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We show how the Langevin equation for SU(3) gauge fields can be used to compute glueball
correlation functions at large separation. On a 6X6X6X6 lattice we estimate the mass of the
lowest O+ + glueball by determining the corresponding correlation function at separations 0, 1, 2,
and 3. Several values for the coupling constant are investigated which lie in a region where scaling
behavior for the string tension is observed. Our preliminary study indicates m ; , =(240+70)A, or

alternatively m , , =(1.1£0.2)m,,.

I. INTRODUCTION

The lattice gauge theory presents a well defined frame-
work in which nonperturbative effects in QCD can be
studied. One of the more fruitful techniques in this
respect has been the Monte Carlo method. Several at-
tempts have been made to extract the mass of the lightest
state, the scalar glueball, in the pure gauge theory.!=® An
appropriate connected two-point correlation function of
operators that have the quantum numbers of the glueball
is evaluated numerically, and from its large-distance ex-
ponential falloff the mass of the lowest state is extracted.

In the currently studied coupling-constant regime the
lowest masses are of order one in lattice units, which im-
plies that the correlation functions themselves become
rapidly very small as the separation is increased. The sta-
tistical fluctuations in a numerical simulation are of order
N 172, where N is the number of Monte Carlo sweeps per
variable over which the averaging is done. Because of this
signal-to-noise-ratio problem one is limited in practice to
rather short distances over which the correlation functions
can be evaluated, if machine time is to be kept within
reasonable limits. Also, as the gauge coupling becomes
weaker it is necessary to determine the correlation func-
tions at larger distances in order to separate the exponen-
tial tail from the uninteresting short-distance power
behavior.

Glueball-mass estimates have been limited in the past to
a study of correlations at distances 1 and 2, and in some
rare instances 3.2~7 An exception is Ref. 8 in which for
the group SU(2) the glueball correlation function was
determined up to separation 5. On the other hand, there is
in general no reason to believe that the true asymptotic
behavior of the correlation function is reached at such
short distances. In Ref. 9 it was suggested that the
Langevin equation could be used for computing connected
glueball correlation functions, with an increase in accura-
cy of several orders of magnitude over the Monte Carlo
method, and some calculations were performed for the
group SU(2). The increase in accuracy is achieved by al-
lowing for a coherent cancellation of statistical errors be-
tween two highly correlated stochastic processes.

In this paper the analysis is extended to the group
SU(@3). After introducing the Langevin equation for the
group SU(3), we calculate the connected glueball correla-
tion function at B=5.4, 5.5, 5.6, 5.7, and 5.8 and extrapo-
late the results for the glueball mass to the continuum
limit using the renormalization group. Our results are in
reasonable agreement with previous results (for a list of
references to previous' work we refer the reader to refs. 2
and 4, though they tend to indicate slightly lower values
for the mass of the lowest 01+ glueball state.

The plan of the paper is as follows. In Sec. II we intro-
duce the Langevin equation on the group manifold of
SU(3) and discuss its time-discretized form. Then it is
shown how the connected two-point correlation function
can be evaluated by setting up two closely correlated pro-
cesses with slightly different parameters in the actions.
Section III goes into the details of the numerical simula-
tion and presents our results, together with a discussion of
statistical and systematic errors. In Sec. IV we discuss our
results and compare to previous similar calculations.
After pointing out the importance of extraneous effects
such as the presence of a peak in the specific heat in the
region where the masses are calculated and the spin-wave
behavior of the correlation function at short distances, we
discuss the extrapolation of the masses to the continuum
limit.

II. THE LANGEVIN EQUATION FOR SU(3)

Let us first establish some notation. The gauge degrees
of freedom are defined on the links of a four-dimensional
periodic hypercubic lattice of spacing a and linear size L,
and are elements of the group SU(3). We use the Wilson
form of the action'®

Sg=—2 S TrU, Unipo Ul Ul y+cc. 2.1)
nu<v
with B=6/g>.

It is known that the Langevin equation’ represents a
useful alternative to the Monte Carlo method for generat-
ing a set of equilibrium configurations.!! =13 Given a field
@(x) in the continuum, one introduces an extra time ¢ and
writes down the evolution equation

928 ©1984 The American Physical Society



29 GLUEBALL-MASS ESTIMATES IN LATTICE QCD 929
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)= —"g— st 2
@(x,t) 5 +7(x,t) 2.2)
where 7(x,t) is a Gaussian white noise
(n(x,))=0, 2.3)

(n(x,t)n(x’,t")) =28(x —x")8(t —1') .

