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weak-field expansion for the regular tessellation a s of the four-sphere is presented. Preliminary 
numerical results for some computations in four dimensions are also discussed. 

1. Introduction 

The study of higher derivative gravity theories dates back to more than thirty 
years ago (for a historical review see ref. [1D. It has been known for some time that if 
one attempts to quantize the Einstein theory of gravity one encounters two major 
difficulties. The field equations for the metric are derived from an action that is 
unbounded from below, and the path integral is therefore mathematically ill-defined. 
Furthermore the coupling constant in Einstein gravity (Newton's constant) has 
dimension of inverse mass squared (in units h = c = 1), and this leads to a non- 
renormalizable quantum theory, as can be verified by doing explicit Feynman 
diagram perturbation theory [2-4]. 

One possible attitude is to hope that these problems will be cured in the context of 
a grand unified theory like supergravity. Alternatively, one might argue that the 
above problems hint at a fundamental incompatibility between gravity and quantum 
mechanics, and any modification of the Einstein action will in general lead to new 
undetermined parameters. 

Of course the argument about naturalness and simplicity of the Einstein theory 
can be turned around, in the sense that a quantum theory of gravity should just 
provide the answer for why, starting with the most general microscopic theory 
consistent with general invariance principles, some terms appear in the low-energy 
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effective lagrangian and others do not. The question then becomes of course a 
dynamical one. In other field theoretic contexts this phenomenon is connected with 
the flow of the coupling constants as the length scale at which the theory is probed is 
changed, and the concept of scaling dimensions and op¢l~ator relevance [5]. 

Within the framework of continuum local field theories, the~ternative possibility 
is thus to include in the action those terms that are generated by renormalization, 
and see whether the resulting action leads to a tractable and perhaps meaningful 
quantum theory [6]. It turns out that only two additional terms, involving fourth 
derivatives of the metric, need to be added to the Einstein action in order to obtain a 
perturbatively renormalizable theory, and cure at the same time the unbonndedness 
problem [7]. More remarkably, the resulting theory is asymptotically free in the new 
coupling constants (if they are chosen with the right sign) and is thus ultraviolet 
stable [8, 9]. Furthermore, because of the asymptotic freedom the infrared behavior 
of the theory is computable and cutoff-independent. This suggests that some class of 
higher derivative gravity theories with a cutoff can be defined, such that a truly 
cutoff independent continuum limit exists, and can be constructed using the renor- 
malization group. 

Unfortunately, as will be further discussed below, it appears that the theory has 
some potential problems with unitarity. If one looks at the tree-level graviton 
propagator one finds that it exhibits a massive ghost pole. It has been argued that 
radiative corrections restore the unitarity of the theory (by decoupling the ghosts), 
but it seems unlikely that these and other questions (like the recovery of a newtonian 
limit) can be answered within the context of weak coupling perturbation theory. In 
fact the complexity of the theory resembles quantum chromo-dynamics, for which 
other tools (like the lattice regularization and non-perturbative methods) are needed 
to control and understand the low-energy, large distance properties. It is in this spirit 
that one has decided to turn to a discrete formulation of quantum gravity. The 
lattice is introduced as an aid to formulating and calculating the theory in the same 
way that one uses finite differences both to define derivatives and to obtain 
approximate numerical solutions of differential equations. For recent reviews of 
Yang-Mills theories defined on a lattice see refs. [11]. 

Gravity on a lattice was in fact formulated some time ago by Regge [12]. In his 
work he showed that lattice gravity can be described by a simplicial net in which the 
elementary variables are the edge lengths connecting the points in the net. Here 
Regge's formulation and its extension to higher derivative gravity will be discussed 
in some detail. It is clear that if some class of higher derivative gravity theories is 
well defined and has a sensible low-energy limit, it should agree with the experimen- 
tal evidence. This suggests that the effects of the higher derivative terms should 
vanish in the low-energy limit, and that the observed smallness of the cosmological 
constant be explained in a natural way as a consequence of renormalization effects. 
These are questions that presumably can best be answered by studying the non-per- 
turbative dynamics of the theory on a space-time lattice. 
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Consider the euclidean Einstein action without a cosmological constant term ~ 

! 
IE= 167rG f d4x 1/~R' (1.1) 

where G is Newton's constant, ~ is the determinant of the metric ga,, and R is the 
scalar curvature. Here boundary terms have been dropped, and couplings to matter 
fields are not considered. Variation with respect to the metric leads to the classical 
equations of motion for the gravitational field in a vacuum 

8I E = 0 x R~,, - ~g~,,R = O. (1.2) 

If one attempts to write down a path integral of the form 

Z =  f e -t~ (1.3) 
"geometries 

(which will in general depend on a specified initial and final three-geometry) one 
soon realizes that it appears ill defined due to the fact that the scalar curvature can 
become arbitrarily positive (or negative). This in turn is a consequence of the fact 
that while gravitational radiation has positive energy, gravitational potential energy 
is negative because gravity is attractive. The gravitational action is unbounded from 
below and the functional integral strongly depends on how the unboundedness is 
cutoff [2]. To see more dearly that the gravitational action can be made arbitrarily 
negative consider a conformal transformation ~,, = l~2g~,, where l~ is a positive 
function. Then the Einstein action transforms into 

IE(oa)  = l f d 4 x ~ l - g ( ~ 2 2 R + 6 g ~ " O ~ 2 0 , ~ 2 ) ,  (1 .4)  
1 0  ' /TILI v 

which can be made arbitrarily negative by choosing a rapidly varying conformal 
factor I2. 

A second serious problem is connected with the fact that the coupling constant 
G-1 has dimension of mass to the power ( d -  2) in d space-time dimensions and 
suggests that the theory is not perturbatively renormalizable above two dimensions. 
It has been shown that close to four dimensions in order to renormalize the theory at 
one loop one needs to introduce higher derivative counterterms, which are needed to 
cancel the divergences proportional (in dimensional regularization) to [3] 

1 fd4xv  + (1.5) A I =  8¢r2(d - 4) t24o"~,,0,,'" • 
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A possible solution to the unboundedness problem has been described by Hawking 
[2], who suggests performing the integration over all metrics by first integrating over 
conformal factors distorting the integration contour in the complex plane to avoid 
the unboundedness problem, followed by an integration over conformal equivalence 
classes of metrics. 

A second possibility is to add to the Einstein action extra terms, including higher 
derivative ones like R 2, in a carefully chosen combination which makes the total 
action bounded from below. It turns out that only up to fourth derivative terms need 
to be considered in order to cure the renormaliTability problem. Thus one is led to 
consider the extended gravitational action [9] 

I=fd'xv [X- kg + R~"P°-4-½(b-¼a)R z ] 
4 ~ l z~po  ~ - -  

(1.6) 

with a cosmological constant term (proportional to ~), the Einstein term (k = 
1/16~rG where G is the bare Newton constant), and two higher derivative terms 
with additional dimensionless coupling constants a-1 and b-1. Even though there 
are four possible higher derivative terms in four dimensions which do not give rise to 
topological invariants (proportional to integrals of CA~po, Rv,oo,2 R~,,2 and R2), only 
two are found to be independent for a manifold of fixed topology, if one uses some 
identities for the Riemann tensor and the integral expression for the Enler character- 
istic [13]. 

