
PHYSICAL REVIEW D, VOLUME 59, 064014
On the measure in simplicial gravity
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Functional measures for lattice quantum gravity should agree with their continuum counterparts in the weak
field, low momentum limit. After showing that the standard simplicial measure satisfies the above requirement,
we prove that a class of recently proposed non-local measures for lattice gravity do not satisfy such a criterion,
already to lowest order in the weak field expansion. We argue therefore that the latter cannot represent
acceptable discrete functional measures for simplicial geometries.@S0556-2821~99!00206-4#

PACS number~s!: 04.60.Nc, 04.25.Dm, 04.62.1v, 11.15.Ha
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I. INTRODUCTION

In the simplicial formulation of quantum gravity one a
proximates the functional integration over continuous m
rics by a discretized sum over piecewise linear simplic
geometries. In such a model the role of the continuum me
is played by the edge lengths of the simplices, while cur
ture is naturally described by a set of deficit angles wh
can be computed as functions of the given edge length
has been known for some time that the simplicial latt
formulation of gravity is locally gauge invariant, and that
contains perturbative gravitons in the lattice weak field
pansion, making it an attractive lattice regularization of t
continuum theory.

Recent evidence seems to indicate that simplicial qu
tum gravity in four dimensions exhibits a phase transit
between a smooth and a rough phase. Only the smooth, s
curvature phase appears to be physically acceptable@1#. The
existence of a phase transition implies non-trivial and cal
lable non-perturbative scaling properties for the coupl
constants of the theory and, in particular, Newton’s const
All calculations so far have been performed in the Euclide
formulation. As usual, the starting point for a no
perturbative study of quantum gravity is a suitable definit
of the path integral. In the simplicial lattice approach o
starts from the discretized Euclidean path integral for p
gravity, with the squared edge lengths as fundamental v
ables:
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The above expression represents a suitable discretizatio
the continuum Euclidean path integral for pure quant
gravity:

ZC5E )
x

@Ag~x!#s )
m>n

dgmn~x!

3expH 2E d4xAgS l2
k

2
R1

a

4
RmnrsRmnrs1¯ D J ,

~1.2!

with k2158pG. The dA term in the lattice action is the
well-known Regge term@2#, which reduces to the Einstein
Hilbert action in the lattice weak field limit@3#. A cosmo-
logical constant term is needed for convergence of the p
integral, while the curvature squared term allows one to c
trol the fluctuations in the curvature. In the discrete case
integration over metrics is replaced by integrals over the
ementary lattice degrees of freedom, the squared e
lengths, as discussed in@4–6#. The higher derivative terms
eventually become irrelevant at distances much larger t
the Planck length,r @AaG. For phenomenological reason
one is therefore mostly interested in the limita→0, and in
this limit the theory depends, in the absence of matter
after a suitable rescaling of the metric, only on one b
parameter, the dimensionless couplingk2/l.

The two phases of quantized gravity found in@1# can
loosely be described as having, in one phase~G,Gc , the
rough, branched-polymer-like phase!,

^gmn&50, ~1.3!

while, in the other phase~G.Gc , the smooth phase!,

^gmn&'chmn , ~1.4!

with a small negative average curvature~anti–de Sitter
space! in the vicinity of the critical point atGc , which then
vanishes as the critical point is approached from above
appears that only the phaseG.Gc is physically acceptable
since in the complementary phase the simplicial lattice
generates into a lower-dimensional branched-polymer-
manifold, with a proliferation of sharp curvature singulariti
and no physically acceptable continuum limit. The challen
of course lies in extracting accurate physical predictio

:
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HERBERT W. HAMBER AND RUTH M. WILLIAMS PHYSICAL REVIEW D 59 064014
from the theory as one approaches the lattice continuum l
by takingG→Gc from the smooth, negative curvature pha
side. It is only in the physical, smooth phase that the sim
cial lattice theory leads to a prediction for the no
perturbative scale dependence of Newton’s constant, w
can be cast in the simple form@1#

G~r !5G~0!@11c~r /R0!1/n1O„~r /R0!2/n
…#. ~1.5!

