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Nonlocal effective gravitational field equations and the running of Newton’s constant G
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Nonperturbative studies of quantum gravity have recently suggested the possibility that the strength of
gravitational interactions might slowly increase with distance. Here a set of generally covariant effective
field equations are proposed, which are intended to incorporate the gravitational, vacuum-polarization
induced, running of Newton’s constant G. One attractive feature of this approach is that, from an
underlying quantum gravity perspective, the resulting long-distance (or large time) effective gravitational
action inherits only one adjustable parameter �, having the units of a length, arising from dimensional
transmutation in the gravitational sector. Assuming the above scenario to be correct, some simple
predictions for the long-distance corrections to the classical standard model Robertson-Walker metric
are worked out in detail, with the results formulated as much as possible in a model-independent
framework. It is found that the theory, even in the limit of vanishing renormalized cosmological constant,
generally predicts an accelerated power-law expansion at later times t� �� 1=H.
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I. INTRODUCTION

Nonperturbative studies of quantum gravity have re-
cently suggested the possibility that gravitational cou-
plings might be weakly scale dependent due to nontrivial
renormalization-group effects. This would introduce a new
gravitational scale, unrelated to Newton’s constant, re-
quired in order to parametrize the gravitational running
in the infrared region. If one is willing to accept such a
scenario, then it seems difficult to find a compelling theo-
retical argument for why the nonperturbative scale entering
the coupling evolution equations should be very small,
comparable to the Planck length. One possibility put for-
ward recently is that the relevant nonperturbative scale is
related to the curvature and therefore macroscopic in size,
which could have observable consequences. One key in-
gredient in this argument is the relationship, to some extent
supported by Euclidean lattice results combined with
renormalization-group arguments, between the scaling
violation parameter and the scale of the average curvature.
Irrespective of the specific details of a gravitational theory
at very short distances, such results would bring gravitation
more in line with the rest of the standard model, where all
gauge couplings are in fact known to run.

In this paper we investigate the effects of a running
gravitational coupling G at large distances, with as few
assumptions as possible about the ultimate behavior of the
theory at extremely short distances, where several possible
scenarios include a string cutoff at length scales �S �

�2�	0�1=2 [1], the appearance of higher derivative terms
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(either as direct contributions or as radiative corrections),
or perhaps a—somewhat less appealing—explicit ultra-
violet cutoff at the Planck scale. The running of the gravi-
tational coupling will generally be assumed to be driven by
graviton vacuum-polarization effects, which produce an
antiscreening effect some distance away from the primary
source, and therefore tend to increase the strength of the
gravitational coupling. The above scenario is quite differ-
ent from what one would expect, for example, in super-
gravity theories, where significant cancellations arise in
perturbation theory between graviton and matter loops [2],
and in contrast to ordinary gravity where in weak field
perturbation theory L loops contribute L� 1 powers of
the curvature tensor to the effective action [3]. Instead, the
running of Newton’s constant is thought to arise due to the
presence of a nontrivial, genuinely nonperturbative, ultra-
violet fixed point [4–6] (a phase transition in statistical
mechanics parlance [4]).

In this paper a power-law (as opposed to a logarithmic)
running of G will be implemented via manifestly covariant
nonlocal terms in the effective gravitational action and
field equations. It ultimately will involve the inverse of
the covariant d’Alembertian raised to some fractional
power 1=2�, which in the framework of the present paper
remains largely unspecified, although nonperturbative
models for quantum gravity have recently put forward
some rather specific predictions.

Let us recall here, to provide some degree of motivation,
the recent discussions of [7,8] as a possible theoretical
framework for the running of Newton’s G. The above
results suggest that the gravitational constant G cannot
be regarded a constant as in the classical theory, but instead
changes slowly with scale due to the presence of weak
-1  2005 The American Physical Society
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gravitational vacuum-polarization effects, in a way de-
scribed by

G�r� � G�0��1� c��r=��1=� �O��r=��2=���: (1.1)

The exponent �, generally related to the derivative of the
beta function for pure gravity evaluated at the nontrivial
ultraviolet fixed point via the relation �0�Gc� � 	1=�, is
supposed to universally characterize the long-distance
properties of quantum gravitation, and is therefore ex-
pected to be independent of the specifics related to the
nature of the ultraviolet regulator, or other detailed short-
distance features of the theory.1

Recent estimates for the value of the universal scaling
dimension �	1 � 	�0�Gc� derived from nonperturbative
studies of gravity vary from �	1 
 3:0 [8] in the Euclidean
Regge lattice case, to �	1 
 3:8 in the 2� � expansion
[10] about two dimensions carried to two loops [11–14], to
�	1 
 2:7 [15] and �	1 
 1:7 [16] in an approximate
renormalization-group treatment a la Wilson based on an
Einstein-Hilbert truncation, with some significant uncer-
tainties in all three approaches. More details, as well as a
systematic comparison of the various methods and esti-
mates, can be found in [17], where we argued, based on
geometric arguments, in favor of the exact value of the
exponent � � 1=3 for pure gravity in four dimensions, and
O�1=�d	 1�� for large d. It is perhaps a testament to how
far these calculations have progressed that actual numbers
have emerged which can meaningfully be compared be-
tween different (lattice and continuum) approaches. It
should also be noted that, from a quantum gravity perspec-
tive, there are really no adjustable parameters in Eq. (1.1),
except for the new nonperturbative curvature scale �: both
c� and � are in principle finite and calculable numbers.

The mass scale m � �	1 in Eq. (1.1) is supposed to
determine the magnitude of quantum deviations from the
classical theory, and separates the short-distance, ultravio-
let regime with characteristic momentum scale � � m,
where nonperturbative quantum corrections are negligible,
from the long-distance regime where quantum corrections
become significant. The magnitude of � itself involves, in a
rather nontrivial way, the dimensionless bare coupling G,
the fixed point value Gc, and the ultraviolet cutoff �,

�	1 / �exp
�
	

Z G dG0

��G0�

�
�G!Gc

�jG	Gcj
	1=�0�Gc�:

(1.2)

Ultimately to make progress and determine the actual
physical value for the nonperturbative scale � some physi-
cal input is needed, as the underlying theory cannot fix it
1Already in ordinary Einstein gravity one finds for very short
distances r� lP corrections to the static potential, which can be
computed perturbatively [9]. In general for such short distances
string corrections and/or higher derivative terms should be
considered as well.
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(the ratio of the physical Newton’s constant to �2 can be as
small as one desires, provided the bare coupling G is very
close to its fixed point value Gc). It seems natural to
identify 1=�2 with either some very large average spatial
curvature scale, or perhaps more appropriately with the
Hubble constant (as measured today) determining the mac-
roscopic expansion rate of the Universe via the correspon-
dence

� � 1=H; (1.3)

in a system of units for which the speed of light equals
one.2

Let us briefly digress here, and recall that in non-Abelian
SU�N� gauge theories a similar set of results is known to
hold for the renormalization-group induced running of the
gauge coupling g, so it will be instructive to draw further
on the analogy with QCD, and non-Abelian gauge theories
in general. Of course one crucial difference between grav-
ity and ordinary gauge theories lies in the fact that, in the
latter case, the evolution of the coupling constant can be
systematically computed in perturbation theory due to
asymptotic freedom, a statement which is known to reflect
the fact that such theories become noninteracting at short
distances, up to logarithmic corrections, making perturba-
tion theory consistently applicable. It is well known that for
weak enough gauge coupling in SU�N� gauge theories one
has

1

g2���
�

1

g2��MS�
� 2�0 log

�
�

�MS

�
� � � � (1.4)

with �0 the coefficient of the lowest order term in the beta
function, � � 1=r an arbitrary momentum scale, �MS 


220 MeV a nonperturbative scale parameter, and the dots
denoting higher loop effects. Instead of the �MS parameter
one could just as well use some other physical scale, such
as the inverse of the gauge correlation length, m0�� � �	1,
where the 0�� denotes the lowest glueball state (the
Slavnov-Taylor identities prevent of course the gluon
from acquiring a mass to any order in perturbation theory).
For the purpose of comparing to gravity, one should per-
haps emphasize that confining non-Abelian gauge theories
such as QCD do not, and cannot, directly determine the
scale �MS, which needs to be ultimately fixed by experi-
ment from say a direct measurement of the size of scaling
violations. Its magnitude involves in a nontrivial way the
bare gauge coupling g and the ultraviolet cutoff �,

�MS / �exp
�
	

Z g dg0

��g0�

�
(1.5)

which is very much analogous to Eq. (1.2). The correspon-
2A possible scenario is one in which �	1 � H1 �
limt!1H�t� �

��������
��

p
H0 with H2

1 � 8�G
3 � � �

3 , where � is the
observed cosmological constant, and for which the horizon
radius is R1 � H	1

1 .
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dence with QCD and non-Abelian gauge theories would
therefore suggest �	1 $ �MS, with the gravitational � a
new nonperturbative scale, ultimately also to be deter-
mined from experiment.

