) algal 2 

S 

which now determines the matrix Gij(l 2) appearing in the Lund-Regge metric for 
deformations in the space of squared edge lengths, Eq. (6.24). The analogy with the 
continuum expression is brought out more clearly when one factors out the volume 
element, and writes 

11 12112= W(s) V 2 ( s ) .  al alff 

The volume factor ambiguity present in the continuum measure is not removed though. 
As in the continuum, different measures on the edge lengths are obtained, depending on 
whether the local volume factor V(s) is included in the supermetric or not. In parallel 
with Eq. (6.9) one writes therefore 

, { d? 02V2(s) 612i612} " (6.33) II t2LI 2 Z [V(s)],o IV(s) ] ,+,o' Z. .  al~ 01.~ 
s t]  

The metric in edge length space is again left unchanged by this rewriting, but the 
measure obtained from det G depends on a parameter w ~, and by the usual arguments 
one obtains a parameterized functional gravitational measure 

f dF, te]= f [I ~/detG(")(12) - (6.34) 

with 

1 02 V2(s) 
G}y')(l 2) = -dl  y~  [V(s)],+o~, Ol2i Ol 2 (6.35) 

S 

Thus the matrix G}j '°') should be thought of as defining a one-parameter family of 
measures. 

A somewhat disturbing feature of the Lund-Regge lattice measure of Eq. (6.34) 
is that it does not give the correct result already in one dimension [38]. The one- 
dimensional action for pure gravity of Eq. (3.46), proportional to the length of the 
curve, is invariant under the local gauge transformations of Eq. (3.47), 
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t3ln = ,¥n+l - -  Xn, (6.36) 

where the Xn'S represent continuous parameters defined on the lattice vertices. Any 

local variations of  the edges which have the above form (and, we should add, also 
do not violate the constraint In > 0) obviously leave the physical length of  the curve 
unchanged. The invariant measure in one dimension is therefore 

oo N 

id/x[I2]=il- I dli, (6.37) 
o i=o 

which falls precisely in the class of  measures encompassed by Eq. (6.15),  with o- = - 1 .  
On the other hand, the arguments leading to the measure of  Eq. (6.34) give 12 = g to 

zeroth order, 612/12 = 6g/g to first order, and 0 = 0 to second order, and therefore, since 

Gnm = 0, [It~/2[[ 2 = 0! Incidentally, in one dimension a physically motivated invariant 

distance between manifolds is d 2 (I, l ~) = [L(l)  - L I ( l ' )  ] 2, which is non-local. 

Another somewhat undesirable feature of  the Lund-Regge metric is that in general it 

is non-local, in spite of  the fact that the original continuum measure of  Eq. (6.10) is 
completely local. 9 After all, metric perturbations and squared edge lengths are linearly 

related to each other, and locality for one measure should translate into locality for the 

other measure. Non-local contribution to the original (non-gauge-fixed) measure seem 

as unattractive as non-local action contributions. A non-local measure makes it virtually 

impossible to study the theory non-perturbatively. On the other hand it is clear that, 

for some special choices of  w I and d, one does recover a local measure. Thus in two 
dimensions for oY = - 1  one obtains again the simple result 

(210 

/dlz[l'] =fo ~i dl, (6.38) 

(which incidentally is non-singular at small edge lengths and represents therefore in this 

respect an acceptable measure).  This measure appears therefore, on the basis of  purely 

theoretical arguments, to be as good as any other measure with a different w I. Given 

the possibility of  a choice for to I, it would seem natural that one should chose its value 

in such a way that the measure has the simplest form, here the local form without any 
volume factors: after all the physical theory should not depend on the bare parameter 
0. )  / . 

We should also remark that the appearance of  non-local measure contributions (and in 
particular for some values of  the parameter to I, but not for others) makes one question 
the initial justification for starting in the first place with an expression, such as the one in 

9 After imposing a gauge condition, such as the conformal gauge, the measure can become non-local as in 
ordinary gauge theories. But such a gauge-fixing term is only necessary in perturbation theory to remove the 
zero-modes of the action, discussed in Sections 3 and 4. Non-perturbatively one would expect that no gauge 
fixing is necessary, as the effects of the gauge zero-modes are expected to cancel out in averages of physical 
quantities, as in ordinary lattice gauge theories [ 5 ]. 
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Eq. (6.18), which is local. In conclusion it appears that the local measure of Eq. (6.16) 

provides the simplest theoretically justifiable starting point, if not the only possible one. 

