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On the measure in simplicial gravity
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Functional measures for lattice quantum gravity should agree with their continuum counterparts in the weak
field, low momentum limit. After showing that the standard simplicial measure satisfies the above requirement,
we prove that a class of recently proposed non-local measures for lattice gravity do not satisfy such a criterion,
already to lowest order in the weak field expansion. We argue therefore that the latter cannot represent
acceptable discrete functional measures for simplicial geomet86556-282(99)00206-4

PACS numbegps): 04.60.Nc, 04.25.Dm, 04.62v, 11.15.Ha

[. INTRODUCTION The above expression represents a suitable discretization of
the continuum Euclidean path integral for pure quantum

In the simplicial formulation of quantum gravity one ap- gravity:
proximates the functional integration over continuous met-
rics by a discretized sum over piecewise linear simplicial 5, _ [5)17
geometries. In such a model the role of the continuum metricZC f 1:[ (Vo] Ml;[V d9,.,(x)
is played by the edge lengths of the simplices, while curva-
ture is naturally described by a set of deficit angles which Xexpl’ _J d4x\/§<>\— ER+ ER RHVPO L. ..
can be computed as functions of the given edge lengths. It 2 4K
has been known for some time that the simplicial lattice (1.2
formulation of gravity is locally gauge invariant, and that it
contains perturbative gravitons in the lattice weak field exwith k- 1=8xG. The SA term in the lattice action is the
pansion, making it an attractive lattice regularization of thewell-known Regge terni2], which reduces to the Einstein-
continuum theory. Hilbert action in the lattice weak field limit3]. A cosmo-

Recent evidence seems to indicate that simplicial quaniogical constant term is needed for convergence of the path
tum gravity in four dimensions exhibits a phase transitionintegral, while the curvature squared term allows one to con-
between a smooth and a rough phase. Only the smooth, Sméﬂpl the fluctuations ir_1 thg curvature. In Fhe discrete case the
curvature phase appears to be physically accepfahl@he integration over metrics is replaced by integrals over the el-
existence of a phase transition implies non-trivial and calcu€Mentary lattice degrees of freedom, the squared edge
lable non-perturbative scaling properties for the coupling®n9ths, as discussed [A—6]. The higher derivative terms
constants of the theory and, in particular, Newton’s constam‘.a\’(':"’]tua"y become irrelevant at distances muph larger than
All calculations so far have been performed in the Euclideaﬁhe Elanck lengthr > ‘/E' For phe.nomenplqgmal reasons
formulation. As usual, the starting point for a non- one is therefore mostly interested in the lirait-0, and in

perturbative study of quantum gravity is a suitable definitionthls limit the theory de_pends, in the a_bsence of matter and
; LD . after a suitable rescaling of the metric, only on one bare

of the path integral. In the simplicial lattice approach one arameter, the dimensionless couplkfgh

starts from the discretized Euclidean path integral for puré) ' P '

. ) ~ The two phases of quantized gravity found [ih] can
gravity, with the squared edge lengths as fundamental Va”l'oosely be d?ascribed asq having, ir? oneyphéGetC[;C], the

’

ables: rough, branched-polymer-like phase
. (9 =0, 13
2= fo 1;[ [Vd(s)]"]i_j[ die[I] while, in the other phaséG>G,, the smooth phage
(9un)~C7py, (1.4)

RAR
XeX[{_Z ()\Vh_kéhAh"‘a—'f‘"'
h Vh

with a small negative average curvatutanti—de Sitter
(1.)  spacg in the vicinity of the critical point aG., which then

vanishes as the critical point is approached from above. It

appears that only the pha&:s> G, is physically acceptable,
*Permanent address: University of California, Irvine, California since in the complementary phase the simplicial lattice de-

92717. Email address: hamber@cern.ch generates into a lower-dimensional branched-polymer-like
"Permanent address: DAMTP, Silver Street, manifold, with a proliferation of sharp curvature singularities
Cambridge CB3 9EW, England. Email address: and no physically acceptable continuum limit. The challenge
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from the theory as one approaches the lattice continuum limilengths within that simplex, via the expression for the invari-
by takingG— G from the smooth, negative curvature phaseant line elemen'dszzg,wdx“dx”. After choosing coordi-
side. It is only in the physical, smooth phase that the simplinates along the edges emanating from a vertex, the relation
cial lattice theory leads to a prediction for the non-between metric perturbations and squared edge length varia-
perturbative scale dependence of Newton’s constant, whictions for a given simplex based at 0 dndimensions is

can be cast in the simple forfd]

1
G(r)=G(0)[1+c(F/R) ¥ +O((F/R)?)]. (1.5 89ij(1%)= 5 (815 + 3l;— 1), 196

Here the critical exponent i##2.8(3) andc a numerical
constant of order 1; the scal, * plays a role similar to the
scaling violation parameteks in QCD, with Ry~cHj *.

