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Some first results are presented regarding the behavior of invariant correlations in simplicial grav-
ity, with an action containing both a bare cosmological term and a lattice higher derivative term.
The determination of invariant correlations as a function of geodesic distance by numerical methods
is a difficult task, since the geodesic distance between any two points is a function of the fluctuating
background geometry, and correlation effects become rather small for large distances. Still, a strik-
ingly different behavior is found for the volume and curvature correlation functions. While the first
one is found to be negative definite at large geodesic distances, the second one is always positive
for large distances. For both correlations the results are consistent in the smooth phase with an
exponential decay, turning into a power law close to the critical point at G.. Such behavior is not
completely unexpected, if the model is to reproduce the classical Einstein theory at distances much

larger than the ultraviolet cutoff scale.
PACS number(s): 04.60.Nc

I. INTRODUCTION

Regge’s formulation of gravity is the natural discretiza-
tion for general relativity [1]. At the classical level, it is
the only model known to reproduce in four dimensions
general relativity as we know it, with continuous cur-
vatures, classical gravitational waves, and no graviton

doubling problem in the weak field limit. The correspon-

dence with continuum gravity is particularly transparent
in the lattice weak field expansion, with the invariant
edge lengths playing the role of infinitesimal geodesics in
the continuum. In the limit of smooth manifolds with
small curvatures, the continuous diffeomorphism invari-
ance of the continuum theory is recovered [2,3]. But in
contrast with ordinary lattice gauge theories, the model
is formulated entirely in terms of coordinate invariant
quantities, the edge lengths, which form the elementary
degrees of freedom in the theory [4,2].

Recent work based on Regge’s simplicial formulation of
gravity has shown in pure gravity the appearance in four
dimensions of a phase transition in the bare Newton’s
constant, separating a smooth phase with small negative
average curvature from a rough phase with large posi-
tive curvature [5,6]. While the fractal dimension seems
rather small in the rough phase, indicating a treelike ge-
ometry for the ground state, it is very close to four in
the smooth phase close to the critical point. A calcula-
tion of the critical exponents in the smooth phase and
close to the critical point seems to suggest that the tran-
sition is of the second order, at least for sufficiently large
higher derivative coupling, with divergent curvature fluc-
tuations, and that a lattice continuum might therefore be
constructed.

In this paper we will present some first results regard-
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ing the nature of invariant correlations in simplicial grav-
jty, as derived from numerical studies on lattices with
24 x 8* = 98 304 and 24 x 16* = 1572 864 simplices. The
paper is organized as follows. In Sec. II we introduce the
simplicial action and measure for the gravitational de-
grees of freedom. We then discuss in Sec. III the formu-
lation and expected properties of invariant gravitational
correlations, such as the volume-volume and curvature-
curvature correlation functions at fixed geodesic distance.
In Sec. IV we present our results and their interpreta-
tions, and Sec. V then contains our conclusions.

II. ACTION AND MEASURE

‘We write the four-dimensional pure gravity action on
the lattice as

Lil= 3 Va[A-kaudn/Va+edl/V2], @
hinges h

where V}, is the volume per hinge (which is represented
by a triangle in four dimensions), A4 is the area of the
hinge, and Jp the corresponding deficit angle, propor-
tional to the curvature at h. All geometric quantities can
be evaluated in terms of the lattice edge lengths [;;, which
uniquely specify the lattice geometry for a fixed incidence
matrix. The underlying lattice structure is chosen to be
hypercubic, with a natural simplicial subdivision to en-
sure its overall rigidity [2,7-9]. In the classical continuum
limit the above action is then equivalent to

Lilgl = _/d4x Y [A" %k R+ %aR.uvpvapa_}“ ) ] ’

(2)

with a bare cosmological constant term (proportional
to A), the Einstein-Hilbert term (k = 1/8rG), and a
higher derivative term proportional to a. For an appro-
priate choice of bare couplings, the above lattice action is
bounded below, due to the presence of the higher deriva-
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tive term. When considering small fluctuations about a
regular lattice the unboundedness present for a = 0 is
slightly ameliorated by the presence of a lattice momen-
tum cutoff, which cuts off the conformal mode fluctua-
tions at high momenta [2]. Away from almost regular lat-
tices the situation is more complex and one has to resort
to nonperturbative methods to investigate the stability
of the ground state. For nonsingular measures and in
the presence of the A term, a stable lattice can be shown
to arise naturally [8,7,9]. The higher derivative terms
can be set to zero (@ = 0), but they nevertheless seem
to be necessary for reaching the lattice continuum limit,
and are in any case generated by radiative corrections
already in weak coupling perturbation theory.

