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Recent work on Regge’s lattice formulation of quantum gravity is reviewed. The
problem of the lattice transcription of the action and the measure is discussed, and
a comparison is made to the expected results in the continuum. The recovery of
general coordinate invariance in the continuum is illustrated in the two-dimensional
case, where critical exponents can be compared to the exact continuum conformal
field theory results of KPZ. In four dimensions the lattice results strongly suggest
that the pure Einstein theory is not defined even at the non-perturbative level. The
addition of higher derivative terms in the pure gravity theory appears to cure the
unboundedness problem, but the nature of the ground state and the fixed point
structure remains an open question.

INTRODUCTION

While classical general relativity is considered as a rather solid theory, the same
is not true for the quantum theory, for which there is no clear prescription as to
how one should proceed from the classical theory. It has been known for some time
that if one attempts to quantize the Einstein theory of gravity one encounters two
major difficulties. The field equations for the metric are derived from an action
that is unbounded from below, and the path integral is therefore mathematically ill-
defined!. Furthermore the coupling constant in Einstein gravity (Newton’s constant)
has dimension of inverse mass squared (in the usual units » = ¢ = 1), and this
leads to a non-renormalizable quantum theory, as can be verified by doing explicit
Feynman diagram perturbation theory?:.

One might hope that some of these problems wiil be resolved in the framework
of some grand unified theory which includes gravity. Even if this were to be the case,
a non-perturbative formulation of quantum gravity could present some conceptual
and computational advantages, just like lattice gauge theories provide a rigorous
mathematical basis for the continuum theory, and at the same time allow one to use
non-perturbative methods like mean field, strong coupling expansions and numerical
simulations. As far as a comparison of quantum gravity predictions with the real
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world is concerned. it is clear that such a comparison will be rather difficult except
possibly for some coﬁirlological implication, especially those related to the (almost)
vanishing of the renormalized cosmological constants and the appearance of close to
flat space-time on macroscopic scales.

Here we will concentrate on the simplicial formulation of quantum gravity?~1°,
but one should mention that there are other possible approaches such as the hyper-
cubic lattice formulation!™'® & la Wilson, and the random triangulation approach
tor two-dimensional surfaces!®. In addition to problems common to all formulations
of lattice gravity (like the problem of transcribing the continuum action, establish-
ing the invariance group of the lattice theory and the invariant lattice functional
measure), the hypercubic lattice formulation suffers from the problem of graviton
doubling, which might or might not disappear in the full quantum theory, depending
on the nature of the phase diagram and possible non-trivial fixed points. The ran-
dom triangulation method on the other hand 1s up to now imited to two dimensions,
and it is at first not clear how, even in principle, one could obtain continuous de-
formations of the metric corresponding to graviton-like excitations, given that there
re 110 continuous deformations of a randomly triangulated lattice even 1n fat space
(in particular the curvature at a vertex can onlv take discrete values, determined by
‘he local coordination number). In two dimensions this fact 1s not of great concern
since pure gravity corresponds to a theory with minus one degree of freedom (there
are more constraints than degrees of freedom to start with) and there is really no
shysical graviton excitation. In four dimensions the situation is of course quite dif-
ferent, where the quantized fluctuation in the metric are expected to give rise to a
physical massless spin two particle. On the other hand the results obtained in the
discrete two-dimensional models of random surfaces are encouraging since they seem
to indicate a restoration of general coordinate invariance at the quantum level, since
some critical exponents agree with the results of conformal field theory.

THE LATTICE ACTION

A rigorous mathematical basis for the Minkowski path integral is usually pro-
vided by the euclidean approach, and 1t seems sensible to proceed along the same
lines in the case of quantized gravity. Consider the euclidean Einstein action without

a cosmological constant term
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where G i1s Newton’s constant, /g is the determinant of the metric ¢,,, and R i3
the scalar curvature. For most of the following we will not consider boundary terms
and couplings to matter fields, although there inclusion is straightforward, except
possibly for fermions fields. If one attempts to write down a path integral of the form