The higher derivative action of eq. (1.6) was shown to be renormalizable to all 
orders in perturbation theory [7]. Perturbation theory is usually performed around 
flat space, which requires ~ = 0. One sets g~,~ = ~1~, + h~,, and expands the action in 
powers of h~,,. (If ~ is nonzero, one has to expand around a solution of the classical 
equations of motion for higher derivative gravity [1,14] with a X term, and the 
solution will no longer be constant over space-time). The quadratic part of the action 
is [91 

I ~ i ~ d  = ½ f d4x [ h~,,{ ½k + ½a(--A))(--A)P(2)pohpo 

+h, ,{ -k  + 2b(-A)}(-A)P~°)pohpo]. (1.7) 

where A is the 4d laplacian and p(2) and p(0) are projection operators for the 
spin-two and spin-zero modes, respectively, of the linearized gravitational field. 
Let us recall that the three relevant projection operators are given in momentum 
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space by 

1 1 
2 ~ (k~'kd~a + k~'kaS"" + k ' k A a  + k.ka8~.) 

2 1 
1 + 2 ( 8~,,,8.~ + 8~8,~) - ~8~,fl.O + -~ --~ k~,k~k.ka, 

1 1 1 
-- 7 ( k , k . 8 . ,  = k,k 8.o + k.k.% + --fsk,k.k ko. 

l (k~,k ,  k.ka ) 1 1 
(1.8) 

and add up to give the unit matrix 

• ~ . ° ~ -  , ~ , , ~ -  8 ,A~) .  (1.9) 
i 

As can be seen, the spin-zero mode is responsible for the unboundedness of the pure 
Einstein action since its kinetic term comes with the wrong sign. (In the linearized 
action it appears as a ghost contribution). 

Including radiative corrections to one-loop order one finds that the theory is 
asymptotically free in the couplings a and b. To this order (small a -1, b -1) the 
renorrnalization group equations for the two higher derivative couplings and the 
dimensionless cosmological constant h = ak/k  2 computed in ref. [9] are 

Oa 1 133 

O l n L =  fl" 16¢r 2 10 
- - +  . . .  , 

O(b/a) b 1 [ lOb 2 183b 1 ] 
t~ l n - - ~ - -  f ib -  aft" = 161r2 [ ~ a  2 lOa 12 ] + ' " '  

Oh 1 [ 20b a 183 ]_ 5 a 2 

a O l n L =  16¢r2 - 3 a  + 6 - - b + - ~ - l ; k + ' 4 +  1 - - ~ +  " " '  (1.10) 

where L is the cutoff in momentum space. The first equation gives an ultraviolet 
fixed point at a -1 = 0. The second one shows that there is an ultraviolet fixed point 
at b/a = 2-~(549 - ~ )  -- - 0.0046. The choice of a + + sign for the root gives 
on the other hand an infrared fixed point at b/a--- + 5.4946. Therefore also the 
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coupling b is asymptotically free, under the assumption b < 0. The theory with the 
Weyl C 2 term alone (b --- 0) is conformally invariant, but not perturbatively renor- 
malizable because of the conformal anomaly [9]. Due to the existence of the infrared 
fixed point in b/a, the renormalized dimensionless cosmological constant 2t/k 2 can 
be driven to zero in the infrared, if it is sufficiently small to start with. This 
conclusionAs of course only true if the quartic and quadratic divergences in 2l and k 
are shown to vanish to all orders. This point will be discussed further below. 

In order to see the problems with unitarity consider the graviton propagator for 
higher derivative gravity in the weak field limit. In momentum space the free 
propagator for h = 0 can be written as 

1 2 P  (2) A~l, pa 
-~ ~ h~,,( q)ho~(-q) ~= q2 + (a/k )q4 

p (O)pQ 

+ _ q2 + ( 2 b / / k ) q 4  + gauge  terms 

7 q -&/2b 
+ gauge terms. (1.11) 

The higher derivative terms improve the ultraviolet behavior of the theory since the 
propagator now falls off as 1/q 4 for large q2. On the other hand the theory has a 
spin-two ghost of bare mass m 2 =#/yea - and a spin-zero particle of bare mass 
m o = #/Vr-L--2"b where # = ~ is the bare Planck mass. We can set At = Ato L, where 
Ato is a dimensionless coupling and L is the ultraviolet cutoff in momentum space. 
Thus the tree level unitarity violating corrections are of order q2/L2. 

The presence of massive states in the tree-level graviton propagator indicates also 
short distance deviations from the static newtonian potential, which in higher 
derivative gravity (in the weak field limit) has the form 

 I14 '2r l e;°r 1 
h0o-  - - -  -~ (1.12) 

r 3 r 3 " 

In the absence of the Einstein term (k = 0) the potential is linear in r and the theory 
is strongly infrared divergent, and it is not completely clear whether weak coupling 
perturbation theory around the tree-level solution is really trustworthy. The masses 
that give the potentially dangerous exponential corrections to the 1/r behavior are 
of course bare masses, and the full renormalized gauge invariant part of the potential 
should be computed nonperturbatively (as in QCD) before any meaningful compari- 
son with experiment is attempted. In fact the one-loop result for the running 
coupling a (fla is the one-loop coefficient of the beta function for the coupling a) 

a- (ro) 
a-~(r) = 1 + a- l ( ro) f la  l n ( r o / r  ) (1.13) 
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suggests strongly that the asymptotic freedom (running) coupling constants grow 
indefinitely in the infrared regime, and the massive ghost becomes increasingly 
heavy as ro/r goes to zero (low-energy limit), and possibly decouples completely 

m2[r~,, = ~ ( l l ~  +a_l(ro)flaln_~oo ) r  ~1/2 = o o .  (1.14) lim 
r / r o --* 00 

Here r 0 is the cutoff scale, not to be confused with the inverse Planck mass. The 
same reasoning can be applied to the massive spin-zero state. 

These considerations are in fact far from being rigorous, but one should keep in 
mind that the one-loop result is qualitatively correct in M, 4 and Yang-Mills theories 
in four dimensions. Also one should notice the fact that the graviton propagator as 
defined above is not gauge invariant. This is analogous to the gluon propagator in 
QCD: the perturbative massless gluons are in fact confined in massive gluebaUs and 
there is no gluon state in the physical gauge invariant spectrum. (The situation in 
gravity has of course to be different to some extent, since massless gravitons 
presumably do exist.) Therefore the real question to answer is whether the massive 
additional states contribute to gauge invariant correlation functions in the low-energy, 
large distance limit, in a way which is consistent with present experimental evidence. 
It is well known that weak coupling perturbation theory is useless in this regime for 
an asymptotically free theory. 

Another potential problem is connected with the cosmological constant ~,, whose 
value is observed to be of the order of 10 -122 or less, in units of the Planck mass. 
(Experimentally one has 1 /  v~- ---1.2 × 1019 GeV and A < (0.003 eV)4.) In higher 
derivative gravity one would expect purely on dimensional grounds a quartic 
divergence 

hp. = h o + %L 4 + c2 L 2  + O(ln L) (1.15) 

(L ~ r o i is the ultraviolet cutoff), which has then to be canceled by fine-tuning the 
bare cosmological constant to one part in 10122, a rather unnatural procedure. 