Here the critical exponent 1/n52.8(3) andc a numerical
constant of order 1; the scaleR0

21 plays a role similar to the
scaling violation parameterLMS in QCD, with R0'cH0

21.
A more detailed discussion of the properties of the t
phases characterizing four-dimensional quantum gravity,
of the computation of the associated critical exponents,
be found in@1#. A description of earlier work on simplicia
gravity can be found in@7#. For related work on simplicia
gravity see also the references in@8#, where the same two
phase structure for four-dimensional simplicial gravity h
been observed. An up-to-date description of work in class
simplicial gravity and the discrete time evolution proble
can be found in@11#. For results with an alternative an
complementary approach to problems in quantum gra
based on dynamical triangulations, we shall point the rea
to the references in@12#.

The functional measure over metrics is an essential in
dient in the quantum theory of gravity. In this paper w
address the issue of whether the lattice gravitational mea
is unique and, if not, how to decide among a set of differ
possible lattice measures. It is sometimes stated that the
versal character of long distance critical behavior will wa
out the difference between similar actions and measu
While this statement might be true for action terms that c
tain higher derivatives, and are therefore potentially irr
evant in the lattice continuum limit, it is less clear that
applies to the functional measure. In this paper we focus
a comparison of different approaches to the functional m
sure in simplicial quantum gravity, by examining both t
traditional local measure@4–6# and highly non-local mea
sures which have recently been proposed in the litera
@13,14#. Throughout the paper we shall make use of the f
that in the continuum the functional measure for quantiz
gravity is well known and understood. We then point out t
obvious, and natural, requirement that the lattice functio
measure should agree with the continuum functional mea
in the weak field, low momentum limit. A straightforwar
lattice perturbative calculation will then show that this k
requirementis satisfied by a class of local measures curren
used in the numerical simulations, but that, on the ot
hand, it isnot satisfied by another set of non-local measu
which have been recently proposed in the literature. We
conclude therefore that the latter do not represent accep
functional measures for simplicial geometries.

A. Standard measure

As the edge lengths play the role of the metric in t
continuum, one expects the discrete measure to involve
integration over the squared edge lengths@4–6#. Indeed the
induced metric at a simplex is related to the squared e
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lengths within that simplex, via the expression for the inva
ant line elementds25gmndxmdxn. After choosing coordi-
nates along the edges emanating from a vertex, the rela
between metric perturbations and squared edge length v
tions for a given simplex based at 0 ind dimensions is

dgi j ~ l 2!5
1

2
~d l 0i

2 1d l 0 j
2 2d l i j

2 !. ~1.6!

For oned-dimensional simplex labeled bys the integration
over the metric is thus equivalent to an integration over
edge lengths, and one has the well-known identity

S 1

d!
Adetgi j ~s! D s

)
i> j

dgi j ~s!

5S 2
1

2D d~d21!/2

@Vd~ l 2!#s )
k51

d~d11!/2

dlk
2 . ~1.7!

There ared(d11)/2 edges for each simplex, just as there a
d(d11)/2 independent components for the metric tensor
d dimensions. Here one is ignoring temporarily the triang
inequality constraints, which will further require all sub
determinants ofgi j to be positive, including the obvious re
striction l k

2.0. The extension to many simplices glued t
gether at their common faces is then immediate. For
purpose one first needs to identify edgesl k(s) and l k8(s8)
which are shared between simplicess ands8:

E
0

`

dlk
2~s!E

0

`

dlk8
2

~s8!d„l k
2~s!2 l k8

2
~s8!…5E

0

`

dlk
2~s!.

~1.8!