In order to solve the above equation numerically, one
needs to discretize the time. With a time step € and
t =€k, Eq. (2.3) becomes

PV (x) = g®(x) — e 25
5S¢ p=g®)

+(2€)!29'®(x) (2.4)

with
(n*(x))=0,
(P * U x") ) =8(x —x" )8k -

This procedure introduces an error of order € in the aver-
ages, which can in principle be reduced by going to small
enough €. It is possible to write down equations such that
the detailed balance condition for the transition probabili-
ties P(c,c’)

e‘S(C)P(c,c’)zP(c’,c)e —S(c’)

(2.5)

(2.6)

is enforced to higher order in €. Algorithms exist for
which the error is of order €2, but they are rather compli-
cated.!*

The Langevin equation for Dirac fermions is also
known and is discussed in Refs. 15 and 16 in the context
of lattice gauge theories. Here we are interested in writing
evolution equations for elements of the group SU(3). It is
easy to show that the correct equilibrium distribution is
recovered, up to order ¢, if the matrices U,, evolve ac-
cording to the stochastic equation!” '3

] (k)
i

(2.7

58
sUp

Ao
=exp |i(2€)! %02, —~ —€P4r U(k)

(k+1)
Unu np oy

Here the A,’s are the Gell-Mann matrices, generators of
the group SU(3), and the wy,’s are random real numbers
with zero mean and unit variance

<w‘:,4> =0, (2.8)
(03,08, ) =8,,8,,8°F .

The operator P47 projects out the anti-Hermitian traceless
part of the operator in parentheses. Its effect is to con-
strain the new element to lie still on the group manifold.
The force term 8S/8U,, contains the effect of the
6(d — 1) neighboring links, and, in the case when fermion
degrees of freedom are present, will include the contribu-
tion from the fermion currents.

In practice we prefer not to take the exponential of an
operator, such as written in Eq. (2.7). The random SU(3)
matrices

Ao

1(26)1/260,,“ > 2.9

nul€)=6xp

are computed by expanding the exponential to fourth or-
der (which is justified for small €) and projecting them
uniformly on the group. This is achieved, for example, by
choosing at random a row or column of R, and orthonor-
malizing the remaining rows (viz., columns) with respect
to the chosen one.!” We have checked that the error intro-
duced by this procedure is negligible (we typically use € of
order 1073). A table of 200 random R matrices (contain-
ing always both R and R+ to ensure detailed balance) is
updated every time a full sweep through the lattice is
completed.

Because of the smallness of € we have also chosen to ex-
pand the force contribution in Eq. (2.7) to lowest order in
€. The deviations from unitarity of the new matrices
U, (K +”, which arises because we neglect higher-order con-
trlbutlons in €, are corrected by projecting the matrices
back on the group in the same way as described above for
the R,, matrices.

In order to speed up the approach toward thermal
equilibrium each link matrix U,, is updated ten times be-
fore we proceed to the next link. As we will show in the
next section, we have checked that our procedure repro-
duces the correct energy density (average plaquette) with
an error of order e.

Let us now discuss the determination of the correlation
functions.” In order to compute the connected correlation
function of two glueball operators, we set up two correlat-
ed stochastic processes. We consider two initially identi-
cal systems Ey and E;, which are in thermal equilibrium
at a temperature . E| is then allowed to further evolve
in time according to the evolution equations (2.7). In sys-

tem E the action is changed to
S—>S—80(1y) , (2.10)

where the operator 0~(t0) is the zero-spatial-momentum
operator

O(ty)= 3 0(0,%)

E¢

(2.11)

and O(¢X) is a (not necessarily local) operator function of
the U, fields, which is summed over a fixed “time slice”
to. The parameter 6 is chosen to be small, and the system
E, is then allowed to evolve in time with the same noise
distribution {wj,} as system E,. Note that because of the
logical statements present in a Metropolis Monte Carlo
procedure, phase coherence and ensuing cancellation of er-
rors cannot be achieved for long runs. If the same opera-
tor O(t) is then averaged over a different time slice t, one
has for system E,

J 1dU10(1))e =5t
[ [dUje—st¥!