The purely gravitational measure contains an integra-
tion over the elementary lattice degrees of freedom, the
edge lengths. For the edges we write the lattice integra-
tion measure as [4, 7-9]

Jawm= 11 [~ varagFn, ©

edgesij

where V;; is the “volume per edge,” F[l] is a function of
the edge lengths which enforces the higher-dimensional
analogs of the triangle inequalities, and the power o =0
for the lattice analog of the DeWitt measure for pure
gravity. The factor Vg" plays a role analogous to that
of the factor (,/g)?° which appears for continuum mea-
sures [10,11]. A variety of measures have been proposed
in the continuum [10-13] and on the lattice [14], some of
which are even nonlocal. Since there is no exact gauge
invariance on the Regge lattice (nor in any other known
lattice formulation of gravity), one cannot uniquely de-
cide a priori which is the most appropiate gravitational
measure. Note that no cutoff is imposed on small or large
edge lengths, if 2 nonsingular measure such as dI? is used.
This fact is essential for the recovery of diffeomorphism
invariance close to the critical point, where on large lat-
tices a few rather long edges, as well as some rather short
ones, start to appear [6]. The influence of the measure
and the dependence of the results on the underlying lat-
tice structure have also been investigated recently [15].

III. INVARIANT CORRELATIONS

Previous work dealt almost exclusively with averages
of invariant local operators such as the volume, the cur-
vature, and their fluctuations. A great deal of informa-
tion about the theory can be obtained by considering
just these local quantities [6]. But in general the infor-
mation obtained is restricted only to the leading long
distance properties, and higher-order corrections as well
as additional information can only be obtained by consid-
ering correlations between operators separated by some
geodesic distance [8, 6]. In quantized gravity complica-
tions arise due to the fact that the physical distance be-
tween any two points  and y in a fixed background ge-
ometry,

(v) e
dole) = mp [ Cirfo,@FE @
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is a fluctuating quantity dependent on the background
metric. In addition, the Lorentz group used to classify
spin states is meaningful only as a local concept. Since
the simplicial formulation is completely coordinate in-
dependent, the introduction of the local Lorentz group
requires the definition of a tetrad within each simplex,
and the notion of a spin connection to describe the par-
allel transport of tensors between flat simplices. Some
of these aspects have also been discussed recently in the
continuum [16,17).

For a set of local operators {O,(x)}, we can consider in
general the set of connected correlations at fixed geodesic
distance d:

Gap(d) = (Oa(z) Op(y) 8(|z — y| — d))e. (5)

A suitable set of local operators in the continuum is rep-
resented, for example, by the 14 algebraically indepen-
dent coordinate scalars which can be constructed from
the components of the Riemann tensor:

R(z), Rux-R"*(z), R,R"(z), R*(z),
(6)

On the lattice one can construct discrete approxima-
tions to these operators [7]. Since the deficit angles are
proportional to the Gaussian curvatures associated with
the hinges, in general more than one hinge needs to be
considered, and the corresponding lattice operators are
not completely local, in the sense that they can involve
a number of neighboring hinges, as well as the angles de-
scribing their relative orientation. For a small space-time
loop we may make the identification
Ruvps T ~ &, UM, (7
where Y7 is the area bivector of the loop, and U,(j,i) isa
bivector perpendicular to the hinge h:

1
h) — . o
U;(w) = 24, €uvpo lfa)l(b) (8)

with lpa) and If,, the two vectors forming two sides of
the hinge h. This relation emphasizes the fact that the
deficit angle gives only information about the projection
of the Riemann tensor in the plane of the (small) loop C
orthogonal to the hinge.

On the lattice the natural choices for invariant opera-
tors are

\/E (:I:) — Z Vh,
hinges hDa
\/:g— R(.’Z)) - 2 Z 5hAh,
hinges hDz

VA Ruro R (z) — 4 (0nA)/Vi (9)

hinges hD=

[we have omitted here on the right-hand side (RHS) an
overall numeric coeflicient, which will depend on how
many hinges are actually included in the summation; if
the sum extends over all hinges within a single hyper-
cube, then there will be a total of 50 hinge contributions].
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From these formulas, representations for operators such
as RZ can then be constructed:

V3 R*(z) — S W
hinges h! D=

| 2

hingeshDx

2
SnAn/Va (10)

If the deficit angles are averaged over a number of con-
tiguous hinges which share a common vertex, one is nat-
urally lead to the correlation

Gr(d) ~ <Z ShAn Y SniAp 6(|a:—yl—d)> s

hDx h'Dy

(11)

which corresponds to correlations in the scalar curvature:

~ (Vg R(z) g R(y) §(jz —y| — d))c . (12)
Similarly, one can construct
Gy (d) ~ <Z Vi > Vi é(lz—y| - d)> , (13)
hDx h'Dy c

which corresponds to the volume correlations

~ (V9(=) vVa(¥) 8(lz —y| — d))c - (14)

A more precise definition of what is meant by the above
correlation functions on the lattice is as follows. First,
for a given operator, the geodesic distance between any
two points « and y is determined in a fixed background
geometry (the actual method to do this will be described
in detail below). Next the correlations are computed for
all pairs of points within geodesic distance d and d +
Ad, where Ad is an interval comparable or slightly larger
than the average lattice spacing Iy = +/(I2), but clearly
much smaller than the distance d considered. Finally,
the correlations determined for a fixed geodesic distance
d are averaged over all the metric configurations, and the
connected parts are then computed in the usual way.

In general the above correlations will contain particles
of different spin (0,2), but at large distances the lightest
state with spin two (the graviton) should dominate, if
the theory is to reproduce classical general relativity at
large distances.

Up to now we have considered correlations between
scalar densities. For higher rank tensor densities things
become more complicated. In general one can compare
two vectors at different locations only if one of them is
first parallel transported to the other’s location. Inte-
grating the parallel transport equation for an arbitrary
four-vector S,

S, _ > dx”

I T Twgr S

(15)

along some path C connecting = and y, one obtains
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v v
5u0) = [Pe( [ Ta@d)] "s.@).  (9)
* “
This path-dependent factor then enters in the definition
of the correlation functions: for example, involving two
coordinate vectors U and V,

Guv(d) = < U*(z) [Pexp( [ ’ r;A(z)dz*)]ﬂ"
XV, (y) 6<|w—y1—d>> : (17)

c

It is clear that such a correlation function will in general
be path dependent. In addition, one has the problem
that the Regge formulation is coordinate independent,
and frames have to be introduced within each simplex to
specify the orientation of a vector, and in order to define
an affine connection. If we consider a single closed path
C, we obtain the analogue of the Wilson loop:

wic] = <’1&[Pexp(fc I de* — 1)]> (18)

It is convenient to consider planar loops, which are
spanned by the geodesics tangent to a plane at some
point in the center of the loop. On the simplicial lattice
the Wilson loop is computed by evaluating the deficit
angle (and its moments), associated with a large planar
loop:

{6e)™) = <(Z 9:—27r) >

where s labels the simplices traversed by the loop, and
8, is the appropriate internal dihedral angle. Like the
deficit angle &8 itself, this quantity is of course coordi-
nate independent (it describes the rotation angle of a
vector which is parallel-transported around the loop). In
gravity the Wilson loop does not have quite the same in-
terpretation as in ordinary gauge theories, since it is not
directly associated with the Newtonian potential energy
of two static bodies [17, 6]. In ordinary gauge theories
at strong coupling the Wilson loop decays like the area
of the loop, due to the strong independent fuctuations
of the gauge fields at different points in space-time and
ensuing cancellations. In gravity the situation is. quite
different, since the connections cannot be considered as
independent variables, and the fluctuations in the deficit
angles at different points in space-time are strongly cor-
related. In the remainder of this paper we shall restrict
our attention to correlations between local operators that
transform like coordinate scalars, such as the ones de-
scribed at the beginning of this section, and leave the
study of the other, more complicated, correlation func-
tions for future work.

It is well known that in the weak-field expansion, the
Einstein-Hilbert action contains both spin two (graviton)
and spin zero {conformal mode) contributions. By a judi-
cious choice of invariant correlation functions, one would
like to be able to isolate the physical properties of the

(19)
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graviton and the conformal mode. The same result holds
of course on the lattice, as can be seen by expanding the
Regge action about a regular lattice, since the lattice and
continuum actions are equivalent for sufficiently smooth
manifolds [2,3]. In the continuum, after expanding the
metric around flat space (which requires A = 0),

G = Muw + V167G hy,, ' (20)

one can cast the lowest order, quadratic, contribution to
the action in the form

IE[h#y] = %/d‘lm h,uyVy.v)\a'h/\o‘a (21)

where V is a matrix which can be expressed in terms of
spin projection operators. In momentum space it can be
written as

V = [P® —2p®)] p?, (22)

where P(?) and P(® are spin two and spin zero projec-
tion operators, respectively, introduced in [18]. Physi-
cally, the two terms correspond to the propagation of the
graviton and of the conformal mode, respectively, with
the latter one appearing with the “wrong” sign. In the
“Landau” gauge, with a gauge-fixing term a~1(8,h*")?
and o = 0, one obtains, for the graviton propagator in
momentum space,
PB, 179, -
p? »? '

