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Complex probabilities arise in quantum systems where the euclidean action is complex, either because the couplings, or the 
field variables, are complex. Stochastic quantization using the Langevin equation allows one to study such systems, even though 
the probabilistic interpretation of the euclidean functional integral measure breaks down. The convergence of long time 
averages computed with the Langevin equation to the analytic continuation of the functional integral averages is investigated 
for some simple models. The proposed methods have a variety of applications, including nonperturbative studies of chiral 
gauge theories on the lattice. 

It has recently been realized [1] that the 
Langevin equation of non-equilibrium statistical 
mechanics also represents an alternative to the 
path integral and canonical quantization proce- 
dures in field theory. The complex phase factor 
associated with a path in the functional integral 
formulation corresponds in statistical mechanics 
to the Boltzmann factor, which in turn has a 
probabilistic interpretation. If the quantum theory 
is considered in its Wick-rotated form, then the 
complex phase factor can usually be considered 
as a real probability amplitude. This has led to a 
fruitful application of a variety of stochastic 
methods to quantum field theories, which have 
intrinsically many degrees of freedom and are thus 
well suited for a statistical treatment. 

If the euclidean quantum action is complex 
(corresponding to a path weighting factor in the 
original Minkowski functional integral which is 
not a pure phase) then the probabilistic interpreta- 
tion and the consequent usual stochastic methods 
fail. A simple example of this situation is provided 
by a theory in which some of the coupling 
constants are made complex [2]. Then the func- 
tional integral can have singularities at inter- 
mediate values of the coupling constants, which 
are not easily studied in perturbation theory. 
Systems of this type include spin systems with 
complex temperatures or complex external fields 
and lattice gauge theories for complex couplings. 

Another example is provided by the functional 
integral for quantum gravity, which is mathemati- 
cally ill-defined, because of the indefiniteness of 
the Einstein action caused by rapidly varying 
conformal modes. Here it has been suggested that 
the integration contour over metrics should be 
distorted so as to include complex conformal 
factors [3]. 

Finally one of the most interesting applications 
is to chiral gauge theories, where the fermion 
determinant is not real. Very little is known about 
the strong coupling dynamics of these theories, 
although some interesting results have recently 
been obtained in two dimensions [4]. 

In a pure left-handed theory the fermion 
determinant, obtained after integrating over the 
fermion fields, 

detiDL = [det(--DaL + ~ m 2 ) ]  1/2 ( l )  

is not real [5] because the operator 

_ D 2 =  2 i - D E + ~go..F~. ( 2 )  

is not hermitean. Here we have defined 

o~ = (1/2i)[o,,  o,], o~ = (1, r),  

D~ = D 2 + i Dot- D, (3) 

and on a lattice the fermion doubling problem can 
be avoided by using the second order formulation 
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[6]. But since the chiral symmetry is no longer 
explicit the counterterm has to be fine-tuned to 
obtain a purely left-handed fermion. Also, while 
gauge invariance can be maintained in the second 
order lattice formulation, Lorentz invariance will 
be broken and is hopefully restored in the 
continuum limit. The fermion contribution to the 
action is then 

! + ~ m 2 ) ,  - ½nfTrln ( -  D 2 + 2g%,F,,  (4) 

which in turn can be reexpressed in terms of 
purely bosonic correlations by using pseudo-ferm- 
ion fields (commuting fields with the quantum 
number  of fermions). 

Let us now turn to a discussion of simple 
theories with complex actions. Consider a system 
with canonical variables xl, x z . . . . .  x u and the 
action S(x~, x 2 . . . .  , xu ) .  Then the Langevin 
equation is given by [1,7] 

d x , / d t  = - B o S / a x ,  + n,( t ), (5) 
where • is a white noise satisfying 

(Tli( t))  = O, (rl i( t)TIj( t ' ))  = 2 3 i j 3 ( t -  t ') .  (6) 

For  real fl one can show that the time dependent 
probability distribution function 
P ( X l ,  x 2 . . . . .  XN; t) satisfies the following 
Fokker-Planck  equation [8] 