Although not always necessarily advantageous (most
perturbative calculations, being based on Feynman dia-
grams, are eventually done in momentum space and do
not seem to benefit significantly from this approach), the
running of the gauge coupling g can be reformulated in
terms of an effective action, involving the d’Alembertian
acting on functions of the field strength. One sets

1

g2���
�

1

g2��MS�
� �0 log

�
�

�2
MS

�
� � � � (1.6)

with 2�0 � �11N 	 2nf�=�24�
2� for non-Abelian SU�N�

gauge theories with nf massless fermion flavors, and with
the log of the d’Alembertian � suitably defined, for ex-
ample, via

log
�

�

�2

�
�

Z 1

0
dm2

�
1

m2 ��2 	
1

m2 � �

�
(1.7)

leading to a one-loop corrected effective action of the form

Ieff �
1

4

Z
dxF���x�

�
1

g2
0

� �0 log
�

�

�2

�
� � � �

�
F���x�

(1.8)

with � an appropriately chosen mass scale [18].
In the gravitational case the corrections described by

Eq. (1.1) have a more complicated structure, and, in par-
ticular, are no longer logarithmic. But they can be viewed,
for example, as arising from a resummation of an infinite
number of loop logarithms, as in the expansion

X1
n�0

1

n!

�
	

1

2�

�
n
�log�2��n �

�
1

�2�

�
1=2�

: (1.9)

In the next section we shall describe how the
renormalization-group induced running of the gravitational
constant can be implemented in a simple way via a non-
local set of manifestly covariant correction terms arising in
the effective, long-distance gravitational field equations.
These effective equations can then be used as a basis for a
systematic discussion of various quantum corrections to
the standard solutions of the classical field equations.
3In the lattice theory c� was originally estimated from the
invariant curvature correlations at around c� 
 0:01, while more
recently it was estimated at c� 
 0:06 from the correlation of
Wilson lines [17]. It is important to note that while the exponent
� is universal, c� in general depends on the specific choice of
regularization scheme (i.e. lattice regularization versus dimen-
sional regularization or momentum subtraction scheme).
II. EFFECTIVE GRAVITATIONAL ACTION AND
EFFECTIVE FIELD EQUATIONS

In general terms, a quantum-mechanical running of the
gravitational coupling implies the replacement

G ! G�r� (2.1)

in classical physical observables. This is easier said than
done, as in gravity the r in the running coupling G�r� is
coordinate dependent, and as such can lead to considerable
044026
ambiguities regarding the interpretation of exactly which
distance r is involved. A more satisfactory approach would
replace G�r� in the gravitational action

I �
1

16�G

Z
dx

���
g

p
R (2.2)

with a manifestly covariant object, intended to correctly
represent an invariant distance, and incorporating the run-
ning of G as expressed in Eq. (1.1),

!
1

16�G

Z
dx

���
g

p
�
1	 c�

�
1

�2�

�
1=2�

�O���2��	1=��

�
R

(2.3)

with the covariant d’Alembertian operator � defined
through an appropriate combination of covariant deriva-
tives

� � g��r�r�: (2.4)

Multiplication by the coordinate r gets therefore replaced
by the action of �, whose Green’s function in D space-
time dimensions is known to behave as

<xj
1

�
jy > &�r	 d�x; yjg�� �

1

rD	2 : (2.5)

Here d would be the distance along a minimal path z��(�
connecting the points x and y in a fixed background ge-
ometry characterized by the metric g��, and given by

d�x; yjg� �
Z (�y�

(�x�
d(

��������������������������������
g���z�

dz�

d(
dz�

d(

s
: (2.6)

As a result 1=� can be envisioned as a coordinate inde-
pendent way of defining consistently what is meant by r in
the running of G�r�,

G�r� ! G���: (2.7)

The above prescription has in fact been used successfully
for some time to systematically incorporate the effects of
radiative corrections in an effective action formalism [19–
21]. It should be noted that the coefficient c� in Eq. (1.1) is
expected to be a calculable number of order one, but not
necessarily the same as the coefficient c�, as r and 1=

�����
�

p

are clearly rather different entities to begin with.3

One should recall here that in general the form of the
covariant d’Alembertian operator � depends on the spe-
cific tensor nature of the object it is acting on,

�T	�...
*&... � g��r��r�T

	�...
*&...�: (2.8)
-3
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Thus on scalar functions one obtains the fairly simple
result

�S�x� �
1���
g

p @�g
�� ���

g
p

@�S�x� (2.9)

whereas on second rank tensors one has the significantly
more complicated expression �T	� � g��r��r�T	��.
Furthermore one should recognize that the form for the
effective gravitational action of Eq. (2.3) is possibly not
unique. A more integration-by-parts symmetric expression
would be, for example,

I �
1

16�G

Z
dx

���
g

p ����
R

p �
1	 c

�
1

�2�

�
1=2�

� . . .
� ����

R
p

:

(2.10)

In general the covariant operator appearing in the above
expression, namely

A��� � c
�

1

�2�

�
1=2�

(2.11)

has to be suitably defined by analytic continuation from
positive integer powers. The latter can be done either by
computing �n for positive integer n and then analytically
continuing to n ! 	1=2�, or alternatively by making use
of the identity

1

�n
�

�	1�n

��n�

Z 1

0
ds sn	1 exp�is�� (2.12)

and subsequent use of the Schwinger-DeWitt representa-
tion for the kernel exp�is�� of the massless operator �.
Within the limited scope of this paper, we will be satisfied
with computing the effects of positive integer powers n of
the covariant d’Alembertian �, and then analytically con-
tinue the answer to fractional n � 	1=2�. In the following
the above analytic continuation from positive integer n will
always be understood.4

It should be stressed here that the action in Eq. (2.10)
should be treated as a classical effective action, with
dominant radiative corrections at short distances (r � �)
already automatically built in, and for which a restriction to
generally smooth field configurations does make some
sense. In particular one would expect that in most instances
it should be possible, as well as meaningful, to neglect
terms involving large numbers of derivatives of the metric
4We notice in passing that in this approach it is not obvious
how to formulate a running cosmological constant, as the
d’Alembertian � in ��r�

R
dx

���
g

p
! �

R
dx

���
g

p
�1	 c�1=�2��*�

has no function of the metric left to act on [22]. This situation is
not entirely surprising as, lacking derivatives, the effect of the �
term is just to control the overall scale. In pure lattice gravity the
bare � is trivially scaled out and does not run [8,17]. In this
scenario the physical long-distance cosmological constant
�1=�2, being related to an average curvature, is considered a
physical quantity to be kept fixed as the gravitational coupling
G�r� slowly evolves with scale.
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in order to compute the effects of the new contributions
appearing in the effective action.5

A number of useful results can already be obtained from
the form of the effective action in Eq. (2.10). In particular,
once a specific metric is chosen, the running of G can be
readily expressed in terms of the coordinates appropriate
for that metric. Later in this work we will illustrate exten-
sively this statement for the specific, and physically rele-
vant, case of the Robertson-Walker (RW) metric.

