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Abstract I review the lattice approach to quantum gravity, and how it relates to the
non-trivial ultraviolet fixed point scenario of the continuum theory. After a brief intro-
duction covering the general problem of ultraviolet divergences in gravity and other
non-renormalizable theories, I discuss the general methods and goals of the lattice
approach. An underlying theme is the attempt at establishing connections between the
continuum renormalization group results, which are mainly based on diagrammatic
perturbation theory, and the recent lattice results, which apply to the strong grav-
ity regime and are inherently non-perturbative. A second theme in this review is the
ever-present natural correspondence between infrared methods of strongly coupled
non-abelian gauge theories on the one hand, and the low energy approach to quantum
gravity based on the renormalization group and universality of critical behavior on the
other. Towards the end of the review I discuss possible observational consequences of
path integral quantum gravity, as derived from the non-trivial ultraviolet fixed point
scenario. I argue that the theoretical framework naturally leads to considering a weakly
scale-dependent Newton’s constant, with a scaling violation parameter related to the
observed scaled cosmological constant (and not, as naively expected, to the Planck
length).
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1 Introduction and motivation

Since the seventies strategies that deal with the problem of ultraviolet divergences
in quantum gravity have themselves diverged. Some have advocated the search for
a new theory of quantum gravity, a theory which does not suffer from ultraviolet
infinity problems. In supersymmetric theories, such as supergravity and ten-dimen-
sional superstrings, new and yet unobserved particles are introduced thus reducing
the divergence properties of Feynman amplitudes. In other, very restricted classes of
supergravity theories in four dimensions, proponents have claimed that enough con-
spiracies might arise thereby making these models finite. For superstrings, which live
in a ten-dimensional spacetime, one major obstacle prevails to date: what dynamical
mechanism would drive the compactification of spacetime from the ten dimensional
string universe to our physical four-dimensional world?

A second approach to quantum gravity has endeavored to pursue new avenues to
quantization, by introducing new quantum variables and new cutoffs, which involve
quantum Hamiltonian methods based on parallel transport loops, spacetime spin foam
and new types of quantum variables describing a quantum dust. It is characteristic of
these methods that the underlying theory is preserved: it essentially remains a quan-
tum version of Einstein’s relativistic theory, yet the ideas employed are intended to
go past the perturbative treatment. While some of these innovative tools have had
limited success in exploring the much simpler non-perturbative features of ordinary
gauge theories, proponents of such methods have argued that gravity is fundamentally
different, thereby necessitating the use of radically new methods.

The third approach to quantum gravity, which forms the topic of this review, focuses
instead on the application of modern methods of quantum field theory. Its cornerstones
include the manifestly covariant Feynman path integral approach, Wilson’s modern
renormalization group ideas and the development of lattice methods to define a regu-
larized form of the path integral, which would then allow controlled non-perturbative
calculations. In non-abelian gauge theories and in the standard model of elementary
particle interactions, these methods are invariably the tools of choice: the covariant
Feynman path integral approach is crucial in proving the renormalizability of non-
abelian gauge theories; modern renormalization group methods establish the core of
the derivation of the asymptotic freedom result and related discussions of momentum
dependence of amplitudes in terms of a running coupling constant; and finally, the
lattice formulation of gauge theories, which so far provides the only convincing the-
oretical evidence of confinement and chiral symmetry breaking in non-abelian gauge
theories.

2 Ultraviolet divergences and perturbative non-renormalizability

In gravity the coupling is dimensionful, G ∼ µ2−d , and one expects trouble in four
dimensions already on purely dimensional grounds, with divergent one loop correc-
tions proportional to G�d−2 where � is the ultraviolet cutoff. Phrased differently,
one expects to lowest order some seriously bad ultraviolet behavior from the running
of Newton’s constant at large momenta,
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G(k2) /G ∼ 1 + const. G kd−2 + O(G2). (1)

While problematic in four dimensions, these considerations also suggest that ordinary
Einstein gravity should be perturbatively renormalizable in the traditional sense in two
dimensions, an issue to which we will return later.

The more general argument for perturbative non-renormalizability goes as follows.
The gravitational action contains the scalar curvature R which involves two deriv-
atives of the metric. Thus the graviton propagator in momentum space will go like
1/k2, and the vertex functions like k2. In d dimensions each loop integral with involve
a momentum integration ddk, so that the superficial degree of divergence D of a
Feynman diagram with L loops will be given by

D = 2 + (d − 2) L (2)

independent of the number of external lines. One concludes that for d > 2 the degree
of ultraviolet divergence increases with increasing loop order L .

The most convenient tool to determine the structure of the divergent one-loop cor-
rections to Einstein gravity is the background field method combined with dimensional
regularization, wherein ultraviolet divergences appear as poles in ε = d − 4. In non-
Abelian gauge theories the background field method greatly simplifies the calculation
of renormalization factors, while at the same time maintaining explicit gauge invari-
ance. The essence of the method is easy to describe: one replaces the original field
appearing in the classical action by A + Q, where A is a classical background field
and Q the quantum fluctuation. A suitable gauge condition is chosen (the background
gauge), such that manifest gauge invariance is preserved for the background A field.
After expanding out the action to quadratic order in the Q field, the functional inte-
gration over Q is performed, leading to an effective action for the background A field.
This method eventually determines, after a rather lengthy calculation, the required
one-loop counterterm for pure gravity

�Lg =
√

g

8π2(d − 4)

(
1

120
R2 + 7

20
RµνRµν

)
. (3)

There are two interesting, and interrelated, aspects of the result of (3). The first one
is that for pure gravity the divergent part vanishes when one imposes the tree-level
equations of motion Rµν = 0: the one-loop divergence vanishes on-shell. The second
interesting aspect is that the specific structure of the one-loop divergence is such that
its effect can actually be re-absorbed into a field redefinition,

gµν → gµν + δgµν δgµν ∝ 7

20
Rµν − 11

60
Rgµν (4)

which renders the one-loop amplitudes finite for pure gravity. It appears though that
these two aspects are largely coincidental; unfortunately this hoped-for mechanism
does not seem to work to two loops, and no additional miraculous cancellations seem
to occur there.
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One can therefore attempt to summarize the (perturbative) situation so far as fol-
lows: In principle perturbation theory in G in provides a clear, covariant framework in
which radiative corrections to gravity can be computed in a systematic loop expansion.
The effects of a possibly non-trivial gravitational measure do not show up at any order
in the weak field expansion, and radiative corrections affecting the renormalization
of the cosmological constant, proportional to δd(0), are set to zero in dimensional
regularization.

At the same time, at every order in the loop expansion new invariant terms involv-
ing higher derivatives of the metric are generated, whose effects cannot simply be
absorbed into a re-definition of the original couplings. As expected on the basis of
power-counting arguments, the theory is not perturbatively renormalizable in the tra-
ditional sense in four dimensions (although it seems to fail this test by a small measure
in lowest order perturbation theory).

Thus the standard approach based on a perturbative expansion of the pure Einstein
theory in four dimensions is clearly not convergent (it is in fact badly divergent), and
represents therefore a temporary dead end. The key question is therefore if this is an
artifact of naive perturbation theory, or not.

3 Feynman path integral for quantum gravitation

If non-perturbative effects play an important role in quantum gravity, then one would
expect the need for an improved formulation of the quantum theory is, which would
not rely exclusively on the framework of a perturbative expansion. After all, the fluctu-
ating metric field gµν is dimensionless, and carries therefore no natural scale. For the
somewhat simpler cases of a scalar field and non-Abelian gauge theories a consistent
non-perturbative formulation based on the Feynman path integral has been known for
some time, and is by now well developed. In a nutshell, the Feynman path integral
formulation for pure quantum gravitation can be expressed in the functional integral
formula

Z =
∫

geometries

e
i
h̄ Igeometry , (5)

just like the Feynman path integral for a non-relativistic quantum mechanical particle
expresses quantum-mechanical amplitudes in terms of sums over paths

A(i → f ) =
∫

paths

e
i
h̄ Ipath . (6)

What is the precise meaning of the expression in (5)? In the case of quantum fields, one
is generally interested in a vacuum-to-vacuum amplitude, which requires ti → −∞
and t f → +∞. For a scalar field the functional integral with sources is generally of
the form
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Z [J ] =
∫

[dφ] exp

{
i
∫

d4x[L(x)+ J (x)φ(x)]
}

(7)

where [dφ] = ∏x dφ(x), and L the usual Lagrangian density for a scalar field. It
is important to note that even with an underlying lattice discretization, the integral
in (7) is in general ill-defined without a damping factor, due to the overall i in the
exponent. Advances in axiomatic field theory indicate that if one is able to construct a
well defined field theory in Euclidean space x = (x, τ ) obeying certain axioms, then
there is a corresponding field theory in Minkowski space (x, t) t = − i τ defined as
an analytic continuation of the Euclidean theory, such that it obeys the Wightmann
axioms.

Turning to the case of gravity, it should be clear that at least to all orders in the
weak field expansion there is really no difference of substance between the Lorentz-
ian (or pseudo-Riemannian) and the Euclidean (or Riemannian) formulation. Indeed
most, if not all, of the perturbative calculations of the preceding section could have
been carried out with the Riemannian weak field expansion about flat Euclidean space
gµν = δµν+hµν with signature ++++, or about some suitable classical Riemannian
background manifold. Now in function space one needs a metric before one can define
a volume element. Therefore, following DeWitt, one needs first to define an invariant
norm for metric deformations

‖δg‖2 =
∫

dd x δgµν(x)Gµν,αβ
(
g(x)
)
δgαβ(x), (8)

with the supermetric G given by the ultra-local expression

Gµν,αβ
(
g(x)
) = 1

2

√
g(x)

[
gµα(x)gνβ(x)+ gµβ(x)gνα(x)+ λ gµν(x)gαβ(x)

]
(9)

with λ a real parameter, λ �= −2/d. The DeWitt supermetric then defines a suitable
volume element

√
G in function space, such that the functional measure over the gµν’s

taken on the form
∫

[d gµν] ≡
∫ ∏

x

[
det G(g(x))

]1/2 ∏
µ≥ν

dgµν(x). (10)

Thus the local measure for the Feynman path integral for pure gravity is given by

∫ ∏
x

[
g(x)
](d−4)(d+1)/8 ∏

µ≥ν
dgµν(x) (11)

In four dimensions this becomes simply

∫
[d gµν] =

∫ ∏
x

∏
µ≥ν

dgµν(x) (12)
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However it is not obvious that the above construction is unique. A more general
measure would contain the additional volume factor gσ/2 in a slightly more general
gravitational functional measure

∫
[dgµν] =

∏
x

[g(x)]σ/2
∏
µ≥ν

dgµν(x), (13)

Therefore it is important in this context that one can show that the gravitational func-
tional measure of (13) is invariant under infinitesimal general coordinate transforma-
tions, irrespective of the value of σ .

So in conclusion, the Euclidean Feynman path integral for pure Einstein gravity
with a cosmological constant term is given by

Zcont =
∫

[d gµν] exp
{
−λ0

∫
dx

√
g + 1

16πG

∫
dx

√
g R
}
. (14)

Still not all is well. Euclidean quantum gravity suffers potentially from a disastrous
problem associated with the conformal instability: the presence of kinetic contribu-
tions to the linearized action entering with the wrong sign. If one writes down a path
integral for pure gravity in the form of (14) one realizes that it appears ill defined due
to the fact that the scalar curvature can become arbitrarily positive. In turn this can be
seen as related to the fact that while gravitational radiation has positive energy, gravi-
tational potential energy is negative, because gravity is attractive. To see more clearly
that the gravitational action can be made arbitrarily negative consider the conformal
transformation g̃µν = 
2gµν where 
 is some positive function. Then the Einstein
action transforms into

IE (g̃) = − 1

16πG

∫
d4x

√
g (
2 R + 6 gµν∂µ
 ∂ν
). (15)

which can be made arbitrarily negative by choosing a rapidly varying conformal factor

. Indeed in the simplest case of a metric gµν = 
2ηµν one has

√
g (R − 2λ) = 6 gµν∂µ
 ∂ν
− 2λ
4 (16)

which looks like a λφ4 theory but with the wrong sign for the kinetic term. The prob-
lem is referred to as the conformal instability of the classical Euclidean gravitational
action.

A possible solution to the unboundedness problem of the Euclidean theory is that
perhaps it should not be regarded as necessarily an obstacle to defining a quantum
theory non-perturbatively. After all the quantum mechanical attractive Coulomb well
problem has, for zero orbital angular momentum or in the one-dimensional case, a
similar type of instability, since the action there is also unbounded from below. The
way the quantum mechanical treatment ultimately evades the problem is that the parti-
cle has a vanishingly small probability amplitude to fall into the infinitely deep well. In
quantum gravity the question regarding the conformal instability can then be rephrased
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in a similar way: will the quantum fluctuations in the metric be strong enough so that
physical excitations will not fall into the conformal well? Of course to answer such
questions satisfactorily one needs a formulation which is not restricted to small fluc-
tuations, perturbation theory and the weak field limit. Ultimately in the lattice theory
the answer seems yes, at least for sufficiently strong coupling G.

4 Perturbatively non-renormalizable theories: the sigma model

Einstein gravity is not perturbatively renormalizable in the traditional sense in four
dimensions. Concretely this means that to one-loop order higher derivative terms are
generated as radiative corrections with divergent coefficients. The natural question
then arises: Are there any other field theories where the standard perurbative treat-
ment fails, yet for which one can find alternative methods and from them develop
consistent predictions? The answer seems unequivocally yes. Indeed outside of grav-
ity, there are two notable examples of field theories, the non-linear sigma model and the
self-coupled fermion model, which are not perturbatively renormalizable for d > 2,
and yet lead to consistent, and in some instances testable, predictions above d = 2.

The key ingredient to all of these results is, as originally recognized by Wilson,
the existence of a non-trivial ultraviolet fixed point (a phase transition in statistical
field theory), with non-trivial universal scaling dimensions. Furthermore, one is lucky
enough that for the non-linear σ -model three quite different theoretical approaches
are available for comparing quantitative predictions: the 2 + ε expansion, the large-N
limit, and the lattice approach. Within the lattice approach, several additional tech-
niques become available: the strong coupling expansion, the weak coupling expansion,
real space renormalization group methods, and the numerically exact evaluation of the
path integral. Finally, the results for the non-linear sigma model in the scaling regime
around the non-trivial ultraviolet fixed point can be compared to recent high accuracy
satellite (space shuttle) experiments on three-dimensional systems, and the results
agree, the O(2) non-linear σ -model in three dimensions, in some cases to several
decimals, providing one of the most accurate tests of quantum field theory to date!

Concretely, the non-linear σ -model is a simple model describing the dynamics of
an N -component field φa satisfying a unit constraint φ2(x) = 1, and with functional
integral given by

Z [J ] =
∫

[dφ]
∏

x

δ [φ(x) · φ(x)− 1] exp

(
−�

d−2

g
S(φ)+

∫
dd x J (x) · φ(x)

)
.

(17)

The action is taken to be O(N )-invariant

S(φ) = 1

2

∫
dd x ∂µφ(x) · ∂µφ(x) (18)

� here is the ultraviolet cutoff and g the bare dimensionless coupling at the cutoff
scale �; in a statistical field theory context g plays the role of a temperature, and �
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is proportional to the inverse lattice spacing. Above two dimensions, d − 2 = ε > 0
and a perturbative calculation determines the coupling renormalization. One finds for
the effective coupling ge using dimensional regularization

1

ge
= �ε

g

[
1 − 1

ε

N − 2

2π
g + O(g2)

]
(19)

This then gives immediately the Callan-Symanzik β-function for g

�
∂ g

∂ �
= β(g) = εg − N − 2

2π
g2 + O

(
g3, εg2

)
(20)

which determines the scale dependence of g(µ) for an arbitrary momentum scale µ.
The scale dependence of g(µ) is such that if the initial g is less than the ultraviolet
fixed point value gc, with

gc = 2πε

N − 2
+ · · · (21)

then the coupling will flow towards the Gaussian fixed point at g = 0. The new phase
that appears when ε > 0 and corresponds to a low temperature, spontaneously broken
phase with finite order parameter. On the other hand if g > gc then the coupling g(µ)
flows towards increasingly strong coupling, and eventually out of reach of perturbation
theory. In two dimensions the β-function has no zero and only the strong coupling
phase is present.