The procedure of setting all quartic and quadratic divergences equal to zero, as in 
dimensional regularization [3], seems somewhat formal and ad hoe, and clearly does 
not provide a physical explanation, On the other hand it has been argued that the 
quartic divergence for ~, is absent to all orders in perturbation theory (% = 0) for an 
appropriate choiceof measure for the g~v fields [9]. The unique local gauge invariant 
measure is 

du (g )  = I-Ig-(d+l)/2 I-I dg~,v, (1.16) 
x p,>~v 
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which is also scale invariant [15]. It is known that the measure can play a delicate 
role in canceling some spurious divergences in loop diagrams, that arise when a 
continuous symmetry is explicitly broken. An interesting point of view on the 
relevance of the measure in the quantum theory is presented in the second of refs. 
[4]. There it is argued that ambiguities in the definition of the measure reflect the 
lack of a unique definition for the metric tensor at short distances. 

For completeness we list here the quadratic one-loop divergences [9] (quartic 
divergences are zero for the scale invariant measure) 

a )  L 2 go 
XR=X0+ ~a  5 O(ln L)  

1 (  lOb ] L 2 
= + -511-   + °( in L) '  (1.17) 

where the subscript R denotes renormalized quantities and 0 bare ones. It appears 
surprising that these divergences are present, since the scale invariance of the 
measure suggests that the formal functional integral for pure gravity can only 
depend on the dimensionless couplings ~ / k  2, a and b. 

The need for non-perturbative methods in the further study of higher derivative 
gravity leads us to study its formulation on a simplicial lattice, using Regge's 
"coordinate-independent description of general relativity". The relevant features of 
Regge calculus, including its representation of the Einstein term, are described in 
refs. [16] and [17], where the appropriate forms for the cosmological constant term 
and the simplest higher derivative term are derived. In this paper, concentrating on 
four dimensions, we shall discuss in detail other possible higher derivative terms in 
sect. 2. In sect. 3 we shall describe some analytic computations of the weak field 
expansion for the regular tessellation a 5 of the four-sphere. In sect. 4 we shall 
describe our procedure for numerical computations in quantum gravity and present 
in sect. 5 some preliminary results on small lattices. Sect. 6 contains some concluding 
remarks and suggestions for further study. 

2. The representation of higher derivative terms on a simplicial lattice 

For the reasons described above, we wish to add to the Einstein action, with a 
possible cosmological constant term, 

I= f d'xd-d[X-kR], (2.1) 
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a term or terms which are quadratic in the curvature. There are six such possibilities 

f d4xv/gR 2 , 

f d4x l/'-g R~,,R ~'" , 

/ d4x v/-ge~"'xeo°°"R~,,poR,x,, = 128~r2X, 

f d4x ~/rge°°~XR~,poR~',x = 96¢r 2~ " , (2.2) 

where X is the Euler characteristic and ~r the Hirzebruch signature. Not  all these 
quantities are independent; in four dimensions one has the identity 

9 3  u ~ , , -  lU  2 (2.3) Rl,,xoR~'X° = C~,xo Ca'x° + -*'~,*" 3-" - 

Fur thermore  the expression for the Euler characteristic can be rewritten as 

1 f d,x 4R,.R,. + R2 ] (2.4) 
X = 32~r 2 

and thus only two curvature-squared terms for the action are independent in four 
dimensions. 

To  get more of a feeling for the difference between different higher derivative 
terms consider the following example. A particular case of riemannian manifold is 
one of dimension d which is locally isometrically embedded in (d  + 1)-dimensional 
euclidean space with the canonical euclidean metric. If the manifold is locally 
convex, the principal curvatures k x are of the same sign everywhere. Then the 
manifold is the called a locally convex hypersurface [18]. Every point of the manifold 
admits a neighborhood in which the vectors tangent to the lines of curvature form an 
or thonormal  frame such that 

R~,~po = k~k,( ~,Ap - 8 , A o )  • (2.5) 
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Define K~, = k ,k , .  Working out the algebra in four dimensions one obtains 

R f E k 2 - ( E k )  2, 

R2 = (Ek2)2_ 2(Y, k2)(E k)2+ (Ek)4, 

R~,. fS~, ,[k2-(~,k)k~,] ,  

R.,R~" = Ek 4- 2(Ek)Ek 3 + (Ek)2Ek:, 

R,.~oR,'~° = 2 ( E k e ) 2 -  2 E k  ' . 

C~.,xoC~"x° = 2 ( E k 2 )  2 -  2 E k  4 -  2Y'k 4 + 4 ( E k )  E k  3 -  2 ( E k ) 2 E k 2  

-4-13(Ek2)2-- 2 ( E k 2 ) ( E  k)2+ ( E  k)4 (2.6) 

and therefore 

R = 2(K12 + K13 + K14 + K23 + K24 + K34), 

R 2 _-. 4(K12 + K13 + K14 + K23 + K24 + K34) 2 , 

R~.xoR~"x° = 2(K22 + K23 + K24 + K23 + k224 + K~4), 

R,,.,,o~"'"° - ~ = ,~[(x,,- x . y  + (r,~-/q4y + (r,~-/~.)~ + . . .  ] 

and 

c.,~oC~'~° = ] E ~(~, ~, p, o ) ( / % K ~ ° )  2 , 
pairs (/~,) (po) 

~,~ J', p~o, ( ~ ' ) *  (po) 

(2.7) 

(2.8) 

where e(p, v, p, o) is equal to 1 if the pairs (#7,) and (po) share one index, and - 2  if 
2 they do not. This simple example shows some of the difference between R 2, R~,,po 

and C~po. While RZpo tries to make all K~,,'s small when inserted in the functional 
integral, R~,xoR ~''x° - ~R 2 tries to make all the K,,  s equal to each other, but does 
not require them to be small. We expect a similar effect from C~,xoC ~'~x°. The 
reasoning here is as follows. Firstly Cj,~,oC ~'~x° is positive, and so we expect it to be 
represented by a sum of squares. Secondly it mus t  vanish for spaces which are 
conformally flat, even though the components of the curvature themselves do not 
vanish. Thus we expect C~,~xoC ~'~x° to be represented by a sum of squares of 
differences between contributions to the curvature, and its effect in the functional 
integral will therefore be to make these contributions equal to each other. 
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Before discussing the construction of higher derivative terms, we recall the lattice 
analogue of the Einstein-Hilbert action [12] 

IR = 2  E AhSh, (2.9) 
hinges h 

where A b is the volume of the hinge and 8h is the deficit angle there. The action is 
the equivalent for a simplicial decomposition of the continuum expression 

Ie= f d'x v R. (2.10) 

The deficit angle 8 h is defined by 

8h----- 2~--- ~, Oa, (2.11) 
4-simpliees 

meeting on h 

where 0 a is the dihedral angle at the hinge h. (In four-dimensional piecewise linear 
space, the curvature is concentrated on two-dimensional hinges, the triangles.) Let us 
mention in passing that an alternative lattice action, which also reduces to the 
Einstein-Hilbert action in the continuum limit, was suggested in ref. [25]. 

The lattice form of a cosmological constant term, which in the continuum theory 
reads 

h f d4x f-g, (2.12) 

is 
h E V~tmp,ex=h E Vh, (2.13) 

d-simplices hinges h 

where V~imple x is the volume of a four-simplex and V h is the volume associated with 
each hinge. (This may be defined in a variety of ways, for example using the dual 
lattice or using a baricentric subdivision. For a full discussion see refs. [16,17]. The 
only requirement is for a well defined and natural method of dividing the volume of 
a four-simplex into parts associated with each hinge. Then V h is the sum of the 
contributions from the simplices meeting on the hinge h. In the continuum limit, 
when it exists, the particular choice for Vh should become irrelevant.) 