(0(t))) g, = (2.12)

while for system E; one obtains
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f [dU]a(tl e —S[U1+80(¢y)

f [dU]e —S[U1+80(ty)

(6(t1))El=

J [dU16(:))0(10)e =510 [ [aU]O(11)e =51V [ [aU]O(2g)e =SV

= (0 x,+8 [ 1du]e 1Y)

From this one realizes glat the connected correlation func-
tion of the operators O(¢) at distances |¢;—?,| is given
by

(0(11)0(20))e =8""[{O(t,)) g, —(O(t;)) £, ]+O(3) .
(2.14)

For convenience we have chosen the measured operator
[O(t;)] and the one in the action [O(zy)] to be the same,
but the method of course allows for the possibility of hav-
ing different operators O,(t;) and Ogl(ty) on different
times slices, and study their mixing. In this framework
one can also gain information about the mixing between
glueballs and operators containing fermion fields. One
considers, for example, a glueball operator O(t,) added to
the action and measures on the remaining time slices the
expectation value of the meson operator

S UEOTYE L), (2.15)

where I is a Dirac gamma matrix. After formal integra-
tion over the Fermi fields the above operator is replaced
by the matrix element of the inverse of the lattice Dirac

operator
X, t)

evaluated in a background gauge configuration.
In the present study we limited ourselves to the one-
plaquette operator summed over spatial orientations

(2.16)

r
Tr(X,¢
% ( D+m

O(t)=+ 3 Tr[Up(%,t)+H.c.] . 2.17)

X

The change in the action induced on one time slice
amounts in this case to an increase in the inverse gauge
coupling B—pB+8 on the same slice. The operator in
(2.17) has the correct spin-parity assignment for the
JFC=0** glueball state.

III. NUMERICAL RESULTS

In this section we present the results of a numerical
simulation using the discretized Langevin equation (2.7).

+0(8%) . (2.13)

Taon-so]

First we want to show that this provides an alternative
way to create equilibrium configurations of the SU(3) lat-
tice gauge theory. To this end we did runs on a
4XX4xX4x4 lattice from ordered starts at B=5.6 with
€=0.001 and 0.0025. Figure 1 shows a graph of the aver-
age action per plaquette as a function of the number of
sweeps through the lattice. As one can see it converges to
the right value known from Monte Carlo simulations.
The magnitude of € is chosen as a compromise between
two requirements: it has to be small since every step intro-
duces an error of order €. It should not be too small, be-
cause smaller € provides slower convergence to equilibri-
um (see Fig. 1). We have found that €=0.001 to 0.0025
works reasonably well.

The update of a single link with the Langevin method
takes about twice as long as in conventional Monte Carlo
algorithms. The main reason for this is the need to
project out the anti-Hermitian traceless part of
(88 /0U,,)U,, in Eq. (2.7). However, the advantage of
the Langevin formalism is that one can measure connect-
ed correlation functions accurately as described in the pre-
vious section. We have done this for various couplings:
B=5.4, 5.5, 5.6, 5.7, and 5.8. These values of B were
chosen because the crossover from strong to weak-

T T T

LANGEVIN RUN AT 8 = 5.6
L

Illlllllll!ll
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FIG. 1. Comparison of two Langevin runs at 8=5.6 for
€=0.001 (lower curve) and €=0.0025 (upper curve).
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coupling behavior in the string tension is observed at
B=5.3—5.4, which roughly coincides with the observed
peak in the specific heat, and since the string tension
scales according to the asymptotic-freedom formula for
B=5.4—6.0. The lattice used should be big enough to ac-
curately represent long-wavelength fluctuations, which
means that it should at least be somewhat larger than the
correlation length. We always worked on a 6 X6X6X6
symmetric lattice. Monte Carlo data for the string tension
show that such a lattice should be large enough for the
values of B considered here.