A more detailed discussion of the properties of the two

For oned-dimensional simplex labeled bythe integration
over the metric is thus equivalent to an integration over the
edge lengths, and one has the well-known identity

phases characterizing four-dimensional quantum gravity, and 1 o

of the computation of the associated critical exponents, can (—'\/detgij(s) H dgi;(s)

be found in[1]. A description of earlier work on simplicial d! i=]

gravity can be found if7]. For related work on simplicial d(d—1)12 d(d+1)/2

gravity see also the references[B], where the same two- :( _ E) [V4(12)]° H diz2. (1.7
phase structure for four-dimensional simplicial gravity has 2 k=1

been observed. An up-to-date description of work in classical
simplicial gravity and the discrete time evolution problem There ared(d+ 1)/2 edges for each simplex, just as there are
can be found in[11]. For results with an alternative and d(d+1)/2 independent components for the metric tensor in
complementary approach to problems in quantum gravityl dimensions. Here one is ignoring temporarily the triangle
based on dynamical triangulations, we shall point the readeinequality constraints, which will further require all sub-
to the references ifl2]. determinants ofj;; to be positive, including the obvious re-
The functional measure over metrics is an essential ingrestriction |§> 0. The extension to many simplices glued to-
dient in the quantum theory of gravity. In this paper we gether at their common faces is then immediate. For this

address the issue of whether the lattice gravitational measuiirpose one first needs to identify eddess) and |, (s’)
is unique and, if not, how to decide among a set of differen{yhich are shared between simpliceands’:

possible lattice measures. It is sometimes stated that the uni-
versal character of long distance critical behavior will wash

out the difference between similar actions and measures. f
While this statement might be true for action terms that con-
tain higher derivatives, and are therefore potentially irrel-

evant in the lattice continuum limit, it is less clear that it . L . .
ﬁ\fter summing over all simplices one derives, up to an irrel-

applies to the functional measure. In this paper we focus 0evant numerical constant, the unique functional measure for
a comparison of different approaches to the functional mea- ' q

sure in simplicial quantum gravity, by examining both the simplicial geometries:

traditional local measurg4—6] and highly non-local mea- .

sures which have recently been proposed in the literature f dMUZ]:f 11 [Vd(s)]"H d|i2]_@[|i2j]_ (1.9
[13,14. Throughout the paper we shall make use of the fact 0°s ij

that in the continuum the functional measure for quantized

gravity is well known and understood. We then point out theHere®[Ii2j] is a(step function of the edge lengths, with the
obvious, and natural, requirement that the lattice functionaproperty that it is equal to 1 whenever the triangle inequali-
measure should agree with the continuum functional measunges and their higher dimensional analogue are satisfied, and
in the weak field, low momentum limit. A straightforward zero otherwise. In four dimensions the lattice analogue of the
lattice perturbative calculation will then show that this key DeWitt measure §=0) takes on a particularly simple
requirements satisfied by a class of local measures currentlyform: namely

used in the numerical simulations, but that, on the other

hand, it isnot satisfied by another set of non-local measures £

which have been recently proposed in the literature. We will J dMUZ]:J [T dizeril. (1.10
conclude therefore that the latter do not represent acceptable .

functional measures for simplicial geometries.

. d|§(s)J0‘d|§,(s')5(|§(s)—|§,(s'))=JO diZ(s).
(1.8

The above lattice measure over the space of squared edge
lengths has been used extensively in numerical simulations
of simplicial quantum gravity1,4,7—1Q.