As discussed in refs. [16], the simplest higher derivative term which can be written 
down on a simplicial lattice is given by 

~, A ~ ,  (2.14) 
h Vh 

It was shown that this type of term converges to the continuum expression 

f d'xC R 2 (2.15) 

for regular tessellations of the n-sphere. However the regular tessellations of S" are 
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not able to distinguish between some of the higher derivative terms since one has in 
this case 

1 
R, poR ~p° o~ R~,R ~'~ o~ R 2 o~ r-- ~ (2.16) 

for a sphere of radius r. Since the above lattice higher derivative term vanishes if and 
only if all the deficit angles vanish, that is if and only if space-time is fiat, it is in fact 
really a candidate for [19] 

f d4x r -_  nl~ep o V g l~ l~palK (2.17) 

A study of parallel transports around a hinge [16] leads to an expression for the 
Riemann tensor 

AhSh (h) (h) 
R(h).,oo= Vh U;, U0° , (2.18) 

where U~(~ ) is a bivector orthogonal to the hinge h, defined by 

1 o p U(h) = 2A h e~vo°l(a)l(b) (2.19) 

and l~a ) and l~b ) are the vectors forming two sides of the hinge h. This formula for 
R~,po is closely related to the one given by Regge [12]. While it does have all the 
correct symmetries, it does not give full information about the Riemann tensor as it 
is deduced from a formula which gives only the projection of R~,,po in the plane of 
the elementary parallel transport loop orthogonal to the hinge h. However the value 
of R obtained by contracting 

R (h) = 2 Ah~h 
Vh (2.20) 

is consistent with the expression due to Regge for the Einstein action. 
The use of formula (2.18) for the Riemann tensor on a given hinge gives higher 

derivative terms which are all proportional to each other 

1R(h ) R(h) I''°°_ 1/~(h) R(hy"__ = [ hh~h)2. 
. - -  , . 0 o - -  - 2 - -  , . - -  -¼R(h)2 Vh (2.21) 

Furthermore if one uses the above expression for the Riemann tensor to evaluate the 
contribution to the Euler characteristic on each hinge one obtains zero, and it is 
therefore clear that one needs cross-terms involving contributions from different 
hinges. Even then it seems unlikely that one would obtain the correct integer value 
for a particular simplicial decomposition by this method. 
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Thus we are faced with the pu~.ling situation that only one higher derivative term 
of the type considered here can be constructed at a given hinge, while in the 
continuum there appear to be two independent terms. The next step is then to 
construct the full Riemann tensor by considering more than one hinge. The simplest 
possibilities would be to consider all the hinges of a particular simplex or, alterna- 
tively, all the hinges that have one point in common. Note that since one uses a 
coordinate dependent object like (2.19), one should consider contributions from 
those hinges which can be covered by the same coordinate system. Define the 
Riemann tensor for a simplex s as a weighted sum of hinge contributions 

h c s  

where the ¢.ds, h a r e  dimensionless weights, to be determined later. After squaring one 
obtains 

A8 A8 ~" oo . 

Consider two hinges labeled by i and j. By using formula (2.19) for the bivectors U~,, 
the product of the last two square brackets can be worked out 

[A8 1 IA,~ 1 
[ 

_ 8iAiSjA j 1 
Vyj 4A2A 2[(a 'c ) (b 'd ) - (a 'd ) (b 'c ) ]2 '  (2.24) 

where a and b are two edges in hinge i, and c and d are two edges in hinge j. For 
the square of the Rieci tensor one needs the expressions 

R{i)~,pR(J)"'=- [ A--~ U~Up,I(i)[ A-~Sv U*~UJ I(j) 

= 8iAfljA j 1 
16Ai'A j v y j  2 2 

× [a2c2(b • d) 2 + a2d2(b • c) 2 + b2c2(a • d) 2 + b2d2(a .c) 2 

-2[a2(b. c)(c. d)(d. b) + b2(a. d)(c. d)( d. a) 

+c2(a • b)(b. d)(d. a) + d2(a • b)(b. c)(c. a)] 

+2[(a.b)(c .d)[(a.c)(b.d)+(a.d)(b.c)]]] ,  (2.25) 
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for the scalar curvature squared 

RtOR(J) - [ A-~Sv U~"U~, I(o[ # UP°Uoo Lj ) 

6iAi~jAj 
--4 (2.26) 

v y j  ' 

for the Euler density 

(i) J( j )  

8iAi~jA j 1 
ViiV j 2 2 [e~,,p~a~'b'cPd°] 2 (2.27) AfiAj 

and finally for the Hirzebruch density 

R . )  ~ t j )  ; opo.x [ A8 1 [ A8 ~ 1 
" ' " 0 " "  " " °  - t-V ~ , ~ " / / - V  w, u.~/ ~"°'~ J()L .l(j) 

_ 8iAiS.iA.i 
v~vj 

1 
- -  2 2e~,,poal'b~cPd°[(a'c)(b'd) - (a .d) (b .c )] .  2AiAj 

(2.28) 

In the above formulae A i and A i are the areas of the triangles i and j ,  respectively. 
The question of the weights %,h introduced in eq. (2.22) will now be addressed. 

Consider the expression for the scalar curvature of a simplex defined as 

[ R ]s = • %, (2.29) 
hcs h/ --V/h" 

The natural volume associated with such lattice curvature invariants is the sum of 
the volumes associated with the hinges in the simplex 

V~ = E Vh- (2.30) 
h c s  

Summing the scalar curvature over all simplices, one should recover Regge's expres- 
sion 

hcs ' L V h h 
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Ah& 
E Us hVs ~ =  AhSh. (2.32) 

sDh ' g h  

Therefore a natural choice for the weights is 

V, V h (2.33) 
h = us/hv  = u s ~ h E w  c 

(One can check this formula for a regular tessellation; there one needs the identity 
N~,,hN h = Nh/sN s where Nh, N, and Nh/~ are the number of hinges, simplices and 
hinges per simplex, respectively.) 

We see that the weighting factors that reproduce Regge's formula for the Einstein 
action are just the volume fractions occupied by the various hinges in a simplex, 
which is not surprising. Of course the above formulae are not unique, since one 
might have done the above construction of higher derivative terms by considering a 
vertex p instead of a 4-simplex s. The Riemann tensor is then constructed by 
averaging with the appropriate weights the contributions of different hinges meeting 
at one point, and the volume V~ becomes the sum of all hinge volume contributions 
coming from the hinges touching the point. 

The above formulae for higher derivative terms are still rather involved. Of course 
in dealing with the quantum theory one could consider the two simpler expressions 
which contain some of the structure of the previous terms 

(2.34) 
h h 

which vanishes if and only if the Riemann tensor projected on all the hinges vanishes 
(it is in fact a rewriting of the expression (2.14) for the higher derivative term 
constructed before), and 

- s h,h'cs h' h-- (2.35) 

which introduces a short-range coupling between deficit angles. The numerical factor 
eh. w is equal to 1 if the two hinges h,t¢ have one edge in common and - 2  if they do 
not. Note that this interaction term has the remarkable property that it requires 
neighboring deficit angles to have similar values, but it does not require them to be 
small. 

Alternatively, of course the summation can be done over the points p, instead of 
the simplices s, (as in the exact expression of ref. [20] for the Euler characteristic) 
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Here Vp is the volume element associated with the point p, and the weighting factors 
~p,h measure the fraction of V r occupied by the hinge h, and are thus equal to 
VJNp/hVp, where Np/h is the number of points per hinge. 