The one-loop running of g as a function of a sliding momentum scale µ = k and
ε > 0 can be obtained by integrating (20),

g(k2) = gc

1 ± a0 (m2/k2)(d−2)/2
(22)

with a0 a positive constant and m a mass scale; the combination a0 md−2 is just the inte-
gration constant for the differential equation. The choice of + or − sign is determined
from whether one is to the left (+), or to right (−) of gc, in which case g(k2) decreases
or, respectively, increases as one flows away from the ultraviolet fixed point. It is cru-
cial to realize that the renormalization group invariant mass scale ∼m arises here as
an arbitrary integration constant of the renormalization group equations, and cannot
be determined from perturbative arguments alone. One can integrate the β-function
equation in (20) to obtain the renormalization group invariant quantity

ξ−1(g) = m(g) = const. � exp

⎛
⎝−

g∫
dg′

β(g′)

⎞
⎠ (23)

which is identified with the correlation length appearing in physical correlation func-
tions. The multiplicative constant in front of the expression on the right hand side arises
as an integration constant, and cannot be determined from perturbation theory in g.
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In the vicinity of the fixed point at gc one can do the integral in (23), using (21) and
the resulting linearized expression for the β-function in the vicinity of the non-trivial
ultraviolet fixed point,

β(g) ∼
g→gc

β ′(gc) (g − gc)+ · · · (24)

and one finds

ξ−1(g) = m(g) ∝ �|g − gc|ν (25)

with a correlation length exponent ν = −1/β ′(gc) ∼ 1/(d − 2) + · · ·. Thus the
correlation length ξ(g) diverges as one approaches the fixed point at gc.

It is important to note that the above results can be tested experimentally. A recent
sophisticated space shuttle experiment (Lipa et al. 2003) has succeeded in measuring
the specific heat exponent α = 2 − 3ν of superfluid Helium (which is supposed to
share the same universality class as the N = 2 non-linear σ -model, with the complex
phase of the superfluid condensate acting as the order parameter) to very high accuracy

α = −0.0127 (3). (26)

Previous theoretical predictions for the N = 2 model include the most recent four-
loop 4 − ε continuum result α = −0.01126(10), a recent lattice Monte Carlo esti-
mate α = −0.0146(8), and the lattice variational renormalization group prediction
α = −0.0125(39). One more point that should be mentioned here is that in the large
N limit the non-linear σ -model can be solved exactly. This allows an independent
verification of the correctness of the general ideas presented earlier, as well as a direct
comparison of explicit results for universal quantities. The general shape of β(g) is of
the type shown in Fig. 1, with gc a stable non-trivial UV fixed point, and g = 0 and
g = ∞ two stable (trivial) IR fixed points.

Perhaps the core message one gains from the discussion of the non-linear σ -model
in d > 2 is that:

The model provides a specific example of a theory which is not perturbatively
renormalizable in the traditional sense, and for which the naive perturbative expan-
sion in fixed dimension leads to uncontrollable divergences and inconsistent results.

Fig. 1 The β-function for the
non-linear σ -model in the 2 + ε

expansion and in the large-N
limit, for d > 2 β (g)

ggc
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Yet the model can be constructed perturbatively in terms of a double expansion in g
and ε = d − 2. This new perturbative expansion, combined with the renormalization
group, in the end provides explicit and detailed information about universal scaling
properties of the theory in the vicinity of the non-trivial ultraviolet point at gc.

And finally, that the continuum field theory predictions obtained this way generally
agree, for distances much larger than the cutoff scale, with lattice results, and, perhaps
most importantly, with high precision experiments on systems belonging to the same
universality class of the O(N ) model. Indeed the theory results provide one of the
most accurate predictions of quantum field theory to date!

5 Phases of gravity in 2 + ε dimensions

Can any of these lessons be applied to gravity? In two dimensions the gravitational
coupling becomes dimensionless, G ∼ �2−d , and the theory appears therefore per-
turbatively renormalizable. In spite of the fact that the gravitational action reduces to a
topological invariant in two dimensions, it would seem meaningful to try to construct,
in analogy to what was suggested originally by Wilson for scalar field theories, the
theory perturbatively as a double series in ε = d − 2 and G. One first notices though
that in pure Einstein gravity, with Lagrangian density

L = − 1

16πG0

√
g R, (27)

the bare coupling G0 can be completely reabsorbed by a field redefinition

gµν = ω g′
µν (28)

with ω is a constant, and thus the renormalization properties of G0 have no physical
meaning for this theory. The situation changes though when one introduces a sec-
ond dimensionful quantity to compare to. In the pure gravity case this contribution is
naturally supplied by the cosmological constant term proportional to λ0,

L = − 1

16πG0

√
g R + λ0

√
g (29)

Under a rescaling of the metric as in (28) one has

L = − 1

16πG0
ωd/2−1

√
g′ R′ + λ0 ω

d/2
√

g′ (30)

which is interpreted as a rescaling of the two bare couplings

G0 → ω−d/2+1G0, λ0 → λ0 ω
d/2 (31)

leaving the dimensionless combination Gd
0λ

d−2
0 unchanged. Therefore only the lat-

ter combination has physical meaning in pure gravity. In particular, one can always
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choose the scale ω = λ
−2/d
0 so as to adjust the volume term to have a unit coefficient.

The 2 + ε expansion for pure gravity then proceeds as follows. First the gravitational
part of the action

L = − µε

16πG

√
g R, (32)

with G dimensionless and µ an arbitrary momentum scale, is expanded by setting

gµν → ḡµν = gµν + hµν (33)

where gµν is the classical background field and hµν the small quantum fluctuation.
The quantity L in (32) is naturally identified with the bare Lagrangian, and the scaleµ
with a microscopic ultraviolet cutoff�, the inverse lattice spacing in a lattice formula-
tion. Since the resulting perturbative expansion is generally reduced to the evaluation
of Gaussian integrals, the original constraint (in the Euclidean theory)

det gµν(x) > 0 (34)

is no longer enforced the same is not true in the lattice regulated theory, where it
plays an important role. In order to perform the perturbative calculation of the one-
loop divergences a gauge fixing term needs to be added, in the form of a background
harmonic gauge condition,

Lg f = 1

2
α
√

g gνρ

(
∇µhµν − 1

2
βgµν∇µh

)(
∇λhλρ − 1

2
βgλρ∇λh

)
(35)

with hµν = gµαgνβhαβ , h = gµνhµν and ∇µ the covariant derivative with respect to
the background metric gµν ; here α and β are some gauge fixing parameters. The gauge
fixing term also gives rise to a Faddeev-Popov ghost contribution Lghost containing
the ghost field ψµ, so that the total Lagrangian becomes L + Lg f + Lghost. After the
dust settles, the one-loop radiative corrections modify the total Lagrangian to

L → − µε

16πG

(
1 − b

ε
G

)√
gR + λ0

[
1 −
(a1

ε
+ a2

ε2

)
G
]√

g (36)

where a1 and a2 are some constants. Next one can make use of the freedom to rescale
the metric, by setting

[
1 −
(a1

ε
+ a2

ε2

)
G
]√

g = √g′ (37)

which restores the original unit coefficient for the cosmological constant term. The
rescaling is achieved by a suitable field redefinition

gµν =
[
1 −
(a1

ε
+ a2

ε2

)
G
]−2/d

g′
µν (38)
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Hence the cosmological term is brought back into the standard form λ0
√

g′, and one
obtains for the complete Lagrangian to first order in G

L → − µε

16πG

[
1 − 1

ε

(
b − 1

2
a2

)
G

]√
g′ R′ + λ0

√
g′ (39)

where only terms singular in ε have been retained. In particular one notices that only
the combination b − 1

2 a2 has physical meaning, and can in fact be shown to be gauge
independent. From this last result one can finally read off the renormalization of
Newton’s constant

1

G
→ 1

G

[
1 − 1

ε

(
b − 1

2
a2

)
G

]
. (40)

The a2 contribution cancels out the gauge-dependent part of b, giving for the remaining
contribution b − 1

2 a2 = 2
3 · 19.

In the presence of an explicit renormalization scale parameter µ the β-function
for pure gravity is obtained by requiring the independence of the quantity Ge (here
identified as an effective coupling constant, with lowest order radiative corrections
included) from the original renormalization scale µ,

µ
d

dµ
Ge = 0

(41)
1

Ge
≡ µε

G(µ)

[
1 − 1

ε

(
b − 1

2
a2

)
G(µ)

]
.

To first order in G, one has from (41)

µ
∂

∂µ
G = β(G) = ε G − β0 G2 + O(G3,G2ε) (42)

with, by explicit calculation, β0 = 2
3 · 19. From the procedure outlined above it is

clear that G is the only coupling that is scale-dependent in pure gravity.
Matter fields can be included as well. When NS scalar fields and NF Majorana

fermion fields are added, the results of (40) and (41) are modified to

b → b − 2

3
c (43)

with c = NS + 1
2 NF , and therefore for the combined β-function of (42) to one-loop

order one has β0 = 2
3 (19 − c). One noteworthy aspect of the perturbative calculation

is the appearance of a non-trivial ultraviolet fixed point at Gc = (d − 2)/β0 for which
β(Gc) = 0, whose physical significance is discussed below.
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Fig. 2 The renormalization
group β-function for gravity in
2 + ε dimensions. The arrows
indicate the coupling constant
flow as one approaches
increasingly larger distance
scales

β (G)

GGc

In the meantime the calculations have been laboriously extended to two loops, with
the result

µ
∂

∂µ
G = β(G) = ε G − β0 G2 − β1 G3 + O(G4,G3ε,G2ε2) (44)

with β0 = 2
3 (25 − c) and β1 = 20

3 (25 − c). The gravitational β-function of (42) and
(44) determines the scale dependence of Newton’s constant G for d close to two. It
has the general shape shown in Fig. 2. Because one is left, for the reasons described
above, with a single coupling constant in the pure gravity case, the discussion becomes
in fact quite similar to the non-linear σ -model case.

For a qualitative discussion of the physics it will be simpler in the following to just
focus on the one loop result of (42); the inclusion of the two-loop correction does not
alter the qualitative conclusions by much, as it has the same sign as the lower order,
one-loop term. Depending on whether one is on the right (G > Gc) or on the left
(G < Gc) of the non-trivial ultraviolet fixed point at

Gc = d − 2

β0
+ O((d − 2)2) (45)

(with Gc positive provided one has c < 25) the coupling will either flow to increasingly
larger values of G, or flow towards the Gaussian fixed point at G = 0, respectively.
The running of G as a function of a sliding momentum scale µ = k in pure gravity
can be obtained by integrating (42), and one has

G(k2) � Gc

[
1 + a0

(
m2

k2

)(d−2)/2

+ · · ·
]

(46)

with a0 a positive constant and m a mass scale. The choice of + or − sign is deter-
mined from whether one is to the left (+), or to right (−) of Gc, in which case the
effective G(k2) decreases or, respectively, increases as one flows away from the ultra-
violet fixed point towards lower momenta, or larger distances. Physically the two
solutions represent a screening (G < Gc) and an anti-screening (G > Gc) situation.
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The renormalization group invariant mass scale ∼m arises here as an arbitrary inte-
gration constant of the renormalization group equations. At energies sufficiently high
to become comparable to the ultraviolet cutoff, the gravitational coupling G flows
towards the ultraviolet fixed point G(k2) ∼k2→�2 G(�) where G(�) is the coupling
at the cutoff scale �, to be identified with the bare or lattice coupling. Note that the
quantum correction involves a new physical, renormalization group invariant scale
ξ = 1/m which cannot be fixed perturbatively, and whose size determines the scale
for the quantum effects. In terms of the bare coupling G(�), it is given by

m = Am ·� exp

⎛
⎝−

G(�)∫
dG ′

β(G ′)

⎞
⎠ (47)

which just follows from integrating µ ∂
∂µ

G = β(G) and then setting µ → �. The
constant Am on the r.h.s. of (47) cannot be determined perturbatively, and needs to be
computed by non-perturbative (lattice) methods.

At the fixed point G = Gc the theory is scale invariant by definition. In statis-
tical field theory language the fixed point corresponds to a phase transition, where
the correlation length ξ = 1/m diverges and the theory becomes scale (conformally)
invariant. In general in the vicinity of the fixed point, for which β(G) = 0, one can
write

β(G) ∼
G→Gc

β ′(Gc) (G − Gc)+ O((G − Gc)
2) (48)

If one then defines the exponent ν by

β ′(Gc) = −1/ν (49)

then from (47) one has by integration in the vicinity of the fixed point

m ∼
G→Gc

� · Am | G(�)− Gc|ν . (50)

which is why ν is often referred to as the mass gap exponent. Solving the above equa-
tion (with� → k) for G(k) one obtains back (46). The discussion given above is not
altered significantly, at least in its qualitative aspects, by the inclusion of the two-loop
correction of (44). One finds

Gc = 3

2 (25 − c)
ε − 45

2(25 − c)2
ε2 + · · ·

(51)
ν−1 = ε + 15

25 − c
ε2 + · · ·

which gives, for pure gravity without matter (c = 0) in four dimensions, to lowest
order ν−1 = 2, and ν−1 ≈ 4.4 at the next order. The key question raised by the per-
turbative calculations is therefore: what remains of the above phase transition in four

123



Quantum gravity on the lattice

dimensions, how are the two phases of gravity characterized there non-perturbatively,
and what is the value of the exponent ν determining the running of G in the vicinity
of the fixed point in four dimensions.

6 Lattice regularized quantum gravity

The following section is based on the lattice discretized description of gravity orig-
inally due to Regge, where the Einstein theory is expressed in terms of a simplicial
decomposition of space-time manifolds. Its use in quantum gravity is prompted by
the desire to make use of techniques developed in lattice gauge theories, but with a
lattice which reflects the structure of space-time rather than just providing a flat passive
background. It also allows one to use powerful nonperturbative analytical techniques
of statistical mechanics as well as numerical methods.

On the lattice the infinite number of degrees of freedom in the continuum is
restricted, by considering Riemannian spaces described by only a finite number of
variables, the geodesic distances between neighboring points. Such spaces are taken
to be flat almost everywhere and referred to as piecewise linear. The elementary build-
ing blocks for d-dimensional space-time are simplices of dimension d. A 0-simplex
is a point, a 1-simplex is an edge, a 2-simplex is a triangle, a 3-simplex is a tetra-
hedron. A d-simplex is a d-dimensional object with d + 1 vertices and d(d + 1)/2
edges connecting them. It has the important property that the values of its edge lengths
specify the shape, and therefore the relative angles, uniquely. A simplicial complex
can then be viewed as a set of simplices glued together in such a way that either two
simplices are disjoint or they touch at a common face. The relative position of points
on the lattice is thus completely specified by an incidence matrix (it tells which point
is next to which) and the edge lengths, and this in turn induces a metric structure on
the piecewise linear space. Finally the polyhedron constituting the union of all the
simplices of dimension d is called a geometrical complex or skeleton.

Consider a general simplicial lattice in d dimensions, made out of a collection of
flat d-simplices glued together at their common faces so as to constitute a triangulation
of a smooth continuum manifold, such as the d-torus, or the surface of a sphere. If we
focus on one such d-simplex, it will itself contain sub-simplices of smaller dimensions;
as an example in four dimensions a given four-simplex will contain five tetrahedra, ten
triangles (also referred to as hinges in four dimensions), ten edges and five vertices.
In general, an n-simplex will contain

(n+1
k+1

)
k-simplices in its boundary. It will be

natural in the following to label simplices by the letter s, faces by f and hinges by
h. A general connected, oriented simplicial manifold consisting of Ns d−simplices
will also be characterized by an incidence matrix Is,s′ , whose matrix element Is,s′ is
chosen to be equal to one if the two simplices labeled by s and s′ share a common
face, and zero otherwise.