As the edge lengths play the role of the metric in the The derivation of the above lattice measure closely paral-
continuum, one expects the discrete measure to involve aels the analogous procedure in the continuum. There, fol-
integration over the squared edge lendihs6]. Indeed the lowing DeWitt [15,16], one defines an invariant norm for
induced metric at a simplex is related to the squared edgmetric fluctuations,

A. Standard measure
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if one chosesw=(d—4)/d. On the other hand, fab=1 one

||59H2=f dx[g(x)]*2GH* B[ g(X); 0] 87, ,(X) 8Y o p(X), recovers the Misner meastife 7,18,

(1.19) There is no clear way of deciding between these two
choices(w=0 or 1), or any intermediate one for that matter,
and one should consider as an arbitrary parameter of the
model, to be constrained only by the requirement that the

1 path integral be well definedwvhich incidentally rules out

G B g(X);w]= =[g(x)] 1 g#*(x)g"A(x) singular measure¢sNote that the volume term in the mea-

2 sure is completely local and contains no derivatives. In per-
uB va PTIRpY: turbation theory it does not therefore affect the propagation
TG FAGTO0gT(X)]. properties of gravitons, and contributé$(0) terms to the
(1.12 effective action; to some extent these can be regarded as
similar to a renormalization of the cosmological constant,

DeWitt originally considered the case=0, but it will be  affecting only the distribution of local volumes. Numerical

useful later to consider other values forsuch asw=1. The simulations in the lattice model show very little sensitivity of

resulting functional measure in the continuum is then giverthe critical exponents to either or a [1].

by There is no obstacle in defining a discrete analogue of the

supermetric, as a way of introducing an invariant notion of
distance between simplicial manifolds. It leads to an alterna-
tive way of deriving the lattice measure in E{..10, by

f d,u[g]=J H [detG(g(x))]1’2H dg,.(X). considering the discretized distance between induced metrics

X

w=v (113) glj(s) [20]1

with the inverse of the super-metri@ given by

lsg(s)1?= 2 G (g(s))8g;j(s) dgia(s),  (1.19
Since the super-metri6#”*£(g(x)) is ultra-local, one ex- s
pects its determinant to be a local functionxoés well. Up . . . . . .

to an irrelevant multiplicative constant, one has for the de-\év 'trt]htgi)'(m?g;ss?o?]f the lattice DeWitt supermetric now given
terminant ofG the simple result y P

. 1 ) ) ) )
GIg(s)]=5Va(s)[g (s)g" () +g" (s)g™(s)
detG(g(x))=

1
1+ §d>\)[g(X)](d“)[<lw>d4]/4_
(1.14

+1g'(s)g(s)], (1.20

and with again\ # — 2/d. This procedure defines a metric on

the tangent space of positive real symmetric matrggs).
One also needs to impose the conditio# — 2/d in order to ~ After computing the determinant @, the resulting func-
avoid the vanishing of the determinant®f As a result, one tional measure is
obtains the local measure for the functional integration over
metrics:

f dul1?]= f 11 [detG(g(s))]l’ﬁ[[j dgi(s),
(1.21

| duta- | [T (e T dg,u0, (215

1It is easy to show18] that the continuum measure of EG.15
with o= (d+1)[(1— w)d—4]/4. For =0 one obtains the is invariant under coordinate transformations, irrespective of the
DeWitt measure for pure gravity, which takes on a particu-value ofo. Under a change of coordinates”=x*+ €*(x),

: i — aX'B\Y
farly simple form ind=4, [T to017I1 dg,.,00~IT | det> = tg0or™]] dg,.00.
X u=v X =
(1.17
f H [g(X)](d_“)(d“)/BH dg,.(X) For infinitesimal coordinate transformations the additional factor is
x u=v equal to 1:
ox' P\

_ 11 dg,.(X), (1.1 [T |det axa) :H[de(angﬁafﬂ)]y:eXP{?’éd(O)fddXé’aE“ =1.

a-a J X a= " ’ (1.18

. ] ) _In many respectsr can be thought of as a gauge parameter. We
and which obviously corresponds to the lattice measure iBhould caution the reader that some authors regard the above ma-
Eqg. (1.10. In general the volume factors are absent=(0) nipulations as somewhat formil6].
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with the determinant of the super-met@ (g(s)) given
by the local expression

l
1 2
detG(g(s))oc 1+ Ed)\)[g(s)](d“)(d*l)"‘, (1.22) Ly s Ly
2
Using Eq.(1.7) and up to irrelevant constants, one obtains L, L,
again the standard lattice measure of &q9). Of course the
same procedure can be followed for the Misner-like measure, Iy 1,

leading to a similar result for the lattice measure, but with a
different powero. For a related discussion see aJ48].