The next major step involves a derivation of the effective
field equations, incorporating the running of G. As will be
shown below this is not entirely straightforward, as the
variation of the nonlocal effective action is complicated by
the presence of a differential operator raised to a fractional
power, acting on what are rather complicated functions of
the metric to begin with. We shall therefore postpone a
discussion of this aspect to the Appendix, which focuses on
this specific topic.

Had one not considered the action of Eq. (2.10) as a
starting point for constructing the effective theory, one
would naturally be led (following Eq. (2.7)) to consider
the following effective field equations

R�� 	
1

2
g��R��g�� � 8�G�1� A����T��; (2.13)

the argument again being the replacement G�r� ! G�1�
A���� involving the invariant object �. Here, following
common notation, � is the scaled cosmological constant,
not to be confused with the ultraviolet cutoff. Being man-
ifestly covariant, these expressions at least satisfy some of
the requirements for a set of consistent field equations
incorporating the running of G. The above effective field
equation can then be easily recast in a form similar to the
classical field equations

R�� 	
1

2
g��R��g�� � 8�G ~T�� (2.14)

with ~T�� � �1� A����T�� defined as an effective, or
gravitationally dressed, energy-momentum tensor. Just
like the ordinary Einstein gravity case, in general ~T��

might not be covariantly conserved a priori, r� ~T�� � 0,
but ultimately the consistency of the effective field equa-
tions demands that it be exactly conserved in consideration
of the Bianchi identity satisfied by the Riemann tensor. The
ensuing new covariant conservation law

r� ~T�� � r���1� A����T��� � 0 (2.15)

can be then be viewed as a constraint on ~T�� (or T��)
5Dominant contributions to the original Feynman path integral
for the underlying quantum gravity theory are, on the other hand,
presumably nowhere differentiable, the smooth configurations
having ultimately zero measure in the gravitational functional
integral [23]. Furthermore, issues related to causality, unitarity,
and positivity are better referred to the original, local micro-
scopic action, which presumably shares all of these properties.
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which, for example, in the specific case of a perfect fluid,
will imply again a definite relationship between the density
/�t�, the pressure p�t�, and the RW scale factor R�t�, just as
it does in the standard case.

This point is sufficiently important that we wish to
elaborate on it further. In ordinary Einstein gravity the
energy-momentum tensor is defined via the variation of
the matter action

&IM �
1

2

Z
dx

���
g

p
&g��T

��: (2.16)

But when the above arbitrary variation &g�� is taken to be
a gauge variation,

&g�� � g��@��� � g��@��� � ��@�g�� (2.17)

integration-by-parts in Eq. (2.16) immediately yields the
covariant conservation law r�T�� � 0, as a direct conse-
quence of the gauge invariance of the matter action.

On the other hand, in the modified field equations of
Eq. (2.13), the object which will be required to be con-
served by the consistency of the field equations is the
gravitationally dressed energy-momentum tensor, namely
�1� A����T��, and not the original bare T�� itself.
Referring therefore to the original T�� as ‘‘the energy-
momentum tensor’’ would appear to be improper, since,
for the consistency of the effective field equations of
Eq. (2.13), the latter is no longer required to be covariantly
conserved.6 In a sense, the effective field equations of
Eq. (2.13) can be seen simply as a consequence of having
changed the expression in Eq. (2.16) to

&I0M �
1

2

Z
dx

���
g

p
&g���1� A����T��: (2.18)

Let us make a few more comments regarding the above
effective field equations, in which we will set the cosmo-
logical constant � � 0 from now on. One simple observa-
tion is that the trace equation only involves the (simpler)
scalar d’Alembertian, acting on the trace of the energy-
momentum tensor

R � 8�G�1� A����T�
�: (2.19)

Furthermore, to the order one is working here, the above
6This can be illustrated further by the specific case of the
perfect fluid, for which the energy-momentum tensor is usually
written as T�� � �p�t� � /�t��u�u� � g��p�t�. In general its
covariant divergence is not zero, but consistency of the
Einstein field equations demands r�T�� � 0, which for the
RW metric forces a definite relationship between R�t�, /�t�,
and p�t�, namely _/�t� � 3�/�t� � p�t��� _R�t�=R�t�� � 0, irrespec-
tive of the equation-of-state relating / to p. In the effective field
equations of Eq. (2.13) the perfect fluid form for T�� can still be
used (as it still satisfies all the original symmetry requirements),
but the covariant conservation law has the new form displayed in
Eq. (2.15), which imposes a new constraint on the scale factor
R�t�, as well as on the underlying /�t� and p�t�.
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effective field equations should be equivalent to

�1	 A��� �O�A���2��

�
R�� 	

1

2
g��R

�
� 8�GT��

(2.20)

where the running of G has been moved over to the
‘‘gravitational’’ side. Indeed it has recently been claimed
[22] that equations similar to the above effective field
equations (at least for positive integer power n, including
the classical case n � 0) can be derived from a nonlocal
extension of the Einstein-Hilbert action. In the classical
case (A��� � 0) one writes a new nonlocal action

I �
1

16�G

Z
dx

���
g

p
�
R�� 	

1

2
g��R

�
1

�
R�� (2.21)

whose variation, it is argued, gives the correct field equa-
tions up to curvature squared terms

���
g

p
�
R�� 	

1

2
g��R�O�R2

���

�
� 0: (2.22)

For nonvanishing A��� the above construction can then be
generalized to

I �
1

16�G

Z
dx

���
g

p
�
R�� 	

1

2
g��R

�
�1	 A���

�O�A���2��
1

�
R�� (2.23)

whose variation can now be shown to give

���
g

p
�1	A����O�A���2��

�
R��	

1

2
g��R

�
�O�R2

��� � 0

(2.24)

and which would coincide with the previously proposed
effective field equations, again up to higher order curvature
terms.
III. COVARIANT D’ALEMBERTIAN ON SCALAR
FUNCTIONS

As a first step in solving the new set of effective field
equations, consider first the trace of the field equation in
Eq. (2.19), written as

�1	 A��� �O�A���2��R � 8�GT�
� (3.1)

where R is the scalar curvature. Here we have made the
choice to move the operator A��� over on the gravitational
side, so that it now acts on functions of the metric only,
using the binomial expansion of 1=�1� A����. A discus-
sion of the full tensor equations and their added complexity
will be postponed to the next section. To proceed further,
one needs to compute the effect of A��� on the scalar
curvature. The d’Alembertian operator acting on scalar
functions S�x� is given by
-5
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1���
g

p @�g�� ���
g

p
@�S�x� (3.2)

and for the RW metric, acting on functions of t only, one
obtains a fairly simple result in terms of the scale factor
R�t�

	
1

R3�t�

@
@t

�
R3�t�

@
@t

�
F�t�: (3.3)
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As a next step one computes the action of � on the scalar
curvature R, which gives

	6�	2k �R�t� 	 5 _R2�t� �R�t� � R�t� �R2�t� � 3R�t� _R�t�R�3��t�

� R2�t�R�4��t��=R3�t� (3.4)

and then �2 on R which gives
6�	6k _R2�t� �R�t� 	 15 _R4�t� �R�t� � 6kR�t� �R2�t� � 45R�t� _R2�t� �R2�t� 	 12R2�t� �R3�t� � 6kR�t� _R�t�R�3��t�

� 15R�t� _R3�t�R�3��t� 	 41R2�t� _R�t� �R�t�R�3��t� � 5R3�t�R�3�2�t� 	 2kR2�t�R�4��t� 	 9R2�t� _R2�t�R�4��t�

� 7R3�t� �R�t�R�4��t� � 4R3�t� _R�t�R�5��t� � R�t�4R�6��t��=R�t�5; (3.5)
etc. It should already become clear at this point that the
computed expressions are rapidly becoming quite compli-
cated. Nevertheless some of the higher order terms can, for
example, be interpreted as higher derivative curvature
contributions, since for Riemann squared, Ricci squared,
and scalar curvature squared, one has respectively

R���3R
���3 � 12�k2 � 2k _R2�t� � _R4�t�

� R2�t� �R2�t��=R�t�4; (3.6)

R��R
�� � 12�k2 � 2k _R2�t� � kR�t� �R�t� � _R4�t�

� R2�t� �R2�t� � R�t� _R2�t� �R�t��=R�t�4; (3.7)

R2 � 36�k� _R2�t� � R�t� �R�t��2=R�t�4; (3.8)

with

R���3R���3 	
1

6
R��R�� 	

1

2
R2 � 0 (3.9)

for arbitrary scale factor R�t�. But in the following we will
just simply set R�t� � R0t

	, in which case

R���3R
���3 �

12	2�2	2 	 2	� 1�

t4
; (3.10)

R��R
�� �

12	2�3	2 	 3	� 1�

t4
; (3.11)

R2 �
36	2�2		 1�2

t4
; (3.12)

and for the scalar curvature (here allowing for k � 0, see
Eq. (A9) in Appendix A)

6
�

k

R2
0t

2	 �
	�	1� 2	�

t2

�
: (3.13)

Acting with �n on the above scalar curvature now gives for
k � 0

6	�	1� 2	�t	2; (3.14)
36�	1� 	�	�	1� 2	�t	4; (3.15)

144�	1� 	�	�	1� 2	��	5� 3	�t	6; (3.16)

864�	1� 	�	�	1� 2	��	7� 3	��	5� 3	�t	8;

(3.17)

for n � 0, 1, 2, and 3, respectively, and therefore for
arbitrary power n

cn6	�	1� 2	�t	2	2n (3.18)

with the coefficient cn given by

cn � 4n
��n� 1���3		1

2 �

��3		1
2 	 n�

: (3.19)

Here use has been made of the relationship�
d
dz

�
	
�z	 c�� �

���� 1�

���	 	� 1�
�z	 c��		 (3.20)

to analytically continue the above expressions to negative
fractional n [24]. For n � 	1=2� the correction on the
scalar curvature term R is therefore of the form

�1	 c��t=��
1=�� � 6	�	1� 2	�t	2 (3.21)

with

c� � 2	�1=�� ��1	
1
2����

3		1
2 �

��3		1
2 � 1

2��
: (3.22)

In particular for 	 � 2=3 (the classical value for a pressur-
eless perfect fluid) and � � 1=3 one has

c� � 2	3
��	 1

2���
1
2�

��2�
� 	

�
4

(3.23)

whereas, for example, for 	 � 1=2 and � � 1=3 one ob-
tains c� � 	

����
�

p
��54�=��

7
4�. Putting everything together,

one then obtains for the trace part of the effective field
equations
-6
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�
1	 c�c�

�
t
�

�
1=�

�O��t=��2=��
�
6	�2		 1�

t2
� 8�G/�t�:

(3.24)

The new term can now be moved back over to the matter
side (since the correction is assumed to be small), in
accordance with the structure of the original effective field
equations Eqs. (2.13) and (2.19), and thus avoids the prob-
lem of having to deal with the binomial expansion of
1=�1� A����. One then has

6	�2		 1�

t2
� 8�G

�
1� c�c�

�
t
�

�
1=�

�O��t=��2=��
�
/�t� (3.25)

which is the RW metric form of Eq. (2.19). If one assumes
for the matter density /�t� � /0t

�, then matching powers
when the new term starts to take over at larger distances
gives the first result

� � 	2	 1=�: (3.26)

Thus the density decreases faster in time than the classical
value �� � 	2� would indicate. The expansion appears
therefore to be accelerating, but before reaching such a
conclusion one needs to determine the time dependence of
the scale factor R�t� (or 	) as well.

One might be troubled by the fact that some of the
Gamma functions appearing in the expression for c� can
diverge for specific choices of �, e.g. when � � 1=2�n�
1� as in Eq. (3.22) for n integer. But further thought reveals
that this is not necessarily a concern here, as the coefficient
c� actually has to be divided out and then multiplied by c�
(which, as discussed in the introduction and in [17], is
expected to be a number of order one) to get the correct
magnitude for the correction. One has therefore

c�c� � c� (3.27)

so that the correction eventually ends up as �1�

c��t=��
1=��, as it should, in accordance with Eq. (1.1) for

G�r� (the ‘‘t’’ here is like ‘‘r’’ there).
Having completed the calculation of the quantum cor-

rection term acting on the scalar curvature, as in Eq. (3.1),
one can alternatively pursue the following exercise in order
to check the overall consistency of the approach. Consider
�n acting on T�

� � 	/�t� instead, as in the trace of the
effective field equation Eq. (2.19)

R � 8�G�1� A����T�
� (3.28)

for � � 0 and p�t� � 0. For /�t� � /0t� and R�t� � R0t	

one finds in this case
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�n�	/�t�� ! 4n�	1�n�1

�
���2 � 1�����3	�1

2 �

���2 � 1	 n�����3	�1
2 	 n�

/0t
�	2n

(3.29)

which again implies � � 	2	 1=� as in Eq. (3.26) for
large(r) times, when the quantum correction starts to be-
come important (since the left-hand side of Einstein’s
equation always goes like 1=t2, no matter what the value
for 	 is, at least for k � 0).

IV. COVARIANT D’ALEMBERTIAN ON TENSOR
FUNCTIONS

Next we will examine the full effective field equations
(as opposed to just their trace part) of Eq. (2.13) with
� � 0,

R�� 	
1

2
g��R � 8�G�1� A����T��: (4.1)

Here the d’Alembertian operator

� � g��r�r� (4.2)

acts on a second rank tensor,

r�T	� � @�T	� 	 ��
	�T�� 	 ��

��T	� � I�	�;

r��r�T	�� � @�I�	� 	 ��
��I�	� 	 ��

	�I��� 	 ��
��I�	�

(4.3)

and would thus seem to require the calculation of 1920
terms, of which fortunately many vanish by symmetry.
Next assume that T�� has the perfect fluid form, for which
one obtains

��T���tt � 6�/�t� � p�t��
� _R�t�
R�t�

�
2
	 3 _/�t�

_R�t�
R�t�

	 �/�t�;

��T���rr �
1

1	 kr2
f2�/�t� � p�t�� _R�t�2 	 3 _p�t�R�t� _R�t�

	 �p�t�R�t�2g;

��T���44 � r2�1	 kr2���T���rr;

��T���’’ � r2�1	 kr2�sin24��T���rr (4.4)

with the remaining components equal to zero. Note that a
nonvanishing pressure contribution is generated in the
effective field equations, even if one assumes initially a
pressureless fluid, p�t� � 0. As before, repeated applica-
tions of the d’Alembertian � to the above expressions
leads to rapidly escalating complexity (for example, eight-
een distinct terms are generated by �2 for each of the
above contributions), which can only be tamed by intro-
ducing some further simplifying assumptions. In the fol-
lowing we will therefore assume that T�� has the perfect
fluid form appropriate for nonrelativistic matter, with a
power-law behavior for the density, /�t� � /0t�, and
-7
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p�t� � 0. Thus all components of T�� vanish in the fluid’s
rest frame, except the tt one, which is simply /�t�. Setting
k � 0 and R�t� � R0t	 one then finds

��T���tt � �6	2 	 �2 	 3	�� ��/0t�	2;

��T���rr � 2R2
0t

2		2/0t
�	2

(4.5)

which again shows that the tt and rr components get mixed
by the action of the � operator, and that a nonvanishing rr
component gets generated, even though it was not origi-
nally present.