Gunro(p) =

The unboundedness of the Euclidean gravitational action
shows up clearly in the weak-field expansion, since the
spin zero mode acquires a kinetic or propagator term
with the wrong sign. We note here also the fact that the
conformal mode is not pure gauge. In the presence of
higher derivative terms in the gravitational action, the
above result is modified by terms O(p*), and becomes
[19]

o, 1R
Govro - pric prio 24
[N (P) % + gkgp4 —p? + %p4 ( )

On the lattice, all terms in Eq. (1) contain higher deriva-
tive contribution; in the last term proportional to a these
are the leading contribution. Of course the appearance
of higher derivative terms is unavoidable in lattice field
theories [20]. It was shown in [2,3] that the simplicial lat-
tice model, when expanded in the weak-field limit about
a regular lattice with hypercubic connectivity, gives rise
at long wavelengths to the same graviton propagator as
the continuum theory. We should add that in the pres-
ence of a cosmolgical constant, flat space is no longer
a solution of the classical equations of motion, and the
above expansion for the metric loses part of its meaning
due to the presence of the tadpole term (the appearence
of a “graviton mass” in this case appears as an artifact
of the expansion about the wrong vacuum).

A priorione cannot exclude the possibility that some of
the states acquire a mass away from the critical point. In
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the presence of massive excitations one would expect the
following behavior for the correlation functions of Eq. (5):

Gop(d) =~

Toagd™° —md
drm 8 exp(—md)

+Thg d™7 exp(—m'd) +---, (25)

where m and m' are the masses associated with the low-
est lying excitations (here with m < m'). Close to the
critical point in Newton’s constant at k = k., where one
expects the graviton mass to vanish, the leading behavior
should turn into a power law

C

Gapld) > Tap =

oS (26)
where T is some numeric matrix with entries of order
one, C is a constant that sets the overall scale, o a power
which depends on the scaling dimensions of the chosen
operators, and lp the average lattice spacing. Further-
more, on physical grounds one would expect, based on
the structure of the graviton propagator which emerges
from the weak-field expansion, that correlations in the
volume should behave rather differently from correlations
in the curvature. This is indeed what was found for the
zero momentum components, the volume and curvature
fluctuations discussed in {6].

Some partial information about the behavior of the rel-
evant correlations can be obtained indirectly from local
averages. In [5] gravitational physical observables, such
as the average curvature and its fluctuation, were intro-
duced. The appropriate lattice analogues of these quanti-
ties are readily written down by making use of the usual
correspondences [ d*z /g — D pingesn Vas etc. On the
lattice one prefers to define quantities in such a way that
variations in the average lattice spacing 1/(I2) are com-
pensated by the appropriate factor as determined from
dimensional considerations. In the case of the average
curvature we have defined the lattice quantity R as

and similarly for the curvature fluctuation,

wr(hka) ~ Y ﬁR)(}\;ﬁ()f JIR)?

1 6%
The curvature critical exponent é is introduced via
~ AT
R o, Ax (k. — k)°. (29)

Then it is easy to see that the curvature fluctuation is
related to the connected scalar curvature correlator at
7zero momentum

J d*z [ d*y(/gR(z)/gR(Y)).
- Yty
v, (ke — k)31, (30)

k—

XR
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A divergence in the fluctuation is then indicative of long-
range correlations, corresponding to the presence of a
massless particle. Close to the critical point one would
expect for large separations a power law decay in the
geodesic distance,

1
(VIREWVERW) | (31)
with the power n related to the exponent § via n =
8d/(1+48) =d — 1/v, and with the exponent v defined
asv = (1+46)/d.

One can contrast the behavior of the preceding quan-
tities, associated strictly with the curvature, with the
analogous quantities involving the local volumes, which
correspond to the square root of the determinant of the
metric in the continuum. One considers the average vol-
ume (V) and its fluctuation defined as

((J va)*) —{J va)?
([ v3)

1 92

~ v

The latter is then related to the connected volume cor-

relator at zero momentum

fd4a:fd4y<\/g(m vl >
T #ya)
It is clear that fluctuations in the curvature are sensi-
tive to the presence of a spin two massless particle, while
fluctuations in the volume probe only the correlations
in the scalar, conformal mode channel. From the previ-
ous discussion it should be evident that in the case of
gravity, a significant qualitative difference should be ex-
pected in the two types of correlations, given in particular
the “wrong” sign for the kinetic term associated with the
conformal mode in perturbation theory. As will be shown
below, such a distinctive behavior is indeed seen.

To conclude this section, let us discuss briefly the
method of computing the geodesic distance between two
given points in a fixed background metric configuration.
We can write schematically the propagator for the scalar

field in a fired background geometry, specified by some
distribution of edge lengths as

G(d) = (v| 62 o o) (34)

where d is the geodesic distance between the two space-
time points x,y, and 82 is the usual covariant Laplacian:

/99" 0, 0.

Xv (A’ ka a') ~

(32)

Xv ~ (33)

1
2 —_— —
Bd):‘/g

Now fix one point at the origin 0, and use the discretized
form of the scalar field action used in Ref. [21]:

I 12‘,:] (‘151 iJ¢J) +1 2EV¢2

(&5}

(35)

(36)

Here Vj; is the baricentric volume associated with the
edge l;;, while V; is a baricentric volume associated with
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the site 2. Then the discrete equation of motion for the
field ¢; in the presence of a § function source of unit
strength localized at the origin gives us the sought-after
Green’s function. It is useful to write this equation in a
form suitable for iteration, by solving explicitly for ¢;:

¢,‘ = v]I} (Z Wij ¢j + 5{0)5 (37)
R
with weights given by
Vi;
W; = Z( - ) i W,-,-:ﬁ. (38)

JFi

Here the sums extend over nearest-neighbor points only,
and ;9 is a 0 function source localized at the origin on
site 0. The above equation for ¢; can then be solved by
an iterative procedure, taking for example ¢; = 0 as an
initial guess. After the solution ¢; has been determined
by relaxation, at large distances from the origin one has

i ~ Gld(4,0)] A+/m]d(3,0)3

X exp[—md(s, 0)],

d(i,0) >1/m
(39)

which determines the geodesic distance d(z,0) from lat-
tice point 0 to lattice point 4. This method is far more ef-
ficient and accurate than trying to determine the geodesic
distance by sampling paths connecting the two points, as
was done in [6}, but is equivalent to it at large distances
[22].

Still an important correction needs to be applied. In
general the asymptotic behavior of the above scalar corre-
lation is reached only for large distances compared to the
quantity 1/m. At relatively short distances, comparable
to the average spacing between lattice sites, sizable devi-
ations appear and corrections have to be applied. Define

“propagator distance” dj,, between two points labeled
by 0 and % as

der(5,0) = —-In (go)

where m is taken to be of order one (the specific value is
not important here). d;. then becomes proportional to
the true geodesic distance only at large distances. Next
call d. the “random walk” or true geodesic distance be-
tween the two points, obtained by adding up the lengths
of the line segments forming the shortest lattice path
from 0 to i. As can be seen clearly from Fig. 1, in spite
of some transients for small distances, the two quanti-
ties are rather smooth functions of each other, and quite
independently of the binning procedure used. For the
purpose of this work, a quadratic polynomial interpo-
lation of the true physical distance d; in terms of the
quantity dp; is quite adequate, bringing down the uncer-
tainty in the distance determination significantly below
the statistical fluctuations in the correlations. We have
checked that this correction is, as expected, almost inde-
pendent of the geometry configuration, for £ < k. and
fixed values of A and a. The above method allows one
to estimate the geodesic distance reasonably accurately
even for points which are quite far apart, and for which

(40)
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FIG. 1. Propagator distance dpr versus true physical

geodesic distance drw from the origin, on a typical geometry
configuration (A = 1, k£ = 0.2, ¢ = 0.005). Diamonds repre-
sent averages on an 8* lattice; squares represent averages on
a 16* lattice. The continuous line is a quadratic interpola-
tion in the region daw < 15. For larger distances, a direct
determination of drw requires a prohibitively large sampling
of paths, and finite volume effects become predominant.

the determination of the true physical distance by the
shortest path method would be prohibitively time con-
suming. In a number of cases we have explicitly checked
that indeed the correlation functions at not too short
distances become insensitive within errors to the method
used for determining the distance. A detailed compari-
son of correlation functions obtained by the two different
methods will be presented elsewhere. But for large dis-
tances it is clear that the propagator method is far more
efficient.

IV. RESULTS

As in our previous work, the edge lengths are updated
by a straightforward Monte Carlo algorithm, generating
eventually an ensemble of configurations distributed ac-
cording to the action of Eq. (1) and measure of Eq. (3).
Further details of the method as applied to pure gravity
are discussed in-[23], and will not be repeated here. In
this work the edge length configurations already gener-
ated in [6] were used as a starting point.

For computing the correlation functions, we considered
lattices of size 8 X 8 x 8 x 8 (with 4096 sites, 61440 edges,
98304 simplices) and 16 x 16 x 16 x 16 (with 65536 sites,
983040 edges, 1572864 simplices). Even though these
lattices are not very large, one should keep in mind that
due to the simplicial nature of the lattice there are many
edges per hypercube with many interaction terms, and as
a consequence the statistical fluctuations can be compar-
atively small, unless measurements are taken very close
to a critical point, and at rather large distances in the
case of the correlations. The usefulness of studying two
different lattice sizes lies in the fact that finite size effects
can be systematically monitored.

As ususl the topology was restricted to a four-torus
(periodic boundary conditions). We have argued before
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that one could perform similar calculations with lattices
employing different boundary conditions or topology, but
the universal infrared scaling properties of the theory
should be determined only by short-distance renormal-
ization effects. The renormalization group equations are
in fact independent of the boundary conditions, which
enter only in their solution as it affects the correlation
functions through the presence of a new dimensionful pa-
rameter, the linear system size I = V1/4,

In this work the bare cosmological constant A appear-
ing in the gravitational action of Eq. (1) was fixed at 1
(this coupling sets the overall scale in the problem). The
higher derivative coupling a was set to 0 and 0.005, in

" order to investigate the sensitivity of the results to what

is expected to be an irrelevant term, at least for small a.
For the measure of Eq. (3) this choice of parameters leads
to a well behaved ground state for k& < k. =~ 0.063 (for
a =0) or k < k. = 0.245 (for a = 0.005). The system
then resides in the “smooth” phase, with a fractal dimen-
sion close to 4; on the other hand for & > k. the curvature
becomes very large (“rough” phase), and the lattice tends
to collapse into degenerate configurations with very long,
elongated simplices. For a = 0 we investigated six values
of k (0.00,0.01,0.02,0.03,0.04,0.05), while for a = 0 we
looked at five values of k (0.00,0.05,0.10,0.15, 0.20).

From physical considerations it seems reasonable to
impose the constraint that the scale of the curvature in
magnitude should be much smaller than the average lat-
tice spacing, but much larger than the size of the system,
or, in other words,

By < {PRI™ < VYV (41)
This is equivalent to the statement that in. momentum
space the physical scales should be much smaller than the
ultraviolet cutoff, but much larger than the infrared one.
This fact prevents us from studying larger values of a,
since the curvature then becomes too small. Conversely,
for too small values of a (and in particular negative a),
the curvature becomes rather large in magnitude, and the
results become useless when one is too far away from the
critical point in k. The above constraint then requires
that either k is very close to k., or that a cannot be too
small.

For both values of the coupling a, we studied correla-
tions on both a 8% and a 16 lattice. On the 8* lattice we
generated 900-1600 consecutive configurations at a = 0
and 200-400 configurations at ¢ = 0.005, for each value
of k. On each configuration all correlations were mea-
sured for 20 origins, chosen at random. On the 16* lat-
tice we generated 180 configurations at ¢ = 0 and about
300 configurations at a = 0.005, for each value of k. Re-
sults for a larger statistical sample are in progress and
will be presented elsewhere. On each configuration all
correlations were measured for 256 origins, again chosen
at random. The runs are comparatively longer on the
larger lattices, since it was possible in that case to use
a fully parallel version of the program. All the geodesic
distance and correlation measurements were also done in

parallel. The propagator distances were computed with
m = 1 and 40 relaxation iterations, which proved com-
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pletely adequate for our purposes. As a check, we com-
puted in a number of instances the correlations using
the random walk or exact lattice geodesic distance, and
found no discrepancy within errors for distance larger
than one or two average lattice spacings. The correlation
functions were further divided in bins according to the
value of the geodesic distance, with a bin width Ad = 2,
which is comparable to the average lattice spacing (which
is about lg = 1/ (I1?) = 2.3 for the couplings used in this
work, almost independently of a and k).

We computed the correlations for all the operators
listed in Eqs. (9) and (10). In constructing these op-
erators, the summation over hinges was restricted to all
hinges h which are within one hypercube containing a
given site labeled by z (there are 50 such hinges). Here
we will only present the results for the volume-volume
correlation Gy (d) and the curvature-curvature correla-
tion Ggr(d); the other correlations are more difficult to
determine accurately, and the results for those will be
presented elsewhere. Not unexpectedly, the correlation
functions are more difficult to determine at large dis-
tances, where they become small and tend to be drowned
in the statistical noise. For a = 0 and k = 0.05, we did
not achieve enough statistics to obtain accurate data for
the correlations, and therefore results for this coupling
will not be presented here. The results we have obtained
so far are shown in Figs. 2-5.

" The first rather striking result is that the volume cor-
relations (shown in Fig. 2 for ¢ = 0 and in Fig. 3 for
a = 0.005) are negative at large distances. This seems to
happen for all values of @ and k& we have investigated. At
very short distances, comparable to one or two average
" lattice spacings, we expect the correlation functions to
show some oscillations due to the underlying lattice struc-
ture, and this is indeed what is observed. In particular,
for a = 0.005, the lattice action contains second-neighbor
interactions, and it makes little sense in this case to an-
alyze correlations which involve distances comparable to
two average lattice spacings or less. Indeed some oscil-

100 T T T T

0.001 . ! 1
0

2 4 6 8 10

FIG. 2. Negative of the volume correlations Gy (d) for A =
1 and e = 0, and &k = 0.00 (<), 0.01 (+), 0.02 (OJ), 0.03 (x),
and 0.04 (A) (k. =~ 0.063). Results are from a 16* lattice,
and the lines represent best fits to the data.
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d
FIG.3. Negative of the volume correlations Gy (d) for A =

1 and a = 0.005, and k = 0.00 (<), 0.05 (+), 0.10 (O), 0.15
(%), and 0.20 (A) (k. = 0.245). Results are from a 16* lattice,
and the lines represent best fits to the data.
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0.001 L . ! .
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FIG. 4. Curvature correlations Gr(d) forA=1anda =0,
and k = 0.00 (<), 0.01 {+), 0.02 (0), 0.03 (x), and 0.04 (A)
(k. =~ 0.063). Results are from a 18* Iattice, and the lines
represent best fits to the data.

100 ———
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0.1
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FIG. 5. Curvature correlations Ggr(d) for A =1 and a =
0.005, and k = 0.00 (<), 0.05 (+), 0.10 (O), 0.15 (x), and
0.20 (A) (k = 0.245). Results are from a 16* lattice, and the
lines represent best fits to the data.
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lations are observed at relatively small distances both in
the volume and curvature correlations, and some oscil-
lations persist also when the geodesic distance is com-
puted by the random-walk method. Of course the oscil-
lations can be reduced and even eliminated by using a
larger bin width for the geodesic distance, as explained
in the previous section, but then only few points would
be left to display (as we said, we have chosen a bin width
Ad = 2, which is comparable to the average lattice spac-
ing, lp ~ 2.3; on larger lattices a larger bin width could
be used).

The curvature correlations (shown in Fig. 4 fora =0
and in Fig. 5 for ¢ = 0.005), on the other hand, are
always positive, even though, again, one notices some os-
cillations at short distances due to the lattice structure.
To analyze their behavior further, one can attempt to fit
the correlation at “large” distances, here meaning d > o,
to an exponential decay, as indicated in Eq. (25). Alter-
natively, one can try to fit them to a power law close to
the critical point at k., as indicated in Eq. (26).

If the correlations are fitted to an exponential decay,
one finds that the behavior is always consistent with a
mass that decreases as one approaches the critical point.
Close to this critical point let us write for the mass of the
spin two particle, which is expected to determine the long
distance behavior of the curvature-curvature correlation
function,

2
@]~ A (g, — .
[m ] W AP (ke — k) (42)

and similarly for the spin zero state, which determines the
long distance behavior of the volume-volume correlation
function, ‘

2
®1% ~ 4O (k. —
[m ] o A (ke — F). (43)

We shall refer to m(?) as the “mass” of the spin zero state,
in spite of the fact that its propagator amplitude has the
wrong sign for a real particle. The motivation for using
the mass squared in the preceding equation is as follows.
In our previous work we estimated the critical exponent
v, which determines how the dynamical graviton mass

approaches zero at the critical point, m ~ (k. —k)”, and

found that it was close to 1/2 (in Ref. [6] we estimated
v = 0.4 for ¢ = 0.005). Also it should be added for the
sake of clarity, that the values we quote refer to “phys-
ical” masses, and not to masses in units of the lattice
spacing, which would be larger by about a factor of 2,
since, as we mentioned previously, the average lattice is
not one but about Iy ~ 2.3.

For both spin zero and spin two, we find a clear de-
crease in the mass towards the critical point. The de-
crease is more clearly seen for @ = 0, since the masses
are larger in this case. For the amplitude we esti-
mate A® = 2.5(8) and A® = 2.8(9) at a = 0, and
A® = 0.09(6) and A® = 0.18(7) at a = 0.005. The
rapid decrease in the mass amplitudes A® and A®),
which incidentally are not expected to be universal, is

caused by a relatively small change in the bare coupling
a, and is not completely unexpected in light of the asymp-
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totic freedom of higher derivative gravity theories [19].
Here we are making the assumption that both masses will
indeed go to zero at the same critical point. To a certain
extent this seems to be justified by the fact that the two
masses have comparable values close to k., a fact that
is reflected in the amplitudes, which are also comparable
for a given value of a. The resulis for the correlations do
not allow one yet to determine in a clean way if this is in-
deed what is happening, but they are certainly consistent
with such an expectation. We will leave a more accurate
determination of the mass parameters for future work.

When the mass of the particle is very small, it becomes
difficult to distinguish an exponential decay of the corre-
lation function from the pure power behavior of Eq. (26),
which is expected to appear at k., at least if coordinate
invariance gets fully restored in the neighborhood of the
critical point. Close to k., we have estimated the pow-
ers to be ¢(® = 1.4(5) and o(®) = 2.3(8) at @ = 0, and
c® = 0.8(5) and ¢ = 2.6(8) at a = 0.005. While
the errors are quite large, the results for the two val-
ues of a do not seem to be inconsistent. We leave a more
accurate quantitative determination of these numbers for
future work. Close to the critical point, the power associ-
ated with the volume correlation function is not very far
from 2, the free-field value (it seems a bit smaller, but
this could be due to the smallness of our lattice which
makes it difficult to reach the asymptotic behavior of the
correlations), while the power associated with the cur-
vature correlation function seems somewhat larger [the
estimates for the critical exponent § presented in [6]
would suggest a value closer to 3, see Eq. (31)].

In Ref. [6] several values for a were studied, and it
was found that while for a = 0.005 the results suggest
a second-order phase transition, for a = 0 the singular-
ity in R appears in fact to be logarithmic (§ close to
0), suggesting a first-order transition with no continuum
limit. This situation should reflect itself in a different
behavior of the curvature correlation at large distances
in the two cases, but the accuracy here is not sufficient
to see the difference. Let us also remark here that the
lack of a (positive) divergence in the volume fluctuation
close to the critical point found in [6] is seen here as a
reflection of the fact that the volume correlation is nega-
tive at sufficiently large distances. This should give rise
to cancellations, and make the singular contribution to
the fluctuation eventually negative definite close to the
continuum limit. ‘

In conclusion, our results are not inconsistent with the
expectation that close to the critical point the long dis-
tance properties of the model are described by a theory
whose graviton propagator is of the form described in
Eq. (23), with a vanishing mass for both the spin two
and spin zero components. The latter result is of course
crucial for the recovery of general coordinate invariance:
both contributions must survive in the right proportions
if the model is to reduce to classical general relativity
at large distances. A careful study of the above issues
should give further support to the argument that coordi-
nate invariance is indeed recovered in this model at large
distances, and that the correct low-energy theory is re-
covered.
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Let us add that it seems rather remarkable that the
results described here seem to hold, in spite of the fact
that (a) the model includes a bare cosmological constant
to start with, (b) the model contains lattice higher deriva-
tive terms, (c) there is no sensible notion of continuous
lattice diffeomorphisms away from smooth manifolds, (d)
there are no classical solutions of Einstein’s theory with
a A term on a four-torus, and (e) the model exists only
in one phase (the smooth phase) which appears only for
G > G ’

V. CONCLUSIONS

In the previous sections we have presented some first
results regarding the properties of invariant correlations
in the context of a model for quantum gravity based on
Regge’s formulation. The determination of invariant cor-

relations as a function of geodesic distance iz a difficult

task, since the geodesic distance between any two points
is a function of the fluctuating geometry, and is not given
a priori. The scalar propagator method provides an ef-
ficient method for computing the distances, even though
a new source has to be given for each point from which
distances are to be determined.

A strikingly different behavior was found for the
volume-volume and curvature-curvature correlation func-
tions. The first one is decaying and negative definite at
large geodesic distances, while the second one is always
positive for large geodesic distances. The behavior found
for both correlation functions is consistent with an ex-
ponential decay, which eventually turns into a power law
close to the critical point at G.. We have argued that
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such a bizarre behavior is precisely what is expected if
the model is supposed to reproduce the classical Einstein
theory, for distances which are very large compared to
the ultraviolet cutoff scale. It is a consequence of the
fact that the weak-field expansion propagator for Ein-
stein’s theory, in the absence of a cosmological constant
term, contains both spin zero and spin two modes, with
the wrong sign for the conformal mode. Our results seem
to indicate that, besides the graviton, such a mode will
survive with the correct low-energy kinetic term. This
seems to happen in a model for gravity which at short
distances is far removed from the pure Einstein theory,
containing both a bare cosmological term and bare higher
derivative lattice terms.

Note added in proof. After this work was submitted
for publication, a paper appeared [24] in which edge and
volume correlations are computed in the Regge model as
a function of vertex label on lattices of size 3% x 8 and
43 x 16. A direct comparison with the results presented
in this paper is not possible at this time, since the above
authors do not compute correlations at fixed geodesic
distance.
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