B. Alternative approach 0

! 1 l

The previous derivation of the standard lattice functional " "
measure is based on the direct and obvious correspondenceFIG. 1. Notation for the weak-field expansion about the rigid
between the induced lattice metric within a simplex and thesquare lattice.
continuum metric at a point. It leads to an essentially unique
local measure over the squared edge lengths, in close anal- 1 9*V2(12)
ogy to the continuum expression. In particular it is clear from V(12 % 3|i2(9|j2

the derivation that the lattice and continuum measures agree

SI7l?

with each other in the weak field expansion, essentially by 1 - -

construction. “ar Vde(gij)[g”gklagij 59k|_9”9k|5gjk5gn]-
Still, one might be tempted to try to find an alternative

lattice measure by looking directly at the discrete form for (1.29

the supermetric, written as a quadratic form in the square . . . . . .
edge lengthginstead of the metric componeptsand then cf‘he right hand side of this equation contains precisely the

evaluating the resulting determinant. The main idea, inspire(fxpress'on appearing in the continuum supermetric of Eq.

: : . 1.12), for the specific choice of the parameter —2. One
by work described in an unpublished paper by Lund an : . A
Regge[21] on the 3+1 formulation of simplicial gravity, is led therefore to the obvious identification

can be found in some detalil in a recent paf@r see also 1 d2V3(s)
another recent papg22], which discusses somewhat differ- Gij(|2): —d1D (1.27
ent issues, not directly related to the measure. First one con- s V(s) dlidl]
siders a lattice analogue of the DeWitt supermetric, by writ-
ing and therefore, for the norm,
L 2) 2012 0723 vis)| - oS L) iz
(1.28

with Gj;(1?) playing a role analogous to the DeWitt super- one could be temptetas already discussed [i6]) at this

metric, but defined now on the space of squared edggoint to write down a lattice measure, in parallel with Eq.
lengths. The next step is to find an appropriate form for(1 12 and write

Gij(lz) expressed in terms of known geometric objects. One

simple way of constructing the explicit form f@ij(lz), in (ol o2
any dimension, is to first focus on one simplex, and write the J- d/,L[I2]=J H Gi(j )(lz)dli ' (1.29
squared volume of a given simplex in terms of the induced
metric components within theamesimplexs, with
112 , 1 *Vs)
2 Y (12 (o) 12y = _ 1
V2(s) d!) detg;; (1%(s)). (1.29 Gij” ‘(1) d'; V(s e Az (1.30

One computes, to linear order, Again we have allowed here for a parameigr, which is
possibly different from zero, and interpolates between appar-
ently equally acceptable measures. As in the continuum, dif-

1 aV2(12) 1 ) A
5|i2: a‘/de(gij)gllégij (1.25  ferent edge length measures, here parametrized hyare

: 2 . )
' al obtained, depending on whether the local volume fa¢(s)
is included in the supermetric or not. Irrespective of the
and, to quadratic order, value chosen fow’, we will show below that the measure of
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Eq. (1.29 disagrees with the continuum measure of Eq.In order to discuss the weak field expansion of the lattice
(1.19 already to lowest order in the weak field expansion,measure of Eq(1.29, we shall focus here for simplicity on
and does not therefore describe an acceptable lattice methe two-dimensional case, for which an explicit answer can
sure. readily be obtained; although our arguments are general, the
An obviously undesirabléand puzzling feature of the algebraic complexity is significantly reduced in two dimen-
measure of Eq(1.29 is that in general it is non-local, in sjons. Also for definiteness we will consider the case
spite of the fact that the original continuum measure of Eq— i Eq. (1.30. It is clear that the determinant, being a
(1.15_) is cor_npletely local(although it is clear that for some on.local function of the edge lengths, will couple edges
special choices o0&’ andd, onedoesrecover a local mea- \yhich are arbitrarily far apart on the lattice. For a square
Sure, thus n two dlmenS|onzs ami fwlj_l one obtains lattice made rigid by the introduction of diagonals(l?)
again the simple resuidu[1]=/oILdI). It was already iy pe 5 3N, X 3N, matrix, with N denoting the total num-
pointed out in(6] that the aboye procgdure "’.IISO fails to give ber of sites in the Iattices’. It will be sufficient in the follow-
the correct measure already in one dimension. ing to examine the form of d&(1?) for a square lattice with

Let us now turn to the calculation of the determinant : . . iy -
2 o . 12 edgegsee Fig. 1, with the usual imposition of periodic
detG(I9). In general it is given by a rather formidable expres- L L
boundary conditions to minimize edge effects.