Higher powers of the d’Alembertian � acting on T��

can then be computed as well, but it is easier to introduce
the slightly more general auxiliary diagonal tensor V��

with components Vtt � /0t�, Vrr � /1t*, V44 � r2Vrr,
and V’’ � r2sin24Vrr, with * an arbitrary power. One
then finds

��V���tt � �6	2 	 �2 	 3	�� ��/0t�	2

�
6	2

R2
0t

2	 /1t*	2;

��V���rr � 2R2
0t

2		2/0t�	2 � �4	2 � 	�*	 2�

	 *�*	 1��/1t*	2 (4.6)

as well as

��V���44 � r2��V���rr;

��V���’’ � r2sin24��V���rr;
(4.7)

and zero for the remaining components. The above expres-
sions can then be used conveniently to generate �n acting
on T�� to any desired power n. But since the problem at
each step involves a two by two matrix acting on the
energy-momentum tensor, it would seem rather compli-
cated to get a closed form solution for arbitrary n. But a
comparison with the left-hand (gravitational) side of the
effective field equation, which always behaves like �1=t2

for k � 0, shows that in fact a solution can only be
achieved at order �n provided the exponent � satisfies
� � 	2� 2n, or since n � 	1=�2��,

� � 	2	 1=� (4.8)

as was found previously from the trace equation,
Eqs. (2.19) and (3.26). As a result one obtains a much
simpler set of expressions, which now read

��T���tt ! 6	2/0t
	2; (4.9)

��2T���tt ! 12	2�		 1��4	� 1�/0t	2; (4.10)

��3T���tt ! 48	2�		 1��4	� 1��2	2 	 3		 3�/0t	2;

(4.11)
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��4T���tt ! 96	2�		 1��4	� 1��2	2 	 3		 3�

� �4	2 	 9		 15�/0t	2; (4.12)

��5T���tt ! 768	2�		 1��4	� 1��2	2 	 3		 3�

� �4	2 	 9		 15��	2 	 3		 7�/0t	2;

(4.13)

etc., here for powers n � 1 to n � 5, respectively, and with
� changing with n in accordance with Eq. (4.8). For
general n one can then write

��nT���tt ! ctt�	; ��/0t
	2 (4.14)

and similarly for the rr component

��nT���rr ! crr�	; ��R2
0t

2	/0t	2: (4.15)

But remarkably (see also Eq. (4.4)) one finds for the two
coefficients the simple identity

crr�	; �� �
1

3
ctt�	; �� (4.16)

as well as c44 � r2crr and c’’ � r2sin24crr. Then for
large times, when the quantum correction starts to become
important, the tt and rr field equations reduce to

3	2t	2 � 8�Gctt�	; ��/0t	2 (4.17)

and

		�3		 2�R2
0t

2		2 � 8�Gcrr�	; ��R2
0t

2	/0t	2; (4.18)

respectively. But the identity crr �
1
3 ctt implies, simply

from the consistency of the tt and rr effective field equa-
tions at large times,

crr�	; ��
ctt�	; ��

�
1

3
� 	

3		 2

3	
(4.19)

whose only possible solution finally gives the second
sought-for result, namely

	 �
1

2
: (4.20)

For the specific value of 	 � 1
2 one can then show that the

coefficients ctt obey the recursion relation

�ctt�n � 	�4n2 	 7n� 1��ctt�n	1 (4.21)

with initial condition �ctt�n�1 � 3=2. Consequently a
closed form expression for ctt and crr � ctt=3 can be
written down, either in terms of the Pochhammer symbol
�x�n � x�x� 1� . . . �x� n	 1� � ��x� n�=��x�, or more
directly in terms of ratios of Gamma functions as
-8
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ctt

�
	 �

1

2
; n � 	1=2�

�

� 3�	1�n�12	3�2n
��1	

����
33

p

8 � n���1�
����
33

p

8 � n�

��9	
����
33

p

8 ���9�
����
33

p

8 �
:

(4.22)

Still, the above expression does not seem to be particularly
illuminating at this point, except for providing an explicit
proof that the coefficients ctt and crr exist and are finite for
specific values of n, such as n � 	1=2� � 	3=2.

One might worry at this point whether the above solu-
tion is consistent with covariant energy conservation. With
the assumed form for T�� it is easy to check that energy
conservation yields for the t component

�r���nT����t!	��3	���1=��ctt�3	crr�/0t
��1=�	1

�0 (4.23)

when evaluated for n � 	1=2�, and zero for the remaining
three spatial components. But from the solution for the
matter density /�t� at large times one has � � 	2	 1=�,
so the above zero condition gives again crr=ctt � 	�3		
2�=3	, exactly the same relationship previously implied by
the consistency of the tt and rr field equations.

In conclusions the values for 	 � 1=2 of Eq. (4.20) and
� � 	2	 1=� of Eq. (4.8), determined from the effective
field equations at large times, are found to be consistent
with both the field equations and covariant energy conser-
vation. More importantly, the above solution is also con-
sistent with what was found previously by looking at the
trace of the effective field equations, Eq. (2.19), which also
implied the result � � 	2	 1=�, Eq. (3.26).

Together these results imply that for sufficiently large
times the scale factor R�t� behaves as

R�t� � t	 � t1=2 (4.24)

and the density /�t� as

/�t� � t� � t	2	1=� � �R�t��	2�2�1=��: (4.25)

Thus the density decreases significantly faster in time than
the classical value (/�t� � t	2), again a signature of an
accelerating expansion at later times.

It is amusing to note that the vacuum-polarization term
we have been discussing so far behaves very much like a
positive pressure term, as should already have been clear
from the fact that the covariant d’Alembertian g��r�r�

causes, in the RW metric case, a mixing of the tt and rr
components in the field equations. Furthermore, within the
classical FRW model, the value 	 � 1=2 corresponds to an
equation-of-state parameter ! � 1=3 in Eq. (A20), with

	 �
2

3�1�!�
; (4.26)

where p�t� � !/�t�, and which is therefore characteristic
044026
of radiation. Thus one can visualize the covariant gravita-
tional vacuum-polarization contribution as behaving to
some extent like classical radiation, here in the form of a
dilute gas of virtual gravitons.
V. CONCLUSIONS

The main results of this paper are the effective field
equations of Eq. (2.13),

R�� 	
1

2
g��R��g�� � 8�G�1� A����T��; (5.1)

their trace in (Eq. (2.19)), and the solution for the trace and
full equations for the specific case of the RW metric and
� � 0 outlined in Sections III and IV, respectively.

The combined results for the density /�t� � /0t�,
namely � � 	2	 1=� for large times (Eqs. (3.26) and
(4.8)), and for the scale factor R�t� � R0t	, namely 	 �
1=2 (Eq. (4.20)) again for large times, imply that for � � 0
and for sufficiently large times the density falls off as

/�t� � t	2	1=� � �R�t��	2�2�1=��: (5.2)

Thus the matter density decreases significantly faster in
time than predicted by the classical value (/�t� � t	2), a
signature of an accelerating expansion at later times.

Within the Friedmann-Robertson-Walker (FRW) frame-
work the gravitational vacuum-polarization term behaves
in many ways like a positive pressure term. The value 	 �
1=2 corresponds to ! � 1=3 in Eq. (A20),

	 �
2

3�1�!�
; (5.3)

where we have taken the pressure and density to be related
by p�t� � !/�t�, and which is therefore characteristic of
radiation. One can therefore visualize the gravitational
vacuum-polarization contribution as behaving like ordi-
nary radiation, in the form of a dilute virtual graviton
gas. It should be emphasized though that the relationship
between density /�t� and scale factor R�t� is very different
from the classical case.