This second choice for the definition of C 2 (sum over sites) appears in fact more 
natural when one considers the coupling of gravity to matter fields, which will be 
represented here for simplicity by a scalar field ~(x). In the continuum an invariant 
action, up to terms quadratic in ~, is [4] 

Imatter = f d4x v/g [½g ~ 0fl~ 0~b +½m2@ 2 + gtR¢~ 2 -'1"- g2 R ~  0tt~b 01, ~ n t - . . .  ] .  (2.37) 

On the skeleton define the fields ~p living on the sites. If R is defined on the sites, 
then the third interaction term (proportional to gt) is just a point coupling term. As 
far as the first term is concerned, introduce lattice (forward) derivatives 

gepp = ( q~p+,- epp)/lp,p+,, (2.38) 

where i labels the possible directions in which one can move from a point in a given 
simplex (there are d of them in d dimensions), and lp,p+ i is the length of the edge 
connecting the two points. The metric gig at point p in a simplex is 

giy(P) = ½( q,p+i + q,p+y- q+,,p+j) (2.39) 

and ~ is proportional to the volume of the simplex. The lattice analogue of the first 
term in the action /matter of eq. (2.37) is then, in four dimensions, 

E E Vsgij(p,s)Ai~paJ@p (2.40) 
p sDp 

and double-counting can be avoided by summing only over simplices with sides 
pointing in the positive lattice direction 

In two dimensions the corresponding expression is 

E E Vhgij(p,t)Ai~ga+ePp, (2.41) 
p tDp 

where t labels the triangles. On a regular triangular lattice as the one in fig. 1 one 
can associate with each point p two adjacent triangles in the positive (1, 2) direction, 
which can be labeled by ~, = 1, 2. Then the action is simply 

2 
E ~ V~'[(At~bp)2+ (A2~bp) : +  2cosot'{:,pAt*pAZ*p], (2.42) 
p 7=1 

where a[2 ,p is the (dihedral) angle between the two edges 1~ and 1~ coming out of 
the point n in the triangle labeled by -y. 
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/ / /  
/ 

Fig. 1. 

3. The weak field expansion for the tessellation ct s 

Before discussing numerical calculations in higher derivative lattice gravity, we 
shall describe some analytic work. This involves the analysis of small fluctuations 
about a classical background solution. We compute the second variation of the 
action, which is related to the inverse of the free propagator on the chosen 
background geometry. The determinant of the matrix representing the second 
variation of the action gives the contribution from the integration over quadratic 
fluctuations about the extremum of the action corresponding to the classical 
solution. 

For small fluctuations around flat space, tessellated by a lattice of hypercubes 
divided into 4-simplices, it has been shown [21] that the lattice propagator, obtained 
from the second variation of the Regge action, agrees exactly with the continuum 
result in the weak field (small momentum) limit. 

The classical background which we consider here is the surface of a four-sphere 
tessellated by a 5, the surface of a five-simplex. The Regge-Einstein action is 
generalized to include both a cosmological constant and a higher derivative term, the 
lattice version of R 2 p, ppo  

hi  ,4282 "1 IL = E ~kVh-- 2kShAh + 4b~h~h/ .  (3.1) 
Vh J 

This lattice action is the analogue of the continuum action 

Z= f d' C [X-kR (3.2) 

We have chosen not to include a term representing the square of the Weyl tensor, 
since it is more difficult to treat because it couples neighbouring hinges, and our 
tessellation is unrealistically small for such a term. 
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The simplicial complex a 5 has 6 vertices all linked to each other, giving a total of 
15 edge lengths. It contains 20 triangular hinges, 15 tetrahedra and 5 4-simplices, 
and is shown in fig. 2. To find a classical solution, we assume that all edges are of 
length l. Evaluation of the lattice action then gives 

I L = ~ / 5 X l  4 - l O v ~ k S i  2 + 960¢3-b82 , (3.3) 

where 8 = 2~r - 3 cos-l(¼) is the deficit angle at each triangle. The classical solution 
is obtained by solving 

3 I  L 
Ol z = 0  (3.4) 

and gives l 2 = l 2 - 16Ok~h ,  where 0 = 1¢~-8. (Note that a classical solution with no 
higher derivative term is also a solution in the presence of the higher derivative term, 
as in the continuum [1].) 

We then allow for small variations about the classical background solution by 
setting 

l i = l o ( l + e i ) ,  i = 1 , 2  . . . . .  15, (3.5) 

with e i << 1, and evaluate the lattice action up to second order in e. The various 
terms in the lattice action are given by the following expressions. The total volume is 

l [  ] Evh=,6 tol+ E,,- Ed+  E E 
h i i i ~ j  /j 

i, j neighboring i, j opposite 

(3.6) 
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The Einstein action depends on 

E A h ~ h = h  --~5012[--5--23~i E i + ( l +  5 .~)~.i e i2 

(1 9) " 1 ] - ~ + E ~,~j+ ~ E ~,~j 
i ~j ij 

i, j neighboring i, j opposite 

and the higher derivative term is proportional to 

2 ( 2512 EA~8~ =4~o ~ o+ 
h Vh 225 

136 288 l ee2  
50- + 0 2 ] i 

904 112 126 ) 
+ 2 ~  + 5-3- o ~ E ~,~j i . j  

i, j neighboring 

(3.7) 

with 

(The calculation of these quantities was done by hand using the formulae in refs. [16] 
and [17], and was checked using the algebraic manipulation program Macsyma.) 
When the value of i02 from the classical solution is inserted, the total action becomes 

IL=16f-(O2Ic+a~eZi+2fli i--#j~ e,ej+27 E,j e,ejl, (3.9) 
i, j neighboring i, j-opposite J 

(k2 ) c=5 ---~- +4b , 

~ ( 1 1 2  2 ) ( 3 1 4  17 3¢) 
o r = -  45 0 +8b 225 - 5 0  + ' 

£ ( _ 5 2  2)  (113 14 63)  
2 f l = -  X 1̀ 45 + +8bl2-~ +5-0 4--02 ' 

2"/= - ~ I "~- - + 8b 225 50 + 0"2 " (3.10) 

( 3 6 8 1 0 4 7 2 )  ] 
+ 225 5-0 + ~  E ~,~j . (3.8) u 

i, j opposite 
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Thus we may write the second variation of the action as 
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16~82eiMi.iei, (3.1i)  

with M~j a 15 × 15 symmetric matrix with a on the diagonal and fl or ,/ in the 
off-diagonal position, depending on whether i and j represent neighboring or 
non-adjacent edges in a 5. The eigenvalues of M are given by 

h 0 = a - 2fl + ~, (multiplicity 9), 

h I = Ot + 213 -- 3'/ (multiplicity 5), 

~'2 = a + 8fl + 6~, (multiplicity 1). (3.12) 

As discussed by Hartle [22], the high degree of degeneracy of the eigenvalues reflects 
the invariance of the lattice under the symmetry group of the five-simplex. The 
multiplicities correspond to the dimensions o f  the irreducible components of the 
permutation representations of the symmetry group of the vertices of as. Inserting 
the actual value for the deficit angle 8 one obtains the final answer for the 
eigenvalues 

k 2 
h0 --- - 3.2234--ff + 6.8437b, 

k 2 

hi = - 1.2659--ff + 16.3197b, 

k 2 

X 2 -- + 1.3333-ff + 32.1422b. (3.13) 