sion, which can be simplified though by considering its lat- . o i .
tice weak field expansion, and which will allow us to make a For such a latticeG(1%) is given by the symmetric 12

direct comparison with the continuum answer of Eg14). <12 matrix
|
Bed 0 & 0 &
0  ap+a  “Am A 0 ~An
0 ~r 0 atam 0 ~An
| N I e
0 - — 0 0 0 (1.31
~ L 0 0 0 0 0
- 0 0 0 0 0
0 0 0 0 —XII; _AIT
0 0 0 —213—2 0 0
0 0 0 - 0 0

whereA;; andA;, denote the areas of the two triangles based ati sitdne area of a triangle with arbitrary edge lengths
[,, andl; is given here as usual in terms of the edge lengths by

1
Ar(ll2.15)= 7 205+ 1515+ 151D — 11— 15— 15, (1.32

After expanding it in terms of the edge lengths, the determinar®@8tis in the general case given by a rather complicated
expression. To make progress, one can further expand it for small fluctuations in the edge lengths. It is convenient for this
purpose to use a binary notatip8y] for the vertices, and introduce small edge length fluctuatigndy writing
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L=1P(1+€), (133

with 19=19=1 andI3=v2 for a square background latti¢eee again Fig. )1 The individual triangle areas can in turn be
expanded in term of the's, to give, for example,

11 1 2 2 2 3
Api(€)= > + 5(501"‘ €10+ 1(6015034' €03€12~ €1~ €1, 4€5g) T O(€°) (1.39

and similarly for the remaining triangle areas. Our notation here is that the first index labels the site and the second one the
lattice direction. It can be shown that the expansion needs to be carried out to fourth ordeioimier to get a non-vanishing

result for the determinant @ (12). The resulting expressions are then inserted into the formula for the determinant and give,
for the square lattice,

1
_ 2
detG(e)= 5 (€011 €11~ €21~ €31) (€0~ €10 €25~ €32) (2€01€03+ 2€02€03— 4 €31 €02€11— €01€12F 2€03€10— 2€02€13— 2€11€13

2 2
—2€1€13T A€13— €0o€21 T 2€03€ 21T €01€20— 2€01€23— 2€21€93— 2€2€ 3 A €53 €10€31— 2€13€31— €x0€31— €11€32

2
+ €21€30— 2623632+ 2611633+ 2622633+ 2631633+ 2632633_ 4633) + O( 65) . (135)

As expected, the result is indeed non-local, and involves tavherew;=e'*i andk; is the momentum in the directian

this order contributions from all the edges on the 4-site latinserting the above expression into the weak-field expression
tice. Itis in fact easy to see that this will be the case for anyfor the determinant, Eq1.35), one obtaingstill in the weak
size lattice, due to the general non-locality of the determifield limit)

nant. As a check of the calculation, one can verify that as the

€'s approach zero, one recovers the zero eigenvalues of tHetG(e)

matrix G for the square lattice, with the correct multiplicity _ _ _ _

(the eigenvalues foB in this case are-1,3X0,3X1,5X 2). =(e*1-1)2(e*1+1)%(e2—1)%(e*2+ 1)2€{” (k) €}

A somewhat simpler and more symmetric expression is ob- 0) 0) o) o)

tained in the case of an equilateral lattice, for which one can X(K) ez " (K[er (k) + &7 (k) —2€&7(K) ], (1.39

show that . .
which can formally be expanded for small momenta to give

215

detG( 6) = ?(601‘}_ €11 €21 631)( €02 612+ € 632) detG( 6) = 2465_0)(k) 6(20)(k) 650)(k)[ 65_0)(k) + 6(20)(k)

5.0 21,2 5
X(€0g— €13~ €231 €35) + O(€%), (1.39 2es (Wi + 0. (139

) ) ) If the lattice periodicity is imposed on the momenta, then the

reflecting the permutation symmetry under the interchange oéxpression in Eq1.38 vanishes identically for plane waves,

the three coordinate directions in this case. Note also that fqfhjle in general the expressions of E¢.35 and(1.36) do

this choice of background lattice the determinant is now ofyqt.

cubic order in thee's. In this case one can verify again that,  The above expression for the determinant can be trans-

as thee's approach zero, one recovers correctly the 3 zerqormed into an equivalent form involving the metric field,

eigenvalues of the matri for the equilateral lattice. In  ysing the fact that the edge lengths on the lattice correspond

general of course the determinant does not vanish, as can gthe metric degrees of freedom in the continuum. Given the

verified explicitly from the original expression for choice of edges in Fig. 2, one writes, for the induced metric

detG(1?). (0,1)