It is easy to see that P = e x p ( - S )  is a stationary 
solution of (7). If S is nonsingular and bounded 
from below, it is also a stable one. Then one has 

lim f ( x x ( t ) ,  x2( t  ) . . . . .  Xu( t ) )  
t---~ OO 

f l -[y= 1 d x i f ( x  I , x2 . . . . .  x lv)  e -fix 

= fi--iNi=ldxie_fi s (8) 

For  complex/3, however, the relation between the 
left-hand side and the right-hand side of (8) is not 
clear, although there are some formal discussions 
on this point [9]. On the other hand, if one looks 
at the Langevin equation for a harmonic potential, 
i.e. S = ½x 2, the solution can be worked out easily 

x ( t ) = e - l h ( x o  + fotdzr l (~ ' )e~ ' ) .  (9) 

Then it is a trivial matter to prove that, for 
Refl  > 0 

(2N 
l i m  x 2 N ( t )  -~- )] t - -N ,  (10)  
t--, oo N! 

which agrees with the result obtained from 
the partit ion function. For an arbitrary action 
the convergence of the Langevin process to the 
statistical average can also be established per- 
turbatively for large ft. For example, if 

S ( x ) =  ' 2 + ¼x' ,  (11) 

one can show, by iterating the Langevin equation, 
that 

lim x2U(t)  

(2N)! 
- N ~ f l - u [ 1  - N ( N +  2 ) / f l  + O(1/fl2)], 

(12) 

for Re fl > 0. This suggests that for arbitrary 
action there may exist a region in the complex-fl 
plane where the Langevin process converges. 

We first studied two nontrivial toy models by 
the Langevin equation. The first model involves 
the potential 

S ( X )  ~'~- '~X 4 (13) 

It is easy to evaluate the following statistical 
averages 

( x  2N) = ( 4 / B ) ~ / ~ F ( N / 2  + ¼)/r(¼), (14) 
where F(z)  is the usual Gamma function. The 
statistical integral converges for Re 13 > 0. But the 
result can be continuated analytically to the entire 
complex-fl plane, except a cut from the origin 
when N is odd. The Langevin equation for this 
action is 

d x / d t  = - f i x  3 + rl(t). (15) 

This equation can only be solved numerically. A 
simple discrete version of eq, (15) is 

x,+ 1 = x , -  ,flx~ + Vr2~-vb, (16) 

where ~ is the step size and ~/i is a random number 
in the interval [ -  ½, ½]. The error due to the 
discretization is of order of c. Another discrete 
version of eq. (15) is given by the second order 
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Table 1 
1 4 Results for the action S = ax . 
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Phase 
(degrees) 

~x 2) 

exact Langevin exact Langevin 

0 (0.338, 0.000) 
10 (0.337, -0.029) 
20 (0.333, - 0.059) 
30 (0.326, - 0.087) 
40 (0.318, -0.116) 
50 (0.306, - 0.143) 
60 (0.293, - 0.169) 
70 (0.277, -0.194) 
80 (0.259, -0.217) 

100 (0.217, - 0.259) 
110 (0.194, -0.277) 
120 (0.169, - 0.293) 
130 (0.143, - 0.306) 
140 (0.116, -0.318) 
150 (0.087, - 0.326) 
160 (0.059, - 0.333) 
170 (0.029, - 0.337) 

( 0.339, 0.000) ( 1.000, 0.000) ( 1.015, 0.000) 
( 0.330, 0 . 0 2 8 )  (0.985,-0.174) (0.952,-0.167) 
(0.333,-0.061) (0.940,-0.342) (0.934.-0.354) 
(0.34a,-0.095) (0.866,-0.500) (0.938,-0.556) 
(0.337,-0.125) (0.766,-0.643) (0.823,-0.717) 
(0.303,-0.138) (0.643,-0.766) (0.636,-0.740) 
(0.300,-0.176) (0.500,-0.866) (0.507,-0.889) 
(0.265,-0.186) (0.342,-0.940) (0.317,-0.914) 
(0.249,-0.221) (0.174,-0.985) (0.159,-0.994) 
( 0.077, - 0.289) ( -  0.174, - 0.985) (-0.200,-1.054) 
( - 0.021, - 0.303) ( - 0.342, - 0.940) ( - 0.362, - 0.882) 
(-0.164, -0.331) (-0.500,-0.866) (-0.837, -1.000) 
(-0.342, -0.125) (-0.643,-0.766) (-0.610, -1.042) 
( - 0.392, - 0.031) ( - 0.766, - 0.643) ( - 0.548, - 0.932) 
( - 0.302, - 0.123) ( - 0.866, - 0.500) ( - 0.863, - 0.399) 
( - 0.341, - 0.131) ( - 0.940, - 0.342) ( - 1.108, - 0.246) 
(-0.347, 0.020) (-0.985, -0.174) (-0.980, -0.379) 