After summing over all simplices one derives, up to an irr
evant numerical constant, the unique functional measure
simplicial geometries:

E dm@ l 2#5E
0

`

)
s

@Vd~s!#s)
i j

dl i j
2 Q@ l i j

2 #. ~1.9!

HereQ@ l i j
2 # is a ~step! function of the edge lengths, with th

property that it is equal to 1 whenever the triangle inequ
ties and their higher dimensional analogue are satisfied,
zero otherwise. In four dimensions the lattice analogue of
DeWitt measure (s50) takes on a particularly simple
form: namely

E dm@ l 2#5E
0

`

)
i j

dl i j
2 Q@ l i j

2 #. ~1.10!

The above lattice measure over the space of squared
lengths has been used extensively in numerical simulat
of simplicial quantum gravity@1,4,7–10#.

The derivation of the above lattice measure closely pa
lels the analogous procedure in the continuum. There,
lowing DeWitt @15,16#, one defines an invariant norm fo
metric fluctuations,
4-2
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ON THE MEASURE IN SIMPLICIAL GRAVITY PHYSICAL REVIEW D 59 064014
idgi25E ddx@g~x!#v/2Gmn,ab@g~x!;v#dgmn~x!dgab~x!,

~1.11!

with the inverse of the super-metricG given by

Gmn,ab@g~x!;v#5
1

2
@g~x!#~12v!/2@gma~x!gnb~x!

1gmb~x!gna~x!1lgmn~x!gab~x!#.

~1.12!

DeWitt originally considered the casev50, but it will be
useful later to consider other values forv, such asv51. The
resulting functional measure in the continuum is then giv
by

E dm@g#5E )
x

@detG„g~x!…#1/2)
m>n

dgmn~x!.

~1.13!

Since the super-metricGmn,ab
„g(x)… is ultra-local, one ex-

pects its determinant to be a local function ofx as well. Up
to an irrelevant multiplicative constant, one has for the
terminant ofG the simple result

detG„g~x!…}S 11
1

2
dl D @g~x!#~d11!@~12v!d24#/4.

~1.14!

One also needs to impose the conditionlÞ22/d in order to
avoid the vanishing of the determinant ofG. As a result, one
obtains the local measure for the functional integration o
metrics:

E dm@g#5E )
x

@Ag~x!#s )
m>n

dgmn~x!, ~1.15!

with s5(d11)@(12v)d24#/4. For v50 one obtains the
DeWitt measure for pure gravity, which takes on a partic
larly simple form ind54,

E )
x

@g~x!#~d24!~d11!/8)
m>n

dgmn~x!

——→
d54

E )
x

)
m>n

dgmn~x!, ~1.16!

and which obviously corresponds to the lattice measure
Eq. ~1.10!. In general the volume factors are absent (s50)
06401
n
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r
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if one chosesv5(d24)/d. On the other hand, forv51 one
recovers the Misner measure1 @17,18#.

There is no clear way of deciding between these t
choices~v50 or 1!, or any intermediate one for that matte
and one should considers as an arbitrary parameter of th
model, to be constrained only by the requirement that
path integral be well defined~which incidentally rules out
singular measures!. Note that the volume term in the mea
sure is completely local and contains no derivatives. In p
turbation theory it does not therefore affect the propagat
properties of gravitons, and contributesdd(0) terms to the
effective action; to some extent these can be regarded
similar to a renormalization of the cosmological consta
affecting only the distribution of local volumes. Numeric
simulations in the lattice model show very little sensitivity
the critical exponents to eithers or a @1#.