2= [ a5 1o

(which will in general depend on a specified boundary three-geometry, here denoted
by I') one soon realizes that 1t appears i1l defined due to the fact that the scalar cur-
vature can become arbitrarily positive (or negative). This 1n turn 1S a consequence
of the fact that while gravitational radiation has positive energy, gravitational po-
tential energy is negative because gravity is attractive. Thus the gravitational action



is unbounded from below and the functional integral strongly depends on how the
unboundedness is cut off. This is clearly seen by considering a conformal transfor-
mation on the metric §,, = Q%g,, where Q is a positive function'. Then the pure

Einstein action transforms into

I5(§) = / d*z\/7 (2R + 6 g**8,08,9). (1.3)
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which can be made arbitrarily negative by choosing a rapidly varying conformal
factor 2: the kinetic term for the conformal mode has the wrong sign. Unless other
operators are added, it is usually quite diflicult to make sense of contributions of
this type, at least in ordinary euclidean field theory. A possible solution to the
unboundedness problem has been described by Hawking', who suggests performing
the integration over all metrics by first integrating over complex conformal factors,
followed by an integration over conformal equivalence classes of metrics. A second
possibility, to be further discussed below, is to add to the Einstein action extra
terms, including higher derivative ones like R?, in a carefully chosen combination
which makes the total euclidean action bounded from below??:2!,

A second serious problem of the pure Einstemn action 1s connected to the fact
that the coupling constant G~! has dimension of mass to the power (d — 2) and
suggests that the theory is not perturbatively renormalizable above two dimensions
(even though it can perhaps be defined perturbatively in 2 + ¢ dimensions®*!). In
order to renormalize the theory close to four dimensions one needs at one loop to
introduce higher derivative counterterms, which are needed to cancel the divergences
proportional (in dimensional regularization) to?
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It has been argued that the theory could still make sense non-perturbatively (as in
the case of other non-renormalizable theories like the Gross-Neveu model above two
dimensions), but this would require a more sophisticated calculational scheme that
provides for some kind of resummation of the perturbative series. As far as the lattice
approach is concerned, there is no indication yet that this is the case, and we shall
return to this point later.

On the other hand it can be shown, at least in perturbation theory, that only up

to fourth derivative terms need to be considered in order to cure the renormalizabilty
problem?2, and then the unboundedness problem is resolved as well. Thus one is led
to consider the extended higher derivative gravitational action

I= [ B2 /7 [A =k R+ b Rupe R + 2(a — 48) CupoC*?°|  (15)

with a cosmological constant term (proportional to A), the Einstein term (k =
1/167w G, where G is the bare Newton constant), and two higher derivative terms
with additional dimensionless coupling constants a~* and d~!. (Even though in four
dimensions there are four possible higher derivative terms which do not give rise to
topological invariants, only two are independent for a manifold of fixed topology,
if one uses the identities relating the Riemann tensor to the integral expression for
the Euler charachteristic®®). Remarkably the resulting theory is also asymptotically

free?4
The attractive features of higher derivative gravity are the solution of the un-
boundedness problem and renormalizability, but a less attractive feature 1s the lack of



perturbative unitarity. In the weak field approximation it 1s known that the graviton
propagator contains ghosts. In momentum space and for A = 0 1t has the form
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and clearly the higher derivative terms improve the ultraviolet behavior of the theory
since the propagator now falls of as 1/¢* for large ¢*. Understanding what might
happen to the ghosts beyond perturbation theory is a rather difficult question, but it
has been suggested that the ghosts are ‘confined’ in the sense that they might not con-
tribute to physical amplitudes if the latter evaluated in the full theory. Alternatively
the higher derivative terms can be regarded as a specific form of a non-perturbative
regulator.