For  b = 0 (no higher derivative term) 14 out of 15 eigenvalues are negative. This 
indicates a strong instability: the dominant edge length configurations are presum- 
ably far away from the symmetric and smooth one. Most of the lattice degrees of 
freedom go into reproducing the unbounded conformal mode, and not enough 
positive eigenvalues are left to represent the physical degrees of freedom. For 
b >1 0.0776k2/X the eigenvalue )~l becomes positive, and for b >1 0.4710k2/)~ all 
eigenvalues are positive and the starting configuration of edges is stable. This would 
not have been the case if the theory had a tachyon or some other instability. Thus 
even for a finite number of degrees of freedom the theory has what one might call a 
phase transition, corresponding to the hessian matrix developing a zero eigenvalue 
for small enough b. It could be that the interesting region in a more realistic model 
(i.e. with more degrees of freedom) is close to this "transition" point. It would be 
interesting tO see how the density of eigenvalues behaves as the tessellation is made 
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finer by the inclusion of more points. In conclusion we mention that Hartle [22] has 
studied the behavior of the Regge-Einstein action with a cosmological constant term 
on a s (and other tessellations in four dimensions) without relying on the expansion 
around the equilateral configuration of edges. He finds that in all cases the 
stationary point of the Regge action with a cosmological term corresponding to all 
edges of equal length is a saddle point and not a local minimum. 

4. Quantum gravity beyond perturbation theory 

In principle a natural setting for lattice quantum gravity calculations would be a 
random lattice, in which the coordination number at each site is itself a random 
variable. Unfortunately such a lattice is rather difficult to deal with, both analyti- 
cally and numerically [23]. 

Another possibility is to use the regular tesseUations of the n-sphere [24]. Since the 
maximum number of edges allowed in such tessellations is not very large, a 
refinement of the same could be achieved by considering further regular subdivi- 
sions, such as the barycentric one. Thus the degree of irregularity would be kept at a 
minimum. 

A third possibility is to start with a hypercubical lattice, which can be made 
topologically equivalent to a hypertorus, by identifying opposite faces. Finite volume 
effects are minimized for this lattice, since the boundary is formed by a replica of the 
same lattice. The advantage of the hypercubic lattice lies in the fact that the number 
of edges can be increased arbitrarily, keeping the local incidence matrix unchanged. 
If the theory has some reasonable continuum limit, then this limit should not depend 
on the detailed lattice structure at short distances and on the nature of the boundary 
conditions. Of course different topologies can be obtained by changing the boundary 
conditions. 

The lattice action for gravity described in the previous sections does not contain 
terms which allow tunnelling from one spacetime topology to another. Thus initially 
one would like to keep the topology fixed, and vary the metric within the given 
sector. Eventually it will be important to verify that the results obtained do not 
depend on the particular topology chosen (i.e. on the nature of the infrared cutoff) 
just as they should not depend on the detailed lattice transcription of the continuum 
action (i.e. on the nature of the ultraviolet cutoff). This is likely to happen for 
correlations of local operators over distances that are much smaller then the size of 
the system, and much larger than the average separation between spacetime points. 
In fact the renormalization properties of the lattice operators can be extracted by 
looking at the dependence of the low-energy effective hamiltonian (and its correla- 
tion functions) on the ultraviolet cutoff. Here by low energy one means energies that 
are still well above the infrared cutoff set by the finite box (universe) size. 

It is not clear at the present moment how the integration over topologies should 
be performed, and how the weighting should be assigned. For a thorough discussion 
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Fig. 3. 

of this point see ref. [22]. Arguments have been given for suggesting tha t a sum over 
topologies in Regge calculus cannot give a finite functional integral, because the 
number of manifolds with a given topology increases too rapidly as a function of the 
number of simplices [25]. 

The asymptotic freedom of higher derivative gravity further restricts the short 
distance fluctuations in the metric, implying that the field configurations become 
smooth at the scale of the ultraviolet cutoff [9]. Furthermore it seems unlikely that a 
unitary theory can be defined by summing over topologies [25]. The time-slice 
factorization property of the functional integral needed to construct a time evolution 
operator no longer holds if this summation is performed, even if the action is 
reflection positive [26]. This is connected with the fact that the weighting factors for 
individual topologies, being necessarily topological invariants, are only globally 
defined. 

In the following only results obtained with the hypercubic lattice will be discussed. 
In fig. 3 a single hypercube is drawn, with the relevant body principals, face 
diagonals, body diagonals and hyperbody diagonals [21]. The diagonals have to be 
introduced to make the lattice rigid. Otherwise the values of the edge lengths do not 
determine the angles, and therefore the geometry, uniquely. The hypercube is then 
replicated in four directions to construct the full skeleton. 

After having chosen an appropriate lattice, the next step is to define and evaluate 
the functional integral for simplicial quantum gravity restricted to a manifold of 
fixed topology, say a hypertorus 

Z = f d#[l]  e - l [ / ]  . (4.1) 
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In the following the scale invariant form of the measure [17, 27] 

oo dl 2 

f H fo (4.2) 

will be used, where F,[I] is a rather complicated function of the edge lengths, with 
the property that it is equal to one when the triangle inequalities and their higher 
dimensional analogues for the simplicial complex are satisfied, and zero otherwise. 
These inequalities ensure that the edge lengths, triangle areas, tetrahedron and 
four-simplex volumes are positive. The positive real parameter e is introduced as an 
ultraviolet cutoff at small edge lengths: the function F~[I] is zero if any of the edges 
is equal or less than e. 

Of course the measure suggested above is not unique, but is certainly the most 
attractive one, since it is local and scale invariant as the continuum measure [15], 
and integrates directly over the elementary lattice degrees of freedom, the conformal 
factors ep i = l n ( l i / l o ) .  Other measures one might consider would involve an integra- 
tion over edge lengths divided by some volume to the appropriate power, such that 
the total measure is scale invariant. However there are several volumes that are 
touching a given edge, and the measure then becomes rather complicated, involving 
some odd powers of volumes in the denominator. 

The continuum limit, in four dimensions is taken by requiring that the local 
curvature be small on the scale of the local lattice spacing, which is equivalent to 
imposing 

Ah8 h 1 (4.3) 
Vh 

and implies 

<< 1, (4.4) 
Vh 

a condition which can be achieved by having the coefficient of the action term of 
equation (2.34) large. If these conditions are not met, the results are likely to depend 
strongly on the detailed structure of the ultraviolet cutoff (i.e. choice of lattice 
structure and lattice transcription of the continuum action). Note also that smooth- 
ness on the scale of the cutoff does not  imply flatness. 

A possible approach to  evaluate the functional integralls by using numerical 
Monte Carlo methods, that do not rely on a (possibly non-existent) expansion in a 
small parameter. Then the edges of the skeleton are varied individually (or in small 
groups) by a small amount, and the difference in action is compared. If the action is 
lowered, the new edge value is accepted, if it is raised then the new edge length is 
only accepted with a probability given by the exponential of the action difference. 
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The same procedure is then applied to another edge, and so on. After many edges 
have been changed, the probability distribution for the edges approaches the 
equilibrium one, if it exists. For a more detailed discussion of the procedure see ref. 
[11]. 