The geometry of the interior of a d-simplex is assumed to be flat, and is therefore
completely specified by the lengths of its d(d + 1)/2 edges. Let xµ(i) be the µth
coordinate of the i th site. For each pair of neighboring sites i and j the link length
squared is given by the usual expression

l2
i j = ηµν [x(i)− x( j)]µ [x(i)− x( j)]ν (52)
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with ηµν the flat metric. It is therefore natural to associate, within a given simplex
s, an edge vector lµi j (s) with the edge connecting site i to site j . When focusing on
one such n-simplex it will be convenient to label the vertices by 0, 1, 2, 3, . . . , n and
denote the square edge lengths by l2

01 = l2
10, …, l2

0n . The simplex can then be spanned
by the set of n vectors e1, … , en connecting the vertex 0 to the other vertices. To
the remaining edges within the simplex one then assigns vectors ei j = ei − e j with
1 ≤ i < j ≤ n. One has therefore n independent vectors, but 1

2 n(n + 1) invariants
given by all the edge lengths squared within s. In the interior of a given n−simplex
one can also assign a second, orthonormal (Lorentz) frame, which we will denote in
the following by �(s). The expansion coefficients relating this orthonormal frame to
the one specified by the n directed edges of the simplex associated with the vectors ei

is the lattice analog of the n-bein or tetrad ea
µ. Within each n-simplex one can define

a metric

gi j (s) = ei · e j , (53)

with 1 ≤ i, j ≤ n, and which in the Euclidean case is positive definite. In components
one has gi j = ηabea

i eb
j . In terms of the edge lengths li j = |ei − e j |, the metric is given

by

gi j (s) = 1

2

(
l2
0i + l2

0 j − l2
i j

)
. (54)

Comparison with the standard expression for the invariant interval ds2 = gµνdxµdxν

confirms that for the metric in (54) coordinates have been chosen along the n ei

directions.
The volume of a general n-simplex is given by the n-dimensional generalization of

the well-known formula for a tetrahedron, namely

Vn(s) = 1

n!
√

det gi j (s). (55)

It is possible to associate p-forms with lower dimensional objects within a simplex,
which will become useful later. With each face f of an n-simplex (in the shape of a
tetrahedron in four dimensions) one can associate a vector perpendicular to the face

ω( f )α = εαβ1...βn−1 eβ1
(1) . . . e

βn−1
(n−1) (56)

where e(1), . . . , e(n−1) are a set of oriented edges belonging to the face f , and εα1,... ,αn

is the sign of the permutation (α1, . . . , αn).
The volume of the face f is then given by

Vn−1( f ) =
(

n∑
α=1

ω2
α( f )

)1/2

(57)
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Similarly, one can consider a hinge (a triangle in four dimensions) spanned by edges
e(1),. . ., e(n−2). One defines the (un-normalized) hinge bivector

ω(h)αβ = εαβγ1...γn−2 eγ1
(1) . . . e

γn−2
(n−2) (58)

with the area of the hinge then given by

Vn−2(h) = 1

(n − 2)!

⎛
⎝∑
α<β

ω2
αβ(h)

⎞
⎠

1/2

(59)

Next, in order to introduce curvature, one needs to define the dihedral angle between
faces in an n-simplex. In an n-simplex s two n −1-simplices f and f ′ will intersect on
a common n − 2-simplex h, and the dihedral angle at the specified hinge h is defined
as

cos θ( f, f ′) = ω( f )n−1 · ω( f ′)n−1

Vn−1( f ) Vn−1( f ′)
(60)

where the scalar product appearing on the r.h.s. can be re-written in terms of squared
edge lengths using

ωn · ω′
n = 1

(n!)2 det(ei · e′
j ) (61)

and ei · e′
j in turn expressed in terms of squared edge lengths by the use of (54) (Note

that the dihedral angle θ would have to be defined as π minus the arccosine of the
expression on the r.h.s. if the orientation for the e’s had been chosen in such a way that
the ω’s would all point from the face f inward into the simplex s). As an example, in
two dimensions and within a given triangle, two edges will intersect at a vertex, giving
θ as the angle between the two edges. In three dimensions within a given simplex two
triangles will intersect at a given edge, while in four dimension two tetrahedra will
meet at a triangle. For the special case of an equilateral n-simplex, one has simply
θ = arccos 1

n .
In a piecewise linear space curvature is detected by going around elementary loops

which are dual to a (d −2)-dimensional subspace. From the dihedral angles associated
with the faces of the simplices meeting at a given hinge h one can compute the deficit
angle δ(h), defined as

δ(h) = 2π −
∑
s⊃h

θ(s, h) (62)

where the sum extends over all simplices s meeting on h. It then follows that the deficit
angle δ is a measure of the curvature at h.

Since the interior of each simplex s is assumed to be flat, one can assign to it
a Lorentz frame �(s). Furthermore inside s one can define a d-component vector
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φ(s) = (φ0, . . . , φd−1). Under a Lorentz transformation of �(s), described by the
d × d matrix �(s) satisfying the usual relation for Lorentz transformation matrices

�T η� = η (63)

the vector φ(s) will rotate to

φ′(s) = �(s) φ(s) (64)

The base edge vectors eµi = lµ0i (s) themselves are of course an example of such a
vector. Next consider two d-simplices, individually labeled by s and s′, sharing a
common face f (s, s′) of dimensionality d − 1. It will be convenient to label the d
edges residing in the common face f by indices i, j = 1, . . . , d. Within the first
simplex s one can then assign a Lorentz frame �(s), and similarly within the second
s′ one can assign the frame �(s′). The 1

2 d(d − 1) edge vectors on the common inter-
face f (s, s′) (corresponding physically to the same edges, viewed from two different
coordinate systems) are expected to be related to each other by a Lorentz rotation R,

lµi j (s
′) = Rµν(s

′, s) lνi j (s) (65)

Under individual Lorentz rotations in s and s′ one has of course a corresponding
change in R, namely R → �(s′)R(s′, s)�(s). In the Euclidean d-dimensional case
R is an orthogonal matrix, element of the group SO (d). In the absence of torsion, one
can use the matrix R(s′, s) to describes the parallel transport of any vector φµ from
simplex s to a neighboring simplex s′,

φµ(s′) = Rµν(s
′, s) φν(s) (66)

R therefore describes a lattice version of the connection. Indeed in the continuum such
a rotation would be described by the matrix

Rµν =
(

e�·dx
)µ
ν

(67)

with �λµν the affine connection. The coordinate increment dx is interpreted as joining
the center of s to the center of s′, thereby intersecting the face f (s, s′). On the other
hand, in terms of the Lorentz frames �(s) and �(s′) defined within the two adjacent
simplices, the rotation matrix is given instead by

Ra
b(s

′, s) = ea
µ(s

′) eνb(s) Rµν(s
′, s) (68)

(this last matrix reduces to the identity if the two orthonormal bases�(s) and�(s′) are
chosen to be the same, in which case the connection is simply given by R(s′, s) νµ =
e a
µ eνa). Note that it is possible to choose coordinates so that R(s, s′) is the unit matrix

for one pair of simplices, but it will not then be unity for all other pairs if curvature is
present.
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This last set of results will be useful later when discussing lattice Fermions. Let us
consider here briefly the problem of how to introduce lattice spin rotations. Given in
d dimensions the above rotation matrix R(s′, s), the spin connection S(s, s′) between
two neighboring simplices s and s′ is defined as follows. Consider S to be an element
of the 2ν-dimensional representation of the covering group of SO(d), Spin(d), with
d = 2ν or d = 2ν + 1, and for which S is a matrix of dimension 2ν × 2ν . Then R can
be written in general as

R = exp

[
1

2
σαβθαβ

]
(69)

where θαβ is an antisymmetric matrix. The σ ’s are 1
2 d(d − 1) d × d matrices, gen-

erators of the Lorentz group (SO(d) in the Euclidean case, and SO(d − 1, 1) in the
Lorentzian case), whose explicit form is

[
σαβ
]γ
δ

= δγα ηβδ − δ
γ
β ηαδ. (70)

For fermions the corresponding spin rotation matrix is then obtained from

S = exp

[
i

4
γ αβθαβ

]
(71)

with generators γ αβ = 1
2i [γ α, γ β ], and with the Dirac matrices γ α satisfying as usual

γ αγ β + γ βγ α = 2 ηαβ . Taking appropriate traces, one can obtain a direct relation-
ship between the original rotation matrix R(s, s′) and the corresponding spin rotation
matrix S(s, s′)

Rαβ = tr
(

S† γα S γβ
)
/ tr 1 (72)

which determines the spin rotation matrix up to a sign.
One can consider a sequence of rotations along an arbitrary path P(s1, . . . , sn+1)

going through simplices s1, . . . , sn+1, whose combined rotation matrix is given by

R(P) = R(sn+1, sn) · · · R(s2, s1) (73)

and which describes the parallel transport of an arbitrary vector from the interior of
simplex s1 to the interior of simplex sn+1,

φµ(sn+1) = Rµν(P) φ
ν(s1). (74)

If the initial and final simplices sn+1 and s1 coincide, one obtains a closed path
C(s1, . . . , sn), for which the associated expectation value can be considered as the
gravitational analog of the Wilson loop. Its combined rotation is given by

R(C) = R(s1, sn) · · · R(s2, s1) (75)
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Fig. 3 Elementary polygonal
path around a hinge (tr iangle)
in four dimensions. The hinge
ABC , contained in the simplex
ABC DE , is encircled by the
polygonal path H connecting
the surrounding vertices, which
reside in the dual lattice. One
such vertex is contained within
the simplex ABC DE

A
B

C

ED

H

Under Lorentz transformations within each simplex si along the path one has a pair-
wise cancellation of the �(si ) matrices except at the endpoints, giving in the closed
loop case

R(C) → �(s1)R(C)�T (s1) (76)

Clearly the deviation of the matrix R(C) from unity is a measure of curvature. Also,
the trace tr R(C) is independent of the choice of Lorentz frames.

Of particular interest is the elementary loop associated with the smallest non-trivial,
segmented parallel transport path one can build on the lattice. One such polygonal path
in four dimensions is shown in Fig. 3. In general consider a (d − 2)-dimensional sim-
plex (hinge) h, which will be shared by a certain number m of d-simplices, sequentially
labeled by s1, . . . , sm , and whose common faces f (s1, s2), . . . , f (sm−1, sm)will also
contain the hinge h. Thus in four dimensions several four-simplices will contain, and
therefore encircle, a given triangle (hinge). In three dimensions the path will encircle
an edge, while in two dimensions it will encircle a site. Thus for each hinge h there is a
unique elementary closed path Ch for which one again can define the ordered product

R(Ch) = R(s1, sm) · · · R(s2, s1) (77)

The hinge h, being geometrically an object of dimension (d − 2), is naturally repre-
sented by a tensor of rank (d −2), referred to a coordinate system in h: an edge vector

lµh in d = 3, and an area bi-vector 1
2 (l

µ
h l

′ν
h − lνh l

′µ
h ) in d = 4, etc. Following (58) it

will therefore be convenient to define a hinge bi-vector U in any dimension as

Uµν(h) = N εµνα1αd−2 lα1
(1) . . . l

αd−2
(d−2), (78)

normalized, by the choice of the constant N , in such a way that UµνUµν = 2. In four
dimensions

Uµν(h) = 1

2Ah
εµναβ lα1 lβ2 (79)
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where l1(h) and l2(h) two independent edge vectors associated with the hinge h, and
Ah the area of the hinge.

An important aspect related to the rotation of an arbitrary vector, when parallel
transported around a hinge h, is the fact that, due to the hinge’s intrinsic orientation,
only components of the vector in the plane perpendicular to the hinge are affected.
Since the direction of the hinge h is specified locally by the bivector Uµν of (79), one
can write for the loop rotation matrix R

Rµν(C) =
(

eδU
)µ
ν

(80)

where C is now the small polygonal loop entangling the hinge h, and δ the deficit
angle at h, previously defined in (62). One particularly noteworthy aspect of this last
result is the fact that the area of the loop C does not enter in the expression for the
rotation matrix, only the deficit angle and the hinge direction.

At the same time, in the continuum a vector V carried around an infinitesimal loop
of area AC will change by

�Vµ = 1

2
Rµνλσ Aλσ V ν (81)

where Aλσ is an area bivector in the plane of C , with squared magnitude Aλσ Aλσ =
2A2

C . Since the change in the vector V is given by δV α = (R − 1)αβ V β one is led to
the identification

1

2
Rαβµν Aµν = (R − 1)αβ. (82)

Thus the above change in V can equivalently be re-written in terms of the infinitesimal
rotation matrix

Rµν(C) =
(

e
1
2 R·A)µ

ν
(83)

where the Riemann tensor appearing in the exponent on the r.h.s. should not be con-
fused with the rotation matrix R on the l.h.s.

It is then immediate to see that the two expressions for the rotation matrix R in (80)
and (83) will be compatible provided one uses for the Riemann tensor at a hinge h the
expression

Rµνλσ (h) = δ(h)

AC (h)
Uµν(h)Uλσ (h) (84)

expected to be valid in the limit of small curvatures, with AC (h) the area of the
loop entangling the hinge h. Here use has been made of the geometric relationship
Uµν Aµν = 2AC . Note that the bivector U has been defined to be perpendicular to
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the (d − 2) edge vectors spanning the hinge h, and lies therefore in the same plane
as the loop C . The area AC is most suitably defined by introducing the notion of a
dual lattice, i.e., a lattice constructed by assigning centers to the simplices, with the
polygonal curve C connecting these centers sequentially, and then assigning an area to
the interior of this curve. One possible way of assigning such centers is by introducing
perpendicular bisectors to the faces of a simplex, and locate the vertices of the dual
lattice at their common intersection, a construction originally discussed by Voronoi.

The first step in writing down an invariant lattice action, analogous to the contin-
uum Einstein-Hilbert action, is to find the lattice analog of the Ricci scalar. From the
expression for the Riemann tensor at a hinge given in (84) one obtains by contraction

R(h) = 2
δ(h)

AC (h)
(85)

The continuum expression
√

g R is then obtained by multiplication with the volume
element V (h) associated with a hinge. The latter is defined by first joining the vertices
of the polyhedron C , whose vertices lie in the dual lattice, with the vertices of the
hinge h, and then computing its volume.

By defining the polygonal area AC as AC (h) = d V (h)/V (d−2)(h), where
V (d−2)(h) is the volume of the hinge (an area in four dimensions), one finally obtains
for the Euclidean lattice action for pure gravity

IR(l
2) = − k

∑
hinges h

δ(h) V (d−2)(h), (86)

with the constant k = 1/(8πG). One would have obtained the same result for the
single-hinge contribution to the lattice action if one had contracted the infinitesimal
form of the rotation matrix R(h) in (80) with the hinge bivector ωαβ of (58) (or equiv-
alently with the bivector Uαβ of (79) which differs from ωαβ by a constant). The fact
that the lattice action only involves the content of the hinge V (d−2)(h) (the area of a
triangle in four dimensions) is quite natural in view of the fact that the rotation matrix
at a hinge in (80) only involves the deficit angle, and not the polygonal area AC (h).