There is no obstacle in defining a discrete analogue of
supermetric, as a way of introducing an invariant notion
distance between simplicial manifolds. It leads to an alter
tive way of deriving the lattice measure in Eq.~1.10!, by
considering the discretized distance between induced me
gi j (s) @20#,

idg~s!i25(
s

Gi jkl
„g~s!…dgi j ~s!dgkl~s!, ~1.19!

with the inverse of the lattice DeWitt supermetric now giv
by the expression

Gi jkl @g~s!#5
1

2
Ag~s!@gik~s!gjl ~s!1gil ~s!gjk~s!

1lgi j ~s!gkl~s!#, ~1.20!

and with againlÞ22/d. This procedure defines a metric o
the tangent space of positive real symmetric matricesgi j (s).
After computing the determinant ofG, the resulting func-
tional measure is

E dm@ l 2#5E )
s

@detG„g~s!…#1/2)
i> j

dgi j ~s!,

~1.21!

1It is easy to show@18# that the continuum measure of Eq.~1.15!
is invariant under coordinate transformations, irrespective of
value ofs. Under a change of coordinatesx8m5xm1em(x),

)
x

@g~x!#s/2)
m>n

dgmn~x!→)
x

S det
]x8b

]xa Dg

@g~x!#s/2)
m>n

dgmn~x!.

~1.17!
For infinitesimal coordinate transformations the additional facto
equal to 1:

)
x

Sdet
]x8b

]xa Dg

5)
x

@det~da
b1]aeb!#g5expHgdd~0!Eddx]aeaJ51.

~1.18!
In many respectss can be thought of as a gauge parameter. W
should caution the reader that some authors regard the above
nipulations as somewhat formal@16#.
4-3
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HERBERT W. HAMBER AND RUTH M. WILLIAMS PHYSICAL REVIEW D 59 064014
with the determinant of the super-metricGi jkl
„g(s)… given

by the local expression

detG„g~s!…}S 11
1

2
dl D @g~s!#~d24!~d11!/4, ~1.22!

Using Eq.~1.7! and up to irrelevant constants, one obta
again the standard lattice measure of Eq.~1.9!. Of course the
same procedure can be followed for the Misner-like meas
leading to a similar result for the lattice measure, but with
different powers. For a related discussion see also@19#.

B. Alternative approach

The previous derivation of the standard lattice functio
measure is based on the direct and obvious correspond
between the induced lattice metric within a simplex and
continuum metric at a point. It leads to an essentially uniq
local measure over the squared edge lengths, in close a
ogy to the continuum expression. In particular it is clear fro
the derivation that the lattice and continuum measures a
with each other in the weak field expansion, essentially
construction.

Still, one might be tempted to try to find an alternati
lattice measure by looking directly at the discrete form
the supermetric, written as a quadratic form in the squa
edge lengths~instead of the metric components!, and then
evaluating the resulting determinant. The main idea, insp
by work described in an unpublished paper by Lund a
Regge@21# on the 311 formulation of simplicial gravity,
can be found in some detail in a recent paper@6#; see also
another recent paper@22#, which discusses somewhat diffe
ent issues, not directly related to the measure. First one
siders a lattice analogue of the DeWitt supermetric, by w
ing

id l 2i25(
i j

Gi j ~ l 2!d l i
2d l j

2 , ~1.23!

with Gi j ( l
2) playing a role analogous to the DeWitt supe

metric, but defined now on the space of squared e
lengths. The next step is to find an appropriate form
Gi j ( l

2) expressed in terms of known geometric objects. O
simple way of constructing the explicit form forGi j ( l

2), in
any dimension, is to first focus on one simplex, and write
squared volume of a given simplex in terms of the induc
metric components within thesamesimplexs,

V2~s!5S 1

d! D
2

detgi j „l
2~s!…. ~1.24!

One computes, to linear order,

1

V~ l 2! (i

]V2~ l 2!

] l i
2 d l i

25
1

d!
Adet~gi j !g

i j dgi j ~1.25!

and, to quadratic order,
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V~ l 2! (i j
]2V2~ l 2!

] l i
2] l j

2 d l i
2d l j

2

5
1

d!
Adet~gi j !@gi j gkldgi j dgkl2gi j gkldgjkdgli #.

~1.26!