As explained in Sec. II, at each B we had to perform
two highly correlated runs (E, and E;). We started them
from configurations which were previously brought to
equilibrium. At 8=5.6 we used a configuration which we
had on tape. It was thermalized from an ordered start by
2400 Monte Carlo iterations. The starting configurations
for the other couplings were obtained from this by another
500 Monte Carlo sweeps. In the Langevin runs for com-
puting the correlation functions we used both €=0.001
and 0.0025 for B=35.5, 5.6, and 5.7, while at B=5.4 and
5.8 we limited ourselves to €=0.001. We had to stop our
runs after ~400 iterations, because at that point the phase
coherence between the two correlated systems was lost due
to the accumulated roundoff errors. At B=5.7 we also
did a run in which we set € to 0.0025 for the first 100
iterations (in both systems E, and E;) to speed up the ap-
proach to equilibrium, and then changed it to 0.001 to
reduce the statistical fluctuations. We used §=583=0.05
in system E; throughout. In all cases we were able to
reproduce the correct average action per plaquette (see
Table I). Figure 2 shows a plot of the average action per
plaquette for the two correlated Langevin runs at 3=5.6
and for €=0.0025. It clearly shows that the two systems
E, and E, fluctuate together.

Because of our use of periodic boundary conditions we
were allowed to average over forward and backward corre-
lations. We computed

TABLE 1. Comparison of the average action per plaquette.
For the Langevin runs the average is over all 400 iterations of
system E,, while for the Monte Carlo runs the average is over
the last 400 iterations at each S.

B € Langevin Monte Carlo

54 0.001 0.5231+0.0035 0.5239+0.0030

5.5 0.001 0.5006+0.0058 0.5017+0.0041
0.0025 0.5009+0.0054

5.6 0.001 0.4690+0.0095 0.4761+0.0011
0.0025 0.4687+0.0065

5.7 0.001 0.4442+0.0042
0.0025 0.4488+0.0041 0.4477+0.0021
0.0025/1 0.4456+0.0034

5.8 0.001 0.4278+0.0024 0.4347+0.0033

B = 56, ¢ = 0.0025

lll"l]lfll‘r|l

5 I]Trl

LI

AVERAGE ACTION

B n
.4l|lllllllll1111LI|I

0 100 200 300 400
ITERATIONS

FIG. 2. Average action at B=5.6 for €=0.0025. In the run
corresponding to the lower curve the temperature 8 has been
raised on one time slice by an amount §3=0.05.

G()=1[(O(to+1)0(t0)).+(O(to—1)0(tp)).]  (3.1)

with ¢ <L /2 and L the linear size of the lattice in the
time direction. In Fig. 3 we show the correlation func-
tions G(z) for t=0, 1, 2, and 3 at B=5.6 and for
€=0.0025. As expected, the noise in the correlation func-
tions increases with distance. While the result for the
average plaquette is not noticeably dependent on € in the
range we investigated, the approach to equilibrium for
correlations at longer distances is considerably slower for
smaller € (0.001 as compared to 0.0025). This phe-
nomenon becomes more acute when the mass gap mg gets
smaller. For large (Langevin) times we expect the relaxa-
tion time 7 that governs the approach to equilibrium to
scale as

T~Mg -z N (32)

where z is a dynamical critical exponent.!! No estimate
for this exponent is known to us for gauge theories in four
dimensions. For a simple ¢* theory near four dimensions
one finds z=2 whereas for the O(3) Heisenberg model
near d =6 one gets z=4. The rather large dynamical crit-
ical exponent for the O(3) model is connected to the pres-
ence of the global continuous symmetry and Goldstone
modes.

We would expect the index z to be rather large for
gauge theories as well since motions along gauge orbits
cost no energy and do not drive the system toward equili-
brium. In principle this difficulty could be overcome by
doing longer runs. However, we had to limit our runs to
400 iterations, because after that the phase coherence be-
tween the two correlated runs was lost. Some of those
problems could probably be avoided by using double pre-
cision or a 64-bit machine (we worked on a 32-bit
machine). We found a somewhat improved convergence
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rate when a bigger value of € was taken at the beginning
of a run and later was reduced in order to improve on the
errors. The study of an optimal choice of €’s is beyond
the scope of the present investigation.

Since the operator O(t) we used in Eq. (3.1) is summed
over all sites of the time slice ¢ it projects out the zero-
spatial-momentum part of the correlation function. When
r labels the physical states that couple O we assume that

G(t) behaves as
m, {%t” . (3.3)

G(t)= Y A,cosh
r
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Glueball correlation function for 8=5.6 and €=0.0025 at separation O (a), separation 1 (b), separation 2 (c), and separa-

(Periodic boundary conditions have been used.) At large
separations in the time direction the state with the lowest
mass dominates the correlation function (3.3). For the
operator used [Eq. (2.17)] this is presumably the
JPC=0%"* glueball. We were not able to measure G(z) for
long enough times to make a fit of the form (3.3). Instead
we used a one-mass parametrization of G(t) and extracted
a distance-dependent mass m(t) from

G(t) cosh[m (¢)(L /2—1t)]

G(t—1) ~ cosh{m([L/2—(t—1)]} ° (3.4)

The lowest mass m, is then found as
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TABLE II. Correlation functions G(¢) (t=0, ..., 3) for various values of 8 and e, averaged over clusters of 50 iterations with

standard deviation in each cluster.