In the continuum the fundamental degrees of freedom are represented by the
metric ¢,,. On the simplicial lattice the corresponding quantities are the lengths
of all the edges, as well as the incidence matrix specifying the overall triangulation
of the manifold. In piecewise linear spaces *° the elementary building blocks for
d-dimensional space-time are simplices of dimension d, where a d-simplex is a d-
dimensional object with d 4+ 1 vertices and d(d + 1)/2 edges connecting them. [t has
the important property that the lengths of its edges specify the shape (and theretore
the relative angles) uniquely. A simplicial complex can be viewed as a set of simplices
glued together to each other, in such a way that either two simplices are disjoint or
they touch at a common face. The relative position of points on the lattice is thus
completely specified by the incidence matrix (it tells which point is next to which)
and the edge lengths, and this in turn induces a metric structure on the piccewise
linear space. The polyhedron constituting the union of all the simplices of dimension
d forms then the geometrical complex or skeleton. In order to obtain non-degenerate
simplicial complexes, the edge lengths have to obey triangle inequalities and their
higher dimensional analogues, which ensure that for example the tniangle areas are

positive,

General coordinate transformations correspond then (at least approximately) to
variations of the edge lengths, as well as appropriate modifications of the incidence
matrix. But since in general different complexes will correspond to physically dis-
tinct manifolds, one expects general coordinate invariance to be recovered only n
the continuum limit, where a continuous smooth manifold can be covered by many
different almost geometrically equivalent triangulations. (In the special case ot fat
space it is clear that there is an infinite number of triangulations, even for a fixed
incidence matrix, which correspond to the same continuous manifold. )

Since a detailed description of the construction of the action for higher derivative
lattice gravity can be found in the original papers’®'?~1% only a summary will be
given here. The simplicial lattice transcription of the Einstein action was g1ven Sore
time ago by Regge®.

In= Y. AY6, (1.7)
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where Aid—ZJ is the volume of the ‘hinge’ and 6 is the deficit angle at the same
‘hinge’. The ‘hinges’ are points in two, edges in three and triangles in four dimensions,
respectively. Regge’s action corresponds to the simplicial decomposition of

IE=%/dd$ﬁR (1.8)



and indeed it has been shown that Iz tends to the continuum expression as the mesh
size tends to zero®®?. In two dimension the discrete analogue of the Gauss-Bonnet

theorem holds

Ip = Z&h = 27X (1.9)
h

where x i1s the Euler characteristic (two minus twice the number of handles of the
surface). This remarkable identity ensures that two-dimensional lattice R gravity is
as ‘trivial’ as the continuum theory, in the sense that the action is a constant for a
manifold of fixed topology.

The guiding principle in constructing physical quantities in simplicial gravity is
that they should have geometric significance. This will distinguish objects which are
lattice structure independent for a given physical manifold (at least for sufficiently
smooth manifolds in some continuum limit) from other functions of the edge lengths
which have no particular geometric meaning, and whose himiting values will therefore
depend on the specific way in which the triangulation is refined. The Euler charac-
teristic in two dimensions, expressed as a function of the edge lengths, is a clear and
1llustrative example of what is meant by this statement. Another clear example is the
total area of the simplicial complex: if it is defined as the sum of the triangle areas
(where these are very specific functions of the edge lengths), then as the triangulation
is refined its limit is well defined, and agrees with the continuum definition of what
1s meant by the total area.

The higher derivative terms for pure gravity can be written down once one
recognizes that the deficit angle &, i1s related to the components of the Riemann
tensor through!2.

Rhy  _ Sn
Ko po AFh

h h
UMl (1.10)

where Ar, can be taken to be the dual area assoctated with the hinge, and U ffﬁ) 1S &

bivector orthogonal to the hinge &, defined in four dimensions by

1
]

and I7 ) and If;, are the vectors forming two sides of the hinge h. Then the discrete

analog of the higher derivative action was written!? as
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The numerical factor €p p is equal to 1 if the two hinges h,h' have one edge in
common and —2 if they do not. The last term introduces a short range coupling
between deficit angles and has the remarkable property that it requires neighboring
deficit angles to have similar values, but it does require them to be small. The
convergence of the higher derivative terms to the continuum values was considered
for the regular tessellations of the two-, three- and four-sphere'®. In addition there
are some results for the weak field limit in two dimensions'?, and for arbitrarily fine
tessellations of the two-sphere!®.