7. Gauge fixing and lattice conformal gauge 

Regge's simplicial quantum gravity does not require gauge fixing [3,5], unless one 
intends to perform a diagrammatic perturbative expansion on the lattice [ 18]. In this 
respect, the situation is completely analogous to ordinary gauge theories, and one ex- 
pects the volume of the gauge group, the diffeomorphism group in the case of gravity, 
eventually to cancel out in the expression for physical averages, 

(0)  = f dtx[12] O(/2) exp{- l [ /2 ]}  
f d t x [ t2]  exp{_l  [12] } (7.1) 

The lattice diffeomorphism zero-modes discussed here (see Eq. (3.21) and subsequent 
expressions) do not therefore in principle pose a problem in non-perturbative studies of 
quantized gravity, such as the ones presented in [9,15]. Zero-modes are automatically 
taken into account as the measure explores gauge-equivalent choices of metrics. One 
important distinction with the formal continuum theory is the presence of a cutoff in orbit 
space, due to the enforcement of the triangle inequalities. As a result, the gravitational 
functional measure is highly non-trivial. Such a constraint is not seen to any order in 
the perturbative weak-field expansion, it is a genuinely non-perturbative constraint. 

On the other hand, in two dimensions the continuum theory can be studied by pertur- 

bative methods, which are most suitably applied in the conformal gauge [36]. It is the 
purpose of this section to elaborate on the connection between the continuum and the 
lattice theory, both being formulated here in a particular gauge. Let us first summarize 
the results in the continuum. The weak-field expansion is used, and one sets as usual 

g ~ ( x )  = ~ + K hu~(x) . (7.2) 

As there is no small parameter in two dimensions to play with, one assumes K << 1, 
expands, and then sets K = 1 at the end. The easiest quantity to compute is the "graviton" 
vacuum polarization due to one massless scalar particle, a one-loop diagram here. It is 
given by 

f d2 p ti, v (p ,q )  tac~(p,q) 
II~v,,#~(q) = ½ (2 7r) 2 p2 (p + q)2 ' 

tu~(p ,q)  = 1 [ 6u ~ p . (p + q) _ p~, (p~ + q~) _ p~ (Pu + q u )  ] • (7.3) 

The calculation of the integral is easily done using dimensional regularization [ 18], or 
by the methods of [37]. In either case one obtains 

1 1 
I-lt~v,a~(q) = ~ (q2t~Izv - quqv) --~ (qZ6a~ - q'~ql~)" (7.4) 



H. W. Hamber, R.M. Williams~Nuclear Physics B 487 (1997) 345-408 401 

For a D-component scalar field, the above result is simply multiplied by a factor of D, 

and the effective action, to lowest order in the weak-field expansion, is then 

leff = -31 f ~dZq huu(q) Hg~,p~(q) hpo-(-q) . ( 7 . 5 )  

In the conformal gauge, coordinates are chosen which are locally orthogonal, so as to 
bring the metric into the form 

g~(  x ) = 6uu e ~°(x) . (7.6) 

Then one has for the scalar curvature 

R( q) = ( ququ - 6u,,q2) hu~( q) = q2~°(q), (7.7) 

and one can therefore rewrite the effective action in the form 

D I dzq 2 
leff(~°) 967r = -  a (-~-~)2~(q) q ~o(-q) 

°/ 
- 967r d2x [(0"~P)2 + ('~ - ,~c) e ~°] • (7.8) 

On the lattice one can perform a similar computation, using again perturbation theory 
[18]. The lattice Feynman rules are written down, the integration over the scalar is 
performed, and an effective action results, which can be expanded out in the weak-field 
limit. As the scalar couples invariantly to the gravitational degrees of freedom, one 
would expect that the result should be eventually expressible in terms of invariants. 
Indeed in the continuum one can rewrite the effective action of Eq. (7.8) in an invariant 

form, 

1 / d2xd2y Rv/~(x ) ( x l + l y )  Rv/-~(y ) (7.9) 

where a 2 is the continuum covariant Laplacian, a 2 _= Ouv/-~gU~a~. On the lattice this 
expression has an obvious invariant counterpart [ 11], 

Z ~h 8h,, (7.10) h,h' 
hinges h,h ~ 

which is obtained from the correspondence between lattice and continuum curvatures 
derived in [7]. ~ here is the nearest-neighbor covariant lattice Laplacian, as obtained 
from the discrete scalar action (see Eqs. (5.9) and (5.48)); for a recent discussion of 
the discretization of this term see also Ref. [56]. It introduces an effective long-range 
interaction between deficit angles. For this reason it is actually preferable to study non- 
perturbative aspects of the model leaving the scalar fields un-integrated, which keeps 
the action local [301. to 