The results of Section IV show that the effective
Friedmann equations for a universe filled with nonrelativ-
istic matter (p � 0) have the following appearance

k

R2�t�
�

� _R�t�
R�t�

�
2
�

8�G�t�
3

/�t� �
1

3
�

�
8�G
3

�1� c��t=��
1=�

�O��t=��2=���/�t� �
1

3
�; (5.4)
-9



H. W. HAMBER AND R. M. WILLIAMS PHYSICAL REVIEW D 72, 044026 (2005)
k

R2�t�
�

� _R�t�
R�t�

�
2
�

2 �R�t�
R�t�

� 	
8�G
3

�c��t=��
1=�

�O��t=��2=���/�t� ��

(5.5)

with the running G appropriate for the RW metric appear-
ing explicitly in the first equation,7

G�t� � G�1� c��t=��1=� �O��t=��2=��� (5.6)

and used, in the second equation, the result ctt � 3crr of
Eq. (4.16). We have also restored the cosmological con-
stant term, with a scaled cosmological constant �� 1=�2.
One can therefore sensibly talk about an effective density

/eff�t� �
G�t�
G

/�t� � �1� c��t=��1=� � � � ��/�t� (5.7)

and an effective pressure

peff�t� �
1

3

�
G�t�
G

	 1
�
/�t� �

1

3
�c��t=��1=� � � � ��/�t�

(5.8)

with peff�t�=/eff�t� �
1
3 �G�t� 	G�=G�t�. Strictly speaking,

the above results can only be proven if one assumes that the
pressure’s time dependence is given by a power-law (as
discussed in Section IV).
7Corrections to the above formulae are expected to be fixed by
higher order terms in the renormalization-group �-function. In
the vicinity of the fixed point at Gc one writes

��G� � �0�G	Gc� � �1�G	 Gc�
2 � � � �

and obtains then by integration

�	1 � Cm�j exp
�
	

Z G��� dG0

��G0�

�
j �G���!Gc

Cm�jG���

	Gcj
	1=�0�Gc�

with an exponent � given by �0�Gc� � �0 � 	1=�, Cm a
numeric constant and � the ultraviolet cutoff. After replacing
� ! 1=r and G��� ! G�r� one finds for the scale dependence
of G

G�r� � Gc

�
1�

1

�1� �1Gc��C
1=�
m

�
r
�

�
1=�

	
�1Gc�

�1� �1Gc��
2C2=�

m

�

�
r
�

�
2=�

� � � �

�
:

Note that �0 � 	1=� < 0, and that for �1 < 0 the second
correction term is positive as well. If one restricts oneself to
the lowest order term, valid in the vicinity of the ultraviolet fixed
point, then for a given static source of mass M one has for the
gravitational potential the additional contribution &V�r� �
�2MG=�3�r2 for � � 1=3, as discussed in [17].
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Equivalently, substituting t 
 	R�t�= _R�t�, one can, as an
example, rewrite the first Friedman equation as

k

R2�t�
�

� _R�t�
R�t�

�
2
�

8�G
3

�
1� c��	=��

1=�
� _R�t�
R�t�

�
	1=�

��� �

�

�/�t��
1

3
�: (5.9)

The effective Friedman equations of Eqs. (5.4) and (5.5)
also bear a superficial degree of resemblance to what might
be obtained in scalar-tensor theories of gravity [25–27]
(for recent reviews and further references see [28,29]),

S �
Z

dx
���
g

p
�

1

16�G
f�8�R	

1

2
g��@�8@�8	 V�8�

�
� Smatter; (5.10)

where the gravitational Lagrangian is some arbitrary func-
tion of the scalar curvature [30]. It is also well known that
often these theories can be reformulated in terms of ordi-
nary Einstein gravity coupled appropriately to a scalar field
[31]. In the FRW case one has for the scalar curvature in
terms of the scale factor

R � 6�k� _R2�t� � R�t� �R�t��=R2�t� (5.11)

and therefore for k � 0 and R�t� � R0t
	,

R �
6	�2		 1�

t2
: (5.12)

The quantum correction in Eq. (5.4) is therefore, at this
level, indistinguishable from an inverse curvature term of
the type ��2R2�	1=2�. But the resemblance is seen here
merely as an artifact due to the particularly simple form
of the RW metric, with the coincidence of several curvature
invariants (see for example, Eqs. (3.8) and (3.12)) not
expected to be true in general.

Finally let us note that the effective field equations
incorporating a vacuum-polarization-driven running of G,
Eq. (2.13)), could potentially run into serious difficulties
with experimental constraints on the time variability of G.
These have recently been summarized in [32–36], where it
is argued on the basis of detailed studies of the cosmic
background anisotropy that the variation of G at the re-
combination epoch is constrained as jG�z � zrec� 	
G0j=G0 < 0:05�23�. Solar system measurements also se-
verely restrict the time variation of Newton’s constant to
j _G=Gj< 10	12 yr	1 [32]. It would seem though that these
constraints can still be accommodated provided the scale �
entering the effective field equations of Eq. (2.13) is chosen
to be sufficiently large, at least of the order of � > 3H	1,
given that in the present model one has j _G=Gj �
1
� c�t

1=�	1=�1=� and therefore j _G=Gj � 3c�t2=�3 for � �

1=3.
-10
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APPENDIX A: CLASSICAL FIELD EQUATIONS
AND CONVENTIONS

This appendix is mostly about notation, but also collects
a few simple results used extensively in the rest of the
paper. We will write the Robertson-Walker (RW) metric as

ds2 � 	dt2 � R2�t�
�

dr2

1	 kr2
� r2�d42 � sin24d’2�

�
(A1)

and note that with this choice of signature (i.e. a minus sign
for the dt2 term), � is a positive operator (on functions of
t). Also

���
g

p
�

������������������
	 det�g�

p
� �r2 sin4R3�t�=

����������������
1	 kr2

p
.

The energy-momentum tensor for a perfect fluid is

T�� � �p�t� � /�t��u�u� � g��p�t� (A2)

giving in the fluid’s rest frame T�� � diag�/; pR2=�1	
kr2�; r2pR2; r2sin24pR2�, with trace

T�
� � 3p�t� 	 /�t�: (A3)

The field equations are then written as

R�� 	
1

2
g��R � 8�GT��: (A4)

The tt component of the Einstein tensor reads

3�k� _R2�t��=R2�t�; (A5)

while the rr component is

	1

1	 kr2
�k� _R2�t� � 2R�t� �R�t��; (A6)

and the 44 component

	r2�k� _R2�t� � 2R�t� �R�t��; (A7)

and finally the ’’ component

	r2sin24�k� _R2�t� � 2R�t� �R�t��: (A8)

The scalar curvature is simply

6�k� _R2�t� � R�t� �R�t��=R2�t�: (A9)

Thus the tt component of the Einstein equation becomes
044026
3�k� _R2�t��=R2�t� � 8�G/�t� (A10)

while the rr component reads

	1

1	 kr2
�k� _R2�t� � 2R�t� �R�t��

� 8�G
1

1	 kr2
p�t�R2�t�: (A11)

The trace equation is

6�k� _R2�t� � R�t� �R�t��=R2�t� � 8�G�/�t� 	 3p�t��:

(A12)

Covariant conservation of the energy-momentum tensor,
r�T�� � 0 implies a definite relationship between R�t�,
/�t�, and p�t�, which reads

_/�t� � 3�/�t� � p�t��� _R�t�=R�t�� � 0 (A13)

(and which the tensor of Eq. (A2) in its most general form
does not satisfy).