[ four dimensions the (classical) continuum limit is taken by recquiring that the
local curvature be small on the scale of the local lattice spacing, which is equivalent
tO 1Mposing
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This condition can be met by having the coefficient of the curvature squared terms
large. Otherwise the results are expected to depend strongly on the detailed structure
of the ultraviolet cutoff (i.e. choice of lattice structure and lattice transcription of
the continuum action).

\[atter fields can also be introduced in a straightforward way. We will mention
here one of the possible lattice expressions for the free scalar field action'®!?. Other
forms have also been suggested!®?*. Define the scalar fields at the vertices of a
simplex, and consider the following expression

< 1 (1.14)
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stmnplices &
with the finite lattice differences defined as usual by
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The index ¢ labels the possible directions in which one can move from a point 1n a
given simplex, and [, ;4 1s the length of the edge connecting the two points. The
induced metric gi;(s) within a simplex s can be taken to be

]
gij(s) = 3 [ i+ s — ooty | (1.17)

Then the above lattice action corresponds, up to a constant of proportionality, to the
continuuim expression

1
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Alternatively one could consider the expression suggested by the random lattice
approach®®, and which should be equivalent to the previous lattice action in the

5 v (o)
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continuum limat,

where [;; is the length of the edge connecting site 7 to site j, and Vj; is the volume
associated with it, via a dual, baricentric or other reasonable geometric subdivision.

Using the baricentric subdivision, one has

5 _.
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The situation for fermions is somewhat more involved, since one has to introduce
trames and vierbeins in each simplex in order to define the spin connection.



THE LATTICE MEASURI

Ll

The form of the measure for the g,, fields in continuum gravity is not well
understood. One popular measure is the so-called Misner measure?®.

dulgl =[] ¢~V [] dgps (2.1)
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which has the important property of being scale invariant. The prefactors propor-
tional to the determinant of the metric to some power may be quite important, since
it has been argued that the measure can play a delicate role in canceling spurious
divergences in loop diagrams, which arise when a continuous local symmetry (here
general coordinate invariance) is explicitly broken. The above measure 1s unique if
the product in (2.1) is interpreted over ‘physical’ points, and invariance is imposed at
one and the same ‘physical’ point. On the other hand if one introduces a super-metric
over metric deformations, then another measure arises naturally for pure gravity?’.
Consider the simplest (local) form for the norm squared of the metric deformation
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Then according to De Witt the functional measure is given by
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with the determinant of the super-metric G given by
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Note that this measure 1s clearly quite different from the measure of eq. (2.1).
Specializing to the case of four dimensions one then obtains the particularly simple

result
dulg] = H H AGuv (2.3)
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If matter fields are present, then the gravitational measure has to be further mod-
ified. Other forms for the measure for the pure gravitational field have also been
suggested?%:29,

On the simplicial lattice one can argue that the edge lengths, being invariant
quantities, are not referred to any specific coordinate systems. On the other hand
they provide for an explicit coordinatization of the mamifold, once the incidence
matrix is specified as well. It i1s clear from looking at the example of flat space that
there can be an infinite number of edge length assignments that correspond to the
same physical manifold. Therefore in the continuum limit the edge length cannot
really be considered as invariants under some (approximate) lattice diffeomorphism
group. This situation is illustrated in Fig. 1.

Since the continuum theory provides limited guidance as to the form of the
lattice gravitational measure, and since the lattice theory has no obvious exact in-
variance (except for flat space and a few other special cases), one has to rely more on



Figure 1

concepts of analogy and simplicity. On the simplicial lattice the edge lengths are the
elementary degrees of freedom which uniquely specify the geometry, and over which
it would seem that one should integrate over. From the relationship between edge
lengths and metric in a simplex (eq. (1.17)) one notices that each edge 1s shared
between several contiguous simplices, and that an integration over the edges is not
simply related to an integration over the metric {(even though there are d{d + 1)/2
edges for each simplex just as there are d(d + 1)/2 independent components tor the
metric tensor in d dimensions). Thus in ref. [12] the measure

fois-

was suggested, where F,[l] is a function of the edge lengths with the property that it is
equal to one whenever the triangle inequalities and their higher dimensional analogues
for the simplicial complex are satisfied, and zero otherwise (the inequalities ensure
chat the edge lengths, triangle areas, tetrahedron and four-simplex volumes are all
positive). The positive real parameter € can be introduced as an ultraviolet cutoff at
small edge lengths: the function Fi[l] is zero if any of the edges is equal or less than
¢ in the following we will take e = 0. We notice that this measure is clearly correct

in the weak field limit, where all continuum measures aiso agree. The same measure
was also used in the work of ref. [14].