Correlation functions

Cluster
number t=0 t=1 t=2 t=3
B=5.4 1 0.1581+0.0086 0.0233+0.0015 0.0002+0.0000 0.0000+0.0000
€=0.001 2 0.2687+0.0030 0.0484+0.0008 0.0010+0.0000 0.0000+0.0000
3 0.3250+0.0017 0.0662+0.0006 0.0017+0.0000 0.0000+0.0000
4 0.3705+0.0015 0.0812+0.0010 0.0033+0.0002 0.0003+0.0001
5 0.3815+0.0013 0.0901+0.0007 0.0029+0.0002 0.0009+0.0000
6 0.3646+0.0017 0.1011+0.0008 0.0013+0.0004 —0.0018+0.0001
7 0.4414+0.0037 0.1126+0.0008 0.0055+0.0004 0.0015+0.0004
8 0.4634+0.0030 0.1254+0.0023 0.0235+0.0015 0.0095+0.0004
pB=5.5 1 0.1617+0.0087 0.0236+0.0015 0.0002+0.0000 0.0000+0.0000
€=0.001 2 0.2622+0.0018 0.0501+0.0007 0.0012+0.0000 0.0001+0.0000
3 0.3241+0.0026 0.0713+0.0009 0.0024+0.0001 0.0003+0.0000
4 0.3620+0.0022 0.0914+0.0009 0.0033+0.0001 0.0007 £0.0000
5 0.4034+0.0036 0.0942+0.0005 0.0043+0.0002 0.0020+0.0001
6 0.43641+0.0016 0.1009+0.0008 0.0046+0.0003 0.0048+0.0002
7 0.4175+0.0021 0.0985+0.0014 —0.0002+0.0006 0.0013+0.0003
8 0.3811+0.0043 0.1087+0.0024 —0.0017+0.0011 —0.0078+0.0004
B=5.5 1 0.2416+0.0108 0.0433+0.0025 0.0013+0.0001 0.0000+0.0000
€=0.0025 2 0.3607+0.0037 0.0857+0.0014 0.0048+0.0002 0.0010+0.0001
3 0.3909+0.0020 0.10474+0.0014 0.0085+0.0004 0.0043+0.0003
4 0.3754+0.0033 0.1082+0.0032 0.0039+0.0011 0.0068+0.0005
5 0.3599+0.0078 0.0939+0.0079 —0.0085+0.0021 —0.0012+0.0016
6 0.5601+0.0133 0.2054+£0.0096 —0.0206+0.0040 —0.0705+0.0060
7 0.3534+0.0266 0.2401+0.0203 —0.0604 +0.0092 —0.1001+0.0102
8 0.2684+0.0467 0.7452+0.0276 0.2585+0.0392 0.1304+0.0298
B=5.6 1 0.1714+0.0089 0.0254+0.0016 0.0003+0.0000 0.0000+0.0000
€=0.001 2 0.2665+0.0017 0.0508+0.0008 0.0016+0.0001 0.0001+0.0000
3 0.3023+0.0010 0.0666+0.0007 0.0040+0.0002 0.0003+0.0000
4 0.3376+0.0024 0.0809+0.0008 0.0068+0.0001 0.0008 +0.0000
5 0.3622+0.0007 0.0914+0.0003 0.007740.0002 0.0004 +£0.0000
6 0.3978+0.0031 0.1090+0.0009 0.0141+0.0003 0.0008+0.0001
7 0.4332+0.0022 0.1239+0.0006 0.0160+0.0002 —0.0012+0.0001
8 0.4418+0.0013 0.1273+0.0008 0.0214+0.0008 0.0042+0.0004
B=5.6 1 0.2306+0.0094 0.0421+0.0024 0.0014+0.0002 0.0001+0.0000
€=0.0025 2 0.3312+0.0018 0.0802+0.0012 0.0068+0.0003 0.0011+0.0001
3 0.3249+0.0025 0.0863+0.0009 0.0134+0.0004 0.0043+0.0003
4 0.3417+0.0026 0.10391+0.0017 0.0269+0.0008 0.0105+0.0005
5 0.3887+0.0040 0.1221+0.0013 0.0419+0.0008 0.0182+0.0005
6 0.3238+0.0024 0.1053+0.0014 0.0389+0.0007 0.0197+0.0009
7 0.3435+0.0026 0.1187+0.0018 0.0384+0.0011 0.0030+0.0016
8 0.3624+0.0047 0.1438+0.0025 0.0479+0.0011 —0.0132+0.0016
B=5.7 1 0.1628+0.0083 0.0245+0.0015 0.0004+0.0000 0.0000+0.0000
€=0.001 2 0.2582+0.0021 0.0471+0.0007 0.0019+0.0001 0.0002+0.0000
3 0.2835+0.0013 0.0598+0.0004 0.0035+0.0001 0.0006+0.0000
4 0.3012+0.0004 0.0669+0.0003 0.0042+0.0001 0.0008 £0.0000
5 0.3016+0.0005 0.0710+0.0002 0.0054+0.0001 0.0011+0.0000
6 0.3001+0.0016 0.0776+0.0004 0.0075+0.0002 0.0010+0.0001
7 0.3271+0.0011 0.0790+0.0007 0.0101+0.0001 0.0003+0.0001
8 0.3326+0.0011 0.0822+0.0005 0.0097+0.0002 —0.0002+0.0001
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TABLE II. (Continued.)