R u n g e - K u t t a  equa t ion  

!g  . . ( 1 ) +  x}2+)1)/2 ' (17) Xi+ 1 "~- 2 \ ~ i + 1  

wi th  

X~221 = X~I)  1 - -  ~r./3X~1)31 "~ ~ g ~ , .  ( 1 8 )  

The  co r r e spond ing  error  for this d iscre t iza t ion of  
the  t ime de r iva t ive  is of  the o rder  of  c 2. We  used 
b o t h  a lgo r i thms  to evaluate  the long t ime l imit  of  
x 2 a n d  x 4 for  this action.  The results  for 500000 
s teps  are  shown in table  1. We  found  that  the 
p rocess  converges  for  all phase  angles of/3,  except  
on  the i m a g i n a r y  axis and  on the negat ive real  
axis.  F o r  Re /3  > 0 the Langevin  averages converge 
to  the  va lue  given b y  (14) for  bo th  ( x  = } and (x4} ;  
for  Re /3  < 0 for  which the stat is t ical  integral  
b e c o m e s  meaning less  the Langevin  averages for  
( x  2) d o  no t  converge  to the analyt ic  con t inua t ion  
o f  (14), while  they  appea r  to do  so for ( x 4 ) .  

The  second  toy  model  is given by  the ac t ion 

S(x) -- cos x.  (19) 

This  ac t ion  is closely re la ted to the ac t ion of an 
a be l i an  la t t ice  gauge theory.  The stat is t ical  aver- 

ages are  given b y  

(cos~vx)  = [ I 0 ( f l ) ] - l d N l o ( f l ) / d f l  ~, (20) 

where  I~(z) is the modif ied  Bessel funct ion of  the 
first k ind .  The  express ion (20) is a meromorph ic  
func t ion  wi th  an infinite number  of  poles  on the 
i m a g i n a r y  axis. The  Langevin  equat ion  for  this 
sys tem is 

dx/dt = - f l s i n x  + 7/( t ) .  (21) 

F o r  large  /3 the solut ion of eq. (21) and  its 
convergence  can  be  es tabl ished per turba t ive ly ,  jus t  
l ike  the e xa mple  in eq. (11). However ,  for  smal l /3 ,  
the  so lu t ion  of  eq. (21) can also be  found  
i terat ively .  To  the leading order  in 13 we have 

1 (22)  l im c o s x  = gfl .  
t - - + ~  

F o r  a r b i t r a r y / 3 ,  eq. (21) can only be  solved 
numer ica l ly .  W e  discret ize eq. (21) as 

z ,+ ,  = z, exp [ -  1 , B ( z ,  - z T ' )  + i 2 a a 7 , , ] ,  (23) 

wi th  z = e ix. I t  is impor t an t  to no te  that  the force 
t e rm is z - z -1  and  not  z - z*, otherwise one 
wou ld  o b t a i n  the wrong answer.  

The  q u a n t i t y  we evaluated  in the long t ime l imit  
was c o s x  = ½(z + z - l ) .  In  table  2 a compar i son  
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T a b l e  2 

Resul t s  for  the ac t ion  S = cos x. 