1] / -~ F.[l} (2.6)

edges i}

Of course the measure suggested above 1s not unique, but is certainly a rather
attractive one, since it is local and scale invariant as the continuum measure of
eq. (2.1), and integrates directly over the elementary lattice degrees of freedom,
the edge scale factors ¢;; = In({;;/lo). Other measures one might consider would
involve an integration over edge lengths divided by some volume to the appropnate
power, such that the total measure is perhaps again scale invariant. However there
are several volumes that are touching a given edge, and the measure then becomes
rather complicated, involving some odd powers of volumes in the denominator'*!>.
One simple alternative possibility is to consider the ‘volume associated with an edge’



Vi;, and write
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with ¢ = —2/d for the lattice analog of the Misner measure, and ¢ = (d — 4)/2d for
the De Witt measure.

Ambiguities associated with the measure in the continuum can be traced back
to a lack of a rigorous definition of the path integral for quantum gravity, and 1n
particular to the difficulties associated with defining what is meant by singular objects
such as derivatives of delta functions and similar distributions®’. An interesting point
of view on the relevance of the specific form of the measure in the quantum theory
is presented in ref. [3]. There it is argued that ambiguities in the definition of the
measure reflect the lack of a unique definition for the metric tensor at short distances.
Eventually the hope is that different measures, within a certain universality class,
will give the same results for infrared sensitive quantities, like correlation functions
at large distances and critical exponents. These concepts can presumably be tested,
at least in the framework of two-dimensional gravity, where some exact results are
known in the continuum from conformal field theory.

In two dimensions a measure for gravity has been given by Polyakov3?3!, fol-
lowing the De Witt approach. In pure two-dimensional gravity one can write

[dule) e = [ dula) Arela] [ (ag] et (2.8)

with the Liouville action contribution I; arising from the conformal anomaly

1
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with g,,(z) = g, () )e?(#). On the lattice the conformal factors correspond to local
volume (=area) fluctuations e?*) =~ V(z)/V,, but an identity of the type
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appears not too easy to prove analytically, because of the rather complicated de-
pendence of the triangle areas on the various edge lengths. An equivalent way to
prove the identity is by computing a critical exponent, which will be sensitive to the
restoration of general coordinate invariance at large distances.

GRAVITY IN TWO DIMENSIONS

Two-dimensional quantum gravity presents an ideal laboratory for testing the
approach described in the previous sections, since some exact results are known3132.
Here we will consider the higher derivative lattice action |
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(for the specific formulation of higher derivative terms baricentric lattice volumes'"

will be assumed in the following). In the limit of small fluctuations around a smooth
background, this lattice action can be shown to correspond to the continuum action

I = /aﬂx\/ﬁ {)\— kR + aR” (3.2)

In two space-time dimensions the Einstein action is a topological invariant, both
in the continuum (because of the Gauss-Bonnet theorem) and on the lattice, since
S, 6y = 2wy, where x is the Euler characteristic. Therefore for a manifold of fixed
topology the term proportional to k can be dropped. The higher derivative term
is necessary to control the fluctuations in the local curvature, and its presence 1s
implicit in the approach of ref. {19] as well. Furthermore, m two dimensions there 1s
only one independent higher derivative term, so the R? term which we have written
down is the only possible term of dimension four.