The right hand side of this equation contains precisely
expression appearing in the continuum supermetric of
~1.12!, for the specific choice of the parameterl522. One
is led therefore to the obvious identification

Gi j ~ l 2!52d!(
s

1

V~s!

]2V2~s!

] l i
2] l j

2 ~1.27!

and therefore, for the norm,

id l 2i25(
s

V~s!H 2
d!

V2~s! (i j
]2V2~s!

] l i
2] l j

2 d l i
2d l j

2J .

~1.28!

One could be tempted~as already discussed in@6#! at this
point to write down a lattice measure, in parallel with E
~1.12!, and write

E dm@ l 2#5E )
i

AGi j
~v8!~ l 2!dli

2 , ~1.29!

with

Gi j
~v8!~ l 2!52d!(

s

1

@V~s!#11v8

]2V2~s!

] l i
2] l j

2 , ~1.30!

Again we have allowed here for a parameterv8, which is
possibly different from zero, and interpolates between app
ently equally acceptable measures. As in the continuum,
ferent edge length measures, here parametrized byv8, are
obtained, depending on whether the local volume factorV(s)
is included in the supermetric or not. Irrespective of t
value chosen forv8, we will show below that the measure o

FIG. 1. Notation for the weak-field expansion about the rig
square lattice.
4-4
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ON THE MEASURE IN SIMPLICIAL GRAVITY PHYSICAL REVIEW D 59 064014
Eq. ~1.29! disagrees with the continuum measure of E
~1.15! already to lowest order in the weak field expansio
and does not therefore describe an acceptable lattice m
sure.

An obviously undesirable~and puzzling! feature of the
measure of Eq.~1.29! is that in general it is non-local, in
spite of the fact that the original continuum measure of E
~1.15! is completely local~although it is clear that for som
special choices ofv8 andd, onedoesrecover a local mea
sure; thus in two dimensions and forv8521 one obtains
again the simple result*dm@ l 2#5*0

`P idl i
2!. It was already

pointed out in@6# that the above procedure also fails to gi
the correct measure already in one dimension.

Let us now turn to the calculation of the determina
detG(l2). In general it is given by a rather formidable expre
sion, which can be simplified though by considering its l
tice weak field expansion, and which will allow us to make
direct comparison with the continuum answer of Eq.~1.14!.
06401
.
,
a-

.

t
-
-

In order to discuss the weak field expansion of the latt
measure of Eq.~1.29!, we shall focus here for simplicity on
the two-dimensional case, for which an explicit answer c
readily be obtained; although our arguments are general
algebraic complexity is significantly reduced in two dime
sions. Also for definiteness we will consider the casev8
50 in Eq. ~1.30!. It is clear that the determinant, being
non-local function of the edge lengths, will couple edg
which are arbitrarily far apart on the lattice. For a squa
lattice made rigid by the introduction of diagonals,G( l 2)
will be a 3N033N0 matrix, with N0 denoting the total num-
ber of sites in the lattices. It will be sufficient in the follow
ing to examine the form of detG(l2) for a square lattice with
12 edges~see Fig. 1!, with the usual imposition of periodic
boundary conditions to minimize edge effects.

For such a latticeG( l 2) is given by the symmetric 12
312 matrix
ted
t for this
~1.31!

whereAi1 andAi2 denote the areas of the two triangles based at sitei . The area of a triangle with arbitrary edge lengthsl 1 ,
l 2 , and l 3 is given here as usual in terms of the edge lengths by

AT~ l 1 ,l 2 ,l 3!5
1

4
A2~ l 1

2l 2
21 l 2

2l 3
21 l 3

2l 1
2!2 l 1

42 l 2
42 l 3

4. ~1.32!