Next consider the case k � 0 (spatially flat) and p � 0
(nonrelativistic matter). If R�t� � R0t	 and /�t� � /0t�,
then the tt field equation

3	2

t2
� 8�G/0t

� (A14)

implies � � 	2 and 	2 � 8�G/0=3, while the rr field
equation

		�3		 2�R2
0t

2		2 � 0 (A15)

implies 	 � 2=3. Also both of these together imply

/�t� � t	2 � �t2=3�	3 � 1=R�t�3: (A16)

The trace equation now reads

6	�2		 1�

t2
� 8�G/0t� (A17)

and implies again � � 	2 and 6	�2		 1� � 8�G/0.
The latter combined with the tt equation gives 3	2 �
6	�2		 1�, or again 	 � 2=3. Finally covariant energy
conservation implies

�3	� ��/0t� � 0 (A18)

or 3	� � � 0, which does not add to what already comes
out of the tt and rr (or, equivalently, tt and trace) equations,
but is consistent with it. In conclusion the tt and rr (or
tt and trace) equations are sufficient to determine both 	
and � .

The case of nonvanishing pressure can be dealt with in
the same way. In most instances one is interested in a fairly
simple equation-of-state p�t� � !/�t�, with ! a constant.
For nonrelativistic matter ! � 0, for radiation ! � 1=3,
while the cosmological term can be modeled by ! � 	1.
The consistency of the tt and rr equations now requires
-11
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	�3		 2�

3	2
� 	! (A19)

which gives

	 �
2

3�1�!�
(A20)

for 	1<! � 1=3. Furthermore from the covariant en-
ergy conservation law one has

3�1�!�	� � � 0 (A21)

which implies � � 	2 again. Therefore

R�t� � t2=3�1�!�; /�t� � �R�t��	3�1�!�: (B.22)

These results are well known and have been collected here
for convenient reference.
8These considerations are not dissimilar from the case of a
self-interacting scalar field where one might want to introduce
three couplings for the kinetic term, the mass term, and the
quartic coupling term, respectively. A simple rescaling of the
field would then reveal that only two coupling ratios are in fact
relevant.
APPENDIX B: SCALE TRANSFORMATIONS AND
GRAVITATIONAL FUNCTIONAL INTEGRAL

Consider the (Euclidean) Einstein-Hilbert action with a
cosmological term

IE � �0�
4
Z

dx
���
g

p
	 ;0�

2
Z

dx
���
g

p
R: (B1)

Here �0 is the bare cosmological constant, ;0 � 1=16�G0

with G0 the bare Newton’s constant. Also, and in this
section only, we follow customary notation used in cutoff
field theories and denote by � an ultraviolet cutoff, not to
be confused with the scaled cosmological constant. The
natural expectation is for the bare microscopic, dimension-
less couplings to have magnitudes of order one in units of
the cutoff, �0 � ;0 �O�1�. Next one can rescale the met-
ric

g0�� �
������
�0

p
g��; g0�� �

1������
�0

p g�� (B2)

to obtain

IE � �4
Z

dx
�����
g0

q
	

;0������
�0

p �2
Z

dx
�����
g0

q
R0: (B3)

Next consider the fact that the (Euclidean) Feynman path
integral

Z �
Z

d��g� exp
�
	

Z
dx

���
g

p
�
�0�

4 	
�2

16�G0
R
��

(B4)

includes a functional integration over all metrics, with
functional measure [37,38]
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Z
d��g� �

Z Y
x

�detG�1=2
Y
���

dg���x�

�
Z Y

x

�g�x���D	4��D�1�=8
Y
���

dg���x�

!
D�4

Z Y
x

Y
���

dg���x� (B5)

with the supermetric over metric deformations given by

G��;	��g�x�� �
1

2
�g�x��1=2�g�	�x�g���x� � g���x�g�	�x�

� �g���x�g	��x��: (B6)

For our purposes it will be sufficient to note that under a
rescaling of the metric the functional measure only picks
up an irrelevant multiplicative constant. Such a constant
automatically drops out when computing averages.
Equivalently one can view a rescaling of the metric as
simply a redefinition of the ultraviolet cutoff �, � !

�1=4
0 �. As a consequence, the nontrivial part of the func-

tional integral over metrics only depends on �0 and ;0

through the dimensionless combination ;0=
������
�0

p
�

1=�16�G0

������
�0

p
�. The existence of an ultraviolet fixed point

is then entirely controlled by this dimensionless parameter
only, both on the lattice [8,17] and in the continuum
[11,15]. It is the only relevant (as opposed to marginal or
irrelevant, in statistical mechanics parlance) scaling vari-
able in the pure gravity case, in the sense of having only
one positive (growing) eigenvalue of the linearized
renormalization-group transformation in the vicinity of
the fixed point.

The parameter �0 controls the overall scale of the prob-
lem (the volume of space-time), while the ;0 term provides
the necessary derivative or coupling term. Since the total
volume of space-time can hardly be considered a physical
observable, quantum averages are computed by dividing
out by the total space-time volume. For example, for the
quantum expectation value of the Ricci scalar one writes

<
R
dx

���������
g�x�

p
R�x�>

<
R
dx

���������
g�x�

p
>

: (B7)

Without any loss of generality one can therefore fix the
overall scale in terms of the ultraviolet cutoff, and set the
bare cosmological constant �0 equal to one in units of
the ultraviolet cutoff.8

The addition of matter field prompts one to do some
further rescalings. Thus for a scalar field with action
-12
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note that there the nonperturbative gluon condensate
depends in a nontrivial way on the corresponding confinement
scale parameter, 	S < F�� � F

��> 
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�	1
QCD ��MS.
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IS �
1

2

Z
dx

���
g

p
fg��@�8@�8�m2

08
2 � R82g (B8)

and functional measureZ
d��8� �

Z Y
x

�g�x��1=2d8�x�; (B9)

the metric rescaling is to be followed by a field rescaling

80�x� � 8�x�=�1=4
0 (B10)

with the only surviving change being a rescaling of the bare
mass m0 ! m0=�

1=4
0 . The scalar functional measure ac-

quires an irrelevant multiplicative factor which does not
affect quantum averages. The bare mass rescaling is of
course ineffectual if the fields are massless to begin with.

The same set of considerations apply as well to the
Euclidean lattice [39,40] regularized version of Eq. (B1),
which now reads [41,42]

IL � �0

X
h

Vh�l
2� 	 2;0

X
h

&h�l
2�Ah�l

2� (B11)

and

ZL �
Z

d��l2� expf	�0

X
h

Vh�l2� � 2;0

X
h

&h�l2�Ah�l2�g;

(B12)

where, as is customary, the lattice ultraviolet cutoff is set
equal to one (i.e. all lengths and masses are measured in
units of the cutoff). It is known that convergence of the
Euclidean lattice functional integral requires a positive
bare cosmological constant �0 > 0 [41–43].

The coupling � should really not be allowed to ‘‘run,’’ as
the overall space-time volume is intended to be fixed, not
to be itself rescaled under a renormalization-group
transformation. Indeed, in the spirit of Wilson [4], a
renormalization-group transformation allows a description
of the original physical system in terms of a new course
grained Hamiltonian, whose new operators are interpreted
as describing averages of the original system on the finest
scale, but within the same physical volume. This new
effective Hamiltonian is still supposed to describe the
original physical system, but does so more economically
in terms of a reduced set of degrees of freedom.

The pure gravity theory depends only on one coupling
(the dimensionless G), and only that coupling is allowed to
run. This is also, to some extent, implicit in the correct
definition of gravitational averages, for example in
Eq. (B7). Physical observable averages such as the one in
Eq. (B7) in general have some rather nontrivial depen-
dence on the bare coupling G0, more so in the presence
of an ultraviolet fixed point. Renormalization in the vicin-
ity of the ultraviolet fixed point invariably leads to the
introduction of a new dynamically generated, nonpertur-
bative scale for G>Gc
044026
m � �	1

� �exp
�
	
Z G dG0

��G0�

�
�G!Gc

�jG	Gcj
	1=�0�Gc�

(B13)

with an exponent related to the derivative of the beta
function at the fixed point

�0�Gc� � 	1=�: (B14)

The overall size of this new scale � is controlled by the
distance from the fixed point G	Gc, which can be made
arbitrarily small (in the Regge lattice theory one finds for
the critical coupling, in units of the ultraviolet cutoff, Gc 

0:626, and for the exponent � 
 0:33).