Consider now the path integral

Z [\ a,b e = /d,u[ []e 11 (3.3)

Because of the scale invariance of the measure, all the edge lengths can be rescaled
l; — (a/M)!/* I;, and one obtains

Z [A,a) = Z [VaX, Va] (3.4)

The following expectation values are of interest, determining the average area and
average curvature squared, respectively

Ny
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where N = N? is the number of hinges. From the scale invariance of the measure
one then obtains the exact identity

1<R> A 2 6
4 <A> da (3:6)

In order to compare with the exact results of KPZ*?, it is on the other hand
useful to consider an ensemble where the total area A is kept fixed. KPZ consider
the partition function for fixed area

7 (4] = f dulg) 6 [ VG- 4) e (3.7)

which for large area behaves like
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where Ay affects the renormalization of the cosmological constant, and v = (D -
1 ~ /(D = 1)}(D - 25)) is the string susceptibility exponent. In our case, since we

are dealing with pure gravity for the moment, one expects U = 0 and v = — %




By doing again an infinitesimal scale transformation on Z[A], with the action
given by eq. (3.2), one obtains
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Thus the critical exponent x(v — 2)/2 can be obtained by investigating the area
dependence of the expectation value of R2. We have carried out such a determination
by investigating both the torus and the sphere®®, using as a background space a
network of unit squares divided into triangles by drawing in parallel sets of diagonals,
as shown in Fig. 1. Ideally one would like to use a random lattice®*, but this would
present further computational problems, so we have opted for the moment for the
simpler approach of using a regular lattice. In both cases the lattices considered
contained from 48 to 49152 edges. In the case of the torus the results for y(vy — 2)/2
are quite accurate and consistent with zero to within a few percent. They already
would suggest a restoration of general coordinate invariance at large distances (or
low momenta). In the case of the sphere the results appear to be also consistent
with the KPZ result, but the errors are larger. Further tests can be performed by
embedding the surface and measuring the extent of the surface and the associated
Hausdorff dimension, which could then be compared to the results of refs. [32].

GRAVITY IN FOUR DIMENSIONS

The four-dimensional case 1s substantially more complex that the two-dimensional
one, since there are more terms in the pure gravity action, there are no exact results
in the full theory to compare with, the lattice structure 1s more complex and in ad-
dition the lattices that have been studied up to know are quite small. In addition
there is the conceptual issue of what physical quantities should be measured, and
given which boundary conditions. Only a small set of these questions have been
addressed up to know, mostly pertaining to an exploration of the phase diagram and
the location of possible renormalization group fixed points. We will therefore limit
the discussion here to some general qualitative features that have been observed’?,
and possible future directions. |

Let us give first some details about how the numerical computations are per-
formed. (Some analytical results for simple geometries can be found in refs. [12]).
Up to know we have considered the action of eq. (1.12) with ¢ = 4b only (no Weyl
term). For simplicity, and as in the two-dimensional case, the lattice was chosen to
be regular and built out of rigid hypercubes. Again this choice is not unique, and
is dictated mostly by a criterion of simplicity, but it has the advantage that such
a lattice can be used to study rather large systems with little modification. Using
scaling arguments one can show that whenever the functional integral exists, all the
edge lengths can be rescaled I; — (k/A)!/? I;, and using the scale invariance of the
measure one gets )

k* k? A\1/2
Z{Mk,abel=2 [_A_’ —A—,a,b, (Z) €] (4.1)
If € can be sent to zero, then Z can depend only on the dimensionless couplings k%/,
a and b, once all lengths are expressed in units of the length scale Iy = (k/A)!/2.



If the functional integral exists for € = 0, then the scale invariance of the measure
implies the identity

k <Z§hAh:>=,\<ZVh:> (4.2)
h i

I the numerical simulations that were done the lattice was chosen of size ¥ XN XN XN
with 15N* edges, and only the cases N = 2 (240 edges) and N = 4 (3840 edges)
were considered, which corresponded to rather small lattices. Periodic boundary
conditions were used, and the topology was therefore restricted to a hypertorus;
other topologies can be studied by changing the boundary conditions.