After expanding it in terms of the edge lengths, the determinant detG(l2) is in the general case given by a rather complica
expression. To make progress, one can further expand it for small fluctuations in the edge lengths. It is convenien
purpose to use a binary notation@3# for the vertices, and introduce small edge length fluctuationse i , by writing
4-5
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l i5 l i
0~11e i !, ~1.33!

with l 1
05 l 2

051 and l 3
05& for a square background lattice~see again Fig. 1!. The individual triangle areas can in turn b

expanded in term of thee’s, to give, for example,

A01~e!5
1

2
1

1

2
~e011e12!1

1

4
~e01e031e03e122e01

2 2e12
2 24e03

2 !1O~e3! ~1.34!

and similarly for the remaining triangle areas. Our notation here is that the first index labels the site and the second
lattice direction. It can be shown that the expansion needs to be carried out to fourth order ine in order to get a non-vanishing
result for the determinant ofG( l 2). The resulting expressions are then inserted into the formula for the determinant and
for the square lattice,

detG~e!5
1

2
~e011e112e212e31!~e022e121e222e32!~2e01e0312e02e0324e03

2 1e02e112e01e1212e03e1222e02e1322e11e13

22e12e1314e13
2 2e02e2112e03e211e01e2222e01e2322e21e2322e22e2314e23

2 1e12e3122e13e312e22e312e11e32

1e21e3222e23e3212e11e3312e22e3312e31e3312e32e3324e33
2 !1O~e5!. ~1.35!
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As expected, the result is indeed non-local, and involves
this order contributions from all the edges on the 4-site
tice. It is in fact easy to see that this will be the case for a
size lattice, due to the general non-locality of the deter
nant. As a check of the calculation, one can verify that as
e’s approach zero, one recovers the zero eigenvalues o
matrix G for the square lattice, with the correct multiplicit
~the eigenvalues forG in this case are21,330,331,532!.
A somewhat simpler and more symmetric expression is
tained in the case of an equilateral lattice, for which one
show that

detG~e!5
215

39 ~e011e112e212e31!~e022e121e222e32!

3~e032e132e231e33!1O~e4!, ~1.36!

reflecting the permutation symmetry under the interchang
the three coordinate directions in this case. Note also tha
this choice of background lattice the determinant is now
cubic order in thee’s. In this case one can verify again tha
as thee’s approach zero, one recovers correctly the 3 z
eigenvalues of the matrixG for the equilateral lattice. In
general of course the determinant does not vanish, as ca
verified explicitly from the original expression for

detG~ l 2!.

The above expression for the determinant on the squ
lattice case can be simplified a bit by going to moment
space. Here we shall take thee i ’s to be plane waves. Whe
transforming to momentum space, one assumes that the
tuation e i at the pointi , j steps in one coordinate directio
andk steps in the other coordinate direction from the orig
is related to the correspondinge i at the origin by

e i
~ j 1k!5v1

j v2
ke i

~0! , ~1.37!
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wherev i5e2 iki andki is the momentum in the directioni .
Inserting the above expression into the weak-field expres
for the determinant, Eq.~1.35!, one obtains~still in the weak
field limit!

detG~e!

5~eik121!2~eik111!2~eik221!2~eik211!2e1
~0!~k!e2

~0!

3~k!e3
~0!~k!@e1

~0!~k!1e2
~0!~k!22e3

~0!~k!#, ~1.38!

which can formally be expanded for small momenta to g

detG~e!524e1
~0!~k!e2

~0!~k!e3
~0!~k!@e1

~0!~k!1e2
~0!~k!

22e3
~0!~k!#k1

2k2
21O~k5!. ~1.39!

If the lattice periodicity is imposed on the momenta, then
expression in Eq.~1.38! vanishes identically for plane waves
while in general the expressions of Eqs.~1.35! and~1.36! do
not.

The above expression for the determinant can be tra
formed into an equivalent form involving the metric field
using the fact that the edge lengths on the lattice corresp
to the metric degrees of freedom in the continuum. Given
choice of edges in Fig. 2, one writes, for the induced me

FIG. 2. Edge lengths and metric components.
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at the origin,

gi j ~ l 2!5S l 1
2 1

2
~ l 3

22 l 1
22 l 2

2!