Cluster Correlation functions
number t=0 t=1 t=2 t=3

B=5.7 1 0.2269+0.0089 0.0417+0.0023 0.0018+0.0002 0.0001 £0.0000
€=0.0025 2 0.3140+0.0024 0.0738+0.0009 0.0051+0.0001 0.0012+0.0001
3 0.3305+0.0017 0.0829+0.0006 0.0082+0.0003 0.0002+0.0001

4 0.3289+0.0017 0.0897+0.0010 0.0120+0.0004 —0.0001+0.0003

5 0.3413+0.0022 0.0809+0.0018 0.0089+0.0011 0.0017+0.0007

6 0.3165+0.0032 0.0845+0.0018 0.0250+0.0018 0.0115+0.0014

7 0.4644+0.0140 0.1282+0.0083 0.0060+0.0025 0.0229+0.0039

8 0.5082+0.0075 0.1932+0.0056 —0.0338+0.0034 —0.0347+0.0040

B=5.7 1 0.2269+0.0089 0.0417+0.0023 0.0018+0.0002 0.0001+0.0000
€=0.0025 2 0.3140+0.0024 0.073840.0009 0.0051+0.0001 0.001240.0001
—0.001 3 0.3366+0.0010 0.0869+0.0004 0.0077+0.0002 0.0010+0.0001
4 0.3431+0.0009 0.0836+0.0004 0.0080+0.0001 —0.0007+0.0001

5 0.3294+0.0013 0.0887+0.0005 0.0080+0.0001 0.0036+0.0003

6 0.2993+0.0018 0.0855+0.0007 0.0174+0.0007 0.0079+0.0003

7 0.3345+0.0016 0.0998+0.0007 0.0188+0.0004 0.0082+0.0005

8 0.3411+0.0031 0.1103+0.0008 0.0206+0.0010 0.0011+0.0005

B=5.8 1 0.158140.0080 0.0242+0.0015 0.0004+0.0000 0.0000+0.0000
€=0.001 2 0.2486+0.0017 0.0473+0.0006 0.0015+0.0000 0.0000+0.0000
3 0.2685+0.0008 0.0551+0.0003 0.0035+0.0001 0.0004 +0.0000

4 0.2794+0.0007 0.0627+0.0005 0.0054+0.0001 0.0005+0.0000

5 0.289240.0014 0.0660+0.0003 0.0065+0.0000 0.0010+0.0000

6 0.2878+0.0007 0.0697+0.0004 0.0071+0.0001 0.0018+0.0001

7 0.2994+0.0009 0.0767+0.0003 0.0090+0.0001 0.0023+0.0001

8 0.3010+0.0013 0.0774+0.0005 0.0079+0.0001 0.0008 £0.0002
lim m(t)=my . (3.5) and mass e.stima'tes are reached at large Langevin time
e (number of iterations), we have to extrapolate our results.