The above expression for the determinant on the square
lattice case can be simplified a bit by going to momentum
space. Here we shall take tlags to be plane waves. When
transforming to momentum space, one assumes that the fluc-
tuation ¢; at the pointi, j steps in one coordinate direction
andk steps in the other coordinate direction from the origin,
is related to the correspondirg at the origin by ll

1 (1,0

_ i, k_(0
= wJ:I.wZGi( s (1.37 FIG. 2. Edge lengths and metric components.

lih
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at the origin,

| dutg)

. (1.40 = f fx[ [1+hys(X) +hoo( ) +---172] T dh,,(x).

U=V

g (1%)= 1
S(15-15-13) 13

2 (1.46
One can then relate the edge length®r, equivalently, the  On the simplicial lattice this last expression obviously be-
fluctuationse;) to the metric components in the continuum, comes

which in the weak field limit are more conveniently written

Ng 3
as
=2%MNo | T] (1+2€M+2€y"+--)7?[] del™
g,lLV:5,LLV+h/.LV (14]) n=1 =1

(1.47

ich is clearly very different from the measure of Eq.
1.29, with the determinant d& given (for o’ =0) either

One then obtains the obvious correspondence between
squared edge lengths and metric components at each latti

vertex, :
by the general weak-field answer of E§.35 or, for plane
|§:(1+ €)?=1+hy, waves, by Eqs(1.38 and(1.44).
One concludes therefore that the nonlocal measure of Eq.
15=(1+€)?=1+h,, (1.29 taken from Ref[6], which was proposed ifl3] as a

“new” measure for simplicial gravity, disagrees with the
1, 5 1 continuum measure already to leading order in the weak field
713=(1+e) =1+ S (hthy) +hy, (142 expansion.

which can be inverted to give the small edge length fluctua- Il. CONCLUSIONS

tions in terms of the metric components: . )
In this paper we have compared different approaches to

1 1, 3 the functional measure in simplicial quantum gravity. We
€1(h)=5hy— ghy+0(hyy) have pointed out that the obvious requirement that the lattice
measure agree with the continuum measure in the weak field,
1 1 low momentum limit is satisfied by a class of local measures

ey(h)= Ehzz_ §h§2+ O(h%z) used extensively for numerical simulations. It is well known

that a similar requirement is satisfied by the measure used for
lattice gauge fields in discretized non-Abelian gauge theories

e3(h)= E(hll—i_ hy,+ 2hy5) — i(hllJr hopt 2h1,)? [23]. Dropping this requirement leads one to enter largely
4 32 unknown territory, by discussing a discrete theory whose
+0(h3) (1.43 weak field lattice Feynman rules do not reduce to those of

continuum quantum theory in the small lattice spacing limit.
at each point. It is also known that this relationship is theThe resulting theory then might or might not be related to
correct one for relating edge lengths and continuum metri@ravity. We have also shown in this paper that the above
components in the weak field expansion for the lattice actionfequirement is not satisfied by another set of non-local mea-
as shown in detail in Ref§10,6]. Inserting then these ex- sures, recently proposed in the literature. The latter do not
pressions into the weak-field lattice formula for the determi-therefore in our opinion represent acceptable functional mea-

nant of Eq.(1.39 one obtains sures for simplicial geometries. In general we believe that the
criterion that lattice operators should agree with their con-
det(G(h))= —hj3(k)hi5(K)hoo(K)[ h11(K) +2h45(K) tinuum counterparts in the weak field, low momentum limit

is an important one, and that it should be checked systemati-
cally for any proposed variant action or measure. A closely
A1 s i, one i reacy o compare th resuling exprestE0, MU DETIabs eaker edtement ' el e e
sion for the lattice functional measure to the continuum re- y rep pny q

. . ! . “tinuum perturbation theory, such as the universal long-
sult, as given in Eg1.15. In the continuum case one has, in . . .
. . distance guantum correction to the Newtonian poteh#id]
the weak field expansion,

and the conformal anomaly discussed 25].

+ hoy(k) k3K + O(K®). (1.44)

detg(x) =1+ hyy(X) +hyy(X) + hyy(X)hoy(X) — h3y(x)
+0(h®) (1.45
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