10 It is encouraging that the conformal mode stays massless in the full non-perturbative treatment of the 
two-dimensional simplicial lattice theory, without the necessity of any sort of  fine-tuning of bare parameters 
I30,311. 
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The previous discussion provides a background for motivating the introduction of the 
conformal gauge on the lattice. It is legitimate to ask therefore what is the simplicial 
lattice analog of the gauge condition of Eq. (7.6). The conformal gauge implies a local 
choice of orthogonal coordinates. It is clear from the discussion in Section 3.1 that 
there is a corresponding choice on the lattice. Indeed in the development of the weak- 
field expansion a uniform orthogonal set of coordinates was chosen, with a diagonal 
background metric (with edge length assignments l ° = 1 for the body principals (i = 
1,2) and l ° = x/~ for the diagonal (i = 3) ). For these coordinates (see Eq. (3.16)) one 
has for the background metric 

gij(O) = ~ i j  • (7.11 ) 

The lattice conformal gauge choice corresponds to an assignment of edge lengths such 
that locally 

go(n) 
= ( 121(n) 

½(l~(n) - l~(n) - l ~ ( n ) )  

, ~  8 i j  e ¢(n) . 

½(l~(n) - l~(n)l~(n) -12(n) ) ) 

(7.12) 

Here the lattice fields ~p(n) have to be defined on the lattice vertices, and so are the 
gauge degrees of freedom xu(n) ,  as can be inferred from Eq. (3.23). It is clear therefore 
that a choice of lattice conformal gauge corresponds to a re-assignment of edge lengths 
about each vertex, in such a way that the local curvature is left unchanged, but at the 

same time the induced metric is brought into diagonal form; it corresponds to a choice 
of approximately right-angle triangles at each lattice vertex. 

This result is further illustrated in Figs. 22-24. The surface shown in Fig. 22 has been 
brought into the lattice analog of the conformal gauge, by re-assigning edge lengths in 
such a way that individual triangles look as close as possible to right-angle triangles. 
In going from Fig. 24 to Fig. 23, repeated gauge transformations must be performed on 
the vertices, by reassigning edge lengths in such a way that local areas and volumes are 
kept unchanged. It is easy to see that such a construction can always be done, except in 

some rather pathological cases. 
The gravitational contribution to the effective action in the lattice conformal gauge 

can, at least in principle, be computed in a similar way. Let us sketch here how the 
analogous lattice calculation would proceed; a more detailed discussion will be presented 
elsewhere. In the continuum the metric perturbations are naturally decomposed into 
orthogonal conformal and diffeomorphism parts, 

6g~zv(x) = g~,,(x)6q~(x) + V~Xv(X) + VvXu(X) , (7.13) 

where V~ denotes the covariant derivative. It should be clear from the discussion in 
Section 3 that a rather similar decomposition can be done for the lattice degrees of 
freedom, by separating out the lattice gauge transformations (which act on the vertices 
and change the edge lengths without changing the local volumes and curvatures) from 
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Fig. 22. Description of a smooth surface in the lattice analog of the conformal gauge. 

/ / /  

Fig. 23. Enlarged view of a small region on the surface in Fig. 22. 

Fig. 24. Gauge equivalent description of the enlarged view, of a small region of the original surface, represented 
in Fig. 22. 

the conformal transformations (which do change them) in Eq. (3.39).  The explicit  form 

for the lattice diffeomorphisms, to lowest order in the lattice weak-field expansion, is 

given in Eq. (3 .21) ,  while the explicit  form for the lattice conformal transformations in 

given in Eq. (3 .27) ,  which makes it obvious that such a decomposit ion can indeed be 
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performed on the lattice. In the continuum, after rewriting the gravitational functional 
measure in terms of conformal and diffeomorphism degrees of freedom, 

f d/z[g] = f dtz[~o]dtx[X] [det(L+L)] 1/2 , (7.14) 

one has to compute the Jacobian of the operator L. It is determined, in the continuum, 

from 

( L+L X)~z = XT~(XTuX~ + XT~Xu - g~zvXTPXp). (7.15) 

One then obtains for the effective action contribution in the conformal gauge, 

[det(L+L)]- l /2  ~ exp {-leff(~P)} • (7.16) 

with /eft of the form in Eq. (7.5) to lowest order in the weak-field expansion. A 
diagrammatic calculation, similar to the one for the scalar field contribution, gives in 
the continuum the celebrated result [36,37] 

13 1 
I I ~ p ~ (  q) = - ~  ( quq~ - ~ q 2 )  q-2 ( qpq~ _ 8p~.q2) . (7.17) 

On the lattice the functional integration is performed over the squared edge lengths, as 
in Eq. (6.15). But it seems a technically challenging task to compute the Jacobian that 
maps the edge length variables (which define the lattice metric) to the orthogonal lattice 
diffeomorphism variables of Eq. (3.23) and the lattice conformal fields of Eq. (3.27), 

with the appropriate Jacobian included. It is also quite possible that one might have to 
go beyond the lowest order in the lattice perturbative expansion. 