IPl 4~ <cosx> 
(degrees) exact Langevin 

1 0 ( 0.446, 0.000) ( 0.441, 0.000) 
1 10 ( 0.444, 0.062) ( 0.464, 0.037) 
1 20 (0.438,0.126) (0.465,0.080) 
3 10 (0.814,0.039) (0.816,0.037) 
3 20 (0.827,0.076) (0.830,0.064) 
3 30 ( 0.850, 0.111) (0.846,0.099) 
5 10 ( 0.896, 0.020) ( 0.894, 0.020) 
5 20 ( 0.902, 0.039) ( 0.900, 0.038) 
5 30 (0.912,0.056) (0.910,0.058) 
5 45 (0.929,0.075) ( 0.925, 0.078) 
5 180 ( - 0.893, 0.000) ( - 0.890, 0.000) 
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Fig. 1. The relative deviation of the Langevin average from 
the exact value for the action (19) at ~ = 5 exp[i(~r/9)], where 
8x = ((x) Langevin - (x)exact)/(x)exact. (a) Real part. 
(b) Imaginary part. 

is made  between the Langevin value and the value 
given by eq. (20). In fig. 1 we plotted the relative 
deviation of the numerical data from the analytic 
values as a function of Langevin time, for one/3. 
For  each/3 we did typically 5 000 000 iterations. 
As one can see, for a fixed module of /3, the 
convergence gets worse and worse as the phase 
angle o f /3  is increased. And also, for a fixed 
phase, the convergence gets better and better as 
the module is increased. The results are indepen- 
dent of the initial position, as they should be, even 
if one starts from a point outside the unit circle. 
Due  to the compactness of the action, we expect 
convergence for Re/3 < 0. This was also observed 
in practice as shown in table 2. 

As will be shown later on, these properties are 
also shared by  the two-dimensional U(1) lattice 
gauge theory. Bearing in mind that there is an 
infinite number  of poles in (cos x )  along the 
imaginary axis, the bad convergence might be due 
to the singularities which are approached as one 
gets closer to the imaginary axis. We also found 
for complex/3 that when c is greater than a certain 
value, typically 0.001, the solution blows up, with 
z either being trapped at the origin or starting to 
wander  off to infinity. Thus there appear to be 
some instabilities introduced by the discretization. 
The wild fluctuation in fig. 1 is due to the fact that 
we have only one degree of freedom, which will 
improve for the two-dimensional U(1) model. We 
also tried the Runge-Kut t a  equation for this 
example. The fluctuation was reduced, but the 
improvement  in the accuracy was not spectacular. 

One of the simplest and soluble models in 
lattice gauge theory is the two-dimensional U(1) 
gauge theory. The action for this model is given 
by  

S = ~] (1  - cos0v) , (24) 
P 

where p labels the plaquettes, and 0 v is the phase 
angle of the p th  plaquette. The average action per 
plaquette is given by 

( S )  = 1 - 1 1 ( / 3 ) / l o ( / 3  ). (25) 

It  is again a meromorphic function with an infinite 
number  of poles along the imaginary 13 axis. For 
complex/3 we assign an arbitrary complex number  
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Fig. 2. The relative deviation of the Langevin average from 
the exact value for the action (24) at fl = 5 exp[i(~r/9)]. (a) Real 
part. (b) Imaginary part. 

zij (it need no t  be a pure phase) to each link li# 
with the p roper ty  zij = z~ 1. For  each plaquette 
P i jk /we  have, then, zp = z~jZjkZktZ . .  The action 
then becomes  

S = ~ . [ 1 - - ½ ( z p + z ~ l ) ] .  (26) 
P 

The  Langevin  process is given by  the following 
iterative equat ion [10]: 

Zl(i+ 1 )  ~ Zl(i) 

× exp {½,fl(~" 1 + ~2)[zt(i)-(~l~2z,(o) -1] 
+ i 2v~-~ , ( , ) ) .  (27) 

Using  this procedure  we studied a two-dimen- 
sional square lattice of  size 20 × 20. As shown in 
fig. 2, the result is very similar to that of  the action 
in eq. (19). In  other  words, for a larger and larger 
module  of  fl, the convergence gets better and 
better. We also observed that if the step size c is 
too large the solution blows up. 

Presumably,  these properties are shared by 
U ( N )  lattice gauge theories. It is straightforward 
to generalize the Langevin algorithm to non- 
abelian gauge theories. What  one should do is to 
assign an arbi t rary  complex matrix U,7 to each link 
lij, and replace all U/~ by U,j 1. For  the S U ( N )  
group  one should ensure that det U~j = 1. Then the 
matr ices can never become singular. So the 
procedure  might  be more stable than for the U ( N )  
group.  

This work was supported by the US Depart -  
men t  of  Energy under  contract  no. DE-AC02-  
76ER02220.  
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