Thus a result such as

<
R
dx

���������
g�x�

p
R�x�>

<
R
dx

���������
g�x�

p
>

��2�G	Gc�
*� ��2	* 1

�* (B15)

referring here to an average curvature on the largest ob-
servable scales (with � and * some positive exponents)
does not presumably allow one to state whether the average
curvature is large or small at large distances (that would
clearly depend on the choice of G	Gc and the cutoff �).9

But it does establish a definite relationship between the
fundamental scale � in Eq. (B13) and say the scale of the
curvature at the largest scales, Eq. (B15), as well as with
any other observable involving G	Gc or �. It is the latter
curvature that most likely should be identified with a
physical, astrophysically measurable, macroscopic cosmo-
logical constant (and not in any way with �0). While it is
natural to assume for the curvature measured on the largest
distance scales (for example via the parallel transport of
vectors along very large loops) that R� 1=�2, and there-
fore * � 2, it has proven difficult so far to establish such a
result in the lattice theory, due to the great technical
difficulties involved in measuring small invariant correla-
tions at large geodesic distances [44].
APPENDIX C: EFFECTIVE ACTION VARIATION

In this section we will consider the effective gravita-
tional action of Eq. (2.10),

I �
1

16�G

Z
dx

���
g

p ����
R

p
�1	 A����

����
R

p
(C1)

and compute its variation. One needs the following ele-
mentary variations
-13
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&
���
g

p
�

����
R

p
� �1	 A���� �

����
R

p
�

���
g

p
� &

����
R

p
� �1	 A����

�
����
R

p
�

���
g

p
�

����
R

p
� &�1	 A���� �

����
R

p
�

���
g

p
�

����
R

p

� �1	 A���� � &
����
R

p
: (C2)

Using the identity

&
���
g

p
� 	

1

2

���
g

p
g��&g�� (C3)

as well as r�g�� � 0 one then has

	
1

2

���
g

p
&g��g��

����
R

p
�1	 A����

����
R

p

�
���
g

p
&

����
R

p
�1	 A����

����
R

p
	 n

���
g

p ����
R

p
A���

1

�
�&��

����
R

p

�
���
g

p ����
R

p
�1	 A����&

����
R

p
: (C4)

Next use is made of the definition of the Ricci scalar,

&R � g��&R�� � R��&g��: (C5)

For the variation of the affine connection one has

&�	
�� �

1

2
g	��r�&g�� �r�&g�� 	r�&g��� (C6)

or, equivalently,

&�	
�� � 	

1

2
�r��g��&g	�� � r��g��&g	��

	 r��g�;g��g
	�&g;���; (C7)

and therefore for the variation of the Ricci tensor

&R�� � r	�&�	
��� 	 r��&�	

	�� (C8)

from which it follows that

g��&R�� � r�r��	&g�� � g��g	�&g
	��

� g	��&g	� 	r��r��&g
��; (C9)

which is one of the required variations in Eq. (C4). The
second term on the right hand side of the last equation is a
total derivative in the ordinary Einstein case, but it needs to
be kept here. Note also that in general �r� � r��, and
that �g�� � 0 but �&g�� � 0. For the variation of the
covariant d’Alembertian

H. W. HAMBER AND R. M. WILLIAMS
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&� � &g��r�r� 	 g��&�3
��r3; (C10)

one needs the variation of �3
�� given by Eq. (C6), which

then gives

&� � &g��r�r� �r�&g
��r�

	
1

2
r�g

��g	�&g
	�r�: (C11)

Here (or at the end) one also needs to properly symmetrize
the result for the variation of �,

&��n� !
Xn
k�1

�k	1�&���n	k: (C12)

Next several integrations by parts, involving both the
operator �n (with integer n) as well as the operator
g��� 	r��r��, have to be performed in order to isolate
the &g�� term. This follows from

R ���
g

p
r�V� �R ���

g
p

�1=
���
g

p
�@�

���
g

p
V� � 0 which allows us to repeatedly

integrate by parts and move some covariant derivatives
around. In general one has to be careful about the ordering
of covariant derivatives, whose commutator is in general
nonzero in accord with the Ricci identity

�r�;r��T	1	2...
�1�2...

� 	
X
i

R��3
	iT	1...3...

�1...

	
X
j

R���j

3T	1...
�1...3... (C13)

with the 3 index in T in the ith position in the first term,
and in the jth position in the second term. The term
involving the variation of the covariant d’Alembertian �
then gives

	n�r�r�

����
R

p
�

�
A���

�

����
R

p �
	 n�r�

����
R

p
�

�
r�

A���

�

����
R

p �

�
1

2
ng���r	

����
R

p
�g	�

�
r�

A���

�

����
R

p �
(C14)

which again needs to be symmetrized with respect to
A���

�

����
R

p
$

����
R

p
, in the way described above. After adding

the remaining terms, the effective field equations become
�
R�� 	

1

2
g��R

��
1	

1����
R

p A���
����
R

p �
	 �g��� 	r��r���

�
1����
R

p A���
����
R

p �
	 n�r�r�

����
R

p
�

�
A���

�

����
R

p �

	 n�r�

����
R

p
�

�
r�

A���

�

����
R

p �
�

1

2
ng���r	

����
R

p
�g	�

�
r�

A���

�

����
R

p �
� 8�GT��; (C15)
where again the last three terms need to be properly symmetrized in A���
�

����
R

p
$

����
R

p
, as described above.

Taking the covariant divergence of the left-hand side (l.h.s.) gives zero for some of the terms, while the remaining terms
give
-14
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�
R�� 	

1

2
g��R

�
r�

�
1����
R

p �n
����
R

p �
	 nr���r�r�

����
R

p
���n	1

����
R

p
� � �r�

����
R

p
��r��n	1

����
R

p
�

	
1

2
g���r	

����
R

p
�g	��r��n	1

����
R

p
�� (C16)

which has to vanish due to the invariance of the original nonlocal action. (Again the last term needs to be symmetrized in
�n	1

����
R

p
$

����
R

p
).

The above derivation can be slightly generalized to an action of the form

I �
1

16�G

Z
dx

���
g

p
R1		�1	 A����R	 (C17)

with 	 a parameter between zero and one (with the previous case corresponding to 	 � 1=2). Then for the field equations
one obtains an expression of the type

R�� 	
1

2
g��R�

1

2
g��RR		A���R	 	 R����1	 	�R		A���R	 � 	R		1A���R1		�

	 �g��� 	r��r�����1	 	�R		A���R	 � 	R		1A���R1		� 	 n�r�r�R
	�

�
A���

�
R1		

�

	 n�r�R
	�

�
r�

A���

�
R1		

�
�

1

2
ng���r3R

	�g3/
�
r/

A���

�
R1		

�
� 8�GT�� (C18)

(where again the last term needs to be symmetrized) which shows that the choice of either 	 � 1 or 	 � 0 is a bit
problematic.

One final question remains, namely, what is the relationship between the above effective field equations, Eq. (C15) or
Eq. (C18), and the clearly more economical field equations proposed in Eq. (2.13). Obviously the equations obtained above
from the variational principle are much more complicated. They contain a number of nontrivial terms, some of which are
reminiscent of the 1� A��� term, and others with a completely different structure (such as the g��� 	r��r�� term). It is
of course possible that when restricted to specific metrics, such as the RW one, the two sets of equations will ultimately
give similar results, but in general this remains a largely open question. One possibility is that both sets of effective field
equations describe the same running of the gravitational coupling, up to curvature squared (higher derivative) terms, which
become irrelevant at very large distances.
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