As a consequence the total Liouville action for the Liouville field ~p = ~ R  becomes 

2 6 - D  / 
leff(~O) - 9 6 ~  d2x [(°q/~°)2 + (~ - hc) e ~] . (7.18) 

To lowest order in the weak-field expansion the critical value of D for which the action 
vanishes is Dc = 26, but this number is modified by higher order quantum corrections. 
In any case, for sufficiently large D one expects an instability to develop. Numerical 
non-perturbative studies of two-dimensional gravity suggest that in the lattice theory the 
correction is large, and one finds that the threshold of instability moves to values as 
low as Dc ~ 13 [31]. It is unclear whether this critical value can be regarded as truly 
universal, and independent for example on the detailed choice of gravitational measure 
(we are referring here for example to the choice of parameter o-). 

8. Conclusions 

We have shown in this paper that Regge's formulation of simplicial gravity is endowed 
with a remnant of the continuous local gauge invariance of the original continuum theory. 
The appearance of zero-modes corresponding to the diffeomorphisms in the continuum is 
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particularly transparent in the weak-field expansion. Nevertheless, the presence of a local 

invariance in the discrete action can be exhibited, via the detailed explicit calculations 

presented in this paper, for almost any conceivable choice of background lattice. It was 
shown in particular that the structure of the zero-modes corresponds precisely to the 
discretized form of the diffeomorphism transformation law in the continuum. We have 
underscored the fact that the squared edge lengths correspond to the metric components 

in the continuum, and that such a result is therefore hardly surprising (indeed it has 
been known for some time in some special cases). Explicit calculations also show that 

the gauge and conformal modes are consistently defined as acting on the vertices of 

the lattice. Although our derivations have mainly been restricted to the two-dimensional 
case, where they are more transparent and one does not run the risk of drowning in a 

sea of indices, we have argued that they have general applicability, and in a number of 

cases we have indicated the structure of the general result. 

Our results have a bearing on the issue of the gravitational measure in simplicial 

gravity. As the metric degrees of freedom in the continuum correspond to the squared 

edge lengths in the lattice theory, it is clear that functional integration in the latter 

should be performed again over the edge lengths squared. We have provided a number 

of arguments in support of this statement, based on DeWitt's approach to the functional 
measure in the continuum. We have argued that the lattice measure is essentially no 

less unique than the original continuum (DeWitt) measure, with ambiguities restricted 

to local volume factors, and which most likely are not relevant in four dimensions. 

It is unlikely that further insight into this issue can come from analytical work, and 

it is hoped that future numerical simulations will support this conclusion, for which 
there is already some partial and incomplete evidence. At the end of the paper we have 

considered the introduction of gauge-fixing terms in the lattice action, which are needed 

in order to remove the gauge zero-modes of the gravitational action in perturbative 
calculations. Again the situation is similar to what happens in the continuum when one 

performs perturbation theory, where one first separates out the infinite gauge volume 
contribution. As a specific example, we have discussed how one goes about constructing 
the lattice conformal gauge. 

A more practical motivation for our work has been to try to understand the recently 
discovered discrepancy between the critical exponents for matter coupled to gravity 
in two dimensions as computed in the lattice regularized model for gravity [30,33], 

and the corresponding conformal field theory predictions for central charge c = ½ 
[58,57]. Particularly significant in this respect appears to be the recent realization 

that the conformal field theory exponents describe two-dimensional random systems in 

f la t  space, and do not correspond to "gravitational" dressing of correlators [60] (see 
Table 1). Recent independent calculations have to some extent confirmed this result 
[61]. 

Previously the authors of Ref. [62] had considered the Dirac equation on a two- 
dimensional lattice where sites have been removed randomly - a doped lattice. They 

argued that in this case the fermions acquire a quartic interaction and become Thirring 
fermions, thus changing the critical exponents and the universality class. In our opinion, 
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Table 1 
Critical exponents of random and non-random Ising models 

~,/,, ~/~ -/~ ,~ 

Onsager solution on regular fiat lattice 1.75 0.125 0 0 1 
Ising spins coupled to gravity [30,33] 1.73(2) 0.124(3) -0 .06(11)  0.98(1) 
Matrix model and CFT [57,58] 1.333... 0.333... -0 .666. . .  - 1 . 0  1.5 
Random lsing spins inflat space [601 1.32(3) 0.31(4) -0 .65(4)  -0 .98(4)  1.46(8) 

the results for simplicial gravity found in [ 30], and the conformal field theory exponents 
of [58], can simply be made consistent with each other, if an additive gravitational 
dressing of critical exponents is taken to be zero in both cases, for both non-random 
and random matter (which are known to have different critical exponents in fiat space 
to begin with). 11 
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