The existence of the functional integral itself does not appear to be a necessary 
requirement for a consistent quantum theory, since physical observables are ob- 
tained from Green functions which in turn are functional derivatives of - ( 1 / V ) l n  Z. 
(One familiar example is non-compact lattice electrodynamics, which leads to finite 
answers for gauge-invariant quantities, even without gauge-fixing.) An alternative to 
the path integral quantization method is the stochastic formulation for gravity. 
Whenever the functional integral (4.1) exists, the corresponding averages can also be 
obtained by solving the set of stochastic differential equations (Langevin equation) 
[17] 

1 dip(t) 8111] 
= --lp(/) ~ / - ~  + ~-tlp(t).  (4.5) 

l ~ t )  

Here t is a fictitious fifth time, and the field ~lv(t ) is a gaussian white noise with zero 
mean and unit variance: (t/p(t)) = 0, (~p(t)~q(t ')) = 8p, qa( t -  t'). The constraint 
that the triangle inequalities be satisfied implies that the force term is infinite 
whenever they are violated. Averaging over the noise ~p(t) reproduces then the 
averages computed by the functional integral method, in the limit of large times 
[28, 29]. For pure R-gravity without a cosmological constant term the above equation 
reduces to [17] 

1 dip(t) =kl~( t )  ~ 8h(t)cotOph(t)+f-]~p(t  ), (4.6) 
lp(t) dt hzlp 

where the sum is over triangles, labeled by h, meeting on the common edge p, and 
0ph is the angle in the hinge h opposite to the edge p. There is no reason of course for 
this process to converge, given the unboundedness of the gravitational action both 
on the lattice and in the continuum. 

Let us look at the linearized form of the Langevin equation for higher derivative 
gravity in the continuum. In the case of the pure Einstein action the equations have 
been derived independently by the authors of ref. [30]. The relevant action is given in 
equation (1.7). The corresponding Langevin equation is 

~I[h]  
h•,( x, t) = --Sh~,--( x '  t) + ~l~,,( x, t) (4.7) 

with 

(,,.(x.t)) =o. 

( ~l~( x, t )~oo( x', t ') ) = 2I~oo8(4)( x - x ' )~(  t -  t ' ) ,  (4.8) 
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with I~po = 2x(8~,pSpo- 8ppS~°). By separating the spin-2, spin-1 and spin-0 compo- 
nents 

h(i)_D(i)  i, i =  0,1,2 (4.9) /tv - -  " ~raB"~.p ' 

and going to momentum space one gets 

• (2) I 4 C2) hF, p ( q , t ) =  - [½kq  2 + 2aq ]ht, p(q,t)+71~2),(q,t), 

h(1) (rnal, x'~, t ) = h~l)( q, t ) + ~tl)( x ~, t ) , 

h~°)(q, t)= - [ - k q 2 +  2bq4] h(°)fa-~,, x'~, t)+71~°),(q, t ) , (4.10) 

where ,,(ot,~ t) is the projection of the noise 71~,p in the spin-/ sector. The spin-1 
mode feels no force term, and thus performs a random walk with no constraint, and 
does not couple to the other two modes. The spin-2 mode is also well behaved, while 
the spin-0 mode blows up exponentially in time if the coupling b is not large 
enough. Since the Langevin equation is linear, the solution is easy to write down 

t) = f'_ dt 'K~,p°(q,  t -  t')ll~p(q, t ' ) ,  (4.11) hap(q, 
o o  

where the kernel K is given by 

K~,p°(q, t ) =  [ e x p -  [ ~kq 2 + ~aq4] tP t2) + p(X)+ e x p -  [ - k q 2  + 2bq'] tpt°)]~pp°. 

(4.12) 

The Langevin process thus converges for momenta q2> k /2b ,  and the runaway 
solutions in the spin-0 sector can be restricted to arbitrarily small q 2, by taking b to 
be large enough. This is a consequence of the boundedness and renormaliTability of 
the higher derivative gravity action. It remains to be seen what the effect of the 
neglected higher order terms in h~,, (there is an infinite number of them) is on the 
convergence. (For the regular tessellation a 5 discussed above no negative eigenvalues 
in the quadratic fluctuation matrix are found for a -- 4b large enough.) 

5. Numerical resdts in four dimensions 

In four dimensions the action for pure higher derivative gravity on a simplicial 
lattice was described in sect. 2. From eqs. (2.34) and (2.35) the full lattice action is 

A2.t2  "1 
1 [ / ] =  E hVh-- 2k~hAh + 4b'~h'h | 

hinges h Vh J 

+ ~ ( a - 4 b )  E Vp E eh'w|°~ht V - - - ~ - ~ w - - ~  ] " (5.1) 
points p hinges h, h '  D p 
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and is the lattice analogue of the continuum action 

I =  fd4xvl-g[X-kR+bR~,,ooR~"°°+½(a-4b)C~,,ooC~"°°]. (5.2) 

In the quantum theory one is interested in evaluating averages from the functional 
integral 

z = f dvtl] e-'"' (5.3) 

with the measure given by eq. (4.2). The lattice is chosen to be regular and built out 
of rigid hypercubes. 

Whenever the  functional integral exists, all the edge lengths can be rescaled 
I i ~ (k/~)l/2li  using the scale invariance of the measure, and one gets 

Z [ X , k , a , b , e ]  = Z  X ' X ' a ' b '  e . (5.4) 

If e can be sent to zero, then Z can.depend only on the dimensionless couplings 
k2/)% a and b, once all lengths are expressed in units of the length scale l 0 - 
( k / h )  x/2. (This is certainly true for fixed k and large enough h, a and b.) The 
one-loop perturbative results of ref. [7] then indicate that the theory is asymptoti- 
cally free in a and b. They also suggest that the renormalized, effective low-energy 
cosmological constant is zero, if the bare one is chosen to be small to start with. 

I f  the functional integral exists for e = 0, then the scale invariance of the measure 
implies the identity 

 (ES Ah) =X(EVh). (5.5) 

The lattice is chosen of size N x N x N x N with 15 N 4 edges, and up to now only 
the cases N- -  2 (240 edges) and N = 4 (3840 edges) have been considered. Periodic 
boundary conditions are used, and the topology is therefore restricted to  a hyper- 
torus. Some of the results discussed here were already presented in ref. [27]. For the 
formulation of the higher derivative terms baricentric volumes [16] are used, since 
their expression in terms of the edge lengths is simplest. A time-discretized form of 
the Langevin evolution equation (4.5) 

 k+l, ,k, [  qt] ] 
(5.6) 
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was used, where e is the step size in time (chosen between 10 -3 and 10-4), and 

<,:#> =o, 

(k)  (t) ,i, ) = 8,,,: (5.7) 

Also _p/(k+l) ---- lp(k) whenever the generalized triangle inequalities are violated. 
First consider the case in which all the couplings are zero: a = b = k = ~ = 0. Then 

the total action is zero, and variations in the edge lengths are only constrained by the 
measure. The edges then perform a constrained random walk, and the situation 
corresponds to what might be called "random (or disordered) space-time". (To 
compute the averages, 1000 passes were performed on the 24 lattice, discarding the 
first 500.) While initially the different edges have length 1, ~-,  ~/3, 2 depending on 
the type (corresponding to a lattice of fiat hypercubes), soon they all become roughly 
of equal average magnitude. (After 1000 passes the four edge types have average 
value ~ = 1.52, 1.50, 1.49 and 1.50, respectively.) Other quantities of interest are 
the average curvature 

( 2 ~ h ~ h A h )  
( : )  (5.8) 

<rYh> 

and the average curvature squared ~2 

= ( : )=  (4Y.hS AUV ) 
(Zy ) ' (5.9) 

which are both dimensionless quantities, since they both have been expressed in units 
of the average edge length. Also of interest is the average deficit angle (8~) and the 

average volume of a 4-simplex, in units of the average edge length ~(12). Results for 
these quantities are displayed in table 1. 