Other terms need to be added to the lattice action. Consider for example a cosmo-
logical constant term, which in the continuum theory takes the form λ0

∫
dd x

√
g. The

expression for the cosmological constant term on the lattice involves the total volume
of the simplicial complex. This may be written as

Vtotal =
∑

simplices s

Vs (87)

or equivalently as

Vtotal =
∑

hinges h

Vh (88)
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Fig. 4 On a random simplicial
lattice there are in general no
preferred directions. The lattice
can be deformed locally from
one configuration of edges to
another which has the same
localized curvature, and
illustrates the lattice analog of
the continuum diffeomorphism
invariance

where Vh is the volume associated with each hinge via the construction of a dual
lattice, as described above. Thus one may regard the local volume element

√
g dd x as

being represented by either Vh (centered on h) or Vs (centered on s).
The Regge and cosmological constant term then lead to the combined action

Ilatt(l
2) = λ0

∑
simplices s

V (d)
s − k

∑
hinges h

δh V (d−2)
h (89)

Another interesting aspect is the exact local gauge invariance of the lattice action.
Consider the two-dimensional flat skeleton shown in Fig. 4. It is clear that one can
move around a point on the surface, keeping all the neighbors fixed, without violating
the triangle inequalities and leave all curvature invariants unchanged.

In d dimensions this transformation has d parameters and is an exact invariance
of the action. When space is slightly curved, the invariance is in general only an
approximate one, even though for piecewise linear spaces piecewise diffeomorphisms
can still be defined as the set of local motions of points that leave the local con-
tribution to the action, the measure and the lattice analogs of the continuum curva-
ture invariants unchanged. Note that in general the gauge deformations of the edges
are still constrained by the triangle inequalities. The general situation is illustrated
in Fig. 4. In the limit when the number of edges becomes very large one expects
the full continuum diffeomorphism group to be recovered. In general the structure
of lattice local gauge transformations is rather complicated and will not be given
here. These are defined as transformations acting locally on a given set of edges
which leave the local lattice curvature invariant. The simplest context in which this
local invariance can be exhibited explicitly is the lattice weak field expansion. From
the transformation properties of the edge lengths it is clear that their transformation
properties are related to those of the local metric, as already suggested for exam-
ple by the identification of (54) and (90). In the quantum theory, a local gauge
invariance implies the existence of conservation laws and Ward identities for n-point
functions.
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7 Lattice regularized path integral

As the edge lengths li j play the role of the continuum metric gµν(x), one would expect
the discrete measure to involve an integration over the squared edge lengths. Indeed
the induced metric at a simplex is related to the squared edge lengths within that
simplex, via the expression for the invariant line element ds2 = gµνdxµdxν . After
choosing coordinates along the edges emanating from a vertex, the relation between
metric perturbations and squared edge length variations for a given simplex based at
0 in d dimensions is

δgi j

(
l2
)

= 1

2

(
δl2

0i + δl2
0 j − δl2

i j

)
. (90)

For one d-dimensional simplex labeled by s the integration over the metric is thus
equivalent to an integration over the edge lengths, and one has the identity

(
1

d!
√

det gi j (s)

)σ∏
i≥ j

dgi j (s) =
(

−1

2

) d(d−1)
2 [

Vd(l
2)
]σ d(d+1)/2∏

k=1

dl2
k . (91)

There are d(d +1)/2 edges for each simplex, just as there are d(d +1)/2 independent
components for the metric tensor in d dimensions. Here one is ignoring temporarily
the triangle inequality constraints, which will further require all sub-determinants of
gi j to be positive, including the obvious restriction l2

k > 0.
Let us discuss here briefly the simplicial inequalities which need to be imposed on

the edge lengths. These are conditions on the edge lengths li j such that the sites i can
be considered the vertices of a d-simplex embedded in flat d-dimensional Euclidean
space. In one dimension, d = 1, one requires trivially for all edge lengths l2

i j > 0. In
higher dimensions one requires that all triangle inequalities and their higher dimen-
sional analogs to be satisfied,

l2
i j > 0

(92)

V 2
k =
(

1

k!
)2

det g(k)i j (s) > 0

with k = 2, . . . , d for every possible choice of sub-simplex (and therefore sub-deter-
minant) within the original simplex s. The extension of the measure to many simplices
glued together at their common faces is then immediate. For this purpose one first needs
to identify edges lk(s) and lk′(s′) which are shared between simplices s and s′,

∞∫
0

dl2
k (s)

∞∫
0

dl2
k′(s′) δ

[
l2
k (s)− l2

k′(s′)
]

=
∞∫

0

dl2
k (s). (93)
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After summing over all simplices one derives, up to an irrelevant numerical constant,
the unique functional measure for simplicial geometries

∫
[dl2] =

∞∫
ε

∏
s

[Vd(s)]
σ
∏
i j

dl2
i j �[l2

i j ]. (94)

Here �[l2
i j ] is a (step) function of the edge lengths, with the property that it is equal

to one whenever the triangle inequalities and their higher dimensional analogs are
satisfied, and zero otherwise. The quantity ε has been introduced as a cutoff at small
edge lengths. If the measure is non-singular for small edges, one can safely take the
limit ε → 0. In four dimensions the lattice analog of the DeWitt measure (σ = 0)
takes on a particularly simple form, namely

∫
[dl2] =

∞∫
0

∏
i j

dl2
i j �[l2

i j ]. (95)

Lattice measures over the space of squared edge lengths have been used extensively
in numerical simulations of simplicial quantum gravity. The derivation of the above
lattice measure closely parallels the analogous procedure in the continuum.

The lattice action of (89) for pure four-dimensional Euclidean gravity then contains
a cosmological constant and Regge scalar curvature term, as well as possibly higher
derivative terms. It only couples edges which belong either to the same simplex or to
a set of neighboring simplices, and can therefore be considered as local, just like the
continuum action. It leads to a regularized lattice functional integral

Z latt =
∫

[d l2] e−λ0
∑

h Vh+k
∑

h δh Ah , (96)

where, as customary, the lattice ultraviolet cutoff is set equal to one (i.e., all length
scales are measured in units of the lattice cutoff). The lattice partition function Zlatt
should then be compared to the continuum Euclidean Feynman path integral of (14),

Zcont =
∫

[d gµν] e−λ0
∫

dx
√

g+ 1
16πG

∫
dx

√
g R . (97)

Occasionally it can be convenient to include the λ0-term in the measure. For this
purpose one defines

dµ(l2) ≡ [d l2] e−λ0
∑

h Vh . (98)

It should be clear that this last expression represents a fairly non-trivial quantity, both
in view of the relative complexity of the expression for the volume of a simplex, and
because of the generalized triangle inequality constraints already implicit in [d l2].
But, like the continuum functional measure, it is certainly local, to the extent that each
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edge length appears only in the expression for the volume of those simplices which
explicitly contain it. Furthermore, λ0 sets the overall scale and can therefore be set
equal to one without any loss of generality.

8 Matter fields

In the previous section we have discussed the construction and the invariance prop-
erties of a lattice action for pure gravity. Next a scalar field can be introduced as the
simplest type of dynamical matter that can be coupled invariantly to gravity. In the
continuum the scalar action for a single component field φ(x) is usually written as

I [g, φ] = 1

2

∫
dx

√
g [ gµν ∂µφ ∂νφ + (m2 + ξ R)φ2] + · · · (99)

where the dots denote scalar self-interaction terms. One way to proceed is to introduce
a lattice scalar φi defined at the vertices of the simplices. The corresponding lattice
action can then be obtained through a procedure by which the original continuum
metric is replaced by the induced lattice metric, with the latter written in terms of
squared edge lengths as in (54). Thus in two dimensions to construct a lattice action
for the scalar field, one performs the replacement

gµν(x) −→ gi j (�)

det gµν(x) −→ det gi j (�)
(100)

gµν(x) −→ gi j (�)

∂µφ ∂νφ −→ �iφ � jφ,

with the following definitions

gi j (�) =
⎛
⎝ l2

3
1
2 (−l2

1 + l2
2 + l2

3)

1
2 (−l2

1 + l2
2 + l2

3) l2
2

⎞
⎠ , (101)

det gi j (�) = 1

4

[
2(l2

1 l2
2 + l2

2 l2
3 + l2

3l2
1)− l4

1 − l4
2 − l4

3

]
≡ 4A2

�, (102)

gi j (�) = 1

det g(�)

⎛
⎝ l2

2
1
2 (l

2
1 − l2

2 − l2
3)

1
2 (l

2
1 − l2

2 − l2
3) l2

3

⎞
⎠ . (103)

The scalar field derivatives get replaced as usual by finite differences

∂µφ −→ (�µφ)i = φi+µ − φi . (104)
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where the index µ labels the possible directions in which one can move away from a
vertex within a given triangle. After some suitable re-arrangements one finds for the
lattice action describing a massless scalar field

I (l2, φ) = 1

2

∑
〈i j〉

Ai j

(φi − φ j

li j

)2
. (105)

Here Ai j is the dual (Voronoi) area associated with the edge i j , and the symbol 〈i j〉
denotes a sum over nearest neighbor lattice vertices. It is immediate to generalize
the action of (105) to higher dimensions, with the two-dimensional Voronoi volumes
replaced by their higher dimensional analogs, leading to

I (l2, φ) = 1

2

∑
〈i j〉

V (d)
i j

(φi − φ j

li j

)2
. (106)

Here V (d)
i j is the dual (Voronoi) volume associated with the edge i j , and the sum is

over all links on the lattice.
Spinor fields ψs and ψ̄s are most naturally placed at the center of each d-simplex

s. As in the continuum, the construction of a suitable lattice action requires the intro-
duction of the Lorentz group and its associated tetrad fields ea

µ(s)within each simplex
labeled by s. Within each simplex one can choose a representation of the Dirac gamma
matrices, denoted here by γ µ(s), such that in the local coordinate basis

{
γ µ(s), γ ν(s)

} = 2 gµν(s) (107)

These in turn are related to the ordinary Dirac gamma matrices γ a , which obey{
γ a, γ b

} = 2 ηab, by γ µ(s) = eµa (s) γ a . so that within each simplex the tetrads
ea
µ(s) satisfy the usual relation

eµa (s) eνb(s) η
ab = gµν(s) (108)

In general the tetrads are not fixed uniquely within a simplex, being invariant under
the local Lorentz transformations discussed earlier. In the continuum the action for a
massless spinor field is given by

I =
∫

dx
√

g ψ̄(x) γ µ Dµ ψ(x) (109)

where Dµ = ∂µ + 1
2ωµabσ

ab is the spinorial covariant derivative containing the spin
connection ωµab. On the lattice one then needs a rotation matrix relating the vierbeins
eµa (s1) and eµa (s2) in two neighboring simplices. The matrix R(s2, s1) is such that

eµa (s2) = Rµν(s2, s1) eνa(s1) (110)
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and whose spinorial representation S was given previously in (72). The invariant
lattice action for a massless spinor then takes the simple form

I = 1

2

∑
faces f (s, s′)

V ( f (s, s′)) ψ̄s S(R(s, s′)) γ µ(s′) nµ(s, s′) ψs′ (111)

where the sum extends over all interfaces f (s, s′) connecting one simplex s to a neigh-
boring simplex s′. The above spinorial action can be considered analogous to the lattice
Fermion action proposed originally by Wilson for non-Abelian gauge theories.

For gauge fields a locally gauge invariant action for an SU(N ) gauge field coupled
to gravity is

Igauge = − 1

4g2

∫
d4x

√
g gµλ gνσ Fa

µν Fa
λσ (112)

with Fa
µν = ∇µAa

ν −∇ν Aa
µ+ g f abc Ab

µAc
ν and a = 1, . . . , N 2 − 1. On the lattice one

can follow a procedure analogous to Wilson’s construction on a hypercubic lattice,
with the main difference that the lattice is now simplicial. Given a link i j on the
lattice one assigns group element Ui j , with each U an N × N unitary matrix with
determinant equal to one, and such that U ji = U−1

i j . Then with each triangle (pla-
quettes)� labeled by the three vertices i jk one associates a product of three U matrices
U� ≡ Ui jk = Ui j U jk Uki . The discrete action is then given by

Igauge = − 1

g2

∑
�

V�
c

A2
�

Re [tr(1 − U�)] (113)

with 1 the unit matrix, V� the 4-volume associated with the plaquettes�, A� the area
of the triangle (plaquettes) �, and c a numerical constant of order one. One impor-
tant property of the gauge lattice action of (113) is its local invariance under gauge
rotations gi defined at the lattice vertices, and for which Ui j on the link i j transforms
as

Ui j → gi Ui j g−1
j (114)

Finally one can consider a spin-3/2 field. Of course supergravity in four dimensions
naturally contains a spin-3/2 gravitino, the supersymmetric partner of the graviton.
In the case of N = 1 supergravity these are the only two degrees of freedom present.
Consider here a spin-3/2 Majorana fermion in four dimensions, which correspond to
self-conjugate Dirac spinors ψµ, where the Lorentz index µ = 1, . . . , 4. In flat space
the action for such a field is given by the Rarita-Schwinger term

LRS = − 1

2
εαβγ δ ψT

α C γ5 γβ ∂γ ψδ (115)

Locally the action is invariant under the gauge transformation ψµ(x) → ψµ(x) +
∂µ ε(x), where ε(x) is an arbitrary local Majorana spinor. The construction of a
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suitable lattice action for the spin-3/2 particle proceeds in a way that is rather similar
to what one does in the spin-1/2 case. On a simplicial manifold the Rarita-Schwinger
spinor fields ψµ(s) and ψ̄µ(s) are most naturally placed at the center of each d-sim-
plex s. Like the spin-1/2 case, the construction of a suitable lattice action requires the
introduction of the Lorentz group and its associated vierbein fields ea

µ(s) within each
simplex labeled by s. Again as in the spinor case vierbeins eµa (s1) and eµa (s2) in two
neighboring simplices will be related by a matrix R(s2, s1) such that

eµa (s2) = Rµν(s2, s1) eνa(s1) (116)

and whose spinorial representation S was given previously in (72). But the new ingre-
dient in the spin-3/2 case is that, besides requiring a spin rotation matrix S(s2, s1),
now one also needs the matrix Rνµ(s, s′) describing the corresponding parallel trans-
port of the Lorentz vector ψµ(s) from a simplex s1 to the neighboring simplex s2. An
invariant lattice action for a massless spin-3/2 particle takes therefore the form

I = −1

2

∑
faces f (s, s′)

V ( f (s, s′))εµνλσ ψ̄µ(s)S(R(s, s′))γν(s′)nλ(s, s′)Rρσ (s, s′)ψρ(s′)

(117)

with

ψ̄µ(s)S(R(s, s′)) γν(s′) ψρ(s′) ≡ ψ̄µα(s) Sαβ(R(s, s′)) γ β
ν γ (s

′) ψγρ (s′)
(118)

and the sum
∑

faces f(ss′) extends over all interfaces f (s, s′) connecting one simplex s
to a neighboring simplex s′. When compared to the spin-1/2 case, the most important
modification is the second rotation matrix Rνµ(s, s′), which describes the parallel
transport of the fermionic vector ψµ from the site s to the site s′, which is required in
order to obtain locally a Lorentz scalar contribution to the action.

9 Alternate discrete formulations

The simplicial lattice formulation offers a natural way of representing gravitational
degrees in a discrete framework by employing inherently geometric concepts such as
areas, volumes and angles. It is possible though to formulate quantum gravity on a flat
hypercubic lattice, in analogy to Wilson’s discrete formulation for gauge theories, by
putting the connection center stage. In this new set of theories the natural variables are
then lattice versions of the spin connection and the vierbein. Also, because the spin
connection variables appear from the very beginning, it is much easier to incorporate
fermions later. Some lattice models have been based on the pure Einstein theory while
others attempt to incorporate higher derivative terms.