In the case in which all the couplings are zero (a = b = k = A = () the total
action is zero, and variations in the edge lengths are only constrained by the (non-
trivial) measure of eq. (1.17). The edges then perform a constrained random walk,
.ad the situation corresponds to what might be called strong coupling and disordered
spacetime. Quantities of interest are the average curvature R

< 22.& ShAR >

R =<®> 4.
and the average curvature squared R?
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which are both dimensionless quantities, since they have been expressed 1n units of the
average edge length. One finds that at strong coupling the system tends to develop
an average negative curvature. Also, the value of R? is quite large, indicating a
significant deviation from flat space behavior. A measure of the ‘roughness’ of space-
time is given by the dimensionless ratio of curvature over square root of curvature

R <2 ,0nds >/(<4th‘5ﬁAi/Vh >)1f‘z p
VRE <2 aVh> < 2pVh > o

Adding the Einstein term (k # 0) does not improve the situation, and the curva-
sure remains large with large fluctuations, which is presumably a reflection of the
Lnbounded fluctuations in the conformal modes found in the continuum. For 2& =1
and for small higher derivative coupling (a = 4b = 0.005) the average curvature R
appears to depend very strongly on the value of the bare cosmological constant A.
Large values for the curvature squared R?, (at least for A = 1.0 and 0.5) are found
nd indicate that, for this choice of coupling constants, the geometry of space-tinie
s not well approximated by a smooth metric. This is in turn an indication that
with the Finstein and cosmological constant term only, one is in general far from the
lattice continuum limit!2=!4. Perhaps the average curvature can be made to vanish
by choosing A appropriately, but this would require fine-tuning. For larger A = 1.0
‘he curvature was found to be significantly smaller, but the jump in R is so large,
that it appears to be indicative of a discontinuous transition. The transition could be
connected with the lowest eigenvalue of the quadratic fluctuation matrix becoming
zero and then negative, as in the case of the regular tessellation agtil?, |

Thus it appears that in order to obtain a sensible path integral for pure lattice
eravity other terms need to be added to the action. Similar results for the pure
Dinstein action with a cosmological constant term have recently been obtained also
1 the framework of the hypercubic lattice model, where again no non-trivial fixed
point and therefore no sensible continuum hmit appears to exist!®.

squared




On the other hand, for larger higher derivative coupling (a = 4b = k*/X and A
= 0.5, 1.0 and 1.5) it was found that the curvature R is quite uniformly small and
negative, and appears to still decrease slightly when going from the 2* lattice to the
4* lattice. R? is now substantially smaller, an indication that the field configurations
are becoming smoother. More details about the results of the simulations can be
found in [12].

To compute the renormalized, effective low energy, cosmological constant in
units of the Planck mass one needs to determine the renormalized value of Newton’s
constant. Experimentally it is known that at large distances the dimensionless ratio
Ar/k% is about 107!%° or less®®. The renormalized cosmological constant Ag can be
obtained from the average curvature %. On the other hand one way of extracting the
renormalized Newton’s constant is via the connected edge (or curvature) two-point
function at geodesic distance d

1 o
Gog = TR < 2(d) 13(0) >, = Tug -%- as d — 0o (4.6)

where a and F label the different edge types at one point on the lattice (body prin-
cipal, face diagonal, etc.), and 7,3 is the appropriate spin-two projection matrix.
(If particles of other spin are contained in the correlation function (4.36), they can
be isolated by diagonalizing the propagation matrix G4g). On the other hand in
analogy to ordinary lattice gauge theories, the curvature correlations would seem to
have more physical content, and probably do not require some additional form of
gauge fixing. Because of the asymptotic freedom of higher derivative gravity theory,
the physical dimensionless ratio Ag/k% should be a computable number, and could
turn out to be fairly insensitive to the value of the bare couplings. Given the small
lattices that were employed, it appears rather difficult to reliably extract a value for
kr. Still, the results on the small lattices suggest that the curvature expressed in
units of kg {(i.e. R over kgr) is a perhaps a rather small number. But this could
just be an artifact of the lattice structure used and/or the small overall size. More
detailed and careful computations are needed to better understand and settle this
important issue. Also, little progress has been made yet in trying to address the
issue of unitarity and the positivity of correlation functions at large (compared to
the ultraviolet cutoff) distances. Eventually matter fields will have to be included as
well, and they could play a role similar to the higher derivative terms in stabilizing
the ground state.
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