Remarkably, at strong coupling the system develops an average negative curva- 
ture. Also the value of ~2 is quite large, indicating a significant deviation from flat 
space behavior. The ratio (Vh)/(12) 2= 0.0064 is also substantially larger than the 
initial flat space ratio (_~)/(~)2 _ 0.0044. (The factor of 50 arises because there are 
50 hinges per hypercube.) 

TABLE 1 
Resu l t s  fo r  the  4 - d i m e n s i o n a l  m o d e l  w i th  h ~ k ~ a ~ b ~ 0 

5o(vh)/(t2)2 ~ ~2 (8~) 

0.32(2) - 10.36(1.20) 58200(600) 3.52(9) 
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x 50(Vh>/(/2) 2 ~. ~2 (s2) 

2.0 0.33(2) - 0.612(61) 8900(220) 0.64(12) 
1.5 0.33(2) - 0.420(42) 8660(260) 0.62(11) 
1.0 0.08(2) 132(22) 134000(13600) 1.65(30) 
0.5 0.11(2) 123(14) 143000(11600) 2.45(35) 

A measure of the "roughness" of space-time is given by the dimensionless ratio of 
curvature over square root of curvature squared 

(2~hShAh>/((4Y'-h8~A~/'Vh>) 1/2 
~= (]~hVh> (ZhVh> , (5.10) 

which can be estimated at about 0.042(8). 
For intermediate coupling some results are displayed in tables 2 and 3. Table 2 

shows the averages for 4b = 0.005 and table 3 for 4b = (2k)2/4h. In all cases 2k is 
fixed to be 1, h is varied, and a 4b is set equal to zero (pure 2 - R~,,po). The averages 
were obtained by doing 2000 passes on the 24 lattice, and discarding the first 1000 
passes in the final averaging. Results on the 44 lattice were then obtained by using 
the final, duplicated, 24 lattice as starting configuration. While these results are 
comparable within errors with those on the smaller lattice, the low statistics (50 
passes) is not sufficient yet to draw any conclusion about finite size effects, even 
though they appear to be small for the quantities measured. 

For small higher derivative coupling (4b = 0.005, table 2) the average curvature 
could depend very strongly on the value of the bare cosmological constant ~. The 
large values for the curvature squared ~2, at least for ~ = 1.0 and 0.5, indicate that, 
for this choice of coupling constants, the geometry of space-time is not well 
approximated by a smooth metric. This is in turn an indication that with the 
Einstein and cosmological constant term only, one is in general far from the lattice 
continuum limit, as discussed in the first section. It appears also that perhaps the 

TABLE 3 
Results for the 4-dimensional model with 2 k  = 1, b = k 2 / 4 ~ ,  a ~ 4b 

x 50(v~>/(t2> ~ .~ ~ (8~,> 

1.5 0.24(4) - 0.044(17) 496(48) 0.021(5) 
1.0 0.18(4) - 0.031(44) 432(45) 0.013(3) 
0.5 0.17(3) - 0.030(48) 208(64) 0.006(2) 
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average curvature can be made to vanish by choosing h appropriately, but this 
would require fine-tuning. In fact the jump in ~ is so large, that it appears to be 
indicative of a discontinuous transition. The transition could be connected with the 
lowest eigenvalue of  the quadratic fluctuation matrix becoming zero and then 
negative, as in the case of the regular tessellation a 5 discussed previously. 

On the other hand, for larger b (table 3) the curvature ~ is quite uniformly small 
and negative, and appears to still decrease slightly when going from the 24 lattice to 
the 44 lattice. O 2 is now substantially smaller, an indication that the field configura- 
tions are becoming smoother. As in the two-dimensional case [31] the sum rule (5.5) 
is not satisfied, due presumably to the absence of classical solutions to the higher 
derivative continuum field equations with a h-term on a 4-torus. 

To compute the renormalized, effective low-energy, cosmological constant in units 
of the Planck mass one needs to determine the renormalized value of Newton's 
constant. Experimentally it is known that at low energies the dimensionless ratio 
h ~ / k  2 is about 10 -t2° or less. The renormalized cosmological constant hi,, is 
obtained from the average curvature ~ .  The renormalized Newton's constant can be 
obtained by computing the connected edge two-point function at geodesic distance d 

1 k~ t 

d ~ \ , 2 -  - 

as d--) oo, (5.11) 

where a and fl label the different edge types at one point on the lattice (body 
principal, face diagonal, etc.), and T~# is the appropriate spin-two projection matrix. 
(If particles of other spin are contained in the correlation function (5.11), they can 
be isolated by diagonalizing the propagation matrix Ga#.) Because of the asymptotic 
freedom of higher derivative gravity theory, the physical dimensionless ratio hR/k  2 
is a computable number, and could turn out to be fairly insensitive to the value of 
the bare couplings. Given the small lattice that was employed in the present study, it 
appears difficult to reliably extract a value for k R. Still, the present numerical results 
on the 44 lattice suggest that the curvature expressed in units of kv. (i.e. ~1, over kR) 
is a rather small number on one side of the transition (of order 10 -s or less for 
h = 1.5, 2k = 1 and 4b = 0.005), while it is orders of magnitude larger on the other 
side (h = 1.0 and 0.5). 

To give an idea of what is going on in the transition from h = 1.5 to h = 1.0 and 
0.5 (at 2k -- 1 and 4b = 0.005) figs. 4 and 5 show the distribution of curvature (in 
units of the average lattice spacing) for h = 1.5 and h = 0.5, respectively. In the first 
case the distribution is well behaved and roughly gaussian. On the other hand in the 
second case long tails develop at both ends of the distribution indicating the 
presence of regions with very large positive curvature, and regions with very large 
negative one. (Also note the different vertical scales in the two cases. ) For h = 0.5 
and h --- 1.0 the edge length distribution appears to be "sick". We have also tried to 
get the edge length distribution at h = 0.5 by starting from the one at h = 1.5 and 
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re-thermalizing the lattice configuration. This was done on the 24 lattice by decreas- 
ing h in steps of 0.1 and doing 100 iterations at each value. At ~ = 0.5 (therefore 
after a total of 1000 iterations) the edge length configuration looked rather similar to 
the one at X = 1.5, with a small positive average curvature. This fact presumably 
indicates the existence of long-lived metastable states. Once the edges get "locked 
in" in one configuration, it takes many iterations to move them out again. 

Another important point concerns the question of unitarity. In lattice gravity the 
lattice spacing, and thus the ultraviolet cutoff, is a dynamically determined quantity, 
which depends on the values of the bare coupling constants. This situation is quite 
different from ordinary lattice field theories, where the lattice spacing is independent 
of the bare couplings. There violations of unitarity are common, but they always 
happen at energies close to the cutoff scale. It is thus quite plausible (and is 
supported by simple arguments) that in higher derivative lattice gravity the mass of 
the potentially dangerous spurious states is always above the (dynamical) ultraviolet 
cutoff. Unitarity can in principle be checked by looking at positivity in the decay of 
correlations like the one in equation (5.11). This is feasible, but has not been done 
yet. 

The research of H.W.H. was supported by the US Department of Energy under 
grant no. DE-AC02-76ER02220. R.M.W. is grateful for hospitality at the Institute 
for Advanced Study. 
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