1

2
~ l 3

22 l 1
22 l 2

2! l 2
2 D . ~1.40!

One can then relate the edge lengthsl i ~or, equivalently, the
fluctuationse i! to the metric components in the continuum
which in the weak field limit are more conveniently writte
as

gmn5dmn1hmn . ~1.41!

One then obtains the obvious correspondence betw
squared edge lengths and metric components at each la
vertex,

l 1
25~11e1!2511h11

l 2
25~11e2!2511h22

1

2
l 3
25~11e3!2511

1

2
~h111h22!1h12, ~1.42!

which can be inverted to give the small edge length fluct
tions in terms of the metric components:

e1~h!5
1

2
h112

1

8
h11

2 1O~h11
3 !

e2~h!5
1

2
h222

1

8
h22

2 1O~h22
3 !

e3~h!5
1

4
~h111h2212h12!2

1

32
~h111h2212h12!

2

1O~h3!, ~1.43!

at each point. It is also known that this relationship is t
correct one for relating edge lengths and continuum me
components in the weak field expansion for the lattice act
as shown in detail in Refs.@10,6#. Inserting then these ex
pressions into the weak-field lattice formula for the determ
nant of Eq.~1.39! one obtains

det„G~h!…52h11~k!h12~k!h22~k!@h11~k!12h12~k!

1h22~k!#k1
2k2

21O~k5!. ~1.44!

At this point, one is ready to compare the resulting expr
sion for the lattice functional measure to the continuum
sult, as given in Eq.~1.15!. In the continuum case one has,
the weak field expansion,

detg~x!511h11~x!1h22~x!1h11~x!h22~x!2h12
2 ~x!

1O~h3! ~1.45!

and therefore the functional measure is given by@see Eq.
~1.15!#
06401
en
ice

-

e
ic
n,

-

-
-

E dm@g#

5E )
x

@11h11~x!1h22~x!1¯#s/2)
m>n

dhmn~x!.

~1.46!

On the simplicial lattice this last expression obviously b
comes

523N0E )
n51

N0

~112e1
~n!12e2

~n!1¯ !s/2)
i 51

3

de i
~n!

~1.47!

which is clearly very different from the measure of E
~1.29!, with the determinant detG given ~for v850! either
by the general weak-field answer of Eq.~1.35! or, for plane
waves, by Eqs.~1.38! and ~1.44!.

One concludes therefore that the nonlocal measure of
~1.29! taken from Ref.@6#, which was proposed in@13# as a
‘‘new’’ measure for simplicial gravity, disagrees with th
continuum measure already to leading order in the weak fi
expansion.

II. CONCLUSIONS

In this paper we have compared different approache
the functional measure in simplicial quantum gravity. W
have pointed out that the obvious requirement that the lat
measure agree with the continuum measure in the weak fi
low momentum limit is satisfied by a class of local measu
used extensively for numerical simulations. It is well know
that a similar requirement is satisfied by the measure used
lattice gauge fields in discretized non-Abelian gauge theo
@23#. Dropping this requirement leads one to enter larg
unknown territory, by discussing a discrete theory who
weak field lattice Feynman rules do not reduce to those
continuum quantum theory in the small lattice spacing lim
The resulting theory then might or might not be related
gravity. We have also shown in this paper that the abo
requirement is not satisfied by another set of non-local m
sures, recently proposed in the literature. The latter do
therefore in our opinion represent acceptable functional m
sures for simplicial geometries. In general we believe that
criterion that lattice operators should agree with their co
tinuum counterparts in the weak field, low momentum lim
is an important one, and that it should be checked system
cally for any proposed variant action or measure. A clos
related but perhaps weaker requirement is that the lat
theory reproduce well established physical quantities of c
tinuum perturbation theory, such as the universal lon
distance quantum correction to the Newtonian potential@24#
and the conformal anomaly discussed in@25#.
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