Difficult arise when attempting to put quantum gravity on a flat hypercubic lattice a
la Wilson, since it is not entirely clear what the gravity analog of the Yang-Mills con-
nection is. In continuum formulations invariant under the Poincaré or de Sitter group
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the action is invariant under a local extension of the Lorentz transformations, but not
under local translations. Local translations are replaced by diffeomorphisms which
have a different nature. One set of lattice discretizations starts from the action whose
local invariance group is the de Sitter group Spin(4), the covering group of SO(4). In
one lattice formulation the lattice variables are gauge potentials eaµ(n) and ωµab(n)
defined on lattice sites n, generating local Spin(4)matrix transformations with the aid
of the de Sitter generators Pa and Mab. The resulting lattice action reduces classically
to the Einstein action with cosmological term in first order form in the limit of the
lattice spacing a → 0; to demonstrate the quantum equivalence one needs an addi-
tional zero torsion constraint. In the end the issue of lattice diffeomorphism invariance
remains somewhat open, with the hope that such an invariance will be restored in the
full quantum theory.

As an example, we will discuss here the approach of Mannion and Taylor, which
relies on a four-dimensional lattice discretization of the Einstein-Cartan theory with
gauge group SL(2,C), and does not initially require the presence of a cosmological
constant, as would be the case if one had started out with the de Sitter group Spin(4).
On a lattice of spacing a with vertices labelled by n and directions by µ one relates
the relative orientations of nearest-neighbor local SL(2,C) frames by

Uµ(n) =
[
U−µ(n + µ)

]−1= exp[ i Bµ(n)] (119)

with Bµ = 1
2 aBab

µ (n)Jba , Jba being the set of six generators of SL(2,C), the covering

group of the Lorentz group SO(3, 1), usually taken to be σab = 1
2i [γa, γb] with γa’s

the Dirac gamma matrices. The local lattice curvature is then obtained in the usual
way by computing the product of four parallel transport matrices around an elementary
lattice square,

Uµ(n)Uν(n + µ)U−µ(n + µ+ ν)U−ν(n + ν) (120)

giving in the limit of small a by the Baker-Hausdorff formula the value exp[ia Rµν(n)],
where Rµν is the Riemann tensor defined in terms of the spin connection Bµ

Rµν = ∂µBν − ∂νBµ + i[Bµ, Bν] (121)

If one were to write for the action the usual Wilson lattice gauge form

∑
n,µ,ν

tr[ Uµ(n)Uν(n + µ)U−µ(n + µ+ ν)U−ν(n + ν) ] (122)

then one would obtain a curvature squared action proportional to ∼ ∫ R ab
µν Rµνab instead

of the Einstein-Hilbert one. One needs therefore to introduce lattice vierbeins e b
µ (n)

on the sites by defining the matrices Eµ(n) = a e a
µ γa . Then a suitable lattice action
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is given by

I = i

16κ2

∑
n,µ,ν,λ,σ

tr[γ5Uµ(n)Uν(n + µ)U−µ(n + µ+ ν)U−ν(n + ν)Eσ (n)Eλ(n)].

(123)

The latter is invariant under local SL(2,C) transformations�(n) defined on the lattice
vertices

Uµ → �(n)Uµ(n)�
−1(n + µ) (124)

for which the curvature transforms as

Uµ(n)Uν(n + µ)U−µ(n + µ+ ν)U−ν(n + ν)

→ �(n)Uµ(n)Uν(n + µ)U−µ(n + µ+ ν)U−ν(n + ν)�−1(n) (125)

and the vierbein matrices as

Eµ(n) → �(n) Eµ(n)�
−1(n) (126)

Since�(n) commutes with γ5, the expression in (123) is invariant. The metric is then
obtained as usual by

gµν(n) = 1

4
tr[Eµ(n) Eν(n)]. (127)

From the expression for the lattice curvature R ab
µν given above if follows immediately

that the lattice action in the continuum limit becomes

I = a4

4κ2

∑
n

εµνλσ εabcd R ab
µν (n) e c

λ (n) e d
σ (n)+ O(a6) (128)

which is the Einstein action in Cartan form

I = 1

4κ2

∫
d4x εµνλσ εabcd R ab

µν e c
λ e d

σ (129)

with the parameter κ identified with the Planck length. One can add more terms to the
action; in this theory a cosmological term can be represented by

λ0

∑
n

εµνλσ tr[ γ5 Eµ(n) Eν(n) Eσ (n) Eλ(n) ] (130)
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Both (123) and (130) are locally SL(2,C) invariant. The functional integral is then
given by

Z =
∫ ∏

n,µ

d Bµ(n)
∏
n,σ

d Eσ (n) exp
{
−I (B, E)

}
(131)

and from it one can then compute suitable quantum averages. Here d Bµ(n) is the
Haar measure for SL(2,C); it is less clear how to choose the integration measure
over the Eσ ’s, and how it should suitably constrained, which obscures the issue of
diffeomorphism invariance in this theory.

There is another way of discretizing gravity, still using largely geometric concepts
as is done in the Regge theory. In the dynamical triangulation approach due to David
one fixes the edge lengths to unity, and varies the incidence matrix. As a result the
volume of each simplex is fixed at

Vd = 1

d!
√

d + 1

2d
, (132)

and all dihedral angles are given by the constant value

cos θd = 1

d
(133)

so that for example in four dimensions one has θd = arccos(1/4) ≈ 75.5o. Local
curvatures are then determined by how many simplices ns(h) meet on a given hinge,

δ(h) = 2π − ns(h) θd . (134)

The action contribution from a single hinge is therefore from (86) δ(h)A(h) =
1
4

√
3[2π − ns(h) θd ] with ns a positive integer. In this model the local curvatures

are inherently discrete, and there is no equivalent lattice notion of continuous diffe-
omorphisms, or for that matter of continuous local deformations corresponding, for
example, to shear waves. Indeed it seems rather problematic in this approach to make
contact with the continuum theory, as the model does not contain a metric, at least
not in an explicit way. This fact has some consequences for the functional measure,
since there is really no clear criterion which could be used to restrict it to the form
suggested by invariance arguments, as detailed earlier in the discussion of the contin-
uum functional integral for gravity. The hope is that for lattices made of some large
number of simplices one would recover some sort of discrete version of diffeomor-
phism invariance. Recent attempts have focused on simulating the Lorentzian case,
but new difficulties arise in this case as it leads in principle to complex weights in
the functional integral, which are next to impossible to handle correctly in numerical
simulations (since the latter generally rely on positive probabilities).

Another lattice approach somewhat related to the Regge theory described in this
review is based on the so-called spin foam models, which have their origin in an obser-
vation found in Ponzano and Regge relating the geometry of simplicial lattices to the
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Fig. 5 A four-dimensional
hypercube divided up into
four-simplices

asymptotics of Racah angular momentum addition coefficients. The original concepts
were later developed into a spin model for gravity based on quantum spin variables
attached to lattice links. In these models representations of SU(2) label edges. One
natural underlying framework for such theories is the canonical 3 + 1 approach to
quantum gravity, wherein quantum spin variables are naturally related to SU(2) spin
connections. Extensions to four dimensions have been attempted, and we refer the
reader to recent reviews of spin foam models.

10 Lattice weak field expansion and transverse-traceless modes

One of the simplest possible problems that can be treated in quantum Regge gravity is
the analysis of small fluctuations about a fixed flat Euclidean simplicial background.
In this case one finds that the lattice graviton propagator in a De Donder-like gauge
is precisely analogous to the continuum expression. To compute an expansion of the
lattice Regge action

IR ∝
∑

hinges

δ(l) A(l) (135)

to quadratic order in the lattice weak fields one needs second variations with respect
to the edge lengths. The second variation about flat space is given by

δ2 IR ∝
∑

hinges

⎛
⎝∑

edges

∂δ

∂l
δl

⎞
⎠ ·
⎛
⎝∑

edges

∂A

∂l
δl

⎞
⎠ (136)

Next a specific lattice structure needs to be chosen as a background geometry. A natu-
ral choice is to use a flat hypercubic lattice, made rigid by introducing face diagonals,
body diagonals and hyperbody diagonals, which results into a subdivision of each
hypercube into d! (here 4! = 24) simplices. This particular subdivision is shown in
Fig. 5.

By a simple translation, the whole lattice can then be constructed from this one
elemental hypercube. Consequently there will be 2d − 1 = 15 lattice fields per point,
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corresponding to all the edge lengths emanating in the positive lattice directions from
any one vertex. Note that the number of degrees per lattice point is slightly larger than
what one would have in the continuum, where the metric gµν(x) has d(d +1)/2 = 10
degrees of freedom per spacetime point x in four dimensions (perturbatively, the
physical degrees of freedom in the continuum are much less: 1

2 d(d + 1) − 1 − d −
(d − 1) = 1

2 d(d − 3), for a traceless symmetric tensor, and after imposing gauge
conditions). Thus in four dimensions each lattice hypercube will contain four body
principals, six face diagonals, four body diagonals and one hyperbody diagonal. Within
a given hypercube it is quite convenient to label the coordinates of the vertices using a
binary notation, so that the four body principals with coordinates (1, 0, 0, 0) (0, 0, 0, 1)
will be labeled by integers 1, 2, 4, 8, and similarly for the other vertices (thus for exam-
ple the vertex (0, 1, 1, 0), corresponding to a face diagonal along the second and third
Cartesian direction, will be labeled by the integer 6).

For a given lattice of fixed connectivity, the edge lengths are then allowed to fluc-
tuate around an equilibrium value l0

i

li = l0
i (1 + εi ) (137)

In the case of the hypercubic lattice subdivided into simplices, the unperturbed edge
lengths l0

i take on the values 1,
√

2,
√

3, 2, depending on edge type. The second var-
iation of the action then reduces to a quadratic form in the 15-component small fluc-
tuation vector εn

δ2 IR ∝
∑
mn

εT
m Mmn εn (138)

Here M is the small fluctuation matrix, whose inverse determines the free lattice grav-
iton propagator, and the indices m and n label the sites on the lattice. But just as in
the continuum, M has zero eigenvalues and cannot therefore be inverted until one
supplies an appropriate gauge condition. Specifically, one finds that the matrix M in
four dimensions has four zero modes corresponding to periodic translations of the
lattice, and a fifth zero mode corresponding to periodic fluctuations in the hyperbody
diagonal. After block-diagonalization it is found that four modes completely decouple
and are constrained to vanish, and thus the remaining degrees of freedom are 10, as
in the continuum, where the metric has ten independent components. The wrong sign
for the conformal mode, which is present in the continuum, is also reproduced by the
lattice propagator.

Due to the locality of the original lattice action, the matrix M can be considered
local as well, since it only couples edge fluctuations on neighboring lattice sites. In
Fourier space one can write for each of the fifteen displacements εi+ j+k+l

n , defined at
the vertex of the hypercube with labels (i, j, k, l),

ε
i+ j+k+l
n = (ω1)

i (ω2)
j (ω4)

k(ω8)
l ε0

n (139)

with ω1 = eik1 , ω2 = eik2 , ω4 = eik3 and ω8 = eik4 (it will be convenient in the
following to use binary notation for ω and ε, but the regular notation for ki ). Here
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and in the following we have set the lattice spacing a equal to one. The remaining
dynamics is encoded in the 10 × 10 dimensional matrix Lω = A10 − 1

18 B B†. By a
second rotation, here affected by a matrix T , it can finally be brought into the form

L̃ω = T † Lω T = [8 − (� + �̄)
] ( 1

2β 0

0 I6

)
− C†C (140)

with the matrix β given by

β = 1

2

⎛
⎜⎜⎝

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎞
⎟⎟⎠ (141)

The other matrix C appearing in the second term is given by

C =

⎛
⎜⎜⎜⎜⎝

f1 0 0 0 f̃2 f̃4 0 f̃8 0 0

0 f2 0 0 f̃1 0 f̃4 0 f̃8 0

0 0 f4 0 0 f̃1 f̃2 0 0 f̃8

0 0 0 f8 0 0 0 f̃1 f̃2 f̃4

⎞
⎟⎟⎟⎟⎠ (142)

with fi ≡ ωi − 1 and f̃i ≡ 1 − ω̄i . Furthermore � =∑i ωi , and for small momenta
one finds

8 − (� + �̄) = 8 −
4∑

i=1

(eiki + e−iki ) ∼ k2 + O(k4) (143)

which shows that the surviving terms in the lattice action are indeed quadratic in k.
At this point one is finally ready for a comparison with the continuum result, namely
with the Lagrangian for pure gravity in the weak field limit, namely

Lsym = − 1

2
∂λ hλµ ∂µhνν + 1

2
∂λ hλµ ∂νhνµ

− 1

4
∂λ hµν ∂λhµν + 1

4
∂λ hµµ ∂λhνν . (144)

The latter can be conveniently split into two parts, as follows

Lsym = −1

2
∂λ hαβVαβµν ∂λhµν + 1

2
C2 (145)

with

Vαβµν = 1

2
ηαµηβν − 1

4
ηαβηµν (146)
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with metric components 11, 22, 33, 44, 12, 13, 14, 23, 24, 34 more conveniently
labeled sequentially by integers 1, . . . , 10. The gauge fixing term Cµ is

Cµ = ∂νhµν − 1

2
∂µhνν (147)

The above expression is still not quite the same as the lattice weak field action, but a
simple transformation to trace reversed variables h̄µν ≡ hµν − 1

2δµνhλλ leads to

Lsym = 1

2
kλh̄i Vi j kλh̄ j − 1

2
h̄i (C

†C)i j h̄ j (148)

with the matrix V given by

Vi j =
(

1
2 0

0 I6

)
(149)

with k = i∂ . Now β is the same as the matrix in (141), and C is nothing but the small
k limit of the matrix by the same name in (142).

It is easy to see that the sequence of transformations expressed by the matrices S
and T relating the lattice fluctuations εi (n) to their continuum counterparts hµν(x),
just reproduces the expected relationship between lattice and continuum fields. On the
one hand one has gµν = ηµν + hµν , where ηµν is the flat metric. At the same time
one has from (54) for each simplex within a given hypercube

gi j = 1

2
(l2

0i + l2
0 j − l2

i j ) (150)

By inserting li = l0
i (1 + εi ), with l0

i = 1,
√

2,
√

3, 2 for the body principal (i = 1, 2,
4, 8), face diagonal (i = 3, 5, 6, 9, 10, 12), body diagonal (i = 7, 11, 13, 14) and
hyperbody diagonal (i = 15), respectively, one gets for example (1 + ε1)

2 = 1 + h11,
(1 + ε3)

2 = 1 + 1
2 (h11 + h22)+ h12, etc., which in turn can then be solved for the ε’s

in terms of the hµν’s,

ε1 = 1

2
h11 + O(h2)

ε3 = 1

2
h12 + 1

4
(h11 + h22)+ O(h2)

(151)
ε7 = 1

6
(h12 + h13 + h23)+ 1

6
(h23 + h13 + h12)

+1

6
(h11 + h22 + h33)+ O(h2)

and so on. As expected, the lattice action has a local gauge invariance, whose explicit
form in the weak field limit can be obtained explicitly. This continuous local invariance
has d parameters in d dimensions and describes therefore lattice diffeomorphisms. In
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the quantum theory, such local gauge invariance implies the existence of Ward iden-
tities for n-point functions.