We assume that the gap between m, and higher masses
that contribute to G(¢) in (3.3) is large enough that m(z)
gives a good estimate for m already at small distances.

In order to extract the correlation functions and mass
estimates we chose to average the correlation functions
over 8 clusters of 50 iterations. The result, including the
standard deviation in each cluster, is presented in Table II.
Since the equilibrium values of the correlation functions

We can proceed in two different ways.

(i) Extrapolation of the correlation functions. We fit the
cluster averages of Table II as a function of 1/N where N
is the number of the cluster, and extrapolate to 1/N =0.
For this we made a polynomial fit

1 1 1
G [t,]—v- J_G(t,0)+a(t)N +b(t) N (3.6)

TABLE III. Mass estimates for various value of 3 and €. The mass values are the average of the two
extrapolation procedures (see text) and the error estimates their differences.

B € m(1) m(2) m(3)
54 0.001 1.16+0.06 2.2+0.9 1.7+1.0
55 0.001 1.26+0.05 2.8+0.2 1.31+0.4

0.0025 0.95+0.10 2.7+0.8 1.3+0.9
5.6 0.001 1.11+£0.05 1.4+0.4 2.7+0.6
0.0025 0.91+0.05 0.8+£0.3 1.0+0.2
5.7 0.001 1.25+0.05 1.9+0.2 2.3+0.5
0.0025 1.20+0.15 1.6+0.6 1.3+£0.5
0.0025/1 1.12+0.05 1.45+0.2 1.4+0.5
5.8 0.001 1.26+0.05 1.75+0.3 1.6+0.3
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The masses m(t) are then extracted from G(¢,0) as in Eq.
(3.4).

(ii) Extrapolation of the mass estimates. For each clus-
ter calculate the masses m(z,1/N) from (3.4), fit them as
a function of 1/N, and extrapolate to 1/N =0. Again we
used a polynomial fit similar to Eq. (3.6).

The two methods provide us with two estimates for the
distance-dependent masses. In Table III we list the aver-
age of the two for the various values of B and €. The er-
ror induced by the extrapolation procedure can be estimat-
ed as the difference between the two values for the masses
obtained in (i) and (ii). It is also quoted in Table III.

At longer distances the mass estimates from the runs
with €=0.001 tend to be larger than the ones from runs
with €=0.0025. This is probably due to the fact that re-
laxation for €é=0.001 takes much longer and has not been
achieved in those runs. In all cases we have observed that,
not unexpectedly, the approach to equilibrium for the
correlation functions (and hence the masses) at longer dis-
tances is much slower. The mass estimates at distances 2
and 3 come therefore with larger errors than at distance 1.
In Fig. 4 we show these mass estimates as a function of S.
At B=5.4 and 5.8, €=0.001 was used, whereas at the oth-
er B’s the results from the runs with €=0.0025 are plot-
ted. Also shown in Fig. 4 are the spin-wave estimates for
weak coupling (for t=2 and 3) and the scaling curves
predicted from asymptotic freedom.

IV. DISCUSSION

Let us now come to a discussion of our results. In or-
der to extrapolate the glueball mass to the continuum lim-
it (B= o) we use the renormalization group. Define the
lattice scale parameter for SU(3):

GLUEBALL MASS
4 F T r T | T I T | T I T =

o o
T T T T
.o /Z

|

- o b O

4 k=
53 5.4

FIG. 4. 0**-glueball-mass estimates at different couplings
for different separations. The continuous lines represent the ex-
pected renormalization-group behavior mg =(240+70)A,. The
dashed and dashed-dotted lines represent the expected weak-
coupling spin-wave behavior of the distance-dependent masses
[Eq. (3.4)] m(1) and m(2).

8772
—_— 4.1
33 B @1

A0=a‘1 e—(41r2/33)ﬁ[1+0(B-—1)] .

]51/121

Then for large B we expect the glueball mass to scale as

Mg =CAO . (4o2)

It is not clear from our data to what extent the values for
mg seem to follow this prediction. The mass estimates at
B=5.4, 5.5, and 5.6 are consistent with the expected
behavior, although the values at larger separation have
large error bars due to the statistical fluctuations. (For
larger mass the correlation functions decrease more rapid-
ly and are therefore more difficult to measure.)

The situation, however, is not so nice if one considers
what happens to the specific heat in the same region. By
the Monte Carlo method we have computed the energy
density between B=4.5 and 6.5 using an increment
8B8=0.03 and 80 iterations for each value of B on a
5% 5% 5X5 lattice, averaging over the last 40 iterations.
An eight-order polynomial fit to this data was then per-
formed, and from it the derivative was estimated. From
this analysis we find a peak in the specific heat at
B=5.5—5.6, which can probably be ascribed to a nearby
complex zero of the partition function. If a singularity
were to appear for a real B=/3,, then a scaling argument
would suggest

OE _ 4|B—B.|™"

(dv=2)/v 4.3)

~Bm

where a and v are critical exponents, m is the inverse of
the correlation length, and 4 and B are regular functions
for B—B.. This would in turn imply that m goes to zero
as

v/(dv—2)

1%

4.4
Y (4.4)

m ~
B—B,

In the case of SU(3) lattice gauge theories with the Wilson
action it seems unlikely that the peak in the specific heat
will not have some effect on the glueball mass (a dip)
around and before B=5.6, a behavior that is unrelated to
the asymptotic freedom scaling expected for large 8. A
similar behavior is also observed in the string tension and
the hadron masses. Therefore we conclude that our esti-
mates for B < 5.6 are likely to be affected by at present un-
controllable systematic effects due to nearby spurious
singularities. )

On the other hand, at large 8 (8>5.7) we see that our
data clearly deviates from the asymptotic-freedom predic-
tion. Indeed it is known that for weak enough coupling
the spin-wave result

G(t)~t~>

should be

t<<mG_1.

4.5)

recovered for small enough distances,
In Fig. 4 we have included the spin-wave pre-
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diction for the distance-dependent mass estimates m(2)
and m(3) defined in the preceding section. Since we are
limited, because of the size of our 6X6X6X6 lattice, to
separations of up to three lattice spacings, we are at the
present unable to penetrate more deeply into the scaling
region. It would seem therefore that our most believable
point, as far as the extrapolation to 3—> o is concerned, is
B=5.6. Our conclusion is thus

An alternative way of presenting our results would be as
a ratio of the 0** glueball mass to a known physical
quantity also accessible by the Monte Carlo method. Us-
ing recent high-statistics data for the string tension on an
8X 8 X 8% 8 lattice?® we find at B=5.6

me _ (0.940.1)a"!

VT~ (0.35+0.05)a !

The string tension is not known directly, but if we use
T =(420 MeV)? we get mg = 1080+400 MeV.

In Ref. 16 the p mass at B=5.6 was estimated to be

m,=(0.8+0.1)a"! using the Wilson fermion action'® on

a lattice of maximum size 6 X6X6X 12. From this esti-
mate we obtain

mc _ (0.940.1)a~!
m,  (0.840.1)a™!

=2.6+1.0. 4.7)

=1.1+0.2 (4.8)

which would give, using the physical p mass as input, for
the mass of the lowest glueball about 850+200 MeV.

Let us finally briefly compare our results with previous
estimates. Our values for the masses at different coupling
constants are in reasonable agreement with previous re-

sults, although they usually tend to be slightly lower. In
the first of Ref. 15 the finite-size scaling method was used
to estimate the mass of the scalar glueball at 8=6.0, giv-
ing the large value (1.2+0.1)a ™! at separations 2 and 3 on
lattices of maximum size 7X7X7X7, an estimate that
now would seem to be contaminated by the spin-wave
behavior of Eq. (4.5). The variational estimate of Ref. 6
at $=5.7 on a 4X4 X 4X 8 lattice is about 30% above our
best result in terms of A,. However, at the coupling our
masses seem already to be influenced by the spin-wave
behavior as well. The same technique was used to esti-
mate the glueball mass in Ref. 7 at several values of B
ranging from 5.0 to 5.8 on a 4X 4 4 8 lattice. Their la-
test estimate is about 15% higher than ours, but the agree-
ment seems good in view of the different techniques used.

Several explanations for the discrepancies are possible.
Among these we mention the slightly larger lattice used in
the present calculation and the influence of the peak in the
specific heat, which might be size dependent. It now
seems important that longer runs on larger lattices be
done. Work in this direction is in progress and will be re-
ported elsewhere.
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