11 Strong coupling expansion

In this section the strong coupling (large G or small k = 1/(8πG)) expansion of the
lattice gravitational functional integral will be discussed. The resulting series is in
general expected to be useful up to some k = kc, where kc is the lattice critical point,
at which the partition function develops a singularity. One starts from the lattice reg-
ularized path integral with action (89) and measure (94). Then the four-dimensional
Euclidean lattice action contains the usual cosmological constant and Regge scalar
curvature terms

Ilatt = λ
∑

h

Vh(l
2)− k

∑
h

δh(l
2) Ah(l

2), (152)

with k = 1/(8πG), and possibly additional higher derivative terms as well. The action
only couples edges which belong either to the same simplex or to a set of neighboring
simplices, and can therefore be considered as local, just like the continuum action. It
leads to a lattice partition function defined in (96)

Z latt =
∫

[d l2] e−λ0
∑

h Vh+k
∑

h δh Ah , (153)

where, as customary, the lattice ultraviolet cutoff is set equal to one (i.e., all length
scales are measured in units of the lattice cutoff). For definiteness the measure will be
of the form

∫
[d l2] =

∞∫
0

∏
s

(Vd(s))
σ
∏
i j

dl2
i j �[l2

i j ]. (154)

When doing an expansion in the kinetic term proportional to k, it is convenient to
include the λ-term in the measure. We will set therefore here as in (98)

dµ(l2) ≡ [d l2] e−λ0
∑

h Vh . (155)

As a next step, Z latt is expanded in powers of k,

Z latt(k) =
∫

dµ(l2) ek
∑

h δh Ah =
∞∑

n=0

1

n! kn
∫

dµ(l2)

(∑
h

δh Ah

)n

. (156)

It is easy to show that Z(k) = ∑∞
n=0 an kn is analytic at k = 0, so this expansion

should be well defined up to the nearest singularity in the complex k plane. One key
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quantity in the strong coupling expansion of lattice gravity is the correlation between
different plaquettes,

〈(δ A)h (δ A)h′ 〉 =
∫

dµ(l2) (δ A)h (δ A)h′ ek
∑

h δh Ah∫
dµ(l2) ek

∑
h δh Ah

, (157)

or, better, its connected part (denoted here by 〈· · · 〉C ). Here again the exponentials in
the numerator and denominator can be expanded out in powers of k. The lowest order
term in k will involve the correlation

∫
dµ(l2) (δ A)h (δ A)h′ . (158)

But unless the two hinges are close to each other, they will fluctuate in an uncorrelated
manner, with 〈(δ A)h (δ A)h′ 〉−〈(δ A)h〉〈(δ A)h′ 〉 = 0. In order to achieve a non-trivial
correlation, the path between the two hinges h and h′ needs to be tiled by at least as
many terms from the product (

∑
h δh Ah)

n in

∫
dµ(l2) (δ A)h (δ A)h′

(∑
h

δh Ah

)n

(159)

as are needed to cover the distance l between the two hinges. One then has

〈(δ A)h (δ A)h′ 〉C ∼ kl ∼ e−l/ξ , (160)

with the correlation length ξ = 1/| log k| → 0 to lowest order as k → 0 (here we have
used the usual definition of the correlation length ξ , namely that a generic correlation
function is expected to decay as exp(−distance/ξ) for large separations). This last
result is quite general, and holds for example irrespective of the boundary conditions
(unless of course ξ ∼ L , where L is the linear size of the system, in which case a
path can be found which wraps around the lattice). But further thought reveals that the
above result is in fact not completely correct, due to the fact that in order to achieve a
non-vanishing correlation one needs, at least to lowest order, to connect the two hinges
by a narrow tube. The previous result should then read correctly as

〈(δ A)h (δ A)h′ 〉C ∼ (knd
)l
, (161)

where nd l represents the minimal number of dual lattice polygons needed to form a
closed surface connecting the hinges h and h′, with l the actual distance (in lattice
units) between the two hinges. Figure 6 provides an illustration of the situation.

With some additional effort many additional terms can be computed in the strong
coupling expansion. In practice the method is generally not really competitive with
direct numerical evaluation of the path integral via Monte Carlo methods. But it does
provide a new way of looking at the functional integral, and provide the basis for new
approaches, such as the large d limit to be discussed in the second half of the next
section.
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hAδ 'hAδ

Fig. 6 Correlations between action contributions on hinge h and hinge h′ arise to lowest order in the strong
coupling expansions from diagrams describing a narrow tube connecting the two hinges. Here vertices
represent points in the dual lattice, with the tube-like closed surface tiled with parallel transport polygons.
For each link of the dual lattice, the SO(4) parallel transport matrices R are represented by an arrow

12 Gravitational Wilson loop

An important question for any theory of quantum gravity is what gravitational observ-
ables should look like, i.e., which expectation values of operators (or ratios thereof)
have meaning and physical interpretation in the context of a manifestly covariant
formulation, in particular in a situation where metric fluctuations are not necessarily
bounded. Such averages naturally include the previously discussed expectation values
of the (integrated) scalar curvature and other related quantities (involving for exam-
ple curvature-squared terms), as well as correlations of operators at fixed geodesic
distance. Another set of physical observables on which we focus here corresponds to
the gravitational analog of the Wilson loop. It provides information about the parallel
transport of vectors, and therefore on the effective curvature, around large, near-pla-
nar loops. In contrast to gauge theories, the Wilson loop in quantum gravity does not
give information on the static potential, which is obtained instead for the correlation
between particle world-lines.

The gauge theory definition can be adapted to the lattice gravitational case. It turns
out that it is most easily achieved by using a slight variant of Regge calculus, in which
the action coincides with the usual Regge action in the near-flat limit. Here we will
use extensively the notion of lattice parallel transport discussed earlier, and how areas
are defined on the dual lattice.

At strong coupling the measure and cosmological constant terms form the domi-
nant part of the functional integral, since the Einstein part of the action is vanishingly
small in this limit. Yet, and in contrast to strongly coupled lattice Yang-Mills theories,
the functional integral is still non-trivial to compute analytically in this limit, mainly
due to the triangle inequality constraints. Therefore, in order to be able to derive some
analytical estimates for correlation functions in the strong coupling limit, one needs
still to develop some set of approximation methods. In principle the reliability of the
approximations can later be tested by numerical means, for example by integrating
directly over edges using the explicit lattice measure given above.

One approach that appears natural in the gravity context follows along the lines of
what is normally done in gauge theories, namely an integration over compact group
variables, using the invariant measure over the gauge group. It is of this method that
we wish to take advantage here, as we believe that it is well suited for gravity as
well. In order to apply such a technique to gravity one needs (i) to formulate the lattice

123



H. W. Hamber

theory in such a way that group variables are separated and therefore appear explicitly;
(ii) integrate over the group variables using an invariant measure; and (iii) approxi-
mate the relevant correlation functions in such a way that the group integration can
be performed exactly, using for example mean field methods for the parts that appear
less tractable. In such a program one is aided by the fact that in the strong coupling
limit one is expanding about a well defined ground state, and that the measure and the
interactions are local, coupling only lattice variable (edges or rotations) which are a
few lattice spacings apart. The down side of such methods is that one is no longer eval-
uating the functional integral for quantum gravity exactly, even in the strong coupling
limit; the upside is that one obtains a clear analytical estimate, which later can be in
principle systematically tested by numerical methods (which are in principle exact).

In the gravity case the analogs of the gauge variables of Yang-Mills theories are
given by the connection, so it is natural therefore to look for a first order formulation
of Regge gravity. The main feature of this approach is that one treats the metric gµν
and the affine connection �λµν as independent variables. There one can safely consider
functionally integrating separately over the affine connection and the metric, treated
as independent variables, with the correct relationship between metric and connection
arising then as a consequence of the dynamics. In the lattice theory we will follow
a similar spirit, separating out explicitly in the lattice action the degrees of freedom
corresponding to local rotations (the analogs of the �’s in the continuum), which we
will find to be most conveniently described by orthogonal matrices R.

The next step is a use of the properties of local rotation matrices in the context of
the lattice theory, and how these relate to the lattice gravitational action. It was shown
earlier that with each neighboring pair of simplices s, s +1 one can associate a Lorentz
transformation Rµν(s, s + 1). For a closed elementary path Ch encircling a hinge h
and passing through each of the simplices that meet at that hinge one has for the total
rotation matrix R ≡∏s Rs,s+1 associated with the given hinge

[∏
s

Rs,s+1

]µ
ν

=
[

eδ(h)U (h)
]µ
ν
, (162)

as in (80). More generally one might want to consider a near-planar, but non-infini-
tesimal, closed loop C , as shown in Fig. 7. Along this closed loop the overall rotation
matrix will still be given by

Rµν(C) =
[∏

s ⊂C

Rs,s+1

]µ
ν

(163)

In analogy with the infinitesimal loop case, one would like to state that for the overall
rotation matrix one has

Rµν(C) ≈
[

eδ(C)U (C))
]µ
ν
, (164)

where Uµν(C) is now an area bivector perpendicular to the loop, which will work only
if the loop is close to planar so that Uµν can be taken to be approximately constant
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Fig. 7 Gravitational analog of the Wilson loop. A vector is parallel-transported along the larger outer loop.
The enclosed minimal surface is tiled with parallel transport polygons, here chosen to be tr iangles for
illustrative purposes. For each link of the dual lattice, the elementary parallel transport matrices R(s, s′) are
represented by arrows. In spite of the fact that the (Lorentz) matrices R can fluctuate strongly in accordance
with the local geometry, two contiguous, opposi tely oriented arrows always give RR−1 = 1

along the path C . By a near-planar loop around the point P , we mean one that is
constructed by drawing outgoing geodesics, on a plane through P .

If that is true, then one can define an appropriate coordinate scalar by contracting
the above rotation matrix R(C) with the some appropriate bivector, namely

W (C) = ωαβ(C) Rαβ(C) (165)

where the bivector, ωαβ(C), is intended as being representative of the overall geomet-
ric features of the loop (for example, it can be taken as an average of the hinge bivector
ωαβ(h) along the loop).

In the quantum theory one is interested in the average of the above loop opera-
tor W (C). Now one notes that for any continuum manifold one can define locally
the parallel transport of a vector around a near-planar loop C . If the curvature of the
manifold is small, one can treat the larger loop the same way as the small one; then
the expression of (164) for the rotation matrix R(C) associated with a near-planar
loop can be re-written in terms of a surface integral of the large-scale Riemann tensor,
projected along the surface area element bivector Aαβ(C) associated with the loop,

Rµν(C) ≈
[

e
1
2

∫
S R ··αβ Aαβ(C)

]µ
ν
. (166)

Thus a direct calculation of the Wilson loop provides a way of determining the effective
curvature at large distance scales, even in the case where short distance fluctuations
in the metric may be significant.

A detailed lattice calculation at strong coupling then gives the following result.
First one defines the lattice Wilson loop as

W (C) = 〈T r [(UC + ε I4) R1 R2 . . . Rn]〉. (167)

where the Ri ’s are the rotation matrices along the path and the factor (UC + ε I4),
containing some “average” direction bivector, UC , for the loop, which, after all, is
assumed to be almost planar. For sufficiently strong coupling one obtains an area law,
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in other words the above quantity behaves for large areas as

exp[ (AC/ Ā) log(k Ā/16) ] = exp(− AC/ξ
2) (168)

where ξ ≡ [ Ā/| log(k Ā/16)|]1/2. The rapid decay of the quantum gravitational
Wilson loop as a function of the area is seen as a general and direct consequence
of the assumed disorder in the uncorrelated fluctuations of the parallel transport
matrices R(s, s′) at strong coupling.

Here it is important to note that the gravitational correlation length ξ is defined
independently of the expectation value of the Wilson loop. Indeed a key quantity in
gauge theories as well as gravity is the correlation between different plaquettes, which
in simplicial gravity is given by [see (157)],

〈(δ A)h (δ A)h′ 〉 =
∫

dµ(l2) (δ A)h (δ A)h′ ek
∑

h δh Ah∫
dµ(l2) ek

∑
h δh Ah

. (169)

The final step is an interpretation of this last result in semi-classical terms. As
discussed at the beginning of this section, the rotation matrix appearing in the grav-
itational Wilson loop can be related classically to a well-defined physical process: a
vector is parallel transported around a large loop, and at the end it is compared to
its original orientation. The vector’s rotation is then directly related to some sort of
average curvature enclosed by the loop. The total rotation matrix R(C) is given in
general by a path-ordered (P) exponential of the integral of the affine connection �λµν
via

Rαβ(C) =
⎡
⎢⎣P exp

⎧⎪⎨
⎪⎩
∮

path C

�·
λ ·dxλ

⎫⎪⎬
⎪⎭

⎤
⎥⎦
α

β

. (170)

In such a semi classical description of the parallel transport process of a vector around
a very large loop, one can re-express the connection in terms of a suitable coarse-
grained, or semi-classical, Riemann tensor, using Stokes’ theorem

Rαβ(C) ∼
⎡
⎢⎣exp

⎧⎪⎨
⎪⎩

1

2

∫
S(C)

R ··µν AµνC

⎫⎪⎬
⎪⎭

⎤
⎥⎦
α

β

, (171)

where here AµνC is the usual area bivector associated with the loop in question. The use
of semi-classical arguments in relating the above rotation matrix R(C) to the surface
integral of the Riemann tensor assumes (as usual in the classical context) that the
curvature is slowly varying on the scale of the very large loop. Since the rotation is
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small for weak curvatures, one can write

Rαβ(C) ∼
⎡
⎢⎣1 + 1

2

∫
S(C)

R ··µν AµνC + · · ·
⎤
⎥⎦
α

β

. (172)

At this stage one is ready to compare the above expression to the quantum result
of (168). Since one expression (172) is a matrix and the other (168) is a scalar, we
shall take the trace after first contracting the rotation matrix with (UC + ε I4), as in
the definition of the Wilson loop, giving

W (C) ∼ Tr

⎛
⎜⎝(UC + ε I4) exp

⎧⎪⎨
⎪⎩

1

2

∫
S(C)

R ··µν AµνC

⎫⎪⎬
⎪⎭

⎞
⎟⎠ . (173)

For the lattice analog of a background manifold with constant or near-constant large
scale curvature one has

Rµνλσ = 1

3
λ (gµν gλσ − gµλ gνσ )

(174)

Rµνλσ Rµνλσ = 8

3
λ2

so that here one can set

R α
β µν = R̄ U α

β Uµν, (175)

where R̄ is some average curvature over the loop, and the U ’s here will be taken to
coincide with UC . The trace of the product of (UC + ε I4) with this expression gives

T r(R̄ U 2
C AC ) = − 2 R̄ AC , (176)

where one has used Uµν AµνC = 2 AC (the choice of direction for the bivectors will
be such that the latter is true for all loops). This is to be compared with the linear
term from the other exponential expression, − AC/ξ

2. Thus the average curvature is
computed to be of the order

R̄ ∼ 1/ξ2 (177)

at least in the small k = 1/8πG limit. An equivalent way of phrasing the last result
is that 1/ξ2 should be identified, up to a constant of proportionality, with the scaled
cosmological constant λ.
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13 Nonperturbative gravity

The exact evaluation of the lattice functional integral for quantum gravity by numer-
ical methods allows one to investigate a regime which is generally inaccessible by
perturbation theory, where the coupling G is strong and quantum fluctuations in the
metric are expected to be large. The hope in the end is to make contact with the analytic
results obtained, for example, in the 2 + ε expansion, and determine which scenarios
are physically realized in the lattice regularized model, and then perhaps even in the
real world.

Specifically, one can enumerate several major questions that one would like to get
at least partially answered. The first one is: which scenarios suggested by perturbation
theory are realized in the lattice theory? Perhaps a stable ground state for the quantum
theory cannot be found, which would imply that the regulated theory is still inher-
ently pathological. Furthermore, if a stable ground state exists for some range of bare
parameters, does it require the inclusion of higher derivative couplings in an essential
way, or is the minimal theory, with an Einstein and a cosmological term, sufficient?
Does the presence of dynamical matter, say in the form of a massless scalar field, play
an important role, or is the non-perturbative dynamics of gravity determined largely
by the pure gravity sector (as in Yang-Mills theories)?

More generally, is there any indication that the non-trivial ultraviolet fixed point
scenario is realized in the lattice theory in four dimensions? This would imply, as in
the non-linear sigma model, the existence of at least two physically distinct phases and
non-trivial exponents. Which quantity can be used as an order parameter to physically
describe, in a qualitative, way the two phases? A clear physical characterization of the
two phases would allow one, at least in principle, to decide which phase, if any, could
be realized in nature. Ultimately this might or might not be possible based on purely
qualitative aspects. As will discussed below, the lattice continuum limit is taken in the
vicinity of the fixed point, so close to it is the physically most relevant regime. At the
next level one would hope to be able to establish a quantitative connection with those
continuum perturbative results which are not affected by uncontrollable errors, such
as for example the 2 + ε expansion discussed earlier. Since the lattice cutoff and the
method of dimensional regularization cut the theory off in the ultraviolet in rather dif-
ferent ways, one needs to compare universal quantities which are cutoff-independent.
One example is the critical exponent ν, as well as any other non-trivial scaling dimen-
sion that might arise. Within the 2 + ε expansion only one such exponent appears, to
all orders in the loop expansion, as ν−1 = −β ′(Gc). Therefore one central issue in
the lattice regularized theory is the value of the universal exponent ν.

Knowledge of ν would allow one to be more specific about the running of the gravi-
tational coupling. One purpose of the earlier discussion was to convince the reader that
the exponent ν determines the renormalization group running of G(µ2) in the vicinity
of the fixed point, as in (46) for quantized gravity. From a practical point of view, on
the lattice it is difficult to determine the running of G(µ2) directly from correlation
functions, since the effects from the running of G are generally small. Instead one
would like to make use of the analog of (50) for gravity to determine ν, and from
there the running of G. But the correlation length ξ = m−1 is also difficult to com-
pute, since it enters the curvature correlations at fixed geodesic distance, which are
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hard to compute for (genuinely geometric) reasons to be discussed later. Furthermore,
these generally decay exponentially in the distance at strong G, and can therefore
be difficult to compute due to the signal to noise problem of numerical simulations.
Fortunately the exponent ν can be determined instead, and with good accuracy, from
singularities of the derivatives of the path integral Z , whose singular part is expected,
on the basis of very general arguments, to behave in the vicinity of the fixed point
as F ≡ − 1

V ln Z ∼ ξ−d where ξ is the gravitational correlation length. From (50)
relating ξ(G) to G−Gc and ν one can then determine ν, as well as the critical coupling
Gc.

The starting point is once again the lattice regularized path integral with action as
in (89) and measure as in (94),

Z latt =
∫

[d l2] e−λ0
∑

h Vh+k
∑

h δh Ah , (178)

where, as customary, the lattice ultraviolet cutoff is set equal to one (i.e., all length
scales are measured in units of the lattice cutoff). The lattice measure is given in (94)
and is therefore of the form

∫
[d l2] =

∞∫
0

∏
s

(Vd(s))
σ
∏
i j

dl2
i j �[l2

i j ]. (179)

with σ a real parameter. Ultimately the above lattice partition function Zlatt is intended
as a regularized form of the continuum Euclidean Feynman path integral of (14).

Among the simplest quantum mechanical averages is the one associated with the
local curvature

R(k) ∼ 〈∫ dx
√

g R(x)〉
〈∫ dx

√
g〉 , (180)

The curvature associated with the quantity above is the one that would be detected
when parallel-transporting vectors around infinitesimal loops, with size comparable
to the average lattice spacing l0. Closely related to it is the fluctuation in the local
curvature

χR(k) ∼ 〈(∫ dx
√

g R)2〉 − 〈∫ dx
√

g R〉2

〈∫ dx
√

g〉 . (181)

The latter is related to the connected curvature correlation at zero momentum

χR ∼
∫

dx
∫

dy〈√g(x)R(x)
√

g(y)R(y)〉c

〈∫ dx
√

g(x)〉 . (182)

Both R(k) and χR(k) are directly related to derivatives of Z with respect to k,

R(k) ∼ 1

V

∂

∂k
ln Z , (183)
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and

χR(k) ∼ 1

V

∂2

∂k2 ln Z . (184)

Thus a divergence or non-analyticity in Z , as caused for example by a phase transition,
is expected to show up in these local averages as well. Note that the above expectation
values are manifestly invariant, since they are related to derivatives of Z .

When computing correlations, new issues arise in quantum gravity due to the fact
that the physical distance between any two points x and y

d(x, y | g) = min
ξ

τ(y)∫
τ(x)

dτ

√
gµν(ξ)

dξµ

dτ

dξν

dτ
, (185)

is a fluctuating function of the background metric gµν(x). In addition, the Lorentz
group used to classify spin states is meaningful only as a local concept. In the contin-
uum the shortest distance between two events is determined by solving the geodesic
equation

d2xµ

dτ 2 + �
µ
λσ

dxλ

dτ

dxσ

dτ
= 0 (186)

On the lattice the geodesic distance between two lattice vertices x and y requires
the determination of the shortest lattice path connecting several lattice vertices, and
having the two given vertices as endpoints. This can be done at least in principle by
enumerating all paths connecting the two points, and then selecting the shortest one.
Consequently physical correlations have to be defined at fixed geodesic distance d, as
in the following correlation between scalar curvatures

〈∫
dx
∫

dy
√

g R(x)
√

g R(y) δ(|x − y| − d)

〉
(187)

Generally these do not go to zero at large separation, so one needs to define the con-
nected part, by subtracting out the value at d = ∞. These will be indicated in the
following by the connected 〈 〉c average, and we will write the resulting connected
curvature correlation function at fixed geodesic distance compactly as

G R(d) ∼ 〈√g R(x)
√

g R(y) δ(|x − y| − d)〉c. (188)

One can define several more invariant correlation functions at fixed geodesic distance
for other operators involving curvatures. Thus one is naturally lead to the connected
correlation function

G R(d) ≡
〈∑

h⊃x

δh Ah

∑
h′⊃y

δh′ Ah′ δ(|x − y| − d)

〉

c

, (189)

which probes correlations in the scalar curvatures.
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In general one expects for the curvature correlation either a power law decay, for
distances sufficiently larger than the lattice spacing l0,

〈√g R(x)
√

g R(y) δ(|x − y| − d)〉c ∼
d � l0

1

d2n
, (190)

with n some exponent characterizing the power law decay, or at very large distances
an exponential decay, characterized by a correlation length ξ ,

〈√g R(x)
√

g R(y) δ(|x − y| − d)〉c ∼
d � ξ

e−d/ξ . (191)

In practice the correlation functions at fixed geodesic distance are difficult to compute
numerically, and therefore not the best route to study the critical properties. But scal-
ing arguments allow one to determine the scaling behavior of correlation functions
from critical exponents characterizing the singular behavior of the free energy and
various local averages in the vicinity of the critical point. In general a divergence of
the correlation length ξ

ξ(k) ≡ ∼
k→kc

Aξ |kc − k|−ν (192)

signals the presence of a phase transition, and leads to the appearance of a singu-
larity in the free energy F(k). The scaling assumption for the free energy postulates
that a divergent correlation length in the vicinity of the critical point at kc leads to
non-analyticities of the type

F ≡ − 1

V
ln Z = Freg + Fsing Fsing ∼ ξ−d (193)

where the second relationship follows simply from dimensional arguments (the free
energy is an extensive quantity). The regular part Freg is generally not determined from
ξ by purely dimensional considerations, but as the name implies is a regular function
in the vicinity of the critical point. Combining the definition of ν in (192) with the
scaling assumption of (193) one obtains

Fsing(k) ∼
k→kc

|kc − k|dν (194)

The presence of a phase transition can then be inferred from non-analytic terms in
invariant averages, such as the average curvature and its fluctuation. Thus for the
average curvature one obtains

R(k) ∼
k→kc

AR |kc − k|dν−1, (195)
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Fig. 8 Four-dimensional hypercubes divided into simplices and stacked to form a four-dimensional lattice

up to regular contributions (i.e., constant terms in the vicinity of kc). Similarly one
has for the curvature fluctuation

χR(k) ∼
k→kc

AχR |kc − k|−(2−dν). (196)

At a critical point the fluctuation χ is in general expected to diverge, corresponding to
the presence of a divergent correlation length. From such averages one can therefore in
principle extract the correlation length exponent ν of (192) without having to compute
a correlation function.

As far as the lattice is concerned, one starts for example with the 4-d hypercube of
Fig. 5 divided into simplices, and then stacks a number of such cubes in such a way as
to construct an arbitrarily large lattice, as shown in Fig. 8. Other lattice structures are
of course possible, including even a random lattice. The expectation is that for long
range correlations involving distance scales much larger than the lattice spacing the
precise structure of the underlying lattice structure will not matter. This expectation
of the existence of a unique scaling limit is known as universality of critical behavior.

Typically the lattice sizes investigated range from 44 sites (3,840 edges) to 324

sites (15,728,640 edges). On a dedicated massively parallel supercomputer millions
of consecutive edge length configurations can be generated for tens of values of k in
a few day’s or week’s time. Furthermore the bare cosmological constant λ0 appearing
in the gravitational action of (96) can be fixed at 1 in units of the cutoff, since it just
sets the overall length scale in the problem. The higher derivative coupling a can be
set to a value very close to 0 since one ultimately is interested in the limit a → 0,
corresponding to the pure Einstein theory.

One finds that for the measure in (95) this choice of parameters leads to a well
behaved ground state for k < kc for higher derivative coupling a → 0. The system
then resides in the “smooth” phase, with an effective dimensionality close to four. On
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Fig. 9 A pictorial description of the smooth (le f t) and rough (right) phases of four-dimensional lattice
quantum gravity

the other hand for k > kc the curvature becomes very large and the lattice collapses
into degenerate configurations with very long, elongated simplices (see Fig. 9).

One finds that as k is varied, the average curvature R is negative for sufficiently
small k (“smooth” phase), and appears to go to zero continuously at some finite value
kc. For k > kc the curvature becomes very large, and the simplices tend to collapse into
degenerate configurations with very small volumes (〈V 〉/〈l2〉2 ∼ 0). This “rough” or
“collapsed” phase is the region of the usual weak field expansion (G → 0). In this
phase the lattice collapses into degenerate configurations with very long, elongated
simplices. This phenomenon is usually interpreted as a lattice remnant of the conformal
mode instability of Euclidean gravity discussed earlier.

There are a number of ways by which the critical exponents can be determined
accurately from numerical simulations, but it is beyond the scope of this review to go
into details. For example, one way to extract the critical exponent ν is to fit the average
curvature to the form [see (195)]

R(k) ∼
k→kc

−AR (kc − k)δ. (197)

Using this general set of procedures one obtains eventually

kc = 0.0636(11) ν = 0.335(9), (198)

which suggests ν = 1/3 for pure quantum gravity. Note that at the critical point the
gravitational coupling is not weak, Gc ≈ 0.626 in units of the ultraviolet cutoff.

Often it can be advantageous to express results obtained in the cutoff theory in
terms of physical (i.e., cutoff independent) quantities. By the latter one means quanti-
ties for which the cutoff dependence has been re-absorbed, or restored, in the relevant
definition. As an example, an expression equivalent to (195), relating the vacuum
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Table 1 Direct determinations
of the critical exponent ν−1 for
quantum gravitation, using
various analytical and numerical
methods in three and four
space-time dimensions

Method ν−1 in d = 3 ν−1 in d = 4

Lattice 1.67 (6) –

Lattice – 2.98 (7)

2 + ε 1.6 4.4

Truncation 1.2 2.666

Exact? 1.5882 3

expectation value of the local scalar curvature to the physical correlation length ξ , is

〈∫ dx
√

g R(x)〉
〈∫ dx

√
g〉 ∼

G→Gc
const.

(
l2
P

)(d−2−1/ν)/2
(

1

ξ2

)(d−1/ν)/2

, (199)

which is obtained by substituting (192) into (195). The correct dimensions have been
restored in this last equation by supplying appropriate powers of the Planck length
lP = G1/(d−2)

phys , which involves the ultraviolet cutoff �. Then for ν = 1/3 the result
of (199) becomes particularly simple

〈∫ dx
√

g R(x)〉
〈∫ dx

√
g〉 ∼

G→Gc
const.

1

lP ξ
(200)

Note that a naive estimate based on dimensional arguments would have suggested the
incorrect result ∼ 1/ l2

P . Instead the above expression actually vanishes at the critical
point. This shows that ν plays the role of an anomalous dimension, determining the
magnitude of deviations from naive dimensional arguments. It is amusing to note that
the value ν = 1/3 for gravity does not correspond to any known field theory or statis-
tical mechanics model in four dimensions. For a perhaps related system, namely dilute
branched polymers, it is known that ν = 1/2 in three dimensions, and ν = 1/4 at the
upper critical dimension d = 8, so one would expect a value close to 1/3 somewhere
in between. On the other hand for a scalar field one would have obtained ν = 1 in
d = 2 and ν = 1

2 for d ≥ 4, which seems excluded.
Table 1 provides a summary of the critical exponents for quantum gravitation

as obtained by various perturbative and non-perturbative methods in three and four
dimensions. The 2 + ε and the truncation method results were discussed previously.
The lattice model of (96) in four dimensions gives for the critical point Gc ≈ 0.626
in units of the ultraviolet cutoff, and ν−1 = 2.98(7) which is used for comparison in
Table 1. In three dimensions the numerical results are consistent with the universality
class of the interacting scalar field.

14 Renormalization group and lattice continuum limit

The discussion in the previous sections points to the existence of a phase transition
in the lattice gravity theory, with divergent correlation length in the vicinity of the
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critical point, as in (192)

ξ(k) ∼
k→kc

Aξ |kc − k|−ν (201)

One expects the scaling result of (201) close to the fixed point, which we choose to
rewrite here in terms of the inverse correlation length m ≡ 1/ξ

m = � Am | k − kc |ν. (202)

In the above expression the correct dimension for m (inverse length) has been restored
by inserting explicitly on the r.h.s. the ultraviolet cutoff�. Here k and kc are of course
still dimensionless quantities, and correspond to the bare microscopic couplings at the
cutoff scale, k ≡ k(�) ≡ 1/(8πG(�)). Am is a calculable numerical constant, related
to Aξ in (192) by Am = A−1

ξ . It is worth pointing out that the above expression for
m(k) is almost identical in structure to the one for the non-linear σ -model in the 2 + ε
expansion, (25) and in the large N limit. It is of course also quite similar to 2+ε result
for continuum gravity, (50).

The lattice continuum limit corresponds to the large cutoff limit taken at fixed
m or ξ ,

� → ∞, k → kc, m fixed, (203)

which shows that the continuum limit is reached in the vicinity of the ultraviolet fixed
point (see Fig. 10). Phrased equivalently, one takes the limit in which the lattice spac-
ing a ≈ 1/� is sent to zero at fixed ξ = 1/m, which requires an approach to the
non-trivial UV fixed point k → kc. The quantity ξ is supposed to be a renormaliza-
tion group invariant, a physical scale independent of the scale at which the theory
is probed. In practice, since the cutoff ultimately determines the physical value of
Newton’s constant G,� cannot be taken to ∞. Instead a very large value will suffice,
�−1 ∼ 10−33 cm, for which it will still be true that ξ � �which is all that is required
for the continuum limit.

For discussing the renormalization group behavior of the coupling it will be more
convenient to write the result of (202) directly in terms of Newton’s constant G as

m = �

(
1

a0

)ν [G(�)

Gc
− 1

]ν
, (204)

with the dimensionless constant a0 related to Am by Am = 1/(a0kc)
ν . Note that the

above expression only involves the dimensionless ratio G(�)/Gc, which is the only
relevant quantity here. From the knowledge of the dimensionless constant Am in (202)
one can estimate from first principles the value of a0 in (209). Lattice results for the
correlation functions at fixed geodesic distance give a value for Am ≈ 0.72 with
a significant uncertainty, which, when combined with the values kc � 0.0636 and
ν � 0.335 given above, gives a0 = 1/(kc A1/ν

m ) � 42.
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ξ ξ ξ

Fig. 10 The lattice quantum continuum limit is gradually approached by considering sequences of lattices
with increasingly larger correlation lengths ξ in lattice units. Such a limit requires the existence of an
ultraviolet fixed point, where quantum field correlations extend over many lattice spacing

The renormalization group invariance of the physical quantity m requires that the
running gravitational coupling G(µ) varies in the vicinity of the fixed point in accor-
dance with the above equation, with � → µ, where µ is now an arbitrary scale,

m = µ

(
1

a0

)ν [G(µ)

Gc
− 1

]ν
, (205)

The latter is equivalent to the renormalization group invariance requirement

µ
d

d µ
m(µ,G(µ)) = 0 (206)

provided G(µ) is varied in a specific way. (206) can therefore be used to obtain, if one
so wishes, a β-function for the coupling G(µ) in units of the ultraviolet cutoff,

µ
∂

∂ µ
G(µ) = β(G(µ)), (207)

with β(G) given in the vicinity of the non-trivial fixed point, using (205), by

β(G) ≡ µ
∂

∂ µ
G(µ) ∼

G→Gc
−1

ν
(G − Gc)+ · · · . (208)

The above procedure is in fact in complete analogy to what is done for the non-linear
σ -model. But the last two steps are not really necessary, for one can obtain the scale
dependence of the gravitational coupling directly from (205), by simply solving for
G(µ),

G(µ) = Gc

[
1 + a0(m

2/µ2)1/2ν + · · ·
]

(209)

This last expression can be compared directly to the 2 + ε result of (46), as well as to
the σ -model result of (22). The physical dimensions of G can be restored by multiply-
ing the above expression on both sides by the ultraviolet cutoff �, if one so desires.
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One concludes that the above result physically implies gravitational anti-screening:
the gravitational coupling G increases with distance. In conclusion, the lattice result
for G(µ) in (209) and the β-function in (208) are qualitatively similar to what one
finds both in the 2 + ε expansion for gravity and in the non-linear σ -model in the
strong coupling phase.

15 Curvature scales and gravitational condensate

As can be seen from (30) the path integral for pure quantum gravity can be made to
depend on the gravitational coupling G and the cutoff � only: by a suitable rescaling
of the metric, or the edge lengths in the discrete case, one can set the cosmological
constant to unity in units of the cutoff. The remaining coupling G should then be
viewed more appropriately as the gravitational constant in units of the cosmological
constant λ.

The renormalization group running of G(µ) in (209) involves an invariant scale
ξ = 1/m. At first it would seem that this scale could take any value, including very
small ones based on the naive estimate ξ ∼ lP , which would preclude any observable
quantum effects in the foreseeable future. But the result of (199) and (200) suggest
otherwise, namely that the non-perturbative scale ξ is in fact related to curvature. From
astrophysical observation the average curvature is very small, so one would conclude
from (200) that ξ is very large, and possibly macroscopic. But the problem with (200)
is that it involves the lattice Ricci scalar, a quantity related curvature probed by paral-
lel transporting vectors around infinitesimal loops with size comparable to the lattice
cutoff �−1. What one would like is instead a relationship between ξ and quantities
which describe the geometry on larger scales.

In many ways the quantity m of (205) behaves as a dynamically generated mass
scale, quite similar to what happens in the non-linear σ -model case, or in the 2 + ε

gravity case (47). From the classical field equation R = 4λ one can relate the above λ,
and therefore the mass-like parameter m, to curvature, which leads to the identification

λobs � 1

ξ2 (210)

with λobs the observed small but non-vanishing cosmological constant.
A further indication that the identification of the observed scaled cosmological

constant with a mass-like, and therefore renormalization group invariant, term makes
sense beyond the weak field limit can be seen for example by comparing the structure
of the three classical field equations

Rµν − 1

2
gµν R + λ gµν = 8πG Tµν

∂µFµν + µ2 Aν = 4πe jν (211)

∂µ∂µ φ + m2 φ = g

3! φ
3
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for gravity, QED (massive via the Higgs mechanism) and a self-interacting scalar field,
respectively.

A third argument suggesting the identification of the scale ξ with large scale curva-
ture, and therefore with the observed scaled cosmological constant, goes as follows.
Observationally the curvature on large scale can be determined by parallel transport-
ing vectors around very large loops, with typical size much larger than the lattice
cutoff lP . In gravity, curvature is detected by parallel transporting vectors around
closed loops. This requires the calculation of a path dependent product of Lorentz
rotations R, in the Euclidean case elements of SO(4), as discussed earlier. From it
then follows the identification of the correlation length ξ with a measure of large scale
curvature, the most natural candidate being the scaled cosmological constant λphys,
as in (210). This relationship, taken at face value, implies a very large, cosmological
value for ξ ∼ 1028 cm, given the present bounds on λphys. Thus the modified Einstein
equations, incorporating the quantum running of G, should read

Rµν − 1

2
gµν R + λ gµν = 8π G(µ) Tµν (212)

with λ � 1
ξ2 . Here only G(µ) on the r.h.s. scale-dependent in accordance with (209).

The precise meaning of G(µ) in a covariant framework will be given shortly.
It is worth pointing out here that the gravitational vacuum condensate, which only

exists in the strong coupling phase G > Gc, and which is proportional to the curvature,
is genuinely non-perturbative. Thus one can summarize the result of (210) as

Robs � (10−30eV )2 ∼ ξ−2 (213)

where the condensate is, according to (204), non-analytic at G = Gc. A graviton vac-
uum condensate of order ξ−1–10−30 eV is of course extraordinarily small compared
to the QCD color condensate (�MS � 220 MeV) and the electro-weak Higgs conden-
sate (v � 250 GeV). One can pursue the analogy with non-Abelian gauge theories
further by stating that the quantum gravity theory cannot provide a value for the non-
perturbative curvature scale ξ : it needs to be fixed by some sort of phenomenological
input, either by (209) or by (210). But one important message is that the scale ξ in
those two equations is one and the same.

16 Effective field equations

To summarize the results of the previous section, the result of (209) implies for the
running gravitational coupling in the vicinity of the ultraviolet fixed point

G(k2) = Gc

⎡
⎣ 1 + a0

(
m2

k2

) 1
2ν

+ O( (m2/k2)
1
ν )

⎤
⎦ (214)

with m = 1/ξ , a0 > 0 and ν � 1/3. Since ξ is expected to be very large, the quantity
Gc in the above expression should now be identified with the laboratory scale value
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√
Gc ∼ 1.6 × 10−33 cm. The effective interaction in real space is often obtained by

Fourier transform, but the above expression is a bit singular as k2 → 0. The infrared
divergence needs to be regulated, which can be achieved by utilizing as the lower limit
of momentum integration m = 1/ξ . Alternatively, as a properly infrared regulated
version of the above expression one can use

G(k2) � Gc

⎡
⎣ 1 + a0

(
m2

k2 + m2

) 1
2ν

+ · · ·
⎤
⎦ (215)

Then at very large distances r � ξ the gravitational coupling approaches the finite
value G∞ = (1 + a0 + · · · )Gc.

The first step in analyzing the consequences of a running of G is to re-write the
expression for G(k2) in a coordinate-independent way, for example by the use of a non-
local Vilkovisky-type effective actions. Since in going from momentum to position
space one usually employs k2 → −�, to obtain a quantum-mechanical running of the
gravitational coupling one needs to make the replacement

G → G(�) (216)

and therefore from (214)

G(�) = Gc

[
1 + a0

(
1

ξ2�

) 1
2ν + · · ·

]
. (217)

The running of G is expected to lead to a non-local gravitational action, for example
of the form

I = 1

16πG

∫
dx

√
g

(
1 − a0

[
1

ξ2�

)1/2ν

+ · · ·
]

R. (218)

Due to the fractional exponent in general the covariant operator appearing in the above
expression, namely

A(�) = a0

(
1

ξ2�

)1/2ν

(219)

has to be suitably defined by analytic continuation from positive integer powers. The
latter can be done, for example, by computing �n for positive integer n and then
analytically continuing to n → −1/2ν.

Had one not considered the action of (218) as a starting point for constructing the
effective theory, one would naturally be led [following (216)] to consider the following
effective field equations

Rµν − 1

2
gµν R + λ gµν = 8πG (1 + A(�)) Tµν (220)
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the argument again being the replacement G → G(�) ≡ G (1 + A(�)). Being man-
ifestly covariant, these expressions at least satisfy some of the requirements for a set
of consistent field equations incorporating the running of G. The above effective field
equation can in fact be re-cast in a form similar to the classical field equations

Rµν − 1

2
gµν R + λ gµν = 8πG T̃µν (221)

with T̃µν = (1 + A(�)) Tµν defined as an effective, or gravitationally dressed, energy-
momentum tensor. Just like the ordinary Einstein gravity case, in general T̃µν might
not be covariantly conserved a priori, ∇µ T̃µν �= 0, but ultimately the consistency of
the effective field equations demands that it be exactly conserved, in consideration of
the Bianchi identity satisfied by the Riemann tensor. In a sense the running of G can
be interpreted as due to some sort of “vacuum fluid”, introduced to account for the
vacuum polarization contribution, whose energy momentum tensor one would expect
to be ultimately covariantly conserved. That the procedure is consistent in general is
not entirely clear, in which case the present approach should perhaps be limited to
phenomenological considerations.

17 Static isotropic solution

One can show that the quantum correction due to the running of G can be described,
at least in the non-relativistic limit of (215) as applied to Poisson’s equation, in terms
of a vacuum energy density ρm(r), distributed around the static source of strength M
in accordance with the result

ρm(r) = 1

8π
cν a0 M m3 (m r)−

1
2 (3− 1

ν
) K 1

2 (3− 1
ν
)(m r) (222)

with a constant

cν ≡ 2
1
2 (5− 1

ν
)

√
π �( 1

2 ν )
. (223)

and such that

4π

∞∫
0

r2 dr ρm(r) = a0 M. (224)

In the relativistic context, a manifestly covariant implementation of the running of G,
via the G(�) given in (217), will induce a non-vanishing effective pressure term. It
is natural therefore to attempt to represent the vacuum polarization cloud by a relativ-
istic perfect fluid, with energy-momentum tensor Tµν = ( p + ρ ) uµ uν + gµν p.
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Solving the resulting field equations gives a solution only for ν = 1/3 and one finds

A−1(r) == B(r) = 1 − 2 M G

r
+ 4 a0 M G m3

3π
r2 ln (m r)+ · · · (225)

After a bit of work one can then obtain an expression for the effective pressure pm(r),
and one finds again in the limit r � 2MG

pm(r) = a0

2π2 M m3 ln (m r)+ · · · (226)

The expressions for A(r) and B(r) are therefore consistent with a gradual slow increase
in G with distance, in accordance with the formula

G → G(r) = G

(
1 + a0

3π
m3 r3 ln

1

m2 r2 + · · ·
)

(227)

in the regime r � 2 M G, and therefore of course in agreement with the original
result of (214) or (215), namely that the classical laboratory value of G is obtained for
r � ξ . There are similarities, as well as some rather substantial differences, with the
corresponding QED small r result

Q → Q(r) = Q

(
1 + α

3π
ln

1

m2 r2 + · · ·
)
. (228)

In the gravity case, the correction vanishes as r goes to zero: in this limit one is probing
the bare mass, unobstructed by its virtual graviton cloud. In some ways the running
G term acts as a local cosmological constant term, for which the r dependence of the
vacuum solution for small r is fixed by the nature of the Schwarzschild solution with
a cosmological constant term. One can therefore wonder what these solutions might
look like in d dimensions, and after some straightforward calculations one finds that
in d ≥ 4 dimensions only ν = 1/(d − 1) is possible.

18 Cosmological solutions

A scale dependent Newton’s constant will lead to small modifications of the standard
cosmological solutions to the Einstein field equations. Here we will provide a brief
discussion of what modifications are expected from the effective field equations on
the basis of G(�), as given in (216), which itself originates in (215) and (214). The
starting point is the quantum effective field equations of (220),

Rµν − 1

2
gµν R + λ gµν = 8πG (1 + A(�)) Tµν (229)
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with A(�) defined in (219). In the Friedmann-Robertson-Walker (FRW) framework
these are applied to the standard homogeneous isotropic metric

ds2 = −dt2 + a2(t)

{
dr2

1 − k r2 + r2
(

dθ2 + sin2 θ dϕ2
)}

(230)

It should be noted that there are two quantum contributions to the above set of effec-
tive field equations. The first one arises because of the presence of a non-vanishing
cosmological constant λ � 1/ξ2 caused by the non-perturbative vacuum condensate
of (210). As in the case of standard FRW cosmology, this is expected to be the domi-
nant contributions at large times t , and gives an exponential (for λ > 0) or cyclic (for
λ < 0) expansion of the scale factor. The second contribution arises because of the
running of G in the effective field equations,

G(�) = G (1 + A(�)) = G

[
1 + a0

(
ξ2�
)− 1

2ν + · · ·
]

(231)

for t � ξ , with ν � 1/3 and a0 > 0 a calculable coefficient of order one [see (214),
(215)]. The next step is to examine the full effective field equations with a cosmological
constant λ = 0,

Rµν − 1

2
gµν R = 8πG (1 + A(�)) Tµν (232)

Here the d’Alembertian operator

� = gµν∇µ∇ν (233)

acts on a second rank tensor,

∇νTαβ = ∂νTαβ − �λανTλβ − �λβνTαλ ≡ Iναβ
(234)∇µ

(∇νTαβ
) = ∂µ Iναβ − �λνµ Iλαβ − �λαµ Iνλβ − �λβµ Iναλ

Next one assumes again that Tµν has the perfect fluid form, for which one obtains
from the action of � on Tµν

(
� Tµν

)
t t = 6 [ρ(t)+ p(t)]

(
ȧ(t)

a(t)

)2

− 3 ρ̇(t)
ȧ(t)

a(t)
− ρ̈(t)

(
� Tµν

)
rr = 1

1 − k r2

{
2 [ρ(t)+ p(t)] ȧ(t)2 − 3 ṗ(t) a(t) ȧ(t)− p̈(t) a(t)2

}
(
� Tµν

)
θθ

= r2 (1 − k r2)
(
� Tµν

)
rr(

� Tµν
)
ϕϕ

= r2 (1 − k r2) sin2 θ
(
� Tµν

)
rr (235)

with the remaining components equal to zero. Note that a non-vanishing pressure con-
tribution is generated in the effective field equations, even if one assumes initially a
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pressureless fluid, p(t) = 0. As before, repeated applications of the d’Alembertian
� to the above expressions leads to rapidly escalating complexity, which can only
be tamed by introducing some further simplifying assumptions, such as a power law
behavior for the density, ρ(t) = ρ0 tβ , and p(t) = 0. After a lengthy calculation one
finds for a universe filled with non-relativistic matter (p = 0), the effective Friedmann
equations then have the following appearance

k

a2(t)
+ ȧ2(t)

a2(t)
= 8πG(t)

3
ρ(t)+ 1

3 ξ2

= 8πG

3

[
1 + cξ (t/ξ)

1/ν + · · ·
]
ρ(t)+ 1

3
λ (236)

for the t t field equation, and

k

a2(t)
+ ȧ2(t)

a2(t)
+ 2 ä(t)

a(t)
= − 8πG

3

[
cξ (t/ξ)

1/ν + · · ·
]
ρ(t)+ λ (237)

for the rr field equation. The running of G appropriate for the Robertson-Walker
metric, and appearing explicitly in the first equation, is given by

G(t) = G

[
1 + cξ

(
t

ξ

)1/ν

+ · · ·
]

(238)

with cξ of the same order as a0 of (214). Note that the running of G(t) induces as
well an effective pressure term in the second (rr ) equation. We wish to emphasize
that we are not talking here about models with a time-dependent value of G. Thus,
for example, the value of G � Gc at laboratory scales should be taken to be constant
throughout most of the evolution of the universe.

Finally it should be noted that the effective Friedmann equations of (236) and
(237) also bear a superficial degree of resemblance to what might be obtained in some
scalar-tensor theories of gravity, where the gravitational Lagrangian is postulated to
be some singular function of the scalar curvature. The former scenario would then
correspond the to an effective gravitational action

Ieff � 1

16πG

∫
dx

√
g

(
R + f ξ− 1

ν

|R| 1
2ν−1

− 2 λ

)
(239)

but with ν = 1/3, f a numerical constant of order one, and λ � 